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Abstract. This project consists in a revision and extension of a classic result, Waring’s theorem, about the

barycenter of the intersection points of two plane algebraic curves. The theorem arises from the study of the

parts with highest degree of the equation of a curve, which are completely determined by the barycentric parallel

lines of the groups of asymptotes.

Among other consequences of Waring’s theorem we study a result, due to Chasles, about the barycenter of the

contact points of parallel tangent lines to a plane curve.
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Introduction

Historical review of Waring’s theorem

A classic result about the intersection of plane algebraic curves, due to Edward Waring, asserts:

Waring’s theorem. Let C and D be two plane algebraic curves, with no common points in the line at infinity.

Then, the barycenter of the points of C∩D (counted according to intersection multiplicities) is the barycenter

of the intersection points when C is replaced by the union of its asymptotes.

For example, in the following figure, if the cubic curve C is replaced by the union of its three asymptotes, the

grey intersection points with the conic D have the same barycenter as the black intersection points of C and D:

Waring’s theorem appeared for the first time in the treatise Proprietates algebricarum curvarum, whose first

edition was published in 1762.

Liouville’s article [8], published in 1841, contains a proof of Waring’s theorem applying elimination to the

variables involved in the equations of the curves.

By means of these elimination methods, Liouville also gave a proof for a nice theorem about the parallel tangent

lines to a plane curve. This theorem, together with an analog version for algebraic surfaces and parallel tangent

planes to them, is due to Chasles and had been published in Aperçu historique sur l’origine et le développement

des méthodes en géométrie (1837). The original proof of Chasles consisted in modifying Newton’s theorem on

the diameters of curves and surfaces. Some years later, Chasles gave a different proof in his Traité de géométrie

supérieure (1851).
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During the rest of 19th century, several articles appeared with simplifications of Liouville’s arguments, such

as [5] and [10]. All these proofs were done under the (non-explicit) hypothesis of the curve C intersecting

transversely the line at infinity, that is, in the same number of distinct points as its degree.

In 1931, Coolidge published the book [4], a very complete recopilation of results on plane algebraic curves. The

chapter devoted to their metric properties contains a proof of Waring’s theorem following the ideas in [10], this

time with the explicit mention of the curve C intersecting transversely the line at infinity. In the same chapter,

we may also find Chasles theorem and lots of properties on distances, angles and foci of algebraic curves, most

of them forgotten nowadays.

Finally, the paper [7], published in 1995, gave a revision of Waring’s theorem that covers the case of curves C

with no parabolic branches1, but restricts D to be a line. The goal of the article was proving a generalization of

Waring’s theorem for the intersection of algebraic curves with hyperplanes in affine spaces of higher dimension.

The project

The aim of this project is doing a revision, including a proof written according to modern standards and a

specification of the hypothesis, of Waring’s theorem for its different versions appearing in the literature. As an

application, it includes a proof of the classic Chasles theorem for curves.

Since the publication of Liouville’s article [8], the most common argument for proving Waring’s theorem is

divided into two parts:

• On the one hand, the barycenter of the intersection points of two affine curves only depends on the two

highest homogeneous parts of (the equations of) the curves. This result appears in the text as theorem

2.4, and it can be proved by using elimination theory.

• On the other hand, the two highest homogeneous parts of a curve are determined by its asymptotes.

In the study of this second part, we present a geometric equivalence (theorem 2.1) to the fact of two curves

having identical two highest homogeneous parts, which has not been found in the literature. As a consequence,

we deduce the coincidence of asymptotes of two curves as a sufficient condition for the coincidence of their two

highest homogeneous parts. Actually, this is also a necessary condition in the classic case of curves intersecting

transversely the line at infinity, but not for the more general case of curves with no parabolic branches.

This geometric equivalence, together with the first part of Liouville’s argument, allows us to find an extension

of Waring’s theorem, where the curves may be replaced by a more general type of curves than an union of

asymptotes (theorem 2.5).

The necessary background for this project has been summarized in the first chapter. There, we review basic

concepts and results on the theory of plane algebraic curves, which were worked in the Master’s course: singular

points, tangent cones, intersection multiplicities, Bézout theorem, polar curves, ... It also includes basics on

pencils of curves and groups of points, which are the basic tool in one of the proofs of theorem 2.1.

1That is, having not the line at infinity as a tangent line.
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Chapter 1

Preliminaries

In this chapter, we explain all the concepts on plane algebraic curves that are necessary for the project, in order

to fix ideas and notations.

Most of the contents (with the exception of groups of points and pencils) were part of the Master’s course

Algebraic curves, and because of this reason many proofs have not been included. The reader is referred

mainly to [2], even though other detailed expositions may be found in classic books as [6] and [9].

1.1 Basic considerations

Throught these pages, Pn will denote the projective n-dimensional space over the field of the complex numbers,

with an already fixed system of homogeneous coordinates. The point of Pn with homogeneous coordinates

x0, . . . ,xn will be denoted by (x0 : ... : xn).

We will consider algebraic hypersurfaces in Pn, defined by equations F = 0, with F an homogeneous poly-

nomial in the homogeneous coordinates. Since any polynomial F ∈ C [x0,x1] of degree d decomposes as the

product of d linear factors, hypersurfaces in P1 are called groups of points. The multiplicity of a point in a

group is just the multiplicity of the associated linear polynomial, as a factor of F .

We will refer to the hypersurfaces in P2 as algebraic curves. A curve C : F = 0, with F = F1 . . .Fr the product

of (possibly repeated) r polynomials, is called the union of the curves Ci : Fi = 0 (i = 1, . . . ,r), and is denoted

by C =C1 + . . .+Cr.

In case that the polynomials Fi are irreducible, each of the curves Ci is called an irreducible component of C,

with multiplicity the multiplicity of Fi as a factor of F . The curve C is said to be reduced if all its irreducible

components have multiplicity 1.

Recall that, since every point in Pn has a non-zero homogeneous coordinate, the space Pn can be covered by the

subsets Ui = {(x0 : ... : xn) ∈ Pn : xi 6= 0} (i = 0, . . . ,n). Identifying the point (x1, . . . ,xn) (in affine coordinates)

with the point (x1 : . . . : xi−1 : 1
i)

: xi : . . . : xn) embeds the (complex) affine n-dimensional space An in Pn: the

subspace Ui is called the i-th affine chart.

Our frame of work will be a complex affine plane A2, which we consider embedded in P2 by means of the 0-th

affine chart. In other words, we identify the projective point (x0 : x1 : x2) ∈U0 with (x,y) = ( x1
x0
, x2

x0
). Recall that
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the complementary of A2, when regarded as a subset of P2, is the line at infinity l∞ : x0 = 0 (also called the

improper line).

We will deal with algebraic curves in A2, defined by equations f = 0, with f a polynomial (not necessarily

homogeneous) in the affine coordinates. Similar considerations relative to irreducible components hold for

these curves in A2.

If f (x,y) = 0 is the equation of a curve C in A2 with degree d, the homogeneous polynomial F(x0,x1,x2) =

xd
0 · f ( x1

x0
, x2

x0
) of degree d defines an algebraic curve in P2 (projective closure of C).

Conversely, If C : F(x0,x1,x2) = 0 is an algebraic curve in P2 with some irreducible component different of l∞,

the polynomial f (x,y) = F(1,x,y) is not constant and defines an algebraic curve in A2, called the 0-th affine

part of C. Similarly, one can define affine parts of C in the remaining affine charts. If no confusion arises, the

0-th affine part will be called simply the affine part of the curve.

When dealing with curves C in P2 having not l∞ as an irreducible component, the maps “affine part” and

“projective closure” are inverse to each other. Furthermore, the irreducible components of the affine part of C

are the affine parts of the irreducible components of C, with the multiplicity of each irreducible component of

C and that of its affine part coinciding.

Therefore, we usually make no distinction between a plane curve in A2 and its projective closure in P2.

1.2 Singular points of an algebraic curve

Let C : F(x0,x1,x2) = 0 be an algebraic curve of degree d, and l a line in P2. The line l may be parametrized

by means of a map ϕ : P1 −→ P2 defined as

ϕ((t0 : t1)) = (c0
0t0 + c1

0t1 : c0
1t0 + c1

1t1 : c0
2t0 + c1

2t1) ,

with the c j
i (i ∈ {0,1,2}, j ∈ {0,1}) denoting complex numbers such that the matrix

(
c0

0 c0
1 c0

2

c1
0 c1

1 c1
2

)
has rank 2.

If the polynomial F(t0, t1) = F(c0
0t0 + c1

0t1,c0
1t0 + c1

1t1,c0
2t0 + c1

2t1) is identically zero, every point in the line l

satisfies the equation of C, and hence l ⊂C.

