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Abstract

In this paper, we present the data-driven COS method, ddCOS. It is a Fourier-
based financial option valuation method which assumes the availability of asset
data samples: a characteristic function of the underlying asset probability den-
sity function is not required. As such, the presented technique represents a
generalization of the well-known COS method [1]. The convergence of the pro-
posed method is O(1/

√
n), in line with Monte Carlo methods for pricing finan-

cial derivatives. The ddCOS method is then particularly interesting for density
recovery and also for the efficient computation of the option’s sensitivities Delta
and Gamma. These are often used in risk management, and can be obtained at
a higher accuracy with ddCOS than with plain Monte Carlo methods.

Keywords: The COS method, Density estimation, data-driven approach,
Greeks, Delta-Gamma approach, the SABR model

1. Introduction1

In quantitative finance, statistical distributions are commonly used for the2

valuation of financial derivatives and within risk management. The underlying3

assets are often modeled by means of stochastic differential equations (SDEs).4

Except for the classical and most simple asset models, the corresponding prob-5

ability density function (PDF) and cumulative distribution function (CDF) are6

typically not known and need to be approximated.7

In order to compute option prices, and to approximate statistical distribu-8

tions, Fourier-based methods are commonly used numerical techniques. They9

are based on the connection between the PDF and the characteristic function10

(ChF), which is the Fourier transform of the probability density. The ChF is11
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often available, and sometimes even in closed form, for the broad class of regu-12

lar diffusions and also for Lévy processes. Some representative efficient Fourier13

pricing methods include those by Carr and Madan [2], Boyarchenko and Lev-14

endorskii [3], Lewis [4] and Fang and Oosterlee [1]. Here, we focus on the COS15

method from [1], which is based on an approximation of the PDF by means of16

a cosine series expansion.17

Still, however, the asset dynamics for which the ChF are known is not ex-18

haustive, and for many relevant asset price processes we do not have such infor-19

mation to recover the density. In recent years several successful attempts have20

been made to employ Fourier pricing methods without the explicit knowledge21

of the ChF. In Grzelak and Oosterlee [5], for example, a hybrid model with22

stochastic volatility and stochastic interest rate was linearized by means of ex-23

pectation operators to cast the approximate system of SDEs in the framework24

of affine diffusions. Ruijter and Oosterlee [6] discretized the governing asset25

SDEs first and then worked with the ChF of the discrete asset process, within26

the framework of the COS method. Borovykh et al. [7] used the Taylor expan-27

sion to derive a ChF for which they could even price Bermudan options highly28

efficiently. In this work, we extend the applicability of the COS method to the29

situation where only data (samples from an unknown distribution) are available.30

The density estimation problem, using a data-driven PDF, has been inten-31

sively studied in the last decades, particularly since it is a component in the32

machine learning framework [8]. Basically, density estimators can be classi-33

fied into parametric and non-parametric estimators. The first type relies on34

the fact that prior knowledge is available (like moments) to determine the rele-35

vant parameters, while for non-parametric estimators the parameters need to be36

determined solely from the samples themselves. Within this second type of esti-37

mators we can find histograms, kernel density and orthogonal series estimators.38

A thorough description of these estimators is provided in [9]. More recently,39

some applications in finance have also appeared, see [10, 11, 12], for example.40

For the valuation of financial derivatives, we will combine density estimators41

with Fourier-based methods, so orthogonal series form a natural basis. We will42

focus on the framework of statistical learning, see [13]. In statistical learning, a43

regularization is employed to derive an expression for the data-driven empirical44

PDF. By representing the unknown PDF as a cosine series expansion, a closed-45

form solution of the regularization problem is known [13], which forms the basis46

of the data-driven COS method (ddCOS). However, in order to employ the COS47

method machinery, underlying risk-neutral asset samples are required, i.e. they48

need to be generated according to some underlying model. This fact implies that49

the technique presented here results in a hybrid Monte Carlo-Fourier method.50

The use of the COS method gives us expressions for option prices and, in51

particular, for the option sensitivities or Greeks. These option Greeks are the52

derivatives of option price with respect to a variable or parameter. The efficient53

computation of the Greeks is a challenging problem when only asset samples54

are available. Existing approaches are based on Monte Carlo-based techniques,55

like on finite-differences (bump and revalue), pathwise or likelihood ratio tech-56

niques, for which details can be found in [14], chapter 7. Several extensions57
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and improvements of these approaches have appeared, for example, based on58

adjoint formulations [15], the ChF [16, 17], Malliavin calculus [18, 19], algorith-59

mic differentiation [20, 21] or combinations of these [22, 23, 24]. Intuitively, the60

ddCOS method follows a similar approach as likelihood ratio method, i.e. it61

relies on the differentiation of the (recovered) density function. On the other62

hand, our method can be also related with the improved methodologies em-63

ploying the so-called Malliavin derivative, since it introduces a sample-based64

weighted coefficients that multiply the payoff coefficients. For both techniques,65

the differentiation of the payoff function (or payoff coefficients) is avoided.66

All in all, the computation of the Greeks can be quite involved. The ddCOS67

method is not directly superior to Monte Carlo methods for option valuation,68

but it is competitive for the computation of the corresponding sensitivities. We69

derive simple expressions for the Greeks Delta and Gamma. The importance70

of Delta and Gamma in dynamic hedging and risk management is well-known.71

A useful application is found in the Delta-Gamma approach [25] to quantify72

market risk. The approximation of risk measures like Value-at-Risk (VaR) and73

Expected Shortfall (ES) under the Delta-Gamma approach is still nontrivial.74

Next to Monte Carlo methods, Fourier techniques have been employed in this75

context, when the ChF of the change in the value of the option portfolio is76

known (see [26, 27]). For example, the COS method has been applied in [28]77

to efficiently compute the VaR and ES under the Delta-Gamma approach. The78

ddCOS method may generalize the applicability to the case where only data is79

available.80

This paper is organized as follows. The ddCOS method, and the origins in81

statistical learning and Fourier-based option pricing, are presented in Section82

2. Variance reduction techniques can also be used within the ddCOS method,83

providing an additional convergence improvement. We provide insight and de-84

termine values for the method’s open parameters in Section 3. Numerical ex-85

periments, with a focus on the option Greeks, are presented in Section 4. We86

conclude in Section 5.87

2. The data-driven COS method88

In this section we will discuss the ddCOS method, in which aspects of the89

Monte Carlo method, density estimators and the COS method are combined to90

approximate, in particular, the option Greeks Delta and Gamma. We will focus91

on European options here.92

The COS method in [1] is a Fourier-based method by which option prices93

and sensitivities can be computed for various options under different models.94

The method relies heavily on the availability of the ChF, i.e., the Fourier trans-95

form of the PDF. In the present work, we assume that only asset samples are96

available, not the ChF, resulting in the data-driven COS method. It is based on97

regularization in the context of the statistical learning theory, presented briefly98

in Section 2.2. The connection with the COS method is found in the fact that99

the data-driven PDF appears as a cosine series expansion.100
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2.1. The COS method101

The starting point for the well-known COS method is the risk-neutral option
valuation formula, where the value of a European option at time t, v(x, t), is an
expectation under the risk neutral pricing measure, i.e.,

v(x, t) = e−r(T−t)E [v(y, T )|x] = e−r(T−t)
∫
R
v(y, T )f(y|x)dy, (1)

with r the risk-free rate, T the maturity time, and f(y|x) the PDF of the
underlying process, and v(y, T ) represents the option value at maturity time,
being the payoff function. Typically, x and y are chosen to be scaled variables,

x := log

(
S(0)

K

)
and y := log

(
S(T )

K

)
,

where S(t) is the underlying asset process at time t, and K is the strike price.102

Density f(y|x) is unknown in most cases and in the COS method it is ap-103

proximated, on a finite interval [a, b], by a cosine series expansions, i.e.,104

f(y|x) =
1

b− a

(
A0 + 2

∞∑
k=1

Ak(x) · cos

(
kπ
y − a
b− a

))
,

A0 = 1, Ak(x) =

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy, k = 1, 2, . . . .

