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1 Introduction

The main focus of this paper will be studying the so called Escape Trichotomy for the singular
perturbation family of functions. However, to be able to understand it, there will first be
necessary to know some concepts and results about complex dynamical systems and more
particularly, the asymptotic behaviour of rational maps on the complex sphere.

First, we will introduce the fundamental dynamical systems concepts, such as orbits, fixed
and periodic points, attracting and repelling cycles and so on.

Then, we will introduce a simpler way of studying a dynamical systems, conjugacies, by
establishing if its behaviour under iterations may be similar to another, better known one.

We will continue by introducing the concept of critical points and why they are a major
point of interest in dynamics.

Some famous results about normal families will be considered, to allow us to understand
which points in the dynamical plane may behave chaotically (these points will constitute the
Julia set). Of course, its complementary, called the Fatou set, will also be a crucial notion in
the understanding of the dynamics. From now on, we only focus on rational maps and start
by highlighting some helpful properties of the Julia and the Fatou set.

Then, we will see the different types of fixed points and their connection to the Julia and
Fatou sets. Then, by considering the maximal connected components of the Fatou set (Fatou
components), we will see how the dynamics on rational maps are actually quite restricted.

We can finally speak about the main result. The family of maps that we are going to study
is the family of singularly perturbed maps, Fλ(z) = zn + λ

zd
. It is a rational family obtained

by adding a singular perturbation to the universally studied family of Pc(z) = zn + c, n ≥ 2.
This family, specifically for the case n = 2, has been a major topic of study in complex
dynamics in the 20th century. The Dichotomy Theorem, proved by Julia and Fatou, says
that the Julia set (that is, the set of points where the function behaves ”chaotically”) of a
quadratic polynomial is either connected or a Cantor set, depending on whether the orbit of
0 (0, Pc(0), Pc(Pc(0)), ...) is bounded or not. The set of the parameters c for which the Julia
set of Pc is connected is called the Mandelbrot set.

Figure 1: The Mandelbrot set.
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Thanks to the work of Douady and Hubbard it is now known, for example, that the
Mandelbrot set is connected (even though Mandelbrot himself has initially conjectured that
it is not, because of the very small filaments which could not be seen in any picture). However,
there even for this basic set, properties such as local connectivity have yet to be proven or
disproven.

The family that we are going to study adds a perturbation which coincides with the
critical point at 0. It was first proven by McMullen that, for small values of the parameter λ
the Julia set is a Cantor set of Jordan curves. So, the topology of the Julia sets will be much
more complicated and obviously the same can be said for the parameter plane.

Figure 2: The parameter plane for z → z3 + 1
z3

.

The connection to the quadratic polynomials can instantly be recognized by seeing the 2
so called principal Mandelbrot sets. There are actually infinitely many ”copies” of the Man-
delbrot set in the parameter plane and this, of course, makes studying certain characteristics
not very straightforward.

For n = d = 3, we can still remark some symmetries, but what if n and d do not coincide?
Then, the parameter plane is vastly modified. In the next figures, we can see the parameters
planes for n = 3, d = 4 and n = 4, d = 3 and observe the change of topology around the
origin or the apparition of a new principal Mandelbrot set.
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Figure 3: The parameter plane for
z → z3 + 1

z4
.

Figure 4: The parameter plane for
z → z4 + 1

z3
.

However, what we are going to show next is that assuming that the orbits of the crit-
ical points go towards ∞ (Fλ would be a hyperbolic map), there exist only three possible
topologies for the Julia set, that is a Cantor set, a Cantor set of Jordan curves or a Sierpinski
curve. This result is known as the Escape Trichotomy and it was proven by Devaney, Look
and Uminsky.

We will first prove some particular symmetries of the singular perturbation maps and
then prove the main result, which establishes the topology of the Julia set depending on the
Fatou component in which the critical values are located. We will use different techniques for
every one of them, like quasiconformal surgery, studying the properties of curves with help
of external rays, Bottcher coordinates and other standard dynamical arguments.

Doing all of these will allow studying a specific transcendental family, which takes values
very close to the singular perturbation ones.

4



2 Preliminaries

2.1 Basics in iteration theory

Let f : X → X be a continous map, where X is a metric space. Discrete dynamical systems
are represented in this context by the iteration of f on a given x0 ∈ X; the sequences
xn+1 = f(xn), n ∈ N, where x0 ∈ X.