Otherwise, F ∈ C [t0, t1] is homogeneous of degree d and may be regarded as the equation of a group of points

in l (the intersection of C and l, denoted by C · l).

Definition. The intersection multiplicity of C and l at a point p ∈ P2, denoted by [C · l]p, is the multiplicity of

p in the group of points C · l.

Example. The line l∞ : x0 = 0 admits the parametrization ϕ((t0 : t1)) = (0 : t0 : t1). If C : F(x0,x1,x2) = 0

is a curve having not l∞ as an irreducible component (for example, if C is the projective closure of an affine

algebraic curve), the group of points C · l∞ determined by F(t0, t1) = F(0, t0, t1) is called the improper section

of C. Its points are called the improper points of C.

Definition. For any point p ∈ P2, we define the multiplicity of p on C, denoted by ep(C), as the minimal value

of the intersection multiplicities of C and all the lines through p, at the point p.
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From this definition, it immediately follows that ep(C) = 0 if, and only if, p /∈C. Otherwise:

• If ep(C) = 1, p is called a simple (or smooth, or non-singular) point of C.

• If ep(C)> 1, p is called a singular point (or a singularity) of C.

An important property is that, for any two algebraic curves C1,C2 ⊂ P2, ep(C1+C2) = ep(C1)+ep(C2). Hence,

the singularities of C1 +C2 consist of the singularities of C1, the singularities of C2 and the points of C1∩C2.

The most common characterization of the multiplicity of points on curves is provided by:

Theorem 1.1. A point p has multiplicity e on a curve C : F(x0,x1,x2) = 0 if, and only if, all derivatives of F of

order e−1 have value 0 at p, and at least one of the e-th derivatives has not. In particular, p is singular if and

only if all the first order derivatives of F vanish at p.

Definition. A line l ⊂ P2 is said to be tangent to C at a point p if [C · l]p > ep(C).

Example. The tangent lines to a curve at some of its improper points are called asymptotes.

Another way of finding the multiplicity of a point p on C, as well as the tangent lines to C at p, is the next one:

if the polynomial F has degree d, express it as a sum

F(x0,x1,x2) = fd(x1,x2)+ fd−1(x1,x2) · x0 + . . .+ fe+1(x1,x2) · xd−e−1
0 + fe(x1,x2) · xd−e

0 (∗)

of homogeneous polynomials fi ∈ C [x1,x2] of degree i (e ≤ i ≤ d), with fe 6= 0. Then, if p = (1 : 0 : 0), we

have ep(C) = e and the algebraic curve

TCp(C) : fe(x1,x2) = 0

(tangent cone of C at p) is the union of the e (possibly repeated) tangent lines to C at p. These notions are

generalized to arbitrary points p ∈ P2 by means of changes of coordinates.

Remarks.

1. The multiplicity of a tangent line l to C at p is just the multiplicity of l as an irreducible component of

TCp(C).

2. In case that p is a smooth point of the curve C (that is, ep(C) = 1), the tangent cone of C at p consists of

the single line

∂F
∂x0

(p) · x0 +
∂F
∂x1

(p) · x1 +
∂F
∂x2

(p) · x2 = 0 ,

which is called the tangent line to C at p.

Definition. The homogeneous polynomials fd , fd−1 ∈ C [x1,x2] appearing in the expression (∗), will be called

the two highest homogeneous parts (in the equation) of the curve C : F(x0,x1,x2) = 0.

We finish this part reviewing some of the most elementary sort of singularities of a curve:
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Definition. Let p be a singular point of a curve C, and e = ep(C)> 1. Then:

1. p is an ordinary singularity of C if the tangent cone Tp(C) is the union of e distinct lines.

2. p is a node if it’s an ordinary singularity and e = 2.

3. p is an ordinary cusp if e = 2 and Tp(C) consists of a line l counted twice, such that [C · l]p = 3.

1.3 Branches of a plane curve and intersection multiplicity

Let’s start by recalling two basic concepts about fractionary power series:

• If s∈C
q

x1/n
y

is a fractionary power series, its polydromy order ν(s) is the minimal common denominator

of all the exponents effectively appearing in s. That is, the least number m such that s ∈ C
q

x1/m
y

.

• If ε is an n-th root of unity, we have an automorphism of rings σε : C
q

x1/n
y
−→ C

q
x1/n

y
(conjugation)

given by σε

(
∑

i≥0
aix

i/n

)
= ∑

i≥0
aiε

ixi/n.

Now, let C : F(x0,x1,x2) = 0 be a curve in P2 passing through O = (1 : 0 : 0). In order to study C “near” the

point O, we take the affine equation

C : f (x,y) = 0

with f (x,y) = F(1,x,y). We also assume that the coordinates are chosen in such a way that the y-axis x = 0 is

not tangent to C at O = (0,0).

Theorem 1.2 (Puiseux). There exist convergent fractionary power series si(x) (1≤ i≤ k) with polydromy order

ν(si) = νi, such that si(0,0) = 0 and f factorizes in C{x} [y] as

f = gs1 · . . . ·gsk · f̃

with f̃ ∈ C{x} [y] such that f̃ (0,0) 6= 0 and gsi = ∏
ενi=1

(y−σε(si)) ∈ C{x} [y].

Definition. Every set
{
(x,y) ∈ A2 : gsi(x,y) = 0

}
is called a branch of C at the point O.

The multiplicity of the branch gsi(x,y) = 0 is the multiplicity of gsi as a factor of f . Any of the conjugate series

σε(si) corresponding to that branch is called a Puiseux series of the branch. By a Puiseux series of the curve C

at the point O, we will simply mean a Puiseux series of a branch of C at O.

Note that the equation gsi(x,y) = 0 defines an analytic curve (not necessarily algebraic) in a neigbourhood of

O, admitting the parametrization x = tνi , y = si(tνi). Moreover, it has a single tangent line at O, given by

y = a+bx

if the Puiseux series si is si(x) = a+bx+ . . ., with . . . denoting terms of degree strictly higher than 1 in x.

Tangent lines to branches of C at the point O are the irreducible components of the tangent cone of C at O.
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The same considerations hold for any projective point p ∈ C, just by taking the appropiate affine part and an

appropiate affine change of reference. This allows us to decompose completely the polynomial f , as it may be

found in proposition 3.3.3 of [2]:

Proposition 1.3. Let C : F(x0,x1,x2) = 0 be an algebraic curve passing not through (0 : 0 : 1). Then, the

y-roots of the polynomial f (x,y) = F(1,x,y) are the Puiseux series of C at the points of C on the y-axis: that is,

f (x,y) = a ·∏
si

(y− si(x))

where a ∈ C and the product is taken over all the Puiseux series si of C at the points of C on the y-axis.

Definition. Let p ∈C∩ l∞ be an improper point of C. A branch of C at p is said to be parabolic if its tangent

line at p is l∞.

Using this notion of branch, we are going to define the intersection multiplicity of two curves. Let C : f (x,y)= 0

be an affine algebraic curve, p ∈ A2 and C′ another affine curve, with a branch γ at p. Assume that γ is given

by a Puiseux series s, with polydromy order ν = ν(s).

Definition. The intersection multiplicity of the curve C and the branch γ is [C · γ] = ν ·ox f (x,s(x)).

Definition. The intersection multiplicity of two curves C and C′ at a point p is [C ·C′]p = ∑
γ

[C · γ], with the sum

over all the branches γ of C′ at p, each of them counted as many times as its multiplicity.

Remarks.

• Naturally, this local notion extends to projective curves C,C′ and points p ∈ P2, just by considering the

affine parts of C and C′ corresponding to an affine chart containing p.

• In case that C′ is a line, the definition of intersection multiplicity coincides with the one given in the

previous section.

The most important properties of the intersection multiplicity are summarized in the following proposition:

Proposition 1.4. Let C, C′, C1 and C2 be plane affine curves, and p ∈ A2 a point. Then:

1. [(C1 +C2) ·C′]p = [C1 ·C′]p +[C2 ·C′]p .

2. [C ·C′]p = 0 ⇐⇒ p /∈C or p /∈C′.

3. [C ·C′]p = ∞ ⇐⇒ C and C′ have a common irreducible component passing through p.

4. [C ·C′]p = [C′ ·C]p .

5. [C ·C′]p ≥ ep(C) · ep(C′), with equality if and only if C and C′ have no common tangent line at p.

6. If C1 : f = 0, C2 : g = 0 and C′ : a f +g = 0 for some a ∈ C [x,y], then [C1 ·C2]p = [C1 ·C′]p .
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Example. Two algebraic curves C and C′ are said to have a transverse intersection at a point p if [C ·C′]p = 1.

Equivalently, by properties 1 and 5 of the proposition above, if p is a smooth point of both C and C′ where the

curves have different tangent lines.