By substituting this expression in Equation (1), interchanging the summa-
tion and integration operators using Fubini’s Theorem, and introducing the
following definition,

Vk :=
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy,

we find that the option value is given by

v(x, t) ≈ e−r(T−t)
∞∑′

k=0

Ak(x)Vk, (2)

where ′ indicates that the first term is divided by two. So, the product of105

two real-valued functions in Equation (1) is transformed into the product of106

their cosine expansion coefficients, Ak and Vk. Density coefficients Ak can be107

computed by the ChF and Vk is known analytically (for many types of options).108

Closed-form expressions for the option Greeks can also be derived. From the
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COS option value formula, ∆ and Γ are obtained by

∆ =
∂v(x, t)

∂S
=

1

S(0)

∂v(x, t)

∂x
≈ exp(−r(T − t))

∞∑′

k=0

∂Ak(x)

∂x

Vk
S(0)

,

Γ =
∂2v(x, t)

∂S2
=

1

S2(0)

(
−∂v(x, t)

∂x
+
∂2v(x, t)

∂x2

)
≈ exp(−r(T − t))

∞∑′

k=0

(
−∂Ak(x)

∂x
+
∂2Ak(x)

∂x2

)
Vk

S2(0)
.

(3)

Due to the rapid decay of the coefficients, v(x, t), ∆ and Γ can be approx-109

imated with high accuracy by truncating the infinite summation in Equations110

(2) and (3) to N terms. Under suitable assumptions, exponential convergence111

is proved and numerically observed.112

2.2. Statistical learning theory for density estimation113

In the setting of this paper, we assume a vector of n independent and iden-114

tically distributed (i.i.d.) samples, X1, X2, . . . , Xn. Based on these samples,115

we wish to find an accurate approximation of the PDF estimator, fn(x), which116

should approximate density f(x).117

By definition, the PDF is related to its CDF F (x),∫ x

−∞
f(y)dy = F (x). (4)

Function F (x) is approximated by the empirical approximation,

Fn(x) =
1

n

n∑
j=1

η(x−Xj), (5)

where η(·) is a step function. This approximation converges to the “true CDF”118

with rate O(1/
√
n) since, according to the central limit theorem, the estimation119

error defined as
√
n (Fn(x)− F (x)) follows the asymptotically normal distribu-120

tion with zero mean (further details in [29]).121

Rewriting Equation (4) as a linear operator equation, gives us,

Cf = F ≈ Fn,

where the operator Ch :=
∫ x
−∞ h(z)dz.122

As explained in [13], this operator equation represents an ill-posed problem,
and therefore a risk functional should be constructed, with a regularization
term, as follows

Rγn(f, Fn) = L2
H(Cf, Fn) + γnW (f), (6)

where LH is a metric of the space H and γn > 0 is a parameter which gives a123

weight to the regularization term W (f). The solution of Cf = Fn belongs to124
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D, the domain of definition of W (f). Functional W (f) takes real non-negative125

values in D. Furthermore, Mc = {f : W (f) ≤ c} is a compact set in the space126

where the solution exists and is unique.127

The solution fn, minimizing the functional in Equation (6), converges almost
surely to the desired density. For the ill-posed density estimation problem, other
conditions imposed for consistency (see details in [13], chapter 7), include

γn →∞ as n→∞, and
n

log n
γn →∞ as n→∞. (7)

2.3. Regularization and Fourier-based density estimators128

A relation exists between the regularization approach in Equation (6) and
Fourier-based density approximation, more specifically, cosine series expansion
estimators. By specific choices for the metric and the regularization term in
Equation (6), i.e., LH = L2, and

W (f) =

∫
R

(∫
R
K(z − x)f(x)dx

)2

dz,

with kernel K(z − x), the functional reads

Rγn(f, Fn) =

∫
R

(∫ x

0

f(y)dy − Fn(x)

)2

dx+ γn

∫
R

(∫
R
K(z − x)f(x)dx

)2

dz.

(8)

Denoting by f̂(u), F̂n(u) and K̂(u) the Fourier transforms of f(x), Fn(x) and
K(x), respectively, an expression for F̂n(u) can be derived by applying Fourier
transformation to Equation (5),

F̂n(u) =
1

2π

∫
R
Fn(x)e−iuxdx

=
1

2nπ

∫
R

n∑
j=1

η(x−Xj)e
−iuxdx =

1

n

n∑
j=1

exp(−iuXj)

iu
,

where i =
√
−1 is the imaginary unit.129

By employing the convolution theorem and Parseval’s identity, Equation (8)
can be rewritten as

Rγn(f, Fn) =

∥∥∥∥∥ f̂(u)− 1
n

∑n
j=1 exp(−iuXj)

iu

∥∥∥∥∥
2

L2

+ γn

∥∥∥K̂(u)f̂(u)
∥∥∥2
L2

.

As the functional Rγn(f, Fn) is quadratic with respect to f̂ , the condition
for its minimum (see [13], for details) is given by,

f̂(u)

u2
− 1

nu2

n∑
j=1

exp(−iuXj) + γnK̂(u)K̂(−u)f̂(u) = 0,
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which entails that the Fourier transform of the solution (in terms of n) has the
expression

f̂n(u) =

(
1

1 + γnu2K̂(u)K̂(−u)

)
1

n

n∑
j=1

exp(−iuXj). (9)

Once the Fourier transform of the solution for the general regularization
problem has been derived, we then find the connection with the series estimators,
particularly in the form of cosine series expansion. For this, we further assume
that the kernel K is the p-th derivative of the Dirac delta function, i.e., K(x) =
δ(p)(x), and the desired PDF, f(x), belongs to the class of functions whose p-th
derivative (p ≥ 0) belongs to L2(0, π), the risk functional becomes

Rγn(f, Fn) =

∫ π

0

(∫ x

0

f(y)dy − Fn(x)

)2

dx+ γn

∫ π

0

(
f (p)(x)

)2
dx. (10)

Given a series expansion in orthonormal functions, ψ1(θ), . . . , ψk(θ), . . . , θ ∈
(0, π), the approximation to the unknown PDF will be of the form

fn(θ) =
1

π
+

2

π

∞∑
k=1

Ãkψk(θ), (11)

with Ã0, Ã1, . . . , Ãk, . . . expansion coefficients, defined as Ãk =< fn, ψk >.130

We need to compute the expansion coefficients so that the functional in
Equation (10) is minimized. The coefficients Ãk cannot be directly computed
from the definition since the unknown PDF, fn, is implicitly involved in the
expression, i.e.,

Ãk =< fn, ψk >=< f̂n, ψ̂k >

=

∫ π

0

( 1

1 + γnu2K̂(u)K̂(−u)

)
1

n

n∑
j=1

exp(−iuθj)

 · ψ̂k(u)du.