The goal is having a good understanding of the asymptotic behaviour for those sequences
for any initial seed.

Definition 2.1. Let x ∈ X. Then the orbit Of (x) of x through f is given by:

Of (x) =
⋃
t∈N

fn(x).

Definition 2.2. A point x ∈ X whose orbit is constant, that is, f(x) = x, is called a fixed
point.

Example. Let fc : C → C, fc(z) = z2 + c, for some c ∈ C. The fixed points of fc are

represented by the solutions of the quadratic equation z2 + c = z, that is zc = 1±
√
1−4c
2 for

c < 1
4 , zc = 1

2 , for c = 1
4 and zc = 1±i

√
4c−1
2 for c > 1

4 .

Apart from the fixed points, all the points with finite orbits, the so called periodic points,
will play an important role in this work.

Definition 2.3. A periodic point of period p (p ∈ N, p ≥ 2) is a point x ∈ X such that
∀ i = 1, ..., p− 1, f i(x) 6= x and fp(x) = x.

Definition 2.4. A point x ∈ X is called pre-periodic if there exists no p ∈ N∗ for which
fp(x) = x, but there exist m,n ∈ N∗, m 6= n such that fm(x) = fn(x).

Example. Consider f : S1 → S1, f(θ) = 2θ. Then 0 is the unique fixed point, but the points
of period p ≥ 2 are the points θk, where θk = k

2p−1 and gcd(k, 2p − 1) = 1.

The set of preperiodic points is made of all of the the rational points from [0, 1), which
are not fixed or periodic.

For instance the periodic points of period 3 are {17 ,
2
7 , ...,

6
7}, while 1

2 is a pre-periodic
point since its orbit is Of (12) = {12 , 0}
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Figure 5: Here we may observe the orbit of the pre-periodic point 1
2 and the (17 ,

2
7 ,

4
7) cycle

for the map f : S1 → S1, f(θ) = 2θ.

Definition 2.5. Let f : X → X be a continous map and assume that x0 ∈ X is a fixed point
of f ; f(x0) = x0. We say that x0 is an attracting fixed point of f if and only if:

∃δ > 0 such that if d(x, x0) < δ, then fn(x)→ x0, when n→∞.

If f is invertible and f−1 is continous at x0 ∈ X, we say that x0 is a repelling point for f if
it is attracting for f−1.

An attracting fixed point x0 by definition always has a small neighborhood where all
points tend to x0 under iteration. But of course, in general, there would be other points in
the phase space with the same property.

Definition 2.6. The basin of attraction of a fixed point x0 ∈ X is the set of points whose
orbits under iteration go to x. That is,

A(x0) = {x ∈ X| fn(x)→ x0 when n→∞}.

It is an open set (follows easily from the continuity of f and the fact that for a small enough
neighborhood of x0 all points tend to x0 under iteration). The connected component of A(x0)
containing x0, A∗(x0) is called the immediate basin of attraction. If A(x0) = X , then x0 is
called a global attracting point.
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•
(0)

Figure 6: For the map z → z2, 0 is an attracting fixed point and its basin of attraction is
exactly the disk D(0, 1) .

Definition 2.7. Let f : X → X be a continous map. Assume x0 is a periodic point of period
p ≥ 2. We say that x0 is an attracting periodic point (of period p ≥ 2) if it is an attracting
fixed point of fp.

Remark. If x0 is an attracting periodic point of period p ≥ 2 of fand Of (x0 = {x0, ..., xp−1},
then every point xj in the orbit of x0 is also an attracting periodic point of period p ≥ 2 of f .

Indeed , by the (ε, δ) definition of continuity, we have that for any ε , there exists a δ
such that f maps B(x0, δ) into B(f(x0), ε). From ε definition of the limit, if x tends to x0
by fp, there exists some rank nε1 such that for n ≥ nε1, fnp(x) ∈ B(x0, ε1).

Now we just take ε1 = δ and we obtain that for any ε > 0, there exists nε1 such that
∀nε1 , fnp+1(x) ∈ B(x1, ε).

Analogously, it is shown that all the other points of the cycle are attracting points of period
p ≥ 2.

Remark. From the previous remark, if x0 is an attracting periodic point of period p ≥ 2,
then we will say that Of (x) is an attracting cycle of period p ≥ 2.