Bézout theorem is probably the most known result on the intersection of plane curves. We take the same

statement as in [2] (theorem 3.3.5):

Theorem 1.5 (Bézout). Let C,C′ ⊂ P2 be two algebraic curves of respective degrees d and e, with no common

irreducible components. Then,

∑
p∈P2

[C ·C′]p = d · e

Definition. The intersection group of two algebraic curves C,C′ ⊂ P2 with no common irreducible components

is the formal sum

∑
p∈P2

[C ·C′]p · p

(which is finite according to Bézout theorem).

1.4 Polar curves and polar groups

In this section, we are going to review the basic concepts on polar curves, and introduce the polar groups.

Actually, the notion of polarity is general for hypersurfaces in any projective space Pn, but for our purposes we

may assume that n = 1,2:

Definition. Let V : F(x0, . . . ,xn) = 0 and q = (a0 : . . . : an) be, respectively, an hypersurface of degree d > 1

and a point in Pn. We define the polar of V with respect to q as the hypersurface

Pq(V ) : a0 · ∂F
∂x0

+ . . .+an · ∂F
∂xn

= 0

when the polynomial on the left-hand side of the equation is not identically 0. Otherwise, we say that the polar

of V with respect to q is undetermined (or undefined).

Remark. The polar of V with respect to q is undetermined if, and only if, q is a point with multiplicity d on V ,

that is, V is a union of hyperplanes passing through q.

Pq(V ) is an hypersurface of degree d−1, whose definition does not depend on the choice of coordinates. Tak-

ing successive polars (if possible), we obtain hypersurfaces P2
q (V ), . . . ,Pd−2

q (V ),Pd−1
q (V ) with respective

degrees d−2, . . . ,2,1.

Each hypersurface Pr
q(V ) is called the r-th polar of V with respect to q, has degree d− r (if determined) and

admits the equation

Pr
q(V ) :

(
a0 · ∂

∂x0
+ . . .+an · ∂

∂xn

)r
F(x0, . . . ,xn) = 0
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This equation can also be written as

Pr
q(V ) :

[(
x0 · ∂

∂y0
+ . . .+ xn · ∂

∂yn

)d−r

F(y0, . . . ,yn)

]
(y0,...,yn)=(a0,...,an)

= 0 ,

from which immediately follows the reciprocity of polars: for every p,q ∈ Pn,

p ∈Pr
q(V ) ⇐⇒ q ∈Pd−r

p (V ) .

Remarks.

• For the case n = 2, the curves Pd−2
q (V ) and Pd−1

q (V ) with respective degrees 2 and 1, if determined,

are called the polar conic and the polar line of V with respect to q.

Looking at the equations above, one deduces that a point q ∈V determines a polar line if, and only if, q

is a smooth point of V . In such a case, the polar line of V with respect to q is the tangent line to V at q.

• For n = 1, the group Pd−1
q (V ) has degree 1 (consists of a single point) and is called the point polar of V

with respect to q.

Proposition 1.6. Let C ⊂ P2 be an algebraic curve with degree d > 1, and q ∈ P2 a point such that Pq(C) is

determined. Then, C∩Pq(C) consists of the singularities of C, and the simple points of C whose tangent line

passes through q.

The intersection multiplicities of the curves C and Pq(C) at their intersection points, for curves C with very

particular types of singularities, can be deduced from the following lemmas, which appear in section 3.4 of [2]:

Lemma 1.7. Under the hypothesis of proposition 1.6, if p is a simple point of C, p 6= q and the line l = p∨q is

not contained in C, then [C ·Pq(C)]p = [C · l]p−1.

Lemma 1.8. Under the hypothesis of proposition 1.6, if p is an ordinary singularity with multiplicity e on C

and q is contained in no tangent line at p, then [C ·Pq(C)]p = e(e−1).

Lemma 1.9. Under the hypothesis of proposition 1.6, if p is an ordinary cusp of C and the tangent line to C at

p does not pass through q, then [C ·Pq(C)]p = 3.

By applying Bézout theorem with the curves C and Pq(C), and controlling their intersection multiplicities

using these results, we obtain:

Theorem 1.10 (Plücker’s first formula). Let C ⊂ P2 be an irreducible algebraic curve, whose only singular-

ities are δ nodes and τ ordinary cusps. If a point q ∈ P2 does not belong to C, and no tangent line to C at a

singular point cointains q, then the number of tangent lines to C passing through q is

d(d−1)−2δ −3τ ,

with each tangent line l counted ∑
p∈C∩l

(
[C · l]p−1

)
times.
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We finish this section presenting two useful properties of polars of groups of points. The first one is an inter-

pretation of the barycenter of aligned points as a point polar, while the second one states that polarity commutes

with the section of a curve by a line.

Proposition 1.11. Let p1, . . . , pd be (possibly repeated) d affine points in P1. Then, the barycenter of p1, . . . , pd

is the point polar of the group G = p1 + . . .+ pd with respect to the point at infinity p∞ = (0 : 1).

Proof. If the points pi have homogeneous coordinates pi = (1 : αi) in P1, the group G = p1 + . . .+ pd admits

the equation G : F(x0,x1) = 0, with

F(x0,x1) =
d
∏
i=1

(x1−αix0) = xd
1− (α1 + . . .+αd)xd−1

1 x0 + . . .

and the last . . . denoting terms with degree in x1 strictly smaller than d−1. Since

∂
d−1F

∂xd−1
1

= d! · x1− (α1 + . . .+αd)(d−1)! · x0 ,

the point polar of G with respect to p∞ is determined, and has equation

Pd−1
p∞

(G) : d · x1− (α1 + . . .+αd) · x0 = 0 .

In other words, Pd−1
p∞

(G) consists of the single point (1 : α1 + . . .+αd
d ), which are the homogeneous coordin-

ates of the barycenter of p1, . . . , pd . �

Proposition 1.12. Let q,C and l be, respectively, a point, a curve and a line in P2, such that q ∈ l \C. Then,

Pq(C) · l = Pq(C · l)

where the left-hand side is the group of points corresponding to the intersection of Pq(C) with l, and the

right-hand side is the polar of the group of points C · l with respect to q.

Proof. We take coordinates in P2 in such a way that q = (0 : 0 : 1), C : F(x0,x1,x2) and l : x1 = 0.

The intersection group C · l is given by the equation F(x0,x2) = F(x0,0,x2), regarding x0,x2 as homogeneous

coordinates in l, and hence

Pq(C · l) : 0 = ∂F
∂x2

=
∂F(x0,0,x2)

∂x2

On the other hand, an equation for Pq(C) is Pq(C) : ∂F
∂x2

= 0, which gives

Pq(C) · l : ∂F
∂x2

(x0,0,x2) = 0

The result becomes a consequence of the equality ∂F(x0,0,x2)
∂x2

= ∂F
∂x2

(x0,0,x2). �

1.5 Pencils of curves and pencils of groups of points

We want to study when the equations of two affine curves share their two highest homogeneous parts. Our main

tool will be pencils, that is, the 1-dimensional linear varieties in the projective space of hypersurfaces of a fixed

degree.

In particular, we will make use of pencils of curves (hypersurfaces in P2) and pencils of groups of points

(hypersurfaces in P1).
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Definition. Let C1,C2 ⊂ P2 be two different plane projective curves of the same degree n, given by equations

C1 : F(x0,x1,x2) = 0 and C2 : G(x0,x1,x2) = 0. The pencil spanned (or generated) by C1 and C2 is the set

Λ =
{

D : λF +µG = 0 | (λ : µ) ∈ P1
}

of curves whose equation is a linear combination of F and G.

Remark. By means of the identification of the curve λF + µG = 0 with the point (λ : µ) ∈ P1, the pencil Λ

has a natural structure of projective line. In the same way that a line is determined by two different points, any

two different curves of Λ span the same pencil.

As it is clear, a point p ∈ C1 ∩C2 belongs to all curves of the pencil. Therefore, we define the locus of base

points of the pencil as the set

BΛ =
{

p ∈ P2 | p ∈ D, ∀D ∈Λ
}
=C1∩C2

According to Bézout theorem, if C1 and C2 have no common irreducible components, there are at most n2

distinct base points. And it’s easy to see that, in the case of C1 and C2 sharing irreducible components, the locus

of base points consists in the curve with equation gcd(F,G) = 0, plus finitely many points.

Notice also that, for any non-base point p ∈ P2 \BΛ , the condition λ ·F(p)+µ ·G(p) = 0 determines a unique

curve of the pencil Λ passing through p.

Lemma 1.13. Let Λ be the pencil generated by two algebraic curves C1,C2 ⊂ P2 of the same degree n, and

p ∈C1∩C2 a base point of Λ . Then,

[C1 ·C2]p = [D ·D′]p

for any two different curves D,D′ ∈Λ .

