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Abstract

Every quaternion algebra contains a set of orders, whose understanding would be
helping for the Shimura curves theory development. In this master’s thesis, certain
parametric families of orders of quaternion algebras over Q have been defined, and
their relationships with Eichler orders have been studied. In particular, for some
given quaternion algebras over Q, we have defined and studied three families of
orders O, O′ and O′′, together with a maximal order Omax belonging to all of
the families. As a main result, given a square-free integer N coprime with the
discriminant of the quaternion algebra given, it is possible to find an Eichler order
of level N belonging to the family O′ and satisfying

Omax ⊃ O′ ⊃ O′′ ⊃ O = Z +NOmax,

in a way that every quotient is isomorphic to Z/NZ as abelian groups, this is,

O/O′ ∼= O′/O′′ ∼= O′′/O ∼= Z/NZ.
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Introduction

The article [2] studies a certain family of orders of the matrix algebra M(2,Q).
Their unit groups can be related to congruence groups of SL(2,Z), and therefore
act in the Poincaré half-plane. The idea of this master’s thesis is to make a similar
study, but considering families of orders of quaternion algebras over Q, rather than
of M(2,Q). The groups of units of the orders of quaternion algebras also act on the
Poincaré half-plane, via some suitable embeddings in PSL(2,R), and each one of
them is associated to a Shimura curve. Thus, a good understanding of the quaternion
algebras, and in particular of their orders and corresponding unit groups, would be
helpful for the understanding of the Shimura curves. In this work we focus on the
orders.

In [4], a solid background on the arithmetic of quaternion algebras and their
orders is given, and in [1] the focus is put on applying this background to quaternion
algebras over Q and their use in the Shimura curves theory. We use some of the
results therein presented to analyse the orders that are meaningful to our study. In
fact, the first chapter of this work is basically composed of results extracted from
these references. Once the necessary background and tools have been introduced,
we present the results of our research in the second chapter. We consider two types
of quaternion algebras over Q and study three different families of orders for each
of them. These families have been chosen for having the most interesting properties
amongst all of the families that have been considered during the research. The
meaningfulness of the families of orders is shown along the work. The relation they
have with each other and their relation with Eichler orders is particularly relevant.
It is to be remarked that the study has led to very similar results in both cases, even
if the calculations were different. A summary of the main results and conclusions,
common for all the quaternion algebras studied, follows.

For both types of quaternion algebras, three different families of tri-parametric
orders have been defined, O(m,n, d), O′(m,n, d) and O′′(m,n, d), and a maximal
order belonging to all of the families has been found, called Omax. The family
O′(m,n, d) contains an Eichler order of level N for every N square-free and coprime
with the discriminant of the quaternion algebra. The order is such that level N
coincides with the value of the first parameter. For every such Eichler order, there
also exist orders belonging to the families O(m,n, d) and O′′(m,n, d) such that

Omax ⊃ O′(N, n, d) ⊃ O′′(N, n,N) ⊃ O(N,N,N) = Z +NOmax.

Moreover, if N > 1, these inclusions are always strict, and every quotient is isomor-
phic to Z/NZ as abelian groups, this is,

Omax/O′(N, n, d) ∼= O′(N, n, d)/O′′(N, n,N) ∼= O′′(N, n,N)/O(N,N,N) ∼= Z/NZ.
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Chapter 1

Quaternion Algebras and their
Orders

In order to introduce some basic concepts about quaternion algebras, we are
first going to introduce them in a general way. This will allow us to have a general
insight on the behaviour of quaternion algebras and to introduce some important
properties that will later apply to our particular case, the quaternion algebras over
Q. The definitions and results shown in this first chapter can be found either in [1],
in [2] or in [4]. Some of them will be referred more precisely throughout the chapter.

1.1. Quaternion Algebras

Definition 1.1. Let K be a field. A quaternion K-algebra H is a central simple
K-algebra, associative and with unit element, of dimension 4 over K.

If the characteristic of K is different from 2, there exist two nonzero elements
a, b ∈ K such that there exists a basis {1, i, j,k} of H with 1 being the neutral
element for the multiplication and satisfying the relations

i2 = a, j2 = b, ij = −ji = k. (1.1)

In fact, these relations define the algebra. Consequently, we will express a quaternion
algebra H over a field K defined by a and b as

(
a,b
K

)
. If the characteristic of K is

equal to 2, there also exists a couple (a, b) defining the operations of the quaternion
algebra. However, these operations are characterised by the relations

i2 + i = a, j2 = b, ij = j(i + 1), (1.2)

which yields a different structure than for the rest of characteristics.
In the following, we are only going to consider fields of characteristic different

from 2. Note that from the relations (1.1), the following multiplication table follows:

· i j k
i a k aj
j −k b −bi
k −aj bi −ab

1



2 1. Quaternion Algebras and their Orders

Definition 1.2. Let H =
(
a,b
K

)
be a quaternion algebra, and consider the element

α = x+ yi + zj + tk ∈ H, with x, y, z, t ∈ K.

The quaternion α is called pure if x = 0.

The conjugate of α is α = x− yi− zj− tk.

The reduced trace of α is tr(α) = α + α = 2x.

The reduced norm of α is n(α) = αα = x2 − ay2 − bz2 + abt2.

If the elements α ∈ H are expressed as α = x+yi+zj+tk, with x, y, z, t ∈ K, like
in the previous definition (note that we omit the specification of the 1 dimension),
we will use the notation α1, αi, αj and αk to refer to the coefficient of each of the
4 dimensions of the quaternion. In this case, for example, we would have that
α1 = x, αi = y, αj = z and αk = t.

Proposition 1.3. [4] A quaternion algebra
(
a,b
K

)
is isomorphic to{(

x+ y
√
a z + t

√
a

b(z − t
√
a) x− y

√
a

)
|x, y, z, t ∈ K

}
⊆M

(
2, K(

√
a)
)
, (1.3)

where
√
a is a square root of a in a fixed separable closure of K.