Definition 2.8. The basin of attraction of the periodic cycle of the periodic point x0 of period
p is:

A(Of (x0)) = {x ∈ X| fnp+l(x)→ xl, l = 0, p− 1}
x0 is called an attracting periodic point of period p. Similarly as before , the immediate
basin of attraction A∗(Of (x0)) of the cycle is represented by the reunion of the connected
components of the basin which contain the points.

Sometimes, the direct study of the dynamical behaviour of f may be too difficult to be
done. But, if there exists a homeomorphism h : X → Y and g : Y → Y a map (where Y is a
metric space, not necessarily different from X), we may do so by studying the behaviour of
g. Given two maps f and g we want to say that they represent the same dynamical system
if the orbit induced by the iterates of f and g can be related through a homeomorphism of
the whole space.
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Definition 2.9. Let f : X → X, g : Y → Y , where f and g are continous maps and X and
Y are metrical spaces. Then (f,X) and (g, Y ) are topologically conjugated dynamical systems
if there exists h : X → Y a homeomorphism such that

h ◦ f(x) = g ◦ h(x), ∀x ∈ X.

If h is of class Cr, we say that f and g are Cr-conjugate. If h is linear, we say that f
and g are linearly conjugated.

X X

Y Y

h

g f

h

Figure 7: Of course, for a topological conjugacy, the diagram commutes.

Example. We are going to start with a conjugacy on the real line between some maps be-
longing to the logistic family of maps and some of the quadratic maps.

Let us consider ga(x) = ax(1 − x), where a ∈ [0, 4] and fc(z) = z2 + c, for c ∈ [−2, 2].
Then, there exists h affine (which, if not constant, is a homeomorphism) and ∀x ∈ R we have
that h ◦ ga(x) = fc ◦ h(x) that is, ga and fc are topologically conjugated. We will prove that

if c = a
2 −

a2

4 then h(x) = a
2 − ax is the corresponding conjugacy.

First, since a ∈ [0, 4], we have that c ∈ [−2, 2].

Since h ◦ ga(x) = h(ax(1− x)) = a
2 − a ∗ ax(1− x) = a

2 − a
2x+ a2x2 and

fc ◦h(x) = fc(
a
2 − ax) = a2

4 − a
2x+ a2x2 + a

2 −
a2

4 = a
2 − a

2x+ a2x2 hold ∀x ∈ R, we have
that h is a conjugacy between ga and fc.

Example. We claim without proof that f(x) = 2x and g(x) = 3x (f, g : R → R) are
topologically conjugated, but they are not Cr-conjugated for any r ≥ 1, because otherwise:

h′(f(x)) · f ′(x) = g′(h(x) · h′(x)

and by evaluating at 0 we get:
h′(0)f ′(0) = g′(0)h′(0)

from where we get h′(0) = 0, so h would not be a homeomorphism, contradiction.

Now we will give without proof a lemma which will help us find out if some specific sets
are invariant under iteration.

Lemma 2.10. (The Topological Lemma, see Theorem 3.2.3 from [1])

Let f : Ĉ→ Ĉ be a continous and open map and let Ω be a completely invariant subset of
Ĉ it in respect to the iteration of f . Then ΩC , ∂Ω, and Int(Ω) are also completely invariant
in respect to the iteration of f .
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2.2 Normal families and Montel’s theorem

Let Ĉ = C∪{∞} (which is in fact the Riemann sphere S2). Let f : Ĉ→ Ĉ be a holomorphic
map. It can be proven that f is in fact a rational map i.e

f(z) = P (z)
Q(z) , where P,Q are polynomials in the z variable.

Remark. By the Uniformization Theorem, every Riemann surface is isomorphic to either
D,C, or Ĉ.

Definition 2.11. A point z0 ∈ Ĉ is called regular if there exists a neighborhood U of z0 such
that f : U → V is a homeomorphism. Otherwise, we say that z0 is a critical point(observe
that when f admits derivative at a point z0, z0 is a critical point if f ′(z0) = 0).

Example. For fc : C→ C, fc(z) = z2+c, for c ∈ C, 0 is a critical point (since fc(z) = fc(−z)
and if z lies in a ball centered in 0, then −z lies in the same ball). The point that the critical
point 0 maps into, c = fc(0) is then a critical value of fc.

Remark. In other words, the map f is locally a homeomorphism except at the critical values
(that is, the image of the critical points). Such points are singularities of the inverse map
and they play a crucial role in the global dynamics. To illustrate this fact we state without
proof the Dichotomy Theorem.