Proof. This result can be easily checked using the property 6 in proposition 1.4. �

Moreover, under certain conditions, we can control the multiplicity of a base point on the curves of the pencil:

Lemma 1.14. Let Λ be a pencil of algebraic curves of degree n, and let p ∈ P2 be a base point for this pencil.

The following are equivalent:

1. There exist two different curves of Λ having the same tangent cone at p.

2. All curves of Λ but one have the same tangent cone at p.

3. There are two curves of Λ having different multiplicities at p.

Proof. During this proof, we take a projective reference such that p = (1 : 0 : 0).

1) =⇒ 3) : Assume that C1,C2 ∈ Λ are two different curves with the same tangent cone at p, defined by a

polynomial f ∈ C [x1,x2] of degree e≥ 1. Then, these curves admit projective equations C1 : F(x0,x1,x2) = 0

and C2 : G(x0,x1,x2) = 0, where

F(x0,x1,x2) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ fe+1(x1,x2) · xn−e−1
0 + f (x1,x2) · xn−e

0

G(x0,x1,x2) = gn(x1,x2)+gn−1(x1,x2) · x0 + . . .+ge+1(x1,x2) · xn−e−1
0 + f (x1,x2) · xn−e

0
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and fi,gi ∈ C [x1,x2] are homogeneous polynomials of degree i (e+1≤ i≤ n).

Thinking of C1 and C2 as generators of the pencil, any curve D ∈Λ has equation D : H(x0,x1,x2) = 0, with

H = λF +µG = (λ fn(x1,x2)+µgn(x1,x2))+(λ fn−1(x1,x2)+µgn−1(x1,x2)) · x0 + . . .+

+(λ fe+1(x1,x2)+µge+1(x1,x2)) · xn−e−1
0 +(λ +µ) f (x1,x2) · xn−e

0

for some (λ : µ) ∈ P1. From this equation, it clearly follows that ep(D)≥ e, and

ep(D)> e⇐⇒ (λ +µ) fe(x1,x2) = 0⇐⇒ λ +µ = 0⇐⇒ (λ : µ) = (1 :−1)

That is, the point p has exact multiplicity e for all the curves of Λ , with the exception of F−G = 0.

3) =⇒ 2) : Let C1,C2 ∈Λ be curves with respective multiplicities e1,e2 at p, such that e1 6= e2. We will assume,

without loss of generality, that e1 > e2. Take equations C1 : F(x0,x1,x2) = 0 and C2 : G(x0,x1,x2) = 0, where

F(x0,x1,x2) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ fe1(x1,x2) · xn−e1
0

G(x0,x1,x2) = gn(x1,x2)+gn−1(x1,x2) · x0 + . . .+ge2(x1,x2) · xn−e2
0

and the fi,gi ∈ C [x1,x2] are homogeneous polynomials of degree i. Observe that the tangent cones of C1 and

C2 at p are given, respectively, by fe1(x1,x2) = 0 and ge2(x1,x2) = 0.

Spanning Λ by means of C1 and C2, each curve D ∈Λ has equation D : H(x0,x1,x2) = 0, with

H = λF +µG = (λ fn(x1,x2)+µgn(x1,x2))+ . . .+(λ fe1(x1,x2)+µge1(x1,x2)) · xn−e1
0 +

+µge1−1(x1,x2) · xn−e1+1
0 + . . .+µge2(x1,x2) · xn−e2

0

for some (λ : µ) ∈ P1. Therefore:

• If µ 6= 0, we have TCp(D) : µge2(x1,x2) = 0, which is the tangent cone TCp(C2) of C2 at p.

• If µ = 0, D =C1 has tangent cone fe1(x1,x2) = 0 at p.

In other words, all the curves of Λ , with the exception of C1, have the same tangent cone at p as the curve C2.

2) =⇒ 1) : Trivial. �

Remark. It follows from the proof of lemma 1.14 that the curve in the condition 2 with different tangent cone

has strictly higher multiplicity at p than the other curves of Λ . It will be referred to as the exceptional curve of

the pencil.

For the case of pencils of groups of points, the main notions are quite similar:

Definition. Let G1,G2 ⊂ P1 be two different groups of points of the same degree n, with respective equations

F(x0,x1) = 0 and G(x0,x1) = 0. The pencil spanned (or generated) by G1 and G2 is the set

Λ̃ =
{

H : λF +µG = 0 | (λ : µ) ∈ P1
}

of groups of points whose equation is a linear combination of F and G.

Again, we have an identification of Λ̃ with P1, which allows us to generate the pencil by means of any two

different groups of points of Λ .
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And as before, a point p ∈G1∩G2 is contained in all the groups of points of Λ̃ . Therefore, we define the locus

of fixed points of the pencil as the set

B
Λ̃
=
{

p ∈ P1 | p ∈ H, ∀H ∈ Λ̃

}
= G1∩G2

(notice that this set may be empty, in contradistinction to the case of pencils of curves).

Any non-fixed point p ∈ P1 \ B
Λ̃

will be contained in a unique group of the pencil Λ̃ , determined by the

condition λ ·F(p)+µ ·G(p) = 0.

By means of the two following results, we determine the points in P1 which are double (in the sense that have

multiplicity ≥ 2) for some group of the pencil Λ̃ :

Proposition 1.15. A group of points G⊂ P1 has undetermined point polar with respect to a point p ∈ P1 if, and

only if, p is a double point for G.

Proof. Take a reference of P1 such that p = (1 : 0) and G has equation G : F = 0, with F(x0,x1) =
n
∑

i=0
αixi

1xn−i
0 .

The point polar of G with respect to p is

Pn−1
p (G) : 0 = ∂

n−1F
∂xn−1

0
= α1(n−1)! · x1 +α0n! · x0

and therefore

Pn−1
p (G) is not defined ⇐⇒ α1(n−1)! = 0 = α0n! ⇐⇒ α1 = 0 = α0 ⇐⇒

⇐⇒ F = x2
1 ·F ′, for some F ′ ∈ C [x0,x1] of degree n−2 ⇐⇒ p is double for G. �

Lemma 1.16. Let Λ̃ be a pencil of groups of points, and p ∈ P1 not a fixed point for this pencil. Then, Λ̃ has

a group containing p with multiplicity (at least) 2 if, and only if, p has undetermined point polar for a group of

Λ̃ and constant point polar with regard to the other groups of Λ̃ .

Proof. Take a group G1 of Λ̃ , in such a way that p /∈ G1 (this is possible because p is not a fixed point), and

take G2 another element of Λ̃ different from G1.

We fix a reference of P1, in such a way that p = (1 : 0) and the homogeneous polyonomials

F(x0,x1) =
n
∑

i=0
αixi

1xn−i
0 , G(x0,x1) =

n
∑

i=0
βixi

1xn−i
0

determine equations G1 : F = 0, G2 : G = 0 for the generators G1, G2 of Λ̃ . Using the notation Gλ ,µ : λF +

µG = 0 for the elements of Λ̃ , observe that

Pn−1
p (Gλ ,µ) : 0 =

∂
n−1(λF +µG)

∂xn−1
0

= (λα1 +µβ1)(n−1)! · x1 +(λα0 +µβ0)n! · x0

First, suppose that p is double in a group Gλ0,µ0 , for some (λ0 : µ0) ∈ P1. We may assume that µ0 = 1, since

p /∈ G1 = G1,0. By proposition 1.15,

p is double in Gλ0,1 =⇒ Pn−1
p (Gλ0,1) is undetermined =⇒ λ0α1 +β1 = 0 = λ0α0 +β0

Hence, for any (λ : µ) ∈ P1, the point polar Pn−1
p (Gλ ,µ) is given by the polynomial

(λα1 +µβ1)(n−1)! · x1 +(λα0 +µβ0)n! · x0 = (λα1−µλ0α1)(n−1)! · x1 +(λα0−µλ0α0)n! · x0 =

= (λ −µλ0)α1(n−1)! · x1 +(λ −µλ0)α0n! · x0

13



If λ −µλ0 6= 0 (that is, if (λ : µ) 6= (λ0 : µ0)), we may cancel this factor and thus the point polar

Pn−1
p (Gλ ,µ) : α1(n−1)! · x1 +α0n! · x0 = 0

coincides for all the groups Gλ ,µ ∈ Λ̃ with (λ : µ) 6= (λ0 : µ0). Notice that these polars are defined, since

p /∈ G1,0.

Conversely, if Gλ0,µ0 is the group of Λ̃ having undetermined point polar with respect to p, it follows from

proposition 1.15 that p is contained (at least) twice in Gλ0,µ0 . This finishes the proof. �
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Chapter 2

Waring’s theorem and consequences

2.1 Characterization of the two highest homogeneous parts of a curve

Let l1, . . . , lr be parallel lines in the affine plane A2. Regard them as lines in P2, with all of them passing through

a certain improper point p ∈ l∞.