Proof. Just note that the matrices

1 =

(
1 0
0 1

)
, I =

(√
a 0

0
√
−a

)
, J =

(
0 1
b 0

)
, IJ =

(
0

√
a

−b
√
a 0

)
satisfy the relations (1.1).

Example 1.4 (The Hamilton quaternions). The quaternion algebra
(−1,−1

R

)
is also

known as the Hamilton quaternions. This quaternion algebra is the most known
one, due to the big amount of applications it has been found useful for. As an
example, its strong relationship with the group of rotations SO(3) (

(−1,−1
R

)∗
is a

double covering of the group SO(3)) is currently used for computing the position of
autonomous vehicles when interpreting data acquired by gyroscopes.

Definition 1.5. Let K = Q, and consider the set of embeddings i : K → L into a
local field (i.e. a finite extension of R, Qp of Fp[[x]]) such that i(K) is dense in L.
We say that two such embeddings i, i′ are equivalent if i′ = fi for some isomorphism
f : L → L′. An equivalence class is called a place of K, and we note it as v. We
will note as Kv the representants of the local fields such that iv : K → Kv is an
embedding for a place v.

Definition 1.6. Let H be a quaternion algebra over K. A place ramifies in H if
the extended quaternion algebra Hv = H ⊗Kv is a division algebra.

Lemma 1.7. [4] The number of places of K that ramify in H is finite.

Let R be an integral domain, and let K be its field of fractions.
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Definition 1.8. The reduced discriminant DH of a quaternion K-algebra H is
the integral ideal of R equal to the product of prime ideals of R that ramify in H.

Since R is a principal ideal domain, we can identify the ideals of R with their
generators. Hence, in the quaternion Q-algebras, we can identify the reduced dis-
criminants with integers.

Proposition 1.9. Two quaternion K-algebras are isomorphic if and only if they
have the same reduced discriminant.

1.1.1. Quaternion Algebras over Q
So far we have given some basic definitions about quaternion algebras that will

be useful to us. For the case of the quaternion algebras over Q, which is the one we
are particularly interested in, one can obtain more specific results. The following
theorem characterises many of the quaternion algebras over Q, and will determine
the quaternion algebras we will be working with in the next chapter.

Theorem 1.10. [1] Let H =
(

a,b
Q

)
be a quaternion algebra such that its discriminant

DH either is equal to one or can be expressed as the product of two primes. Then,

(i) If DH = 1, then H ∼= M(2,Q) ∼=
(

1,−1
Q

)
.

(ii) If DH = 2p, with p prime and p ≡ 3 mod 4, then H ∼=
(

p,−1
Q

)
.

(iii) If DH = pq, with p, q prime numbers such that q ≡ 1 mod 4 and
(

p
q

)
= −1,

where
( ·
·

)
is the Legendre symbol, then H ∼=

(
p,q
Q

)
.

If a and b are prime numbers, then H satisfies one, and only one, of these three
statements.

We denote by HA(p) and HB(p, q) the quaternion algebras like the ones specified
in (II) and (III), respectively.

Definition 1.11. The quaternion Q-algebras having discriminant equal to the prod-
uct of two distinct prime numbers are called small ramified Q-algebras. We say
that a small ramified Q-algebra is of type A if it is isomorphic to HA(p) for some
prime p satisfying p ≡ 3 mod 4, and we say that it is of type B if it is isomorphic

to HB(p, q) for some primes p, q satisfying q ≡ 1 mod 4 and
(

p
q

)
= −1.

In what follows, we are going to work on quaternion algebras up to isomorphism.
Thus, we will call the algebras of the form HA(p) type A algebras, and we will call
the algebras of the form HB(p, q) type B algebras; in both cases, p and q satisfying
the required conditions.
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1.2. Quaternion Orders

Our main object of study are the orders of quaternion algebras. This section
introduces them and states their main properties, to be used in the next chapter.

Let R be a principal ideal domain, K its field of fractions and H a quaternion
algebra over K.

Definition 1.12. An element α ∈ H is called integral over K if tr(α), n(α) ∈ R.

Example 1.13. In the case of a quaternion algebra H over Q, an element α ∈ H
is integral if tr(α), n(α) ∈ Z.

Definition 1.14. Let V be a K-vector space. An R-lattice of V is a finitely
generated R-module contained in V . If L is an R-lattice of V , we say that L is full
if K ⊗R L ' V .

Definition 1.15. An ideal of a quaternion algebra H is a full R-lattice.

Definition 1.16. An order O of H is a ring of integral elements containing R such
that KO = H. An order is called maximal if it is not strictly contained inside
any other order. An order is called Eichler order if it is the intersection of two
maximal orders.

Remark 1.17. Equivalently, an order could also have been defined as an ideal which
is also a ring.

Definition 1.18. Let O be an R-order in H. The different DO of O is the bilateral
R-ideal of O computed as the inverse of the dual of O by the bilinear form given by
the reduced trace. This is, α ∈ D−1O if and only if tr(αO) ⊆ R. Its reduced norm,
DO = n(DO), is then the reduced discriminant of O.

Proposition 1.19. Let O be an R-order in H. Then,

D2
O is the ideal of R generated by {det (tr(wiwj)) : 1 ≤ i, j ≤ 4, wi, wj ∈ O};

if {v1, . . . v4} is an R-basis of O, then D2
O = R det (tr(vivj));

if O′ is an order in H such that O ⊂ O′, then DO′ divides DO, and DO′ = DO
only if O = O′.

Corollary 1.20. Let O be an order of the quaternion algebra H =
(

a,b
Q

)
, with

a, b ∈ Z. Let P be the matrix of change of basis from a fixed Z-basis of O to the
basis {1, i, j,k}. Then, DO = |4ab detP |.

Proposition 1.21. All the maximal orders of a quaternion algebra over Q belong
to the same conjugacy class.