Using cosine series expansions, i.e., ψk(θ) = cos(kθ), it is well-known that

ψ̂k(u) = 1
2 (δ(u − k) + δ(u + k)). This facilitates the computation of the series

coefficients, Ãk, avoiding the calculation of the integral. Thus, the minimum of
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the functional using cosine series expansions is obtained when

Ãk =
1

2n

( 1

1 + γn(−k)2K̂(−k)K̂(k)

)
n∑
j=1

exp(ikθj)

+

(
1

1 + γnk2K̂(k)K̂(−k)

)
n∑
j=1

exp(−ikθj)


=

1

1 + γnk2K̂(k)K̂(−k)

1

n

n∑
j=1

cos(kθj)

=
1

1 + γnk2(p+1)

1

n

n∑
j=1

cos(kθj),

(12)

where θj ∈ (0, π) are given samples of the unknown distribution. In the last131

step, K̂(u) = (iu)p is used.132

Assuming that the samples are given, the solution contains two free param-133

eters: regularization parameter γn, and smoothing parameter p.134

In Section 3, we will discuss the impact of the regularization parameter on135

the convergence to the density in terms of the number of samples. We will use136

p = 0 here.137

Smoothing parameter example138

In order to give an insight in the influence of parameter p on the approxi-139

mation, in Figure 1 standard normal densities obtained for several values of p140

are shown. With p increasing, the densities get increasingly smooth. The choice141

p = 0 (regularizing the density itself and not imposing regularization upon its142

derivatives) appears most appropriate in our context of smooth densities.143

[Figure 1 about here.]144

2.4. The ddCOS method145

We are now ready to present the ddCOS method, where we employ the146

series expansion coefficients from the regularization approach. We replace the147

Ak-coefficients from Equation (2) by those coefficients based on data, Ãk in148

Equation (12).149

So, suppose we have risk neutral samples (or values) from an underlying
asset at a future time t, i.e., S1(t), S2(t), . . . , Sn(t). We compute the value of a
European option with maturity time T and strike price K, and require therefore
the samples Sj(T ). With a logarithmic transformation, we have

Yj := log

(
Sj(T )

K

)
.
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Before employing these samples in the regularization approach and because
the solution is defined in (0, π), we need to transform the samples by the fol-
lowing change of variables,

θj = π
Yj − a
b− a

,

where the boundaries a and b are defined as

a := min
1≤j≤n

(Yj), b := max
1≤j≤n

(Yj).

The Ak coefficients in Equation (2) are replaced by the data-driven Ãk in
Equation (12),

Ak ≈ Ãk =

1
n

∑n
j=1 cos

(
kπ

Yj−a
b−a

)
1 + γnk2(p+1)

.

The ddCOS pricing formula for European options based on risk neutral data
is now obtained as

ṽ(x, t) = e−r(T−t)
∞∑′

k=0

1
n

∑n
j=1 cos

(
kπ

Yj−a
b−a

)
1 + γnk2(p+1)

· Vk

= e−r(T−t)
∞∑′

k=0

ÃkVk.

(13)

As in the original COS method, we must truncate the infinite sum in Equa-
tion (13) to a finite number of terms N , i.e.,

ṽ(x, t) = e−r(T−t)
N∑′

k=0

ÃkVk, (14)

which completes the ddCOS pricing formula.150

The samples Yj should originate from one initial state, i.e. the dependency151

on the state x is implicitly assumed. In the case of European options this is152

typically fulfilled. In the Monte Carlo method, for example, all simulated asset153

paths depart from the same point S(0), so that x := log
(
S(0)
K

)
.154

Regarding the Greeks, we can also derive data-driven expressions for the ∆
and Γ sensitivities. We first define the corresponding sine coefficients as

B̃k :=

1
n

∑n
j=1 sin

(
kπ

Yj−a
b−a

)
1 + γnk2(p+1)

.

Taking derivatives in Equation (14) w.r.t the samples, Yj , and following the

COS expression for the sensitivities in Equation (3), the data-driven Greeks, ∆̃
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and Γ̃, can be obtained by

∆̃ = e−r(T−t)
N∑′

k=0

B̃k ·
(
− kπ

b− a

)
· Vk
S(0)

,

Γ̃ = e−r(T−t)
N∑′

k=0

(
B̃k ·

kπ

b− a
− Ãk ·

(
kπ

b− a

)2
)
· Vk
S2(0)

.

The obtained sample-based expressions for the Greeks keep the payoff co-155

efficients invariant, while the density coefficients are differentiated. This fact156

again suggest a connection with the methods relying on the Malliavin deriva-157

tive, where the payoff function is smartly weighted in order to compute the158

sensitivities.159

2.4.1. Application of variance reduction160

Because of the focus on asset path data, the ddCOS method is related to the
Monte Carlo method. Variance reduction in Monte Carlo methods is typically
achieved by the use of variance reduction techniques. The ddCOS method also
admits an additional variance reduction, in this case, for the computation of the
expansion coefficients, Ãk. We show how to introduce antithetic variates (AV)
to our method. Since one of the assumptions for the regularization approach
is that the samples are i.i.d., an immediate application of AV is not possible.
Therefore, if we assume that antithetic samples, Y ′i , to the original samples Yi,
can be computed without any serious computational effort, a new estimator for
the coefficients can be defined as

Āk :=
1

2

(
Ãk + Ã′k

)
,

where we denote by Ã′k the corresponding “antithetic coefficients”, obtained by161

Y ′i . By a similar derivation as for the standard AV technique, it can be proved162

that the use of coefficients Āk will give us a variance reduction compared to using163

the Ãk coefficients. Other variance reduction techniques may also be considered164

for the ddCOS method under the assumption of i.i.d. samples.165

In order to reduce the variance of any estimator, additional information may
be introduced. A well-known property to fulfill is the martingale property. To
preserve this property, a simple transformation of the samples can be made by

S(T ) = S(T )− 1

n

n∑
j=1

Sj(T ) + E[S(T )],

= S(T )− 1

n

n∑
j=1

Sj(T ) + S(0) exp(rT ).

As this modification is performed over the samples, it can also be used in166

the context of the ddCOS method.167
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3. Choice of Parameters in ddCOS Method168

In this section, the selection and the influence of the regularization parameter169

γn in the ddCOS method is studied.170

3.1. Regularization parameter γn171

The regularization parameter γn plays an important role in the empirical172

PDF fn. Without the inclusion of the regularization term, the density approx-173

imation provided by Equation (10), would give us a standard orthogonal series174

estimator. The choice of parameter γn impacts the efficiency of the data-driven175

COS method, since it is related to the required number of data samples, and by176

reducing the number of samples, the overall computational cost can be reduced.177

The first option for choosing the regularization parameter, γn, which was
proposed in [13], is given by the following rule,

γn =
log log n

n
. (15)

As proved in [13], this rule provides a robust asymptotic rate of convergence178

under the assumption of a compactly supported density. It implies, with prob-179

ability one, uniformly converging approximations fn to the unknown density.180

Note, however, that the regularization parameter does not satisfy the second181

condition in Equation (7).182

Although Equation (15) ensures an optimal asymptotic convergence in terms183

of n, it may not be the optimal γn-value for density estimation with a given184

fixed amount of samples. For that purpose we can exploit the relation between185

the empirical CDF, Fn(x), and the unknown CDF, F (x). This relation can186

be modeled by means of different statistical laws. Some examples include the187

Kolmogorov-Smirnov, Anderson-Darling, Kuiper and the Smirnov-Cramér-von188

Mises laws, by which a measure of the distance, or, goodness-of-fit, between189

Fn(x) and F (x) can be defined.190

We are interested in a statistic which has a distribution, independent of the
actual CDF and the number of samples n, and consider the Smirnov-Cramér-von
Mises (SCvM) statistic [30, 31], defined as

ω2 := n

∫
R

(F (x)− Fn(x))
2

dF (x).