As we already know from basics on projective geometry, the pencil Λ of lines passing through p has a natural

structure of P1. Furthermore, considering l∞ as a distinguished element of Λ , the set Λ ′ of affine lines parallel

to the direction determined by p acquires a structure of affine line. Therefore, l1 + . . .+ lr is a group of points

in Λ ′.

Definition. The barycentric parallel of l1, . . . , lr, denoted by BP(l1, . . . , lr), is the barycenter of l1, . . . , lr as

points of Λ ′. That is,

BP(l1, . . . , lr) = Pr−1
l∞ (l1 + . . .+ lr) ∈Λ

If the point p is given by the homogeneous coordinates p = (0 : a : b) in P2, each element of Λ ′ admits an

equation of the form l : −bx+ay = c . The number c may be seen as the affine coordinate of l in Λ ′.

Hence, if li : −bx+ay = ci (1≤ i≤ r) are affine equations for l1, . . . , lr, their barycentric parallel line is

BP(l1, . . . , lr) : −bx+ay = c1 + . . .+ cr
r .

Remark. Any affine line l ⊂ A2, non-parallel to l1, . . . , lr, intersects BP(l1, . . . , lr) at the barycenter of the

intersection points of l1, . . . , lr with l.

Example. The affine lines l1 : x+ 2y = 2, l2 : x+ 2y = −2 and l3 : x+ 2y = 3 have barycentric parallel

BP(l1, l2, l3) : x+2y = 1.

Consider a plane algebraic curve C of degree n, with projective equation C : F(x0,x1,x2) = 0. Recall that, in

section 1.2, we took a decomposition

F(x0,x1,x2) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ f1(x1,x2) · xn−1
0 + f0 · xn

0
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with the fi ∈ C [x1,x2] homogeneous polynomials of degree i (0≤ i≤ n). The two highest homogeneous parts

of C were defined as the polynomials fn and fn−1.

Equivalently, the affine part of C has equation F(1,x,y) = 0, with

F(1,x,y) = fn(x,y)+ fn−1(x,y)+ . . .+ f1(x,y)+ f0

and we may regard the two highest homogeneous parts of C as the polynomials of degree n and n−1 appearing

in the decomposition of the affine equation into a sum of homogeneous polynomials.

In this section, we are going to explore the geometric information that underlies the two highest homogeneous

parts. Notice that, with the previous notations, the polynomial fn is completely determined by the improper

section: in fact, C · l∞ is the group of points in l∞ given by the equation

0 = F(0,x1,x2) = fn(x1,x2) ,

where we consider x1,x2 also as homogeneous coordinates in l∞.

The notion of barycentric parallel line, when applied to groups of parallel asymptotes, provides a geometric

criterion for the simultaneous coincidence of the two highest homogeneous parts fn and fn−1, in case that C has

no parabolic branches.

This criterion, not found in the literature, may be formally stated as:

Theorem 2.1. Let C1 : f (x,y) = 0 and C2 : g(x,y) = 0 be two affine algebraic curves of degree n, where

f (x,y) = fn(x,y)+ fn−1(x,y)+ . . .+ f1(x,y)+ f0 , g(x,y) = gn(x,y)+gn−1(x,y)+ . . .+g1(x,y)+g0

and fi,gi ∈ C [x,y] are homogeneous polynomials of degree i (0 ≤ i ≤ n). Assume that neither C1 nor C2 has

parabolic branches.

There exists k ∈ C∗ such that gn = k · fn and gn−1 = k · fn−1 if, and only if, for any direction δ the groups of

asymptotes of C1 and C2 that are parallel to δ have the same number of elements (counted with multiplicities)

and the same barycentric parallel.

We are going to prove this theorem in two different ways. In the first proof, probably the simplest one, the main

tool are pencils of curves and pencils of groups of points:

First proof of theorem 2.1.

We work with the projective equations C1 : F(x0,x1,x2) = 0 and C2 : G(x0,x1,x2) = 0, where

F(x0,x1,x2) = xn
0 · f ( x1

x0
, x2

x0
) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ f1(x1,x2) · xn−1

0 + f0 · xn
0

G(x0,x1,x2) = xn
0 ·g(

x1
x0
, x2

x0
) = gn(x1,x2)+gn−1(x1,x2) · x0 + . . .+g1(x1,x2) · xn−1

0 +g0 · xn
0

We will denote by Λ the pencil of curves spanned by C1 and C2.

Assume that gn = k · fn and gn−1 = k · fn−1, for some k ∈C∗. Then, the curve D : kF−G = 0 of Λ has l∞ as an

irreducible component of multiplicity (at least) 2.

Since gn and fn are proportional, they determine the same group of points in l∞, so that C1 and C2 have the same

improper section: C1 · l∞ =C2 · l∞. If p ∈ l∞ is any of the improper points of C1 and C2, then
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ep(C1) = ep(C1) · ep(l∞) = [C1 · l∞]p = [C2 · l∞]p = ep(C2) · ep(l∞) = ep(C2) ,

with the second and the fourth equalities following from the curves having no parabolic branches. This proves

that the number of asymptotes of C1 and C2 in the direction determined by p, counted with multiplicites, is

exactly the same.

Write e = ep(C1) = ep(C2) and, changing coordinates if necessary, assume that p = (0 : 0 : 1). Then,

F(x0,x1,x2) = f̃n(x0,x1)+ f̃n−1(x0,x1) · x2 + . . .+ f̃e(x0,x1) · xn−e
2

G(x0,x1,x2) = g̃n(x0,x1)+ g̃n−1(x0,x1) · x2 + . . .+ g̃e(x0,x1) · xn−e
2

with the f̃i, g̃i ∈ C [x0,x1] homogeneous of degree i.

If the tangent cones TCp(C1) : f̃e(x0,x1) = 0 and TCp(C2) : g̃e(x0,x1) = 0 are equal, the groups of asymptotes

of C1 and C2 passing through p are the same, and obviously will have the same barycentric parallel.

Otherwise, since every curve of the pencil Λ admits an equation

(λ · f̃n +µ · g̃n)+(λ · f̃n−1 +µ · g̃n−1) · x2 + . . .+(λ · f̃e +µ · g̃e) · xn−e
2 = 0

for some (λ : µ) ∈ P1, it follows that the pencil Λ̃ spanned by TCp(C1) and TCp(C2) is the set of tangent cones

at p for all the curves of Λ . By the usual identification of the set of lines through p and P1, we may regard Λ̃

as a pencil of groups of points in P1.

This pencil Λ̃ has a group where l∞ is counted (at least) twice: the group corresponding to the tangent cone at p

of the curve D. And obviously, l∞ is not fixed for Λ̃ , since l∞ is not in the groups TCp(C1),TCp(C2) ∈ Λ̃ (recall

that C1 and C2 have no parabolic branches).

According to lemma 1.16, all the elements of Λ̃ have constant point polar with respect to l∞. That is, all the

groups of lines forming a tangent cone TCp(C), for C ∈Λ , have the same barycentric parallel.

In particular, the barycentric parallels of the respective groups of lines TCp(C1) and TCp(C2) coincide. This

finishes the proof of the first implication.

Conversely: translate the hypothesis of the coincidence of number of asymptotes in the same direction, as

ep(C1) = ep(C2) for every p ∈ l∞. Since C1 and C2 have no parabolic branches, we deduce that

[C1 · l∞]p = ep(C1) · ep(l∞) = ep(C1) = ep(C2) = ep(C2) · ep(l∞) = [C2 · l∞]p

and thus C1 and C2 have the same improper section: this gives gn = k · fn, for some k ∈ C∗.

Observe that the curve D : kF−G = 0 of Λ has l∞ as an irreducible component, i.e., we can write

kF−G = x0 ·H

for some homogeneous polynomial H ∈ C [x0,x1,x2] of degree n− 1. In order to finish, it suffices to see that

the multiplicity of l∞ as an irreducible component of D is, at least, 2. Or equivalently, that D′ : H = 0 has l∞ as

a component.

Denote by p1, . . . , ps (s ≤ n) the distinct improper points of C1 and C2, and write ei = epi(C1) = epi(C2) for

i ∈ {1, . . . ,s}. For each point pi, we distinguish two cases:

• Case 1: Suppose that the tangent cones Tpi(C1), Tpi(C2) coincide. Note that l∞ is a component of Tpi(D)

(because it’s a component of D), but not of Tpi(C1) or Tpi(C2) (C1 and C2 have no parabolic branches).
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Hence, D must be the exceptional curve of Λ satisfying epi(D) > ei (see lemma 1.14 and the remark

following it). Then,

ei +1≤ epi(D) = epi(l∞)+ epi(D
′) = 1+ epi(D

′) =⇒ epi(D
′)≥ ei

and we deduce that

[D′ · l∞]pi
≥ epi(D

′) · epi(l∞) = epi(D
′)≥ ei

• Case 2: If the tangent cones Tpi(C1), Tpi(C2) do not coincide, the pencil Λ̃ that generate is the set of

tangent cones at pi for all the curves of Λ . As before, we see Λ̃ as a pencil of groups of points in P1.