Definition 1.22. Let v be a place of K, and let Ov be an Eichler order in a
quaternion Kv-algebra Hv. Then, the level of Ov is the ideal

NOv =

{
Rv, if Hv is a division algebra,

Nϕ(Ov), where ϕ : Hv →M(2, Kv) is an isomorphism.
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Definition 1.23. The level NO of an Eichler order O is the unique integral ideal
NR in R such that Nv is the level of each Ov at each finite place v of K. Thus,
NO =

∏
vNOv .

Proposition 1.24. [1] Let O be an order in a quaternion Q-algebra H of discrim-
inant DH .

(i) If O is an Eichler order, then DO = DHNO and gcd(DH , NO) = 1.

(ii) If DO = DHN is a square-free integer, then O is an Eichler order of level N .

(iii) Let O and O′ be conjugate Z-orders in H. Then, O is an Eichler order of
level N if and only if O′ is an Eichler order of level N .

Remark 1.25. An Eichler order has level 1 if and only if it is a maximal order.

Proposition 1.26. [1] Let H be a quaternion Q-algebra of discriminant D. Then,
for each integer N such that gcd(N,D) = 1, there exist Eichler orders of level N .

1.3. Parametric Families of Orders: A First Ex-

ample

In this section we are going to state the main results shown in [2]. In the cited
article, a parametric family of orders over the matrix algebra M(2,Q) is considered
and studied. This will serve us as a motivating example for us to define the families
of orders of quaternions over Q.

Definition 1.27. For every m,n ≥ 1 integers and for every divisor d ≥ 1 of mn,
we define the family of orders

O(m,n, d) =

{(
x ym
zn x+ td

)
| x, y, z, t ∈ Z

}
⊆M(2,Z).

Indeed, it is not hard to show that the condition d|mn is enough for each of the
defined sets to be an order. In particular, O(1, 1, 1) = M(2,Z) is a maximal order.
Even though it is not true that every order of M(2,Q) belongs to the family of
orders O(m,n, d), every order of M(2,Q) is included in a maximal order. Moreover,
since Z is principal, two maximal orders of M(2,Q) are always conjugate.

Not every order O contained in M(2,Z) belongs to the family O(m,n, d). How-
ever, it is always such that O(m′, n′, d′) ⊂ O ⊂ O(m′′, n′′, d′′) for some integers
m′, n′, d′,m′′, n′′, d′′. Hence, every order of M(2,Q) is isomorphic (via conjugation)
to an order lying between two orders of the family O(m,n, d). Thus, it is possible
to study only the orders of the family O(m,n, d) to obtain the properties of many
orders of M(2,Q) up to isomorphism.

Observe also that it makes sense to define parametric families of orders with
three parameters. Since Z has always to be included in the order (we associate an

element x ∈ Z to the diagonal matrix

(
x 0
0 x

)
), we can impose 1 to be an element

of any basis, and have a parameter for each of the other 3 dimensions.
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One particularity of this family of orders is that

O(1, 1, 1) ⊃ O(1, N, 1) ⊃ O(1, N,N) ⊃ O(N,N,N) = Z +NO(1, 1, 1),

and these orders are such that, as abelian groups,

O(1, 1, 1)/O(1, N, 1) ∼= O(1, N, 1)/O(1, N,N) ∼= O(1, N,N)/O(N,N,N) ∼= Z/NZ.

Moreover, these orders have a strong relationship with the congruence groups of
SL(2,Z). For example, Γ0(N) is the group of units of O(1, N, 1), Γ1(N) generates
O(1, N,N), and Γ(N) generates O(N,N,N) if N is odd and O(N,N, 2N) is N is
even.

In the case of the quaternion algebras, it is possible to find similar relations if
we consider different families of orders, as we will see in the next chapter.



Chapter 2

Orders of Quaternion Algebras
over Q

In this chapter, we are going to study some families of orders of quaternion
algebras over Q. This chapter is separated in two main sections, each one of them
dedicated to one of the two types of quaternion algebras over Q defined previously.
This is because each type of quaternion algebra has certain particular properties
that affect directly the structure of the orders. We will first state a result of [1] that
gives some examples of Eichler orders of quaternion algebras over Q.

Lemma 2.1. Let p, q be different primes. Then,

(i) OM(1, N) := Z
[
1, j+k

2
, N −j+k

2
, 1−i

2

]
is an Eichler order of level N in the matrix

algebra
(

1,−1
Q

)
for every N ≥ 1 square-free.

(ii) OA(2p,N) := Z
[
1, i, N j, 1+i+j+k

2

]
is an Eichler order of level N in the quater-

nion algebra HA(p), for N |p−1
2

, N square-free.

(iii) OB(pq,N) := Z
[
1, N i, 1+j

2
, i+k

2

]
is an Eichler order of level N , in the quater-

nion algebra HB(p, q), for N | q−1
4

, gcd(N, p) = 1, N square-free.

Proof. In all the cases, it is not difficult to check that the lattices are orders, and in
every case the conditions on N make it coprime with the discriminant of the algebra.
One can easily check the levels of the orders computing their discriminant using
proposition 1.19, and deduce that all of them are Eichler orders using proposition
1.24.

The two sections that follow have a pretty similar structure. First, we define
some parametric families of lattices, deducing the conditions to be satisfied by the
parameters for the lattices to be orders. A maximal order common to all quaternion
algebras of the considered type is also computed. Finally, we get to see some inter-
esting relations between the orders that have been found. Considering the structural
similarity of both chapters, one might think that it could be more handy to merge
them in order not to repeat statements and calculations. However, this separation
is needed, because even though the final results obtained are pretty similar, the
intermediate calculations differ considerably. In fact, the fact that we obtain such
similar results for both A and B type quaternion algebras is remarkable itself.