Based on an approximation of the desired PDF, fγn (depending on γn)
and thus the CDF, Fγn , we choose the regularization parameter such that Fγn
satisfies the SCvM statistic optimally, by solving (in terms of γn) the following
equation: ∫

R
(Fγn(x)− Fn(x))

2
dF (x) =

mω2

n
,

where mω2 is the mean of the SCvM statistic, ω2. In the one-dimensional case,
a simplified expression can be derived [32, 31], i.e.,

n∑
j=1

(
Fγn(X̄j)−

i− 0.5

n

)2

= mω2 − 1

12n
, (16)
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with X̄1, X̄2, . . . , X̄n, the ordered array of samples X1, X2, . . . , Xn. It can be191

proved (details in [13]) that, by solving Equation (16) under the assumption that192

the solution is in the form of a cosine series expansion, a regularization parameter193

can be determined, which provides an almost optimal rate of convergence in n194

towards the desired density function.195

Next to the improvement of the method’s convergence, the quality of the196

density approximation, in terms of the considered expansion coefficients, is also197

influenced by the regularization parameter.198

In order to assess the impact of γn on the quality of approximation, we
employ the well-known Mean Integrated Squared Error (MISE), which is com-
monly used in density estimation (also known as the risk function). The formal
definition reads

E
[
‖fn − f‖22

]
= E

[∫
R

(fn(x)− f(x))
2

dx

]
.

In our case, the MISE can be decomposed into two terms (see [33]), as
follows,

E
[∫ π

0

(fn(x)− f(x))
2

dx

]
=

N∑
k=1

Var
[
Ãk

]
+

∞∑
k=N+1

A2
k

where the Ak are the ”true” coefficients from Equation (2), and the Ãk are
from Equation (12). The MISE, as it is defined, is the summation of the bias
and the variance of the estimator. In the Fourier cosine expansions context, an
increasing N implies smaller bias (but bigger variance). The opposite also holds
i.e. small N produces more bias and smaller variance. We need to compute the
variance of the data-driven coefficients, Ãk. By Equation (12), we have

Var
[
Ãk

]
= Var

 1

1 + γnk2(p+1)

1

n

n∑
j=1

cos(kθj)


=

1(
1 + γnk2(p+1)

)2 1

n2

n∑
j=1

Var [cos(kθj)] .

By basic trigonometric properties, this variance can be computed as

Var [cos(kx)] = E
[
cos2(kx)

]
− (E [cos(kx)])

2

=

∫ π

0

cos2(kx)f(x)dx−
(∫ π

0

cos(kx)f(x)dx

)2

=

∫ π

0

(
1 + cos(2kx)

2

)
f(x)dx−A2

k =
1

2
+
A2k

2
−A2

k,

where the definition of the expansion coefficients is used in steps 2 and 3.199

The expression for the variance of Ãk then reads

Var
[
Ãk

]
=

1(
1 + γnk2(p+1)

)2 1

n

(
1

2
+

1

2
A2k −A2

k

)
,
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and the MISE is thus given by

MISE =
1

n

N∑
k=1

1(
1 + γnk2(p+1)

)2 (1

2
+

1

2
A2k −A2

k

)
+

∞∑
k=N+1

A2
k. (17)

Example200

The error measure defined in Equation (17) is employed to analyze the in-201

fluence of the regularization. We use the standard normal distribution as a202

reference test case. The coefficients that are based on the available analytic203

solution are replaced by the corresponding data-driven coefficients that depend204

on γn.205

In Figure 2a, we present the convergence results for different regularization206

parameters. Next to the rules suggested by Equations (15) and (16), we also207

include the case γn = 0 to highlight the benefits of employing the regularization208

approach. The obtained results confirm the improvements provided by both209

γn-rules, with the almost optimal γn given by the SCvM statistic.210

[Figure 2 about here.]211

A second aspect which is influenced by γn is the accuracy with respect to the212

number of expansion terms N in Equation (14). For this, in Figure 2b we present213

the MISE for the standard normal distribution when different coefficients Ak are214

employed: Ak by the γn-rule (15) (red lines), Ak by the SCvM (16) (blue lines)215

and, as a reference, the Ak-coefficients obtained by the ChF (black dashed line).216

We notice that, when γn = 0 is used in the MISE formula (all dashed lines), for217

increasing value of N , the approximation deteriorates, resulting in increasing218

approximation errors. In contrast, when the corresponding γn is used (regular219

lines), the error stabilizes. Since the number of expansion coefficients is typically220

chosen high, this property of the regularization approach is useful.221

3.1.1. Optimal N -values222

As mentioned, with an increasing number of series expansion coefficients223

N , the approximation based on the regularization approach does not improve224

any further. This fact indicates that we need to determine an optimal value of225

N , i.e. the smallest value of N for which the MISE stabilizes, see Figure 2b.226

Using small N -values is important within the data-driven methodology, since227

parameter N considerably affects the performance of the method.228

We propose an empirical procedure to compute the optimal value of N . The
MISE in Equation (17) depends on the number of samples n, the number of
coefficients N , and the coefficients themselves Ak. Since we wish to compute
no more coefficients than necessary, we focus on the parameters n and N . Re-
garding the influence of the number of samples, see also the curves in Figure 3a,
higher n-values also require higher N -values to ensure stabilizing errors in the
MISE curve. To determine a relation between n and N , we need to simplify the
MISE formula as we desire a closed-form expression. We discard the second part
in Equation (17), as it goes to zero when N increases. Within the first part,
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we approximate the quantity
(
1
2 + 1

2A2k −A2
k

)
≈ 1

2 . Then, the approximate
formula for the MISE is found to be

MISE ≈ 1

n

N∑
k=1

1
2(

1 + γnk2(p+1)
)2 =: MISEN ,

where n and N are directly connected, but also γn appears. It is possible to229

prove that the above MISE proxy, MISEN , is an upper bound for the first part230

in Equation (17).231

From Figure 3b, we observe two important facts: the MISE proxy provides232

a highly satisfactory approximation for the first addend of the MISE, which233

converges to the MISE when N increases. By combining these two observations,234

we will employ the MISE proxy to determine the optimal number of terms N .235

Since the computation of γn by Equation (16) involves N , we use the case where236

γn is determined by Equation (15) (which only depends on n). Figure 3b shows237

that the MISEN (to a different level of accuracy) is very similar in both cases,238

where the γn rule appears conservative, i.e. biggerN -values are required to reach239

the non-decreasing error region. The proposed procedure iteratively determines240

whether or not we reached error stabilization by checking the differences in241

MISEN between two consecutive N -values. When this difference is less than242

a predefined tolerance, ε, we have approximated the optimal N -value. Since243

N should grow with n, we propose to use ε := 1√
n

, i.e. the expected order of244

accuracy for the density approximation should be given in terms of the number245

of samples.246

By collecting all described components, the approximately optimal N -value247

becomes a function only of n. The iterative methodology is described in Algo-248

rithm 1. In Figure 4, we observe that the resulting optimal N function is an249

increasing staircase function (with a predefined floor of N = 5), see also [33].250

[Figure 3 about here.]251

Algorithm 1: Optimal N -values.