By hypothesis, the groups of lines forming TCpi(C1) and TCpi(C2) have the same barycentric parallel.

Hence, all groups in Λ̃ have the same barycentric parallel, that is, the same point polar with respect to l∞.

Notice that l∞ is not fixed for Λ̃ , and the unique group of Λ̃ containing it must be TCpi(D), since l∞ is

a component of D. According to lemma 1.16, this group TCpi(D) contains l∞ twice: hence, D′ has a

branch tangent to l∞ at pi, which gives

[D′ · l∞]pi
> epi(D

′) · epi(l∞) = epi(D
′) = epi(D)− epi(l∞) = ei−1 =⇒ [D′ · l∞]pi

≥ ei

All together, we have [D′ · l∞]pi
≥ ei for every i ∈ {1, . . . ,s}, and then

s
∑

i=1
[D′ · l∞]pi

≥
s
∑

i=1
ei = n

But D′ is a curve of degree n− 1: by Bézout theorem, l∞ must be an irreducible component of D′, which

concludes the proof. �

In the second proof, we factorize the polynomial F by making use of Puiseux parametrizations of branches.

This provides a formula that also appears in [7]:

Second proof of theorem 2.1.

In this second proof, we will give an expression of fn−1(x,y)
fn(x,y)

as a sum of partial fractions. Take the projective

equation C1 : F(x0,x1,x2) = 0, where

F(x0,x1,x2) = xn
0 · f ( x1

x0
, x2

x0
) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ f1(x1,x2) · xn−1

0 + f0 · xn
0

Changing coordinates if necesssary, we will suppose that (0 : 1 : 0) /∈ C1. Consider coordinates (z, t) in the

affine chart of P2 with x2 6= 0: that is, (z, t) denotes the point with homogeneous coordinates (z : t : 1) in the

projective frame. The affine part of C1 for this chart has equation

0 = F(z, t,1) = fn(t,1)+ fn−1(t,1) · z+ . . .+ f1(t,1) · zn−1 + f0 · zn.

Assume that C1 has s≤ n distinct points of intersection with l∞ : z = 0, denoted by pi = (0,ai), 1≤ i≤ s. Let

νi be the number of Puiseux series of C1 at the point pi.

Since the t-axis l∞ is not tangent to C1, the Puiseux parametrizations of the νi branches of C1 at pi have the form

t = ai +bi, jz+ . . . ( j = 1, . . . ,νi),

where . . . denotes terms with degree in z strictly higher than 1. The tangents to these branches will be li, j : t =

ai +bi, jz.
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By the hypothesis (0 : 1 : 0) /∈C1, the polynomial F(z, t,1) decomposes as

F(z, t,1) =
s

∏
i=1

νi

∏
j=1

(t−ai−bi, jz− . . .)

according to proposition 1.3. Then, the intersection of C1 with l∞ : z = 0 is given by

fn(t,1) = F(0, t,1) =
s

∏
i=1

νi

∏
j=1

(t−ai) =
s

∏
i=1

(t−ai)
νi

In order to find an expression for fn−1, we must compute all the terms of F(z, t,1) having degree 1 in z. From

a simple observation at the factorization of F(z, t,1), we deduce that such terms are

−bi, jz · (t−ai)
νi−1 · ∏

k 6=i
(t−ak)

νk

for i ∈ {1, . . . ,s} and j ∈ {1, . . . ,νi}. Therefore,

fn−1(t,1) ·z=
s
∑

i=1

νi

∑
j=1

[
−bi, jz · (t−ai)

νi−1 · ∏
k 6=i

(t−ak)
νk

]
=

s
∑

i=1

[(
νi

∑
j=1
−bi, j

)
· (t−ai)

νi−1 · ∏
k 6=i

(t−ak)
νk

]
·z

which gives

fn−1(t,1) =
s
∑

i=1

[(
νi

∑
j=1
−bi, j

)
· (t−ai)

νi−1 · ∏
k 6=i

(t−ak)
νk

]
Using these expressions for fn−1(t,1) and fn(t,1), we deduce that

fn−1(t,1)
fn(t,1)

=
s
∑

i=1

νi
∑
j=1
−bi, j

t−ai
=⇒ fn−1(x,y)

fn(x,y)
=

s
∑

i=1

νi
∑
j=1
−bi, j

x−aiy (∗∗)

And if we come back to the original affine chart (x0 6= 0) with coordinates (x,y), the asymptotes through each

point (0 : ai : 1) ∈C1 are given by

li, j : x = aiy+bi, j ( j = 1, . . . ,νi)

whose barycentric parallel is BP(li,1, . . . , li,νi) : x = aiy+
1
νi
·

νi

∑
j=1

bi, j. Hence, in the expression (∗∗):

• The denominators and the improper points of C1 (that is, the directions of the asymptotes) determine each

other.

• The numerators determine and are determined by the barycentric parallels of the groups of parallel

asymptotes.

By joining this with the uniqueness of a decomposition into a sum of partial fractions with coprime denomin-

ators, the result follows. �

The main advantage of theorem 2.1 is giving a complete geometric determination of the two highest homogen-

eous parts of curves with no parabolic branches. This provides a generalization of the criterions found in the

literature, which are based on the strict coincidence of asymptotes, rather than considering barycentric parallels.

For instance, in [4], as well as all the mathematicians of the 19th century, Coolidge restricts the problem to the

curves intersecting transversely l∞ at each of their improper points:

19



Corollary 2.2. Let C1 : f (x,y) = 0 and C2 : g(x,y) = 0 be two affine algebraic curves of degree n, where

f (x,y) = fn(x,y)+ fn−1(x,y)+ . . .+ f1(x,y)+ f0 , g(x,y) = gn(x,y)+gn−1(x,y)+ . . .+g1(x,y)+g0

and fi,gi ∈C [x,y] are homogeneous polynomials of degree i (0≤ i≤ n). Assume that each of the curves meets

the line at infinity in exactly n distinct points. Then:

C1 and C2 have the same asymptotes ⇐⇒ gn = k · fn and gn−1 = k · fn−1, for some k ∈ C∗

Proof. By hypothesis, the improper section of C1 and C2 consists on n distinct (and thus non-singular) points.

Due to this, C1 and C2 have a single asymptote associated to each asymptotic direction, and the coincidence of

asymptotes becomes an equivalent condition to the coincidence of barycentric parallels of groups of asymptotes

with the same direction. Using theorem 2.1 concludes the proof. �

Remark. Coolidge proves this result giving the formula
fn−1(x,y)
fn(x,y)

=
n
∑

i=1

ci
aix+biy

if aix+biy+ ci = 0 (i = 1, . . . ,n) are the affine equations for the n different asymptotes of C1, which is nothing

but the formula (∗∗) applied to this particular case.

In [7], Kunz and Waldi prove the formula (∗∗) for curves with no parabolic brances, in a different way. The cri-

terion presented there is again an immediate consequence of theorem 2.1, since considers the strict coincidence

of asymptotes as a sufficient condition for the coincidence of two highest homogeneous parts:

Corollary 2.3. Let C1 : f (x,y) = 0 and C2 : g(x,y) = 0 be two affine algebraic curves of degree n, where

f (x,y) = fn(x,y)+ fn−1(x,y)+ . . .+ f1(x,y)+ f0 , g(x,y) = gn(x,y)+gn−1(x,y)+ . . .+g1(x,y)+g0

and fi,gi ∈ C [x,y] are homogeneous polynomials of degree i (0 ≤ i ≤ n). Assume that neither C1 nor C2 has

parabolic branches.

Then, if C1 and C2 have the same asymptotes (counted with multiplicity), there is k ∈ C∗ such that gn = k · fn

and gn−1 = k · fn−1.

Clearly, the converse of corollary 2.3 does not hold: two curves may have the same number of asymptotes in

any direction determining identical barycentric parallels, but different asymptotes.

For example, consider the cubics

C1 : xy2−2x2y+ x3−4x2 +4xy− x−1 = 0, C2 : 2xy2−4x2y+2x3−8x2 +8xy+2x+3y−4 = 0

which satisfy 2 f3 = g3 and 2 f2 = g2, with the previous notations. However, at the improper point p = (0 : 1 : 1),

the tangent cones

TCp(C1) : 0 =−x2
0 + x2

1 + x2
2−4x0x1 +4x0x2−2x1x2 = ((2−

√
5)x0− x1 + x2)((2+

√
5)x0− x1 + x2),

TCp(C2) : 0 = 5
2 x2

0 + x2
1 + x2

2−4x0x1 +4x0x2−2x1x2 = (−4+
√

6
2 x0 + x1− x2)(−4−

√
6

2 x0− x1 + x2)

give different asymptotes for each of the curves.