7



8 2. Orders of Quaternion Algebras over Q

2.1. Type A Quaternion Algebras

Recall that for us the type A quaternion algebras are the ones of the form

HA(p) =
(

p,−1
Q

)
such that p ≡ 3 mod 4. In this whole section, we are only go-

ing to consider orders over such quaternion algebras. With the purpose of studying
these orders, we will start considering the lattice Z

[
1, i, j, 1+i+j+k

2

]
.

Proposition 2.2. All the elements of the lattice Z
[
1, i, j, 1+i+j+k

2

]
are integral.

Proof. Let α ∈ Z
[
1, i, j, 1+i+j+k

2

]
. Then, it is of the form

α =

(
x+

t

2

)
+

(
y +

t

2

)
i +

(
z +

t

2

)
j +

t

2
k, x, y, z, t ∈ Z.

This element is integral, since tr(α) = 2x+ t and

n(α) =

(
x+

t

2

)2

− p
(
y +

t

2

)2

+

(
z +

t

2

)2

− pt
2

4

= x2 + xt− py2 − pyt+ z2 + zt− p− 1

2
t2.

Definition 2.3. For every m,n, d ∈ Z, we define the three following families of
lattices:

OA(m,n, d) := Z
[
1,mi, nj, d1+i+j+k

2

]
;

O′A(m,n, d) := Z
[
1,mi, ni + j, di + 1+i+j+k

2

]
;

O′′A(m,n, d) := Z
[
1,mi, ni + j, d1+i+j+k

2

]
.

Remark 2.4. It is not claimed that OA(m,n, d), O′A(m,n, d) and O′′A(m,n, d) are
orders for every m,n and d. In fact, it is not true. However, it is true for some of
them; we will see later in which cases this happens.

Remark 2.5.

Z
[
1, i, j,

1 + i + j + k

2

]
= OA(1, 1, 1) = O′A(1, 0, 0) = O′′A(1, 0, 1). (2.1)

Remark 2.6. Note that since all the elements of Z
[
1, i, j, 1+i+j+k

2

]
are integral,

every element of OA(m,n, d), O′A(m,n, d) and O′′A(m,n, d) is integral too, indepen-
dently of the choice of m, n and d.

Proposition 2.7. OA(m,n, d) is an order of HA(p) if and only if m|nd, n|mdp−1
2

and d|2mn.

Proof. In order to prove this, we only need to show that OA(m,n, d) is a ring,
because we have already seen that every element is integral, and it is clear that it
is a full lattice. For doing this, the only non-trivial thing to check is whether the
product is internal or not (remember that Z ⊆ OA(m,n, d)). Let us see under which
conditions the product between elements of the lattice’s basis belongs again to the
lattice. Let e0 = 1, e1 = mi, e2 = nj and e3 = d1+i+j+k

2
. Then:
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e0ei = eie0 = ei for i = 0, 1, 2, 3.

e20, e
2
1, e

2
2 ∈ Z.

e23 = d2

4
(1 + i + j + k)2 = d2

4
(2p+ 2i + 2j + 2k) = de3 + d2 p−1

2
e0.

e1e2 = −e2e1 = mnk = 2mn
d
e3 −mne0 − ne1 −me2. Hence, we need d|2mn.

e1e3 = md
2

(i + p + k + pj) = me3 + p−1
2
mde0 + (p−1)

2
md
n
e2. Hence, we need

n|mdp−1
2

.

e3e1 = md
2

(i + p− k− pj) = −e3e1 + pmde0 + de1.

e2e3 = nd
2

(j− k− 1 + i) = −ne3 + de2 + dn
m
e1. Hence, we need m|dn.

e3e2 = nd
2

(j + k− 1− i) = −e2e3 − nde0 + de2.

Let us briefly analyse what the conditions m|nd, n|mdp−1
2

and d|2mn mean.
Let us first suppose that we have the (more restrictive) conditions m|nd, n|md and
d|mn, and let P be a prime number dividing m. Then, since n|md and d|mn, either
P |n or P |d (or both). Basically, this tells us that each prime factor has to divide at
least two of the parameters. More precisely, if P r|m, and P r+1 - n and P r+1 - d, then
P r|nd. Going back to the conditions m|nd, n|mdp−1

2
and d|2mn, we see that they

mean the same, but with the additional allowance that d can have an additional
factor 2, and n can have an additional factor x, with x a divisor of p−1

2
.

Corollary 2.8. Z
[
1, i, j, 1+i+j+k

2

]
is a maximal order for every type A quaternion

algebra. We will call it Omax
A .

Proof. The fact that it is an order follows from the previous proposition. It is
maximal because its discriminant coincides with the discriminant of the quaternion
algebra, which is 2p. One can check it using proposition 1.19, for example.

Remark 2.9. Note that this was already stated in lemma 2.1.

Remark 2.10. Every maximal quaternion order of HA(p) is a conjugate of Omax
A ,

as follows from proposition 1.21.

We have just seen in which cases OA(m,n, d) is an order. For seeing in which
cases O′A(m,n, d) and O′′A(m,n, d) are orders, the proofs are quite similar to the
previous one. Thus, we will only state the theorems, in order to avoid unnecessarily
repetitive calculations and reasonings. Their proofs can be found in the appendix
(propositions A.1 and A.2).

Proposition 2.11. O′A(m,n, d) is an order of HA(p) if and only if m is such that
divides 2d2 − 2dn+ 2d− p−1

2
n2 − n+ 1.

Proposition 2.12. O′′A(m,n, d) is an order of HA(p) if and only if d divides 2m
and m divides d

(
p−1
2
n2 + n− 1

)
.
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One question that now rises is which of the orders that we have found is an
Eichler order. We know that there exist Eichler orders of level N for each N with
gcd(N,D) = 1, where D is the discriminant of the quaternion algebra (proposition
1.26). Hence, every order satisfying this property is a candidate for being an Eichler
order. However, it is not easy to check if an order is the intersection of two maximal
orders, following the definition of Eichler order. Instead, proposition 1.24 gives us a
more useful tool for us to find Eichler orders belonging to our families of orders. If we
find an order whose discriminant is square-free and not divisible by the discriminant
of the quaternion algebra, it will be an Eichler order. For this purpose, recall that
the discriminant of the quaternion algebra HA(p) equals 2p.