Data: n, γn
Nmin = 5
Nmax =∞
ε = 1√

n

MISE∗ =∞
for N = Nmin : Nmax do

MISEN = 1
n

∑N
k=1

1
2

(1+γnk2(p+1))
2

εN = |MISEN−MISE∗|
|MISEN |

if εN > ε then
Nop = N

else
Break

MISE∗ = MISEN

252
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[Figure 4 about here.]253

Now, we have described the techniques to determine values for the regu-254

larization parameter γn, and for the number of coefficients, N . By these, the255

ddCOS method is defined with only Monte Carlo samples as the input.256

4. Applications of the ddCOS method257

In this section, we present some applications of the ddCOS method. The258

first application is an option pricing experiment, where we show the method’s259

convergence. Subsequently, we present the performance regarding the compu-260

tation of the Greeks, where ddCOS exhibits a stable convergence and can be261

employed with involved models, as we only need asset samples. We also com-262

pute the Greeks under the SABR model. Once the Greeks have been efficiently263

approximated, they can be used for the computation of the VaR and ES risk264

measures within the Delta-Gamma approach. All steps in this methodology can265

be performed by the ddCOS method.266

The experiments have been carried out on a computer system with the fol-267

lowing characteristics: CPU Intel Core i7-4720HQ 2.6GHz and RAM memory268

of 16GB RAM. The employed software package is Matlab R2016b.269

4.1. Option valuation and Greeks270

First of all, we numerically test the convergence of the ddCOS method in an271

option valuation experiment. The Geometric Brownian Motion (GBM) asset272

dynamics are employed, since a reference value for the option value is available273

by the Black-Scholes formula. The regularization parameter γn is set as in274

Equation (15), as for option valuation experiments the difference between this275

rule and γn based on the SCvM statistic in Equation (16) is not significant.276

Moreover, the use of the γn rule provides faster ddCOS estimators.277

As is common in Monte Carlo experiments, the Mean Squared Error (MSE)278

is considered as the error measure. In the convergence tests, the reported values279

are computed as the average of 50 experiments.280

The expected order of convergence for the option values is O(1/
√
n), accord-281

ing to the convergence of the empirical CDF towards the true CDF in Equation282

(5). In Section 2.4.1, the application of antithetic variates in the ddCOS frame-283

work has been presented. In Figure 5, we confirm that this variance reduction284

technique provides a similar improvement in terms of precision as when it is285

applied to the plain Monte Carlo method. Another observation is that, under286

this particular setting, the estimators (both ddCOS and Monte Carlo) of the put287

option value result in smaller variances than the call option estimators. In terms288

of accuracy, it is thus worth computing the put value and then use the call-put289

parity formula for call options. In addition, the use of the put together with the290

call-put parity is recommended since call payoff functions grow exponentially291

and may give rise to cancellation errors.292

[Figure 5 about here.]293
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We have empirically shown in Figure 5 that the ddCOS method converges294

to the true price with the expected convergence rate O(1/
√
n), which resembles295

the plain Monte Carlo convergence. However, by the ddCOS method, not only296

the option value but also the sensitivities can readily be obtained. This is an297

advantage w.r.t Monte Carlo-based methods for estimating sensitivities, where298

often, additional simulations, intermediate time-steps or prior knowledge are299

required.300

Thus, a similar convergence test is performed for the ∆ and Γ sensitivities,301

see Figure 6. As Monte Carlo-based method for the Greeks calculation we302

consider the Finite Difference method (bump and revalue, denoted as MCFD).303

We have chosen MCFD for the comparison because it is flexible and it does not304

require prior knowledge. MCFD may require one or two extra simulations, and305

the choice of optimal shift parameter may not be trivial. The reference Delta306

and Gamma are given by the Black-Scholes formula. In Figure 6 we observe307

the expected convergence and the reduction in the variance due to the use of308

AV. In both experiments, while the ∆ is very well approximated by the ddCOS309

and MCFD methods, the second derivative, Γ, appears more complicated for310

the MCFD method. This fact was already pointed out by Glasserman in [14].311

The ddCOS estimator, however, is accurate and stable as it is based on the312

data-driven PDF and the COS machinery. That implies that our method does313

not suffer from the instabilities and potential important errors (specially in the314

second derivative) generated by the finite difference approximation. Therefore,315

the ddCOS provides a fast convergence with reduced variance, easily further316

improved by applying variance reduction techniques.317

[Figure 6 about here.]318

Using n = 105, in Table 1 we now compare the ∆ and Γ estimations obtained319

under the GBM dynamics for several strikes. The performance of the ddCOS320

method is very satisfactory as it is accurate, with small Relative Error (RE,321

averaged over K) and reproduces the reference values very well. The difficulties322

of the MCFD estimating Γ are more clearly visible.323

[Table 1 about here.]324

We wish to test the ddCOS method in a more complex situation, by adding325

jumps in the form of a Merton jump-diffusion asset price process. To accurately326

compute the option sensitivities in this case gives rise to difficulties for Monte327

Carlo-based methods. We perform a similar experiment as before, where now328

the underlying asset follows the Merton jump-diffusion model, and the obtained329

∆ and Γ are presented in Table 2. In this case, the reference value is provided330

by the COS method at a high accuracy.331

[Table 2 about here.]332

In terms of computational cost, the ddCOS method is a competitive alter-333

native, as additional simulations are not needed. Notice that in these latter334

experiments AV techniques are not employed. Under the Merton dynamics, the335
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ddCOS method takes 0.1813 seconds and MCFD 0.3149 seconds. In this case,336

the use of the ddCOS method reduces the computational costs, as the cost of337

an individual simulation by the Merton model is significantly higher than for338

GBM asset dynamics.339

4.2. The SABR model340

The SABR model [34] is interesting within the ddCOS framework since the
ChF is not known and, furthermore, the asset path Monte Carlo simulation is
not trivial. The model is a stochastic-local volatility model which is widely used
in FX modeling, and is given by

dS(t) = σ(t)Sβ(t)dWS(t), S(0) = S0 exp (rT ) ,

dσ(t) = ασ(t)dWσ(t), σ(0) = σ0,
(18)

where S(t) = S̄(t) exp (r(T − t)) is the forward value of the underlying S̄(t),341

with r the interest rate, S0 the spot price and T maturity time. The stochastic342

volatility process is denoted by σ(t), with σ(0) = σ0, WS(t) and Wσ(t) are343

two correlated Brownian motions with correlation ρ (i.e. WSWσ = ρt). The344

parameters of the SABR model are α > 0 (the volatility of the volatility),345

0 ≤ β ≤ 1 (the elasticity) and ρ (the correlation coefficient).346

In [34], the authors provided a closed-form approximation formula for the347

implied volatility under the SABR dynamics, which is often used within the348

calibration. However, the closed-form expression is derived by perturbation349

theory, and therefore the formula is not accurate for small strike values, for long350

time to maturity options or for high volatilities (see, for example, [35, 36]).351

The calculation of the Greeks under the SABR model becomes challenging
but can be addressed by the ddCOS method. To employ the method, we need
samples of the underlying asset at time T . Here, we make use of the one time-
step SABR Monte Carlo simulation introduced by Leitao et al. in [35]. This
one time-step SABR simulation is based on the expression for the CDF of the
conditional SABR process [37]. For S(0) > 0, the conditional CDF of S(t) with
an absorbing boundary at S(t) = 0, given the volatility σ(t), and the conditional

time-integrated variance
∫ t
0
σ2(s)ds|σ(t), reads

Pr

(
S(t) ≤ K|S(0) > 0, σ(t),

∫ t

0

σ2(s)ds

)
= 1− χ2(a; b, c), (19)

where

a =
1

ν(t)

(
S(0)1−β

(1− β)
+
ρ

α
(σ(t)− σ(0))

)2

, c =
K2(1−β)

(1− β)2ν(t)
,

b = 2− 1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
, ν(t) = (1− ρ2)

∫ t

0

σ2(s)ds,

and χ2(x;ϑ, ξ) is the non-central chi-square CDF.352

This formula is exact for the case ρ = 0 and results in an approximation353

otherwise. So, to apply the one time-step Monte Carlo simulation for the SABR354

dynamics, we perform the following steps (with the terminal time T ):355
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• Simulation of SABR’s volatility. From Equation (18), the volatility in the356