The following picture, made with Geogebra, is a representation of C1 (red) and C2 (blue) in the real affine plane,

together with their asymptotes (dashed lines) and the coincident barycentric parallels for the groups of parallel

asymptotes (black):
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Figure 1

To finish this section, we must point out that these results are far from being true for curves C1 and C2 with

parabolic branches. For example, for the affine curves

C1 : y3 +2xy+2y2 + x+ y = 0, C2 : y3 +2xy+ x = 0

the parts f2 and g2 are not proportional, in spite of C1 and C2 having the same asymptotes. In fact, both curves

have a unique improper point, p = (0 : 1 : 0), where the tangent cones coincide:

TCp(C1) = TCp(C2) : x0(2x2 + x0) = 0

2.2 An extension of Waring’s theorem

As we said in the introduction, the linking between asymptotes and barycenters of intersection groups comes

through the two highest homogeneous parts of curves.

The first part of this linking has been widely detailed in the previous section. For the second one, we find

explicitly the coordinates of the barycenter, by means of elimination arguments:

Theorem 2.4. Let C and D be two plane algebraic curves with disjoint improper sections. Then, the barycenter

of C ·D coincides with the barycenter of the intersection group when any of the curves is replaced by another

with the same two highest homogeneous parts.

Proof. First of all, note that C and D do not share any irreducible component (the intersection of a common

component with l∞ would give common improper points). So, according to Bézout theorem, the intersection

C∩D must be a finite set of points, and the intersection group C ·D makes sense.

We take a projective reference such that neither (0 : 0 : 1) nor (0 : 1 : 0) is an improper point of C or D. In this

reference, consider equations C : F(x0,x1,x2) = 0 and D : G(x0,x1,x2) = 0, in such a way that
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F(x0,x1,x2) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ f1(x1,x2) · xn−1
0 + f0 · xn

0

G(x0,x1,x2) = gm(x1,x2)+gm−1(x1,x2) · x0 + . . .+g1(x1,x2) · xm−1
0 +g0 · xm

0

with fi,gi ∈ C [x1,x2] homogeneous polynomials of degree i. Denote also by f (x,y) = F(1,x,y) and g(x,y) =

G(1,x,y) the equations of their affine parts.

We are going to study the abcissae of the points in the group C ·D by eliminating the variable x2. We will

use that the roots of the polynomial A(x1) = Resx2(F,G) | x0=1 = Resy( f ,g) | x=x1 in x1 are exactly the abcissae

of the points in C ∩D. Furthermore, the multiplicity of each root α of A is the sum of all the intersection

multiplicities [C ·D]p, where p is a point of abcissa α (see [2], proposition 3.3.4).

Rewrite the polynomials F and G as

F(x0,x1,x2) = f̃n(x0,x1)+ f̃n−1(x0,x1) · x2 + . . .+ f̃1(x0,x1) · xn−1
2 + f̃0 · xn

2

G(x0,x1,x2) = g̃m(x0,x1)+ g̃m−1(x0,x1) · x2 + . . .+ g̃1(x0,x1) · xm−1
2 + g̃0 · xm

2

with the f̃i, g̃i ∈ C [x0,x1] homogeneous of degree i.

Since the resultant Resx2(F,G) is isobaric of weight nm as a polynomial in f̃0, . . . , f̃n, g̃0, . . . , g̃m (see [2], pro-

position 3.1.5), it follows that Resx2(F,G) is homogeneous of degree nm (as a polynomial in x0,x1):

Resx2(F,G) = a0xnm
1 +a1xnm−1

1 x0 + . . .+anm−1x1xnm−1
0 +anmxnm

0 (with the ai ∈ C)

Now, observe that:

1. The coefficient a0 only depends on the polynomials fn and gm: in fact, take the expressions

f̃i(x0,x1) =
i

∑
j=0

αi, jx
j
0xi− j

1 (for 0≤ i≤ n) , g̃i(x0,x1) =
i

∑
j=0

βi, jx
j
0xi− j

1 (for 0≤ i≤ m)

with αi, j,βi, j ∈ C, and write zi, j = αi, jx
j
0xi− j

1 and z′i, j = βi, jx
j
0xi− j

1 . The terms of F and G will have the

form zi, j · xn−i
2 and z′i, j · xm−i

2 , respectively.

Since Resx2(F,G) is a polynomial in f̃0, . . . , f̃n, g̃0, . . . , g̃m, in particular it must be a polynomial Q in the

variables zi, j and z′i, j:

Resx2(F,G) = Q(zi, j,z′i, j)

(notice that Q has no independent term, because Resx2(F,G) is homogeneous in x0,x1). Now,

a0xnm
1 = Resx2(F,G) | x0=0 = Q(αi, jx

j
0xi− j

1 ,βi, jx
j
0xi− j

1 ) | x0=0,

with this evaluation at x0 = 0 depending only on the variables zi,0 = αi,0xi
1 and z′i,0 = βi,0xi

1 (the remaining

variables are identically 0 for this evaluation).

Therefore, a0 is univocally determined by the numbers αi,0,βi,0 ∈ C, which are precisely the coefficients

of the polynomials fn and gm.

2. The number a1 only depends on the polynomials fn, fn−1, gm and gm−1:

With the previous notations, and using the chain rule, we deduce that

a1xnm−1
1 =

∂ (Resx2(F,G))
∂x0

| x0=0 =

[
n
∑

i=0

i
∑
j=1

∂Q
∂ zi, j

· ∂ zi, j
∂x0

+
m
∑

i=0

i
∑
j=1

∂Q
∂ z′i, j

·
∂ z′i, j
∂x0

]
| x0=0 =

=

[
n
∑

i=0

i
∑
j=1

∂Q
∂ zi, j

· jαi, jx
j−1
0 xi− j

1 +
m
∑

i=0

i
∑
j=1

∂Q
∂ z′i, j

· jβi, jx
j−1
0 xi− j

1

]
| x0=0
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The evaluation at x0 = 0 cancels all the summands, with the exception of those with j = 1.

And by the same argument as in 1., ∂Q
∂ zi,1

| x0=0 and ∂Q
∂ z′i,1

| x0=0 only depend on the variables of the form

zk,0 = αk,0xk
1 and z′k,0 = βk,0xk

1.

Due to this, a1 only depends on the numbers αi,0,βi,0,αi,1,βi,1 ∈ C, that is, the coefficients of the poly-

nomials fn, gm, fn−1 and gm−1.

3. The polynomial A(x1) = Resx2(F,G) | x0=1 has exact degree nm, that is, a0 6= 0. Indeed, as you can see in

[2] (proof of theorem 3.3.5), a0 is the homogeneous resultant of the equations for the groups C · l∞ and

D · l∞, which share no point by hypothesis.

If Σ denotes the sum of all the roots of A (counted according to multiplicities), we deduce from 3. and Vieta’s

formulas that the abcissa of the barycenter of C ·D is

Σ
nm = −a1

a0 ·nm .

By 1. and 2., this abcissa only depends on the parts fn, fn−1 and gm,gm−1 in the polynomials F and G, and thus

remains unaltered when any of the curves is replaced by another one with identical two highest homogeneous

parts.

A similar reasoning with Resx1(F,G) proves that the ordinate of the barycenter remains unaltered too. �

Remark. One could ask whether a similar argument still holds without the assumption of the curves having

disjoint improper sections. But notice that if C and D have a common improper point, the equations for C · l∞
and D · l∞ have a common root and thus the leading coefficient a0 of A vanishes.

Because of this reason, the sum of the roots of A is expressed as Σ = −ak
ak−1

, for some k≥ 2. And ak may depend

on the homogeneous parts fn−k and gm−k of F and G.

From theorem 2.4 and our characterization of the two highest homogeneous parts of curves provided by theorem

2.1, we obtain the following result:

Theorem 2.5. Let C1 and C2 be two plane algebraic curves with no parabolic branches and such that, for any

direction δ , the groups of asymptotes of C1 and C2 that are parallel to δ have the same number of elements

(counted with multiplicities) and the same barycentric parallel.

If D is an algebraic curve sharing no improper points with C1, then the barycenter of C1 ·D coincides with the

barycenter of C2 ·D.