Theorem 2.12. Let Qc = z2 + c be the quadratic family of maps (observe that z = 0 is the
unique critical point) and K(Qc) = {z ∈ C| |Qnc (z)| < 4, ∀n ≥ 0}, that is, the set of points
whose orbits under any number of iterations remain bounded. Then one of the following
holds:

• If 0 ∈ K(Qc), then K(Qc) is connected.

• If 0 /∈ K(Qc), then K(Qc) is totally disconnected (it is actually a Cantor set).

A main tool that has been extensively used to study the iteration of rational maps is the
concept of normal family. The idea behind this is to divide the phase space Ĉ depending on
the normality of the family of iterations {fn}n.

Definition 2.13. Let Ω be a domain in Ĉ and Φ ⊂ H(Ω) a collection of holomorphic functions
in Ω. We say that Φ is normal if for any sequence {fn}∞n=1 ⊂ Φ there exists a subsequence
{fnk}∞k=1 such that fnk → f uniformly over compact sets of Ω (observe that f needs to be
holomorphic in Ω).

Now, we are able to start studying some more interesting properties of dynamics like
whether a map behaves chaotically or not on some specific domain , but first it is necessary
to introduce some results about normal families of functions.

Theorem 2.14. (Ascoli) Let K be a compact set and {fn}n ⊂ C(K) be a sequence of
uniformly bounded functions, that is:

∀ε > 0,∃δ > 0, such that ∀n ∈ N, |fn(x)| ≤M < +∞
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which are also equicontinous:

∀ε > 0,∃δ > 0, such that ∀n ∈ N, |x− y| < δ implies that |fn(x)− fn(y)| < ε.

Then there exists {fnk}k such that fnk → f uniformly on K.

Theorem 2.15. (Montel) Let Ω ⊂ C be a domain, and Φ ⊂ H(Ω) with the following property:

∀K ⊂ Ω compact, ∃MK > 0 such that ∀f ∈ Φ sup
z∈K
|f(z)| ≤MK .

Then Φ is a normal family.

Proof. Let {fn}n ⊂ Φ be a sequence of holomorphic functions from Φ. The objective is to
show that there exists a sequence uniformly convergent over all compact sets of Ω.
First, we consider a family {Kn}n ⊂ K(Ω)) of compact sets in Ω such that: K1 ⊂ Int(K2) ⊂
K2 ⊂ Int(K3) ⊂ K3 ⊂ ... and

∞⋃
n=1

Kn = Ω. This family satisfies that ∀K ∈ K(Ω) there exists

m ∈ N∗ such that K ⊂ Km. Consider {fn}n ⊂ Φ, and Kj as above.
By hypothesis, {fn}n is equibounded in Kj .
For equicontinuity we consider δ such that 2δ < d(Kj ,C−Kj+1), such that

∀z ∈ Kj , B(z, 2δ) ⊂ Kj+1.

Now, for x, y ∈ Kj and |x− y| < δ, we have :

|fn(x)− fn(y)| ≤ |x− y| sup
ξ∈I(x,y)

|f ′n(ξ)| ≤ δ sup
ξ∈Kj+1

|f ′n(ξ)| ≤ cδMkj+2

by using the Cauchy integral formula. Having a bound which does not depend on n, it is
now enough to consider a small enough δ to obtain

∀x, y ∈ Kj |x− y| < δ implies |fn(x)− fn(y)|.

By the Ascoli theorem we can obtain a partial sequence {f (j)n }n uniformly convergent on

Kj . By repeating this argument we obtain {f (j+1)
n }n ⊂ {f (j)n }n for Kj+1. By a diagonal

argument, Gk = f
(k)
k we obtain a subsequence which converges uniformly in every compact

set. So Φ is normal.

Theorem 2.16. (Fundamental normality test, a stronger version of Montel’s theorem) Let
Φ be a family of holomorphic maps on Ω. If there exist 3 points a, b, c ∈ Ĉ, for which

f(z) 6= {a, b, c}, ∀f ∈ Φ, ∀z ∈ Ω

then Φ is normal in Ω.