SABR model is governed by the well-known log-normal distribution.357

• Simulation of SABR’s time-integrated variance, conditional on the ter-358

minal value of the volatility, i.e.,
∫ T
0
σ2(s)ds|σ(T ). In [35], the authors359

proposed a combination of Fourier- and copulas-based techniques, result-360

ing in a fast and accurate sampling procedure.361

• Simulation of SABR’s forward asset process. The forward dynamics are362

obtained by inverting the CDF in Equation (19). This inverse SABR dis-363

tribution has to be calculated by means of some numerical approximation.364

The efficient inversion in [38] is the choice here.365

Thus, the ddCOS method will be combined with the one time-step SABR366

simulation to efficiently compute ∆ and Γ under the SABR dynamics.367

For the numerical experiments, we consider two parameter settings. First of368

all, a basic parameter set is taken, where the SABR formula is valid and can be369

used as a reference. The results are presented in Table 3. For the second test370

we use a more difficult set of parameters (i.e., Set III in [35]), where the SABR371

formula does not provide accurate results anymore. In Table 4, we observe372

that the ddCOS provides accurate ∆-values in this case, without any problems.373

The reference value has been computed by the MCFD in combination with the374

SABR Monte Carlo simulation in [36], with a large number of Monte Carlo paths375

(n = 10, 000, 000) and time steps (4T ). The convergence in n of the ddCOS ∆376

estimator under the SABR dynamics is shown in Figure 7a. The calculation of377

Γ when the underlying is governed by the SABR model is again involved and the378

MCFD estimation is not reliable. In Figure 7b, the convergence of the ddCOS Γ379

estimator is presented, where we observe convergence, with impressive variance380

reduction.381

[Table 3 about here.]382

[Table 4 about here.]383

[Figure 7 about here.]384

4.3. VaR, ES and the Delta-Gamma approach385

In the evaluation of market risk, the computation of risk measures is impor-
tant, and even mandatory for regulatory purposes to estimate the risk of large
losses. With the risk factors denoted by S and a time horizon ∆t, we define the
change in S at time ∆t by ∆S. The variation in S directly affects the value of
a portfolio V (S, t), containing derivatives of S. We denote the changes in the
value of the portfolio by ∆V , so that the definition of the loss in interval [t,∆t]
is given by

L := −∆V = V (S, t)− V (S + ∆S, t+ ∆t).
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In order to manage possible large losses, we are interested in the distribution
of L, specifically in the CDF, FL(x) = P(L < x), which can be employed to
compute the risk measures VaR or ES. The formal definition of the VaR reads

P(∆V < VaR(q)) = 1− FL(VaR(q)) = q,

with q a predefined confidence level, whereas, given the VaR, the ES measure
is computed as

ES := E[∆V |∆V > VaR(q)].

So, VaR is given as a quantile of the loss distribution, while ES is the average386

of the largest possible losses.387

Although simple in definition, the practical computation of these risk mea-
sures is a challenging and computationally expensive problem, especially when
the changes in V cannot be assumed linear in S. Then, VaR and ES estimation
is often performed by means of an Monte Carlo method. In order to find a bal-
ance between accuracy and tractability, one of the employed methodologies is
the Delta-Gamma approximation which combines Monte Carlo path generation,
a second-order Taylor expansion and the sensitivities to reduce the computa-
tional cost and capture the non-linearity in portfolio changes. The delta-gamma
approximation of ∆V (in the case of only one risk factor) is given by

∆V ≈
M∑
i=1

wi
∂vi
∂S

∆S +
1

2

M∑
i=1

wi
∂2vi
∂S2

(∆S)2,

with M the number of assets depending on risk factor S, wi and vi the amount388

and the value of asset i, respectively. The partial derivatives are evaluated at389

initial time t. In the case of options contracts, these partial derivatives corre-390

spond to the ∆ and Γ sensitivities. It is usually assumed that the distribution of391

∆S is known (normal, Student’s t, etc). Then, by applying the Delta-Gamma392

approach, the distribution of the losses, FL, and therefore the VaR and the ES393

are easily calculated.394

The use of the ddCOS method in the context of the Delta-Gamma approach395

generalizes its applicability. Since the use of the ChF is not longer required,396

we can assume non-trivial dynamics for ∆S, where the use of Fourier inversion397

methods (as in [28]) would be a limitation (it may be impossible to obtain398

a ChF). As we have seen, by employing the ddCOS method, ∆ and Γ can be399

computed at once and, therefore, be directly employed within the Delta-Gamma400

approximation. The ddCOS method can thus be used to recover the distribution401

of ∆V , whenever samples are available. This can be useful when historical data402

is employed, and no particular distribution is assumed.403

In order to show the performance of the ddCOS method within the Delta-404

Gamma approach, we first repeat the experiments from [28]. Two portfolios405

are considered, both with the same composition (one European call and half406

a European put under the same underlying asset, maturity 60 days and strike407

K = 101) but different time horizons, i.e. 1 day and 10 days. We denote them408

by Portfolio 1 and Portfolio 2, respectively. The underlying asset follows a GBM409
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with S(0) = 100, r = 0.1 and σ = 0.3. Change ∆S is assumed to be normally410

distributed.411

In Figure 8 the recovered densities by the COS and ddCOS methods are412

depicted. An almost perfect fit is observed, with the expected small-sized os-413

cillations in the data-driven approach. Since the computational domain is also414

driven by data, the ddCOS recovered density remains within the defined do-415

main, avoiding incorrect estimations outside the domain (see the COS curve in416

Figure 8b).417

[Figure 8 about here.]418

We also employ the ddCOS method to compute the risk measures VaR and419

ES. The convergence of VaR and ES in terms of n is presented in Figure 9, with420

reference values provided by [28]. As expected, the convergence rate for both421

estimators is O(1/
√
n).422

[Figure 9 about here.]423

4.3.1. Smoothing the density of L424

As seen in Figure 8, the densities estimated by the ddCOS method exhibit425

some artificial oscillations due to the lack of data in particular regions and426

the so-called Gibbs phenomenon. Two possibilities to avoid the appearance of427

these oscillations are increasing smoothing parameter p, and the application of428

so-called spectral filters within the ddCOS formula (13). By parameter p we429

can include derivatives of the PDF into the regularization (see Equation (10)).430

We analyze the use of p = 1. Filtering was already successfully applied in431

the context of the Delta-Gamma approximation in [28], based on the work by432

Ruijter et al. [39], and we refer to the references for the filter details. Adding433

hte filter is almost trivial as it merely implies a multiplication with a specific434

filter term. Based to the references, we here choose the so-called 6-th order435

exponential filter within the ddCOS formula.436

In Figure 10, the resulting densities from the application of both alternatives437

are presented. Whereas both smoothing techniques give highly satisfactory438

results for Portfolio 1, the spectral filters are superior in the case of Portfolio 2.439

Based on these tests, we suggest the use of a spectral filter to obtain smooth440

densities. Note, however, that the application of these smoothing procedures441

does not give us an improvement in the convergence, which is still dominated442

by the order of convergence in Equation (5).443

[Figure 10 about here.]444

4.3.2. Delta-Gamma approach under the SABR model445

In order to further test the ddCOS method in the context of the Delta-446

Gamma approach, we now assume the dynamics of the underlying asset and447

∆S to be governed by the SABR dynamics. In Figure 11a, the obtained VaR448

and ES when varying n are presented. No reference is available here, since the449

MCFD is unstable for the Γ computation under the SABR model. We observe450
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that, already for n = 103, a stable Γ-value is found and, even more important,451

the variance is negligible. By the ddCOS method, a closed-form expression for452

the loss distribution is also obtained. The recovered FL and the corresponding453