Proposition 2.13. If OA(m,n, d), O′A(m′, n′, d′) and O′′A(m′′, n′′, d′′) are orders,
then their discriminants equal 2pmnd, 2pm′ and 2pm′′d′′, respectively.

Proof. Using the second item of proposition 1.19 for instance, one can compute the
discriminant of the orders OA(m,n, d), O′A(m′, n′, d′) and O′′A(m′′, n′′, d′′) to find that
they are 2pmnd and 2pm′ and 2pm′′d′′, respectively.

Proposition 2.14. Consider the quaternion algebra HA(p). For every m ∈ Z
square-free and such that gcd(2p,m) = 1, there exist n, d ∈ Z such that O′A(m,n, d)
is an Eichler order.

Proof. Recall that the condition to be satisfied for O′A(m,n, d) to be an order is
that m has to divide 2d2 − 2dn+ 2d− p−1

2
n2 − n+ 1. Hence, we only need to prove

that for every m square-free and coprime with 2p, there exist n, d ∈ Z making this
divisibility condition hold. First, observe that, since gcd(m, 2) = 1, our problem is
equivalent to proving that there exist n, d satisfying the congruence

4d2 − 4dn+ 4d− pn2 + n2 − 2n+ 2 ≡ 0 mod m.

It is not difficult to check that the equality

(2d− n+ 1)2 − pn2 + 1 = 4d2 − 4dn+ 4d− pn2 + n2 − 2n+ 2

holds. Let us now suppose that m is prime, and let.

A =
{
x ∈ Z/mZ | x ≡ −pn2 + 1 mod m for some n ∈ Z

}
,

Bn =
{
x ∈ Z/mZ | x ≡ (2d− n+ 1)2 mod m for some d ∈ Z

}
.

Then, since gcd(p,m) = 1, #A = m+1
2

. Also, for some fixed n, and since m and 2
are coprime, #Bn = m+1

2
. Actually, the set Bn is independent of n. Note that since

m is prime, every element of (Z/mZ) \ {0} is a unit of the finite field (Z/mZ)∗.
Suppose that there is no element in A such that its invere is in Bn. This can only
happen if 0 ∈ A = Bn, and there exist n, d such that

(2d− n+ 1)2 − pn2 + 1 ≡ 0 mod m.

If some element of A has its inverse in Bn, then there also clearly exist n, d satisfying
the desired congruence.

Suppose now that m is a square-free integer. Then, the theorem follows from
the Chinese remainder theorem.
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Corollary 2.15. Consider the quaternion algebra HA(p). For every m ∈ Z square-
free and coprime with p there exists an Eichler order of level m belonging to the
family O′A.

Proof. Follows from the previous proposition, proposition 1.24 and the fact that the
discriminant of O′A(m,n, d) equals 2mp.

Remark 2.16. We do not claim that every Eichler order belongs to this family.
Also, if we check proposition 1.26, we see that we are not considering the Eichler
orders whose level is divisible by a square.

Remark 2.17. Consider the quaternion algebra HA(p), and let m be a square-free
integer coprime with 2p. We have seen that if O′A(m,n, d) is an Eichler order, its
level equals m. From proposition 1.24, we deduce that each Eichler order of level m
is a conjugate of O′A(m,n, d).

Proposition 2.18. The order OA(m,m,m) is an order contained in O′A(m,n, d).

Proof. Proposition 2.7 tells us that OA(m,m,m) is an order, and the inclusion
follows from the fact that

mj = m · (ni + j)− n · i,

m
1 + i + j + k

2
= m ·

(
di +

1 + i + j + k

2

)
− d ·mi.

Proposition 2.19. Let n ≥ 1 be an integer. Then, Z + nOmax
A = OA(n, n, n).

Proof. Just observe that the sets{(
v + n

(
x+

t

2

))
+ n

(
y +

t

2

)
i + n

(
z +

t

2

)
j + n

t

2
k : x, y, z, t, v ∈ Z

}
,{(

x+ n
t

2

)
+

(
ny + n

t

2

)
i +

(
nz + n

t

2

)
j + n

t

2
k : x, y, z, t ∈ Z

}
are equal, because {v + nx : v, x ∈ Z} = Z.

Proposition 2.20. Let O′A(m,n, d) be an order of a quaternion algebra HA(p).
Then, O′′A(m,n′,m) is an order such that

Omax
A ⊃ O′A(m,n, d) ⊃ O′′A(m,n′,m) ⊃ OA(m,m,m) = Z +mOmax

A (2.2)

for every n′ ∈ Z.

Proof. Note first that, indeed, O′′A(m,n′,m) is an order for every n′ ∈ Z. The
inclusions of (2.2) are clear, since

m
1 + i + j + k

2
= m ·

(
di +

1 + i + j + k

2

)
− d ·mi,

mj = m · (n′i + j)− n′ ·mi.
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Proposition 2.21. The following isomorphisms as abelian groups hold:

(i) Omax
A /O′A(m,n, d) ∼= Z/mZ

(ii) O′A(m,n, d)/O′′A(m,n,m) ∼= Z/mZ

(iii) O′′A(m,n,m)/OA(m,m,m) ∼= Z/mZ

(iv) Omax
A /OA(m,n, d) ∼= Z/mZ⊕ Z/nZ⊕ Z/dZ

Proof. Follows from the definitions of the orders.

2.2. Type B Quaternion Algebras

In this section, we are going to proceed like in the previous one. In this case,
however, we are going to consider B type quaternion algebras instead of A type
quaternion algebras. This has a direct impact in the families of orders to be con-

sidered. Recall that B type quaternion algebras are of the form HB(p, q) =
(

p,q
Q

)
,

with p, q primes such that q ≡ 1 mod 4 and
(

p
q

)
= −1.