Normality is a concept for general families of holomorphic maps on a domain Ω. The
main use of Montel’s theorem is the particular case where f : Ĉ → Ĉ is a rational map and
we consider the family of functions given by the iterates of f ; that is

fn = f ◦ f ◦ ... ◦ f︸ ︷︷ ︸
n

, n ∈ N.
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Definition 2.17. We say that a rational map f : Ĉ → Ĉ is normal at z ∈ Ĉ if there exists
a neighborhood U of z ∈ Ĉ such that {fn|U } is normal. Of course, f is not normal at z ∈ Ĉ if
it is not normal at any neighborhood U of z.

Now, given R : Ĉ→ Ĉ a rational map, we can divide the phase space Ĉ in two sets, Fatou
and Julia as follows in the next section.
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3 Rational iteration

3.1 The Julia and Fatou sets

Definition 3.1. Let R : Ĉ→ Ĉ be a rational map. The Fatou set for a holomorphic function
R is defined as follows:

F (R) = {z ∈ Ĉ | {Rn}n is normal at z}

Definition 3.2. Let R : Ĉ→ Ĉ be a rational map. The Julia set for a holomorphic function
R is defined as follows:

J(R) = {z ∈ Ĉ | {Rn}n is not normal at z}

Remark. The Fatou and Julia set are complementary. That is, Ĉ = F (R) ∪ J(R).

Example. Let R(z) = z2.
Now consider z1 ∈ Ĉ such that |z1| > 1, so there exists a neighborhood U of z1 such that
∀ z ∈ U , |z| > 1. Trivially, under iterations, Rn(z)→∞, ∀z ∈ U , so for any z1 outside the
closed unit disk, {Rn}n is normal.
Now, consider z2 ∈ Ĉ such that |z2| < 1 so there exists a neighborhood V of z2 such that
∀ z ∈ V , |z| < 1. We have Rn(z)→ 0, ∀z ∈ V , so in the interior of the unit disk, {Rn}n is
also normal.
Finally, consider z3 on the unit circle. In any of its neighborhoods, there exist an element a
such that |a| > 1 and b such that |b| < 1. Since under iterations a goes to ∞ and b goes to 0,
then f is not normal at z3.
We have obtained that R is not normal only on the unit circle (the Julia set is the unit circle)
and normal everywhere else (the Fatou set is the entire Riemann sphere, except for the unit
circle).

• •
(0,0)

(1,0)

Figure 8: For the map z → z2, the Julia set is the circle C(0, 1) (in red) and the Fatou set is
the rest of the Riemann sphere .

Lemma 3.3. Let R : Ĉ → Ĉ be a rational map. Then F (R) and J(R) are completely
invariant.
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Proof. The idea of the proof is to show that an element from the Fatou, respectively Julia,
set can only map into the Fatou, respectively Julia, set and since they are complementary,
the sets will be completely invariant.

Let z1 ∈ F (R) be an arbitrary point in the Fatou set. Then, by definition, the family
{Rn}n is normal in a neighborhood U of z1. So there exists a subsequence {Rnk}k≥1 and
g holomorphic such that Rnk → g uniformly over compact sets. The same can be said by
removing the first element of this subsequence. But {Rnk}k≥2 on U is also part of the family
of iterations of R in a neighborhood of z1, so R is normal in a neighborhood of R(z1) so R(z1)
is in the Fatou set. So any point from the Fatou set maps in the Fatou set.

Analogously, for some arbitrary point z2 in the Julia set, since the family {Rn}n is not
normal in any neighborhood of z2. This will further imply that there exists no subsequence
to satisfy the uniform convergence over compact sets, so the subsequence of iterations around
the neighborhood of z2 will also not have such a subsequence, so the family is not normal
around z2, which finally means that z2 is in the Julia set. So any point from the Julia set
maps in the Julia set.

The proof is concluded by observing that the Julia set and the Fatou set are complemen-
tary.

Lemma 3.4. Let R : Ĉ→ Ĉ be a rational map. Then F (R) is open and J(R) is closed.

Proof. We will prove that the Fatou set is open and since the Julia set is its complementary,
the Julia set will be closed.

Let z0 be a point in the Fatou set. This implies that the family of iteration {Rn}n is
normal in a neighborhood U of z0. Let us consider B(z0, r) ⊂⊂ U . Now for z such that
|z − z0| ≤ r

3 , consider the balls B(z, r3). They are fully contained in U so the family of
iterations is normal on the balls. This implies that around every z such that |z − z0| ≤ r

3
there exists a neighborhood where the family of iterations is normal.