PDF fL are depicted in Figure 11b (for n = 105), where we also include the454

resulting densities when employing the exponential spectral filter.455

[Figure 11 about here.]456

In Table 5, the VaR and ES under SABR are presented for several choices457

of q, ranging from 10% to 90%. Again, the results seem to be coherent.458

[Table 5 about here.]459

5. Conclusions460

In this work, the ddCOS method has been introduced. The method extends461

the COS method applicability to cases when only data samples of the underlying462

asset are available. The method exploits a closed-form solution, in terms of463

Fourier cosine expansions, of a density. The use of the COS machinery in464

combination with density estimation allowed us to develop a data-driven method465

which can be employed for option pricing and risk management. The ddCOS466

method particularly results in an efficient method for the ∆ and Γ sensitivities467

computation, based solely on the samples. Therefore, it can be employed within468

the Delta-Gamma approximation for calculating risk measures. Through several469

numerical examples, we have empirically shown the convergence of our method.470

In some cases, in order to get monotonic densities, it may be beneficial to add471

a filter term to the ddCOS method.472

A possible future extension may be the use of other basis functions. Haar473

wavelets are for example interesting since they provide positive densities and474

allow an efficient treatment of dynamic data.475
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[18] E. Fournié, J.-M. Lasry, J. Lebuchoux, P.-L. Lions, N. Touzi, Applica-528

tions of Malliavin calculus to Monte Carlo methods in finance, Finance529

and Stochastics 3 (4) (1999) 391–412. doi:10.1007/s007800050068.530

URL http://dx.doi.org/10.1007/s007800050068531

[19] M. H. Davis, M. P. Johansson, Malliavin Monte Carlo Greeks for jump532

diffusions, Stochastic Processes and their Applications 116 (1) (2006)533

101–129. doi:http://dx.doi.org/10.1016/j.spa.2005.08.002.534

URL //www.sciencedirect.com/science/article/pii/535

S0304414905001146536

[20] L. Capriotti, Fast Greeks by algorithmic differentiation, Journal of Com-537

putational Finance 14 (3) (2011) 3–35.538

[21] J. du Toit, U. Naumann, Adjoint Algorithmic Differentiation Tool Support539

for Typical Numerical Patterns in Computational Finance, To appear in540

Journal of Computational Finance.541

URL https://www.nag.co.uk/doc/techrep/pdf/tr3_14.pdf542

[22] N. Chen, P. Glasserman, Malliavin Greeks without Malliavin cal-543

culus, Stochastic Processes and their Applications 117 (11) (2007)544

1689–1723, recent Developments in Mathematical Finance: Special545

issue based on the {CCCP} Meeting, April 2006, New York, NY.546

doi:http://dx.doi.org/10.1016/j.spa.2007.03.012.547

URL //www.sciencedirect.com/science/article/pii/548

S0304414907000877549

[23] M. B. Giles, Vibrato Monte Carlo Sensitivities, in: P. L. Ecuyer, A. B.550

Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, Springer551

Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 369–382. doi:10.1007/552

978-3-642-04107-5_23.553

URL http://dx.doi.org/10.1007/978-3-642-04107-5_23554

[24] L. Capriotti, M. B. Giles, Algorithmic differentiation: adjoint Greeks made555

easy, Risk Magazine 25 (10).556

[25] M. Britten-Jones, S. M. Schaefer, Non-Linear Value-at-Risk, Review of Fi-557

nance 2 (2) (1999) 161–187.558

URL http://EconPapers.repec.org/RePEc:oup:revfin:v:2:y:1999:559

i:2:p:161-187.560

23

http://dx.doi.org/10.1287/opre.1100.0837
http://dx.doi.org/10.1287/opre.1100.0837
http://dx.doi.org/10.1287/opre.1100.0837
http://dx.doi.org/10.1287/opre.1100.0837
http://dx.doi.org/10.1287/opre.1100.0837
http://dx.doi.org/10.1007/s007800050068
http://dx.doi.org/10.1007/s007800050068
http://dx.doi.org/10.1007/s007800050068
http://dx.doi.org/10.1007/s007800050068
http://dx.doi.org/10.1007/s007800050068
http://dx.doi.org/http://dx.doi.org/10.1016/j.spa.2005.08.002
//www.sciencedirect.com/science/article/pii/S0304414905001146
//www.sciencedirect.com/science/article/pii/S0304414905001146
//www.sciencedirect.com/science/article/pii/S0304414905001146
https://www.nag.co.uk/doc/techrep/pdf/tr3_14.pdf
https://www.nag.co.uk/doc/techrep/pdf/tr3_14.pdf
https://www.nag.co.uk/doc/techrep/pdf/tr3_14.pdf
https://www.nag.co.uk/doc/techrep/pdf/tr3_14.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.spa.2007.03.012
//www.sciencedirect.com/science/article/pii/S0304414907000877
//www.sciencedirect.com/science/article/pii/S0304414907000877
//www.sciencedirect.com/science/article/pii/S0304414907000877
http://dx.doi.org/10.1007/978-3-642-04107-5_23
http://dx.doi.org/10.1007/978-3-642-04107-5_23
http://dx.doi.org/10.1007/978-3-642-04107-5_23
http://dx.doi.org/10.1007/978-3-642-04107-5_23
http://dx.doi.org/10.1007/978-3-642-04107-5_23
http://EconPapers.repec.org/RePEc:oup:revfin:v:2:y:1999:i:2:p:161-187.
http://EconPapers.repec.org/RePEc:oup:revfin:v:2:y:1999:i:2:p:161-187.
http://EconPapers.repec.org/RePEc:oup:revfin:v:2:y:1999:i:2:p:161-187.
http://EconPapers.repec.org/RePEc:oup:revfin:v:2:y:1999:i:2:p:161-187.


[26] J. V. Siven, J. T. Lins, A. Szymkowiak-Have, Value-at-Risk computation by561

Fourier inversion with explicit error bounds, Finance Research Letters 6 (2)562

(2009) 95–105. doi:http://dx.doi.org/10.1016/j.frl.2008.12.002.563

URL //www.sciencedirect.com/science/article/pii/564

S1544612308000652565

[27] R. Chen, L. Yu, A novel nonlinear Value-at-Risk method for566

modeling risk of option portfolio with multivariate mixture of567

normal distributions, Economic Modelling 35 (2013) 796–804.568

doi:http://dx.doi.org/10.1016/j.econmod.2013.09.003.569

URL //www.sciencedirect.com/science/article/pii/570

S0264999313003623571

[28] L. Ortiz-Gracia, C. W. Oosterlee, Efficient VaR and Expected Short-572

fall computations for nonlinear portfolios within the delta-gamma573

approach, Applied Mathematics and Computation 244 (2014) 16–31.574

doi:http://dx.doi.org/10.1016/j.amc.2014.06.110.575

URL //www.sciencedirect.com/science/article/pii/576

S0096300314009540577

[29] A. W. van der Vaart, Asymptotic statistics, Cambridge Series in Statistical578

and Probabilistic Mathematics, Cambridge University Press, 1998.579

[30] H. Cramér, On the composition of elementary errors, Scandinavian Actuar-580

ial Journal 1928 (1) (1928) 13–74. arXiv:http://dx.doi.org/10.1080/581

03461238.1928.10416862, doi:10.1080/03461238.1928.10416862.582

URL http://dx.doi.org/10.1080/03461238.1928.10416862583

[31] N. V. Smirnov, Theory of Probability and Mathematical Statistics (selected584