At first, one might be tempted to start with the lattice Z
[
1, i, j, 1+i+j+k

2

]
, like in

the previous section. However,

i · 1 + i + j + k

2
=

1

2
(i + p+ k + pj) =

1 + i + j + k

2
+
p− 1

2
(1 + j).

Since in this case p might not be odd, this last equality means that the lattice is
not necessarily a ring, and consequently not an order. Instead, we are going to start
considering the lattice Z

[
1, i, 1+j

2
, i+k

2

]
.

Proposition 2.22. Every element of the lattice Z
[
1, i, 1+j

2
, i+k

2

]
is integral.

Proof. Let α ∈ Z
[
1, i, 1+j

2
, i+k

2

]
. Then, it is of the form

α =
(
x+

z

2

)
+

(
y +

t

2

)
i +

z

2
j +

t

2
k, x, y, z, t ∈ Z.

This means that tr(α) = 2x+ z and

n(α) =
(
x+

z

2

)2
− p

(
y +

t

2

)2

− q z
2

4
+ pq

t2

4

= x2 + xz − py2 − pyt+
(q − 1)

4
(pt2 − z2).

Hence, α is integral.

Definition 2.23. For every m,n, d ∈ Z, we consider the lattices

OB(m,n, d) := Z
[
1,mi, n1+j

2
, d i+k

2

]
;

O′B(m,n, d) := Z
[
1,mi, ni + 1+j

2
, di + i+k

2

]
;
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O′′B(m,n, d) := Z
[
1,mi, ni + i+j

2
, d i+k

2

]
.

Remark 2.24. Again, it is not claimed that the lattices OB(m,n, d), O′′B(m,n, d)
and O′B(m,n, d) are orders for every m,n and d. It is true for some of them though.

Remark 2.25.

Z
[
1, i,

1 + j

2
,
i + k

2

]
= OB(1, 1, 1) = O′B(1, 0, 0) = O′′B(1, 0, 1) (2.3)

Remark 2.26. Every element of OB(m,n, d), O′′B(m,n, d) and O′B(m,n, d) is inte-
gral for every m, n and d, as all of these lattices are sublattices of Z

[
1, i, 1+j

2
, i+k

2

]
.

Let us proceed to state in which cases the lattices defined in 2.23 are orders. As
has already been done in the previous chapter, the proofs are now omitted, but can
be found in the appendix (A.3, A.4, A.5).

Proposition 2.27. OB(m,n, d) is an order of HB(p, q) if and only if m|nd q−1
4

,
n|md and d|mn.

Corollary 2.28. Z
[
1, i, 1+j

2
, i+k

2

]
is a maximal order for every type B quaternion

algebra. We will call it Omax
B .

Proof. Follows from the previous proposition and the fact that the discriminant of
the order coincides with the discriminant of the algebra.

Remark 2.29. Z
[
1, i, 1+j

2
, i+k

2

]
is not an order in any A type quaternion algebra,

because
1 + j

2
· i + k

2
=

i + k− k + i

4
=

i

2
/∈ Z

[
1, i,

1 + j

2
,
i + k

2

]
.

Remark 2.30. Note that for both A and B types of quaternion algebras, if our
maximal orders have been defined as Z[1, e1, e2, e3], then for Z[1,me1, ne2, de3] to
be an order we have obtained very similar divisibility conditions. In particular, the
cases in which m|nd, n|md and d|mn yield orders in both cases.

Proposition 2.31. O′B(m,n, d) is an order of HB(p, q) if and only if m is such that
divides q−1

4
+ pn2 − d2 − d.

Proposition 2.32. O′′B(m,n, d) is an order of HB(p, q) if and only if d divides m
and m divides n2p+ q−1

4
.

Recall that the discriminant of the B type quaternion algebras HB(p, q) equals
pq. Similarly as in the previous section, we obtain the following proposition.

Proposition 2.33. If OB(m,n, d), O′B(m′, n′, d′) and O′′B(m′′, n′′, d′′) are orders,
then their discriminants equal pqmnd, pqm′ and pqm′′d′′, respectively.

Proof. Using the second item of proposition 1.19 for instance, one can compute the
discriminant of the ordersOB(m,n, d), O′B(m′, n′, d′) andO′′B(m′′, n′′, d′′) to find that
they are pqmnd and pqm′ and pqm′′d′′, respectively.



14 2. Orders of Quaternion Algebras over Q

As in the previous section, we are interested in finding Eichler orders among the
orders of our families. Analysing the orders of the family O′B, we get the same result
as for the type A quaternion algebras:

Proposition 2.34. Consider the quaternion algebra HB(p, q). For every m ∈ Z
square-free and such that gcd(pq,m) = 1, there exist n, d ∈ Z such that O′B(m,n, d)
is an Eichler order.

Proof. The statement is equivalent to proving that for every m square-free and
coprime with pq, there exist n, d ∈ Z such that the congruence

q − 1

4
+ pn2 − d2 − d ≡ 0 mod m (2.4)

holds. Let m be a prime number such that gcd(m, pq) = 1, and consider the sets

A =

{
x ∈ Z/mZ | x ≡ q − 1

4
+ pn2 mod m for some n ∈ Z

}
B =

{
x ∈ Z/mZ | x ≡ d2 + d mod m for some d ∈ Z

}
If m = 2, then A = Z/mZ. If m is an odd prime, then #A = m+1

2
, because m and

p are coprime. For proving that #B = p+1
2

, just note that if x, y ∈ Z/mZ are such
that x2 + x = y2 + y, then (x + y + 1)(x − y) = 0, meaning that either x = y or
x = −y − 1. Hence, with the same reasoning used in proposition 2.14, we deduce
that there exist n, d such that equation (2.4) holds. The statement for a non-prime
m follows now from the Chinese remainder theorem.