So all the points z with the property |z− z0| ≤ r
3 are in the Fatou set, which is equivalent

to B(z0,
r
3) is in the Fatou set.

So we have obtained that for any point in the Fatou set there exists a neighborhood
around that point which is entirely in the Fatou set.

In conclusion, the Fatou set is open and the Julia set, being its complementary, is closed.

We will give the following lemma without proof.

Lemma 3.5. The Julia set is the smallest closed, invariant set of the dynamical plane, which
has at least three points (this is called the minimality of the Julia set).

Lemma 3.6. Let R : Ĉ→ Ĉ be a rational map. Then for any n ∈ N∗, J(Rn) = J(R).

Proof. Consider z0 ∈ F (Rn). We have that the family of iterations {(Rn)k}k≥1 is normal in
a neighborhood around z0.
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Since it is a subsequence of {fp}p≥1, we have that the family {fp}p≥1 is normal in a
neighborhood of z0. So z0 ∈ F (R), which leads to F (Rn) ⊂ F (f).

By the complementarity of the Fatou and Julia set we get that J(R) ⊂ J(Rn) and by the
minimality of the Julia set, we also have that J(Rn) ⊂ J(R). The double inclusion results in
J(R) = J(Rn).

Lemma 3.7. Let R : Ĉ → Ĉ be a rational map. Then J(R) either has empty interior or it
is Ĉ (see Theorem 4.2.3 from [1]).

Proof. Since the Fatou and Julia sets are complementary and the Julia set is closed, we may
split the dynamical plane in three sets, F (R), J(R) and ∂J(R) = ∂F (R). By the Topological
Lemma 2.10, since F (R) is completely invariant, then so are ∂F (R) and Int(J(R).

Now, if the Fatou set is not empty (that is, the Julia set is not the entire Riemann sphere),
A = F (R)∪∂F (R) is a closed set and since the interior of the Julia set is completely invariant,
so is A. By the minimality of the Julia set we have J(R) ⊂ A and since J(R)∩F (R) = ∅ we
have that J(R) ⊂ ∂J(R), so the Julia set has empty interior.

Now we will give without proof some more fundamental results about the Julia set of a
rational map.

Lemma 3.8. Let R : Ĉ → Ĉ be a rational map of degree d ≥ 2. Then J(R) has infinitely
many points.

Lemma 3.9. Let R : Ĉ→ Ĉ be a rational map. Then J(R) is perfect and uncountable.

Lemma 3.10. Let R : Ĉ → Ĉ be a rational map. Then J(R) is the closure of the repelling
periodic points of R.

3.2 Local theory

Assume z0 ∈ Ĉ is a fixed point of the rational map R, R : Ĉ → Ĉ. We want to distinguish
the local behaviour of points in a neighborhood of z0, depending on the multiplier R′(z0) of
R at z0.

Lemma 3.11. Let R : Ĉ → Ĉ be a rational map and z0 ∈ Ĉ a fixed point. Then, if
|R′(z0)| < 1, z0 is attracting and if R′(z0)| > 1, z0 is repelling.

Proof. First, let us consider that |R′(z0)| < 1. Then there exists B(z0, r) and c ∈ (0, 1) such
that |R′(z)| < c < 1, ∀z ∈ B(z0, r). Now let z ∈ B(z0, r). Then, by integrating R′ on the
segment from z0 to z, we get

|R(z)−R(z0)| ≤ |z − z0| sup
a∈B(z0,r)

|R′(a)|

which by considering that z0 is a fixed point for R leads to:

|R(z)− z0| < c|z − z0|

14



So by iterating n times we would get

|Rn(z)− z0| < cn|z − z0|

which tends to 0 when n → ∞, so lim
nto∞

Rn(z) = z0. This holds for any z inside B(z0, r), so

z0 is an attracting fixed point.

Now assume R′(z0)| > 1. Then there exists B(z0, r) such that |R′(z)| > 1, ∀z ∈ B(z0, r)
and no critical points or singularities are inside the ball (z0 ∈ C cannot be a singularity
since it is a fixed point). So R is continous and there exists a domain U in C so that its
restriction on the ball mapped into U is a bijection. So it has an inverse, which is also
rational and continous. Now, by the (ε, δ) definition of continuity there exists δ such that
R(B(z0, δ)) ⊂ B(z0, r). Now consider m = min(δ, r).