works), Nauka, Moscow, 1970.585

[32] T. W. Anderson, On the Distribution of the Two-Sample Cramér-von Mises586

Criterion, The Annals of Mathematical Statistics 33 (3) (1962) 1148–1159.587

[33] R. A. Kronmal, M. E. Tarter, The estimation of probability densities588

and cumulatives by Fourier series sethods, Journal of the Ameri-589

can Statistical Association 63 (323) (1968) 925–952. arXiv:http:590

//www.tandfonline.com/doi/pdf/10.1080/01621459.1968.11009321,591

doi:10.1080/01621459.1968.11009321.592

URL http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.593

11009321594

[34] P. S. Hagan, D. Kumar, A. S. Lesniewski, D. E. Woodward, Managing595

smile risk, Wilmott Magazine (2002) 84–108.596

[35] A. Leitao, L. A. Grzelak, C. W. Oosterlee, On a one time-step Monte597

Carlo simulation approach of the SABR model: Application to European598

options, Applied Mathematics and Computation 293 (2017) 461 – 479.599

doi:http://dx.doi.org/10.1016/j.amc.2016.08.030.600

24

http://dx.doi.org/http://dx.doi.org/10.1016/j.frl.2008.12.002
//www.sciencedirect.com/science/article/pii/S1544612308000652
//www.sciencedirect.com/science/article/pii/S1544612308000652
//www.sciencedirect.com/science/article/pii/S1544612308000652
http://dx.doi.org/http://dx.doi.org/10.1016/j.econmod.2013.09.003
//www.sciencedirect.com/science/article/pii/S0264999313003623
//www.sciencedirect.com/science/article/pii/S0264999313003623
//www.sciencedirect.com/science/article/pii/S0264999313003623
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2014.06.110
//www.sciencedirect.com/science/article/pii/S0096300314009540
//www.sciencedirect.com/science/article/pii/S0096300314009540
//www.sciencedirect.com/science/article/pii/S0096300314009540
http://dx.doi.org/10.1080/03461238.1928.10416862
http://arxiv.org/abs/http://dx.doi.org/10.1080/03461238.1928.10416862
http://arxiv.org/abs/http://dx.doi.org/10.1080/03461238.1928.10416862
http://arxiv.org/abs/http://dx.doi.org/10.1080/03461238.1928.10416862
http://dx.doi.org/10.1080/03461238.1928.10416862
http://dx.doi.org/10.1080/03461238.1928.10416862
http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009321
http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009321
http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009321
http://arxiv.org/abs/http://www.tandfonline.com/doi/pdf/10.1080/01621459.1968.11009321
http://arxiv.org/abs/http://www.tandfonline.com/doi/pdf/10.1080/01621459.1968.11009321
http://arxiv.org/abs/http://www.tandfonline.com/doi/pdf/10.1080/01621459.1968.11009321
http://dx.doi.org/10.1080/01621459.1968.11009321
http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009321
http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009321
http://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009321
http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2016.08.030


URL http://www.sciencedirect.com/science/article/pii/601

S0096300316305252602

[36] A. Leitao, L. A. Grzelak, C. W. Oosterlee, On an efficient multiple time-603

step Monte Carlo simulation of the SABR model, To appear in Quantitative604

Finance.605

URL AvailableatSSRN:http://ssrn.com/abstract=2764908606

[37] O. Islah, Solving SABR in exact form and unifying it with LIBOR market607

model, available at SSRN (2009).608

URL http://ssrn.com/abstract=1489428609

[38] B. Chen, C. W. Oosterlee, H. van der Weide, A low-bias simulation scheme610

for the SABR stochastic volatility model, International Journal of Theo-611

retical and Applied Finance 15 (2) (2012) 1250016–1 – 1250016–37.612

[39] M. J. Ruijter, M. Versteegh, C. W. Oosterlee, On the application of spec-613

tral filters in a Fourier option pricing technique, Journal of Computational614

Finance 19 (1) (2014) 75–106.615

25

http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://www.sciencedirect.com/science/article/pii/S0096300316305252
http://www.sciencedirect.com/science/article/pii/S0096300316305252
Available at SSRN: http://ssrn.com/abstract=2764908
Available at SSRN: http://ssrn.com/abstract=2764908
Available at SSRN: http://ssrn.com/abstract=2764908
Available at SSRN: http://ssrn.com/abstract=2764908
http://ssrn.com/abstract=1489428
http://ssrn.com/abstract=1489428
http://ssrn.com/abstract=1489428
http://ssrn.com/abstract=1489428


-4 -2 0 2 4

0

0.1

0.2

0.3

0.4
True

p = 0

p = 1

p = 2

p = 3

Figure 1: Smoothing of the density approximation in relation to parameter p.
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Figure 5: Convergence in prices of the ddCOS method: Antithetic Variates (AV); GBM,
S(0) = 100, r = 0.1, σ = 0.3 and T = 2.
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Figure 6: Convergence in Greeks of the ddCOS method: Antithetic Variates (AV); GBM,
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Figure 7: The ddCOS method: Greeks convergence test.
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Figure 9: VaR and ES convergence in n.
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Figure 10: Smoothed densities of L.
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Figure 11: Delta-Gamma approach under the SABR model. Setting: S(0) = 100, K = 100,
r = 0.0, σ0 = 0.4, α = 0.8, β = 1.0, ρ = −0.5, T = 2, q = 99% and ∆t = 1/365.
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K (% of S(0)) 80% 90% 100% 110% 120%

0.1 ∆
Ref. 0.8868 0.8243 0.7529 0.6768 0.6002

ddCOS 0.8867 0.8240 0.7528 0.6769 0.6002
RE 1.1012× 10−4

MCFD 0.8876 0.8247 0.7534 0.6773 0.6006
RE 7.5168× 10−4

Γ
Ref. 0.0045 0.0061 0.0074 0.0085 0.0091

ddCOS 0.0045 0.0062 0.0075 0.0084 0.0090
RE 8.5423× 10−3

MCFD 0.0045 0.0059 0.0071 0.0079 0.0083
RE 4.9554× 10−2

Table 1: GBM call option Greeks: S(0) = 100, r = 0.1, σ = 0.3 and T = 2.
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K (% of S(0)) 80% 90% 100% 110% 120%

∆
Ref. 0.8385 0.8114 0.7847 0.7584 0.7328

ddCOS 0.8383 0.8113 0.7846 0.7585 0.7333
RE 2.7155× 10−4

MCFD 0.8387 0.8118 0.7850 0.7586 0.7330
RE 3.1265× 10−4

Γ
Ref. 0.0022 0.0024 0.0027 0.0029 0.0030

ddCOS 0.0022 0.0024 0.0027 0.0029 0.0030
RE 8.2711× 10−3

MCFD 0.0023 0.0026 0.0028 0.0031 0.0033
RE 6.118× 10−2

Table 2: Merton jump-diffusion call option Greeks: S(0) = 100, r = 0.1, σ = 0.3, µj = −0.2,
σj = 0.2 and λ = 8 and T = 2.
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K (% of S(0)) 80% 90% 100% 110% 120%

∆
Ref. 0.9914 0.9284 0.5371 0.0720 0.0058

ddCOS 0.9916 0.9282 0.5363 0.0732 0.0058
RE 5.2775× 10−3

MCFD 0.9911 0.9279 0.5368 0.0737 0.0058
RE 5.5039× 10−3

Table 3: Call option Greek ∆ under the SABR model: S(0) = 100, r = 0, σ0 = 0.3, α = 0.4,
β = 0.6, ρ = −0.25 and T = 2.
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K (% of S(0)) 80% 90% 100% 110% 120%

∆
Ref. 0.8384 0.7728 0.6931 0.6027 0.5086

ddCOS 0.8364 0.7703 0.6902 0.6006 0.5084
RE 2.7855× 10−3

Hagan 0.8577 0.7955 0.7170 0.6249 0.5265
RE 3.1751× 10−2

Table 4: ∆ under SABR model. Setting: Call, S(0) = 0.04, r = 0.0, σ0 = 0.4, α = 0.8,
β = 1.0, ρ = −0.5 and T = 2.
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q 10% 30% 50% 70% 90%

VaR −1.4742 −0.5917 −0.0022 0.5789 1.3862
ES 0.1972 0.5345 0.8644 1.2517 1.8744

Table 5: VaR and ES under SABR model. Setting: S(0) = 100, K = 100, r = 0.0, σ0 = 0.4,
α = 0.8, β = 1.0, ρ = −0.5, T = 2, and ∆t = 1/365.
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