Corollary 2.35. Consider the quaternion algebra HB(p, q). For every m ∈ Z
square-free and coprime with pq there exists an Eichler order of level m belonging to
the family O′B.

Proof. Follows from the previous proposition, proposition 1.24 and the fact that the
discriminant of the order O′B(m,n, d) equals mpq.

Proposition 2.36. OB(m,m,m) is an order contained in O′B(m,n, d).

Proof. Just note that OB(m,m,m) is an order (proposition 2.27) and that

m
1 + j

2
= m ·

(
ni +

1 + j

2

)
− n ·mi,

m
i + k

2
= m ·

(
di +

i + k

2

)
− d ·mi.

Proposition 2.37. Let n ≥ 1 be an integer. Then, Z + nOmax
B = OB(n, n, n).

Proof. Similarly as in the previous chapter, it is enough to observe that the sets{(
v + n

(
x+

z

2

))
+ n

(
y +

t

2

)
i + n

z

2
j + n

t

2
k : x, y, z, t, v ∈ Z

}
,{(

x+ n
z

2

)
+

(
ny + n

t

2

)
i + n

z

2
j + n

t

2
k : x, y, z, t ∈ Z

}
are equal.
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Proposition 2.38. Let O′B(m,n, d) be an Eichler order. For every n′ ∈ Z, the
lattice O′′B(m,n′,m) is an order such that

Omax
B ⊃ O′B(m,n, d) ⊃ O′′B(m,n′,m) ⊃ OB(m,m,m) = Z +mOmax

B . (2.5)

Proof. The inclusions are clear, since

m
i + k

2
= m ·

(
di +

i + k

2

)
− d ·mi

and

m
1 + j

2
= m ·

(
n′i +

1 + j

2

)
− n′ ·mi.

The fact that O′′B(m,n′,m) is an order for every n′ is also clear.

Proposition 2.39. The following isomorphisms as additive groups hold:

(i) Omax
B /O′B(m,n, d) ∼= Z/mZ

(ii) O′B(m,n, d)/O′′B(m,n,m) ∼= Z/mZ

(iii) O′′B(m,n,m)/OB(m,m,m) ∼= Z/mZ

(iv) Omax
B /OB(m,n, d) ∼= Z/mZ⊕ Z/nZ⊕ Z/dZ

Proof. Follows directly from the definition of the orders.





Appendix A

Proving that some Lattices are
Orders

This appendix contains some of the proofs that have been omitted in sections 2.1
and 2.2. They have been omitted in order to avoid repetition of arguments, since all
of them are very similar proofs to proposition 2.7’s proof. Some of the calculations
needed for these proofs follow.

Proposition A.1. O′A(m,n, d) is an order of HA(p) if and only if m is such that
divides 2d2 − 2dn+ 2d− p−1

2
n2 − n+ 1.

Proof. We just need to check that the multiplication is an internal operation, be-
cause we know that the elements of O′A(m,n, d) are integral. Let us check that the
multiplication between elements of the basis lies again in O′A(m,n, d). Let e0 = 1,
e1 = mi, e2 = ni + j and e3 = di + 1+i+j+k

2
. Then:

e0ei = eie0 = ei for i = 0, 1, 2, 3.

e21 = m2pe0.

e22 = n2p+ nk− nk− 1 = (n2p− 1)e0.

e23 = d2p+ d
2
(i+p+k+pj)+ d

2
(i+p−k−pj)+ (1+i+j+k)2

4
= d2p+d(p+i)+ p+i+j+k

2

= e3 +
(
p−1
2

+ pd(d+ 1)
)
e0.

e1e2 = mnp+mk = mnpe0 + 2me3 −me0 − (2d+ 1)e1 −me2 + ne1.

e2e1 = mnp−mk = m(np+ 1)e0 − 2me3 +me2 − (n− 2d− 1)e1.

e1e3 = mdp+m
2

(i + p+ k + pj) = me3+m(dp+p−1
2

)e0+m
p−1
2
e2−

(
np−1

2
+ d
)
e1.

e3e1 = mdp+ m
2

(i + p− k− pj) = −e1e3 + 2mdpe0 +mpe0 +mi.

e2e3 = ndpe0 + n
2
(i + p+ k + pj)− dk + 1

2
(j− k− 1 + i), with

• n
2
(i + p+ k + pj) = ne3 + p−1

2
ne0 + p−1

2
ne2 − n2

m
p−1
2
e1 − nd

m
e1;

• dk = 2de3 − de0 − de2 + dn
m
e1 − 2d2+d

m
e1;

• 1
2
(j− k− 1 + i) = −e3 + e2 − n

m
e1 + d+1

m
e1.
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Adding all the terms, e2e3 = X + 1
m

(
p−1
2
n2 − 2dn+ 2d2 + 2d+ 1− n

)
, with

X belonging to the lattice. Hence, we need m to divide 2d2 − 2dn + 2d −
p−1
2
n2 − n+ 1.

e3e2 = dnp + dk + n
2
(i + p − k − pj)1

2
(j + k − 1 − i). Note that this is equal

to −e2e3 + 2dnpe0 + n(p + i) + (j − 1), with n(i + p) = npe0 + n
m
e1 and

j− 1 = −e0 + e2 − n
m
e1.

Proposition A.2. O′′A(m,n, d) is an order of HA(p) if and only if d|2m and m is
such that divides d

(
p−1
2
n2 + n− 1

)
.