Proof. The curves C1 and C2 having (according to theorem 2.1) the same two highest homogeneous parts,

theorem 2.4 establishes that the intersection groups C1 ·D and C2 ·D have identical barycenters. �

Observe that theorem 2.5 is an extension of Waring’s theorem, which only considers the case of replacing a

curve by the union of its asymptotes:

Corollary 2.6 (Waring’s theorem). Let C and D be two plane algebraic curves, sharing no improper points

and such that C has no parabolic branches. Then, the barycenter of C ·D coincides with the barycenter of the

intersection group when C is replaced by the union of its asymptotes.
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Example. Consider the conics C : 3x2−32xy+9y2+3x+9y−18 = 0 and D : x2+7xy+3y2+x+3y−6 = 0.

One can easily see that their improper sections are disjoint, and consist of two different points, so neither C nor

D has parabolic branches.

The curves C and D intersect transversely at the four points (−3,0), (2,0), (0,1) and (0,−2), whose barycenter

is (−1
4 , −1

4 ).

On the other hand, by applying Waring’s theorem twice, we should obtain the same barycenter when replacing

each of the conics by the union of its asymptotes. A computation of the asymptotes of C gives the lines

l1 : 6
√

229x− (458+32
√

229)y =−75−3
√

229 ,

l2 : −6
√

229x− (458−32
√

229)y =−75+3
√

229

while the asymptotes of D are

l3 : 2
√

37x+(7
√

37−37)y = 1−
√

37 ,

l4 : −2
√

37x− (7
√

37+37)y = 1+
√

37 .

The points of (l1 + l2)∩ (l3 + l4) come from the intersection of four pairs of lines: (−0.456239,0.0838138),

(−0.869784,0.0439639), (0.0384386,−0.994811) and (0.287585,−0.132966). Direct computation shows

that the barycenter of these four points is also (−1
4 , −1

4 ).

The following figure, made with Geogebra, illustrates the situation in the real affine plane:

Figure 2
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Corollary 2.7. Let C be a plane algebraic curve, passing through no cyclic point of l∞. Then, the barycenter of

the intersections of C with a circle depends on the position of its centre, but not on its radius.

Proof. Consider the family of all the circles centered at a fixed point of the affine plane, which we assume

having homogeneous coordinates (1 : a : b).

That is, we are working with the family of curves Cr : (x1−ax0)
2 +(x2−bx0)

2 = r2x2
0 (where r is the radius of

the circle Cr). Observe that:

• For any r, the improper section of Cr consists of the cyclic points I = (0 : 1 : i), J = (0 : 1 :−i).

• The asymptotes of Cr are the lines l1 : x1 + ix2 = (a+bi)x0 and l2 : x1− ix2 = (a−bi)x0.

Since Cr has obviously no parabolic branches, by Waring’s theorem we may replace Cr by the union of its

asymptotes: the barycenter of the points of C∩Cr is the barycenter of the points of C∩ (l1 + l2), which will be

the same for every radius r. �

Remark. This result is a nice consequence of Waring’s theorem, often mentioned in the classic literature. For

instance, it may be found in [4], but restricted to curves C intersecting transversely the line at infinity. It is also

quoted in more modern books as [1] (section V.15).

2.3 Chasles theorem

In this section, we are going to prove Chasles theorem on the barycenter of the contact points of the parallel

tangent lines to a plane curve. A modern version of this theorem, in terms of polar curves, is:

Theorem 2.8. Let C be a plane algebraic curve of degree n, meeting the line at infinity in n distinct points.

Then, the barycenter of C ·Pq(C) is the same, for any q ∈ l∞ \C.

Proof. Take a projective reference in such a way that q = (0 : a0 : a1) ∈ l∞ \C and C : F(x0,x1,x2) = 0, where

F(x0,x1,x2) = fn(x1,x2)+ fn−1(x1,x2) · x0 + . . .+ f1(x1,x2) · xn−1
0 + f0 · xn

0

and fi ∈ C [x1,x2] is an homogeneous polynomial of degree i, for each i ∈ {0, . . . ,n}.

By the hypothesis of C intersecting l∞ in exactly n distinct points, it is clear that C has not singularities in l∞
and l∞ is not tangent to C.

And recall that, by proposition 1.6, C∩Pq(C) consists of the singularities of C and the contact points of tangent

lines to C passing through q: therefore, C and Pq(C) have no common improper points.

Now, we are going to apply the results of the previous section, in order to compute the barycenter of C ·Pq(C):

1. By corollary 2.6, we may replace C by the union of its asymptotes (in the sequel, denoted by A(C)).

2. By corollary 2.2, fn and fn−1 are the two highest homogeneous parts of the equation of A(C). And

observe that the two highest homogeneous parts of the equation of Pq(C) only depend on fn and fn−1:

Pq(C) :
n
∑
j=1

(a0
∂ f j
∂x1

+a1
∂ f j
∂x2

) · xn− j
0 = 0
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It follows that Pq(C) and Pq(A(C)) share their two highest homogeneous parts: according to theorem

2.4, the curve Pq(C) may be replaced by Pq(A(C)).

So we are studying the barycenter of the group A(C) ·Pq(A(C)), whose points are exactly:

• The points of contact of tangents to A(C) through q. But notice that A(C) has a finite number of tangent

lines (its own irreducible components, the asymptotes of C), none of which is passing through q, since

q ∈ l∞ \C.

• The singularities of A(C), that is, the points where two (or more) asymptotes intersect.

These points are ordinary singularities of A(C) (since C has n distinct asymptotes), and hence by lemma

1.8 their multiplicity in the group A(C) ·Pq(A(C)) is independent of q.

Consequently, the barycenter of C ·Pq(C) is exactly the barycenter of the intersections of asymptotes of C,

which does not depend on the choice of q. �

From theorem 2.8, the classic version of Chasles theorem (in terms of the contact points of tangent lines with

a given direction) can be deduced. We prove it for curves whose only singular points are either ordinary

singularities or ordinary cusps:

Corollary 2.9. Let C be a plane algebraic curve of degree n, meeting l∞ in n distinct points, whose only

singular points are either ordinary singularities or ordinary cusps. Then, the locus of the barycenters of the

contact points of a complete system of parallel tangents to C (with any direction being non-asymptotic and

non-parallel to the tangents of C at its singular points) is a fixed point.

Proof. Fix a direction, non-asymptotic and non-parallel to the tangents of C at its singular points, and assume

it’s determined by a point q ∈ l∞ \C. According to proposition 1.6, C∩Pq(C) consists of:

1. The ordinary singularities p of C, where C and Pq(C) intersect with multiplicity ep(C) · (ep(C)−1), by

lemma 1.8.

2. The cusps of C, where C and Pq(C) intersect with multiplicity 3 (see lemma 1.9).

3. The points of contact of tangent lines to C passing through q. That is, the points of contact of tangent

lines which are parallel to that direction.

By Chasles theorem, the barycenter of these points (counted with the proper multiplicities) does not depend on

q. But notice that the singularities of C (and the times they are counted) are also independent of q: therefore,

the barycenter of the points of type 3 does not depend on q, as desired. �

Remarks.

1. If p is a contact point of a tangent l through q, lemma 1.7 says that the curves C and Pq(C) intersect

at p with multiplicity [C · l]p− 1. So, in order to compute barycenters, p must be counted with weight

[C · l]p−1.
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2. Corollary 2.9 is also true with no hypothesis on the singularities of C. A similar proof holds, if one uses

that for every point q (contained in no tangent of C at the singular points), the intersection multiplicity of

C and Pq(C) at each singularity of C does not depend on q.

This result, which may be found (in a local form) as corollary 6.3.2 in [3], requires an advanced study of

singularities of curves.

Examples.

1. Let’s check Chasles theorem for the smooth cubic C : −8x3 + 10y3 + 8x− 10y = 0, whose projective

closure intersects l∞ in three distinct points.

The polar of C with respect to an improper point q = (0 : a : b) ∈ l∞ \C has affine equation

Pq(C) : a(−24x2 +8)+b(30y2−10) = 0

Notice that the equations of Pq(C) and C have, respectively, only even and odd exponents. It follows

that if a point (x,y) belongs to C ·Pq(C), its opposite point (−x,−y) belongs with the same multiplicity

too.

Therefore, the barycenter of C ·Pq(C) (which consists of the contact points of tangents with the affine

direction given by q, by the smoothness of C) is the point (0,0).

In the following figure, you may find a representation of C in the real affine plane, together with the six

tangent lines parallel to x−2y = 0 (in blue) and the six tangent lines parallel to x+4y = 0 (in green).

Figure 3

According to our computations, the barycenter of the six green contact points and the barycenter of the

six blue contact points is the same, (0,0).
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2. Corollary 2.9 is a generalization of a well-known property for non-degenerate conics. In fact: if we have

a smooth conic (not a parabola), and we consider the two tangent lines in any non-asymptotic direction,

the midpoint of the contact points coincides with the pole of l∞ (which is called the center of the conic).
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