If z ∈ B(z0,m) then we have |R′(R−1(z))| > 1( since its preimage is x ∈ B(z0, r), with
|R′(x)| > 1 , which by using the formula for the derivative of the inverse gives us that
|(R−1)′(z)| < 1, if z ∈ B(z0,m), where z0 is a fixed point for the rational map R−1.

So by the first part of this lemma, z0 is an attracting fixed point for R−1, which implies
that by definition, z0 is a repelling fixed point for R.

An interesting categorization of fixed points appears depending on whether a holomor-
phic function may be or not linearizable (there exists a conjugacy to a linear function in
a neighborhood of the fixed point). Depending on the multiplier of the fixed point several
possibilities arise. By considering a local conjugacy of a fixed point, we can just consider
from now on that our fixed point will be 0.

Theorem 3.12. (Koenigs linearization, see [2])

Consider R : Ĉ → Ĉ a rational function such that 0 is a fixed point and let λ = R′(0)
be its multiplier. If |λ| 6= 0, 1 then there exists some local holomorphic change of coordinates
y = h(z) such that h(0) = 0 and h conjugates R in a neighborhood of 0 to y → λy in a
neighborhood of 0, which is going to be unique up to a multiplication by a constant.

Proof. We start by proving the existence for |λ| < 1.

First we observe that since R(0) = 0, the Taylor series for a point in the neighborhood of
(0) will be

R(z) = λz + cz2 + ...

So in a neighborhood of the origin we have R(z) = λz+O(z2) which means that there exists
R positive number such that |R(z)− λz| < c|z2, for |z| < R.

Now, for any z ∈ D(0, R) we consider zn = Rn(z). We immediately get that zn < Rcn,
which is also inside the disk so we have:

|zn+1 − zn| ≤ cz2n ≤ r2c2n+1.

If we write m = cR2

λ we have that the sequence yn = zn
λn satisfies

|yn+1 − yn| ≤ m(
c2

|λ|n
)n.
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So we have that z → yn form a sequence of holomorphic functions which converge uniformly
to some h(z) = limn→∞

Rn(z)
λn . From here we have that h ◦ R(z) = λh(z) in a neighborhood

of the origin.

For |λ| > 1 we have that there exists a neighborhood with no critical points and consider
R−1 which will have a multiplier k = 1

λ such that 0 < |k| < 1 and so there exists some h
such that h ◦ R−1 ◦ h−1(z) = k. So by taking the inverses it follows that R is conjugated to
y → λy .

Now to prove the uniqueness, we assume that h1 and h2 are both conjugacies, which
immediately gives us that h1 ◦ h−12 ◦ (λz) = λh1 ◦ h−12 . Since the conjugacies have a fixed
point at the origin, we will have a Taylor series of the form:

h1 ◦ h−12 (z) = a1z + a2z
2 + ... .

By considering the Taylor expansions in the previous identity we get that λan = anλ
n, n ≥ 1

and since |λ| 6= 0, 1 we have that a2, a3, and so on are identically zero which leads to
h1(z) = a1h2(z).

Remark. By using conjugacies, it can be shown that the Koenigs linearization theorem holds
for any fixed point of a rational map, with the multiplier λ such that |λ| = 0, 1.

Definition 3.13. Let z ∈ Ĉ be a fixed point of R such that |f ′(z)| = e2πiθ, where θ ∈ R \Q.
Such a point is called a rationally indifferent point. If there exists a linearization of R around
it , the point is called a Siegel point. Otherwise, it is called a Cremer point.

Proposition 3.14. Let f : Ĉ → Ĉ be a rational map and z0 ∈ Ĉ a fixed point. If z0 is
attracting or a Siegel point, then z0 ∈ F (f). If z0 is repelling, parabolic or Cremer, then
z0 ∈ J(f).

Proof. For attracting fixed points, since by definition there exists a neighborhood such that
all points under iteration tend towards the point, we have that the family of the iterations is
normal so the point is in the Fatou set.

For Siegel points, since the rational map is conjugated to irrational rotation on a small
disk, since the family of iterations of irrational rotation on a disk is normal, we have that the
family of iterations of the rational map is also normal, so the point is in the Fatou set.

By the lemma 3.10 the repelling fixed points (considered as periodic points of period 1)
belong to the Julia set.

Now, for a Cremer fixed point z0, assume that there exists some neighborhood around it,
where the family of iterations is equibounded (which is equivalent to normality and so, being
in the Fatou set).