Proof. We just need to check that the multiplication is an internal operation, be-
cause we know that the elements of O′′A(m,n, d) are integral. Let us check that the
multiplication between elements of the basis lies again in O′′A(m,n, d). Let e0 = 1,
e1 = mi, e2 = ni + j and e3 = d1+i+j+k

2
. Then:

e0ei = eie0 = ei for i = 0, 1, 2, 3.

e21 = m2pe0.

e22 = (n2p− 1)e0, as seen in proposition A.1’s proof.

e23 = de3 + d2 p−1
2
e0, as seen in proposition 2.7’s proof.

e1e2 = mnp+mk = mnpe0 + 2m
d
e3 −me0 − (me2 − ne1)− e1. Thus, we need

d to divide 2m.

e2e1 = mnp−mk = −e1e2 + 2mnpe0.

e1e3 = md
2

(i + p+ k + pj) = me3 +mp−1
2
e0 +mp−1

2
e2 − np−1

2
e1.

e3e1 = md
2

(i + p− k− pj) = −e1e− 3 +mde0 + de1.

e2e3 = nd
2

(i + p+ k + pj) + d
2
(j− k− 1 + i), with

• nd
2

(i + p+ k + pj) = ne3 + ndp−1
2
e0 + ndp−1

2
e2 − n2d

m
p−1
2
e1,

• d
2
(j− k− 1 + i) = −e3 + d

m
e1 + de2 − nd

m
e1.

If we now add both terms, we see that m has to divide d
(
n2 p−1

2
+ n− 1

)
.

e3e2 = nd
2

(i + p−k− pj) + d
2
(j + k−1− i) = −e2e3 + d(ni +np+ j−1), where

ni = n
m
e1 and j = e2 − n

m
e1 (recall that m divides d).

Proposition A.3. OB(m,n, d) is an order of HB(p, q) if and only if m|nd q−1
4

, n|md
and d|mn.

Proof. We just need to check that the multiplication is an internal operation, be-
cause we know that the elements of OB(m,n, d) are integral. Let us check that the
multiplication between elements of the basis lies again in OB(m,n, d). Let e0 = 1,
e1 = mi, e2 = n1+j

2
and e3 = d i+k

2
. Then:

18



e0ei = eie0 = ei for i = 0, 1, 2, 3.

e21 = m2pe0.

e22 = n2

4
(1 + 2j + q) = n2 q−1

4
e0 + ne2.

e23 = d2

4
(p+ pj− pj− pq) = −pd2 q−1

4
e0.

e1e2 = mn
2

(i + k) = mn
d
e3. Hence, we need d to divide mn.

e2e1 = mn
2

(−k + i) = −e1e2 + ne1.

e1e3 = md
2
p(1 + j) = md

n
pe2. Hence, we need n to divide md.

e3e1 = md
2
p(1− j) = −e1e3 + pmde0.

e2e3 = nd
4

(i + k− k− qi) = 1−q
4

nd
m
e1. Hence, we need m to divide q−1

4
nd.

e3e2 = nd
4

(i + k + k + qi) = −e2e3 + ne3.

Proposition A.4. O′B(m,n, d) is an order of HB(p, q) if and only if m is such that
divides q−1

4
+ pn2 − d2 − d.

Proof. We just need to check that the multiplication is an internal operation, be-
cause we know that the elements of O′B(m,n, d) are integral. Let us check that the
multiplication between elements of the basis lies again in O′B(m,n, d). Let e0 = 1,
e1 = mi, e2 = ni + 1+j

2
and e3 = di + i+k

2
. Then:

e0ei = eie0 = ei for i = 0, 1, 2, 3.

e21 = m2pe0.

e22 = n2p+ n i+k
2

+ n i−k
2

+ 1+2j+q
4

= q−1
4
e0 + e2.

e23 = d2p+ dp+pj
2

+ dp−pj
2

+ p+pj−pj−pq
4

∈ Z.

e1e2 = mnp+m i+k
2

= mnpe0 +me3 − de1.

e2e1 = mnp+m i−k
2

= −e1e2 + 2mnpe0 + e1.

e1e3 = mdp+ p+pj
2

= mdpe0 +mpe2 − ne1.

e3e1 = mdp+ p−pj
2

= −e1e3 + 2mdpe0 +mpe0.

e2e3 = ndp+ np1+j
2

+ d i−k
2

+ i+k−k−qi
4

, where

• np1+j
2

= npe2 − pn2

m
e1,

• d i−k
2

= −de3 + d
m
e1 + d2

m
e1,

• i−qi
4

= − 1
m

q−1
4
e1.
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If we add everything, we get that m has to divide q−1
4

+ pn2 − d2 − d.

e3e2 = ndp+ d i+k
2

+ np1−j
2

+ i+k+k+qi
4

= −e2e3 + 2ndpe0 + npe0 + e3.

Proposition A.5. O′′B(m,n, d) is an order of HB(p, q) if and only if the divisibility
conditions d|m and m|d

(
n2p+ q−1

4

)
hold.

Proof. Since all the elements of O′′B(m,n, d) are integral, we just need to see that
the multiplication is an internal operation, checking that the multiplication between
elements of the basis lies again in O′′B(m,n, d). Let e0 = 1, e1 = mi, e2 = ni + 1+j

2

and e3 = d i+k
2

.

e0ei = eie0 = ei for i = 0, 1, 2, 3.

e21 = m2pe0.

e22 = q−1
4
e0 + e2, as has been seen in proposition A.4’s proof.

e23 ∈ Z, as has been seen in proposition A.3’s proof.

e1e2 = mnp+m i+k
2

= mnpe0 + m
d
e3. Hence, we need d to divide m.

e2e1 = mnp+m i−k
2

= −e1e2 + 2mnpe0 + e1.

e1e3 = mdp1+j
2

= mdpe2 − ndpe1.

e3e1 = mdp1−j
2

= −e1e3 +mdpe0.

e2e3 = ndp1+j
2

+ d i+k−k−qi
4

= ndpe2 − n2dp
m
e1 − q−1

4
d
m
e1. Hence, we need m to

divide d
(
n2p+ q−1

4

)
.

e3e2 = ndp1−j
2

+ d i+k+k+qi
4

= −e2e3 + ndpe0 + e3.
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