Consider the family of functions {hn}n, defined by:

hn(z) =

n−1∑
j=0

Rj(z)

λj
.

Observe that hn ◦R(z) = λhn(z) + 1
n(−λz + Rn

λn−1 ).
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Since it is an equibounded family of analytic functions, by the Weierstrass Theorem,
there exists a subsequence which is uniformly convergent. By considering the limit h of this
sequence, we have that h(R(z)) = λh(z) so the map is linearizable in a neighborhood of z0.
But z0 is Cremer, which is by definition not linearizable, so the family of iterations is not
normal, which implies that the Cremer fixed point must lie in the Julia set.

3.3 Fatou components

The main result that will be presented in Section 4 expresses different kinds of topologies,
depending on the connected component of the Fatou set in which the critical values are
located, so these components will play a major role.

Definition 3.15. A Fatou component is a connected component of the Fatou set (we already
know that the Fatou set is open, from Lemma 3.4).

Lemma 3.16. If U ⊂ F (f) is a Fatou component. Then f(U) ⊂ V , where V is a Fatou
component.

Proof. By Lemma 3.3, F(f) is completely invariant, so F (U) ⊂ F (f). Since f is continous
and open U will be then mapped in an open connected set contained in F (f), so f(U) is
contained in an open component of F (f), that is, some Fatou component V .

Remark. If V does not contain any omitted value, then f(U) = V .

From the previous lemma, a Fatou component is either eventually periodic or not. A
major result regarding the Fatou components of a rational map is the following theorem by
Sullivan.

Theorem 3.17. (No Wandering Domains theorem) Every Fatou component of a nonlinear
rational map is eventually periodic (there are no wandering domains for nonlinear rational
maps).

Theorem 3.18. Let R be a rational map of degree d ≥ 2 and let Ω be a Fatou component of
period p ≥ 1 for R. Then exactly one of the following holds:

• Ω contains an attracting p-periodic point z0 and Rnp(z)→ z0, for z ∈ Ω, as n→∞
(Ω is an immediate attractive basin).
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Figure 9: Attracting cycle of period four for P (z) = z3 + (−0.2 + 1.083i).

• There exists z0 ∈ ∂Ω such that Rp(z0) = z0 and such that Rnp(z0) → z0 for z ∈ Ω, as
n→∞(Ω is an immediate parabolic basin).

Figure 10: Here we have a rendering of the dynamical plane for z → z3 + λ
z3

where λ =
0.0486561 − 0.000299745i. The black region in the middle left is a periodic four parabolic
Fatou component.

• There exists a holomorphic homeomorphism φ : Ω → D such that (φ ◦ fp ◦ φ−1)(z) =
e2πiθz, where θ ∈ R\Q. That is, the rational map is conjugated to an irrational rotation
on a disk (Ω is called a Siegel disk).
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Figure 11: f(z) = ϕ ∗ a ∗ (exp(z/a) ∗ (z + 1 − a) + a − 1) where ϕ is the golden ratio and
a = 15− 15i.

• There exists r > 1 and a holomorphic homeomorphism φ : Ω→ U , where
U = {z ∈ C| 1 < |z| < r} such that (φ ◦ fp ◦ φ−1)(z) = e2πiθz, where θ ∈ R \ Q. That
is, the rational map is conjugated to an irrational rotation on an annulus (Ω is called
a Herman ring).

Figure 12: λ ∗ z ∗ exp((a/2) ∗ (z − 1/z)) for λ = exp(2πi ∗ 0.6223599) and a = 0.5i.

3.4 Useful results

Another necessary result,used for computing the number of boundary components of a do-
main, that will be used several times in proving the main statement is the Riemann-Hurwitz
formula.

Theorem 3.19. (Riemann-Hurwitz formula for rational maps, see [7]) Consider R a proper
rational map of degree d from the m-connected domain M to the n-connected domain N ,with
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p critical points, counting multiplicity. Then the following holds :

m− 2 = k(n− 2) + p.

We finish this chapter with 2 theorems (see chapter 9.8 from [1]) which will be instrumental
in proving one part of the main result. But first, we need 2 more lemmas (see chapter 9.2
from [1]).

Lemma 3.20. Let R be a rational map with degree d ≥ 2. Consider the family {Sn}n≥1 of
single-valued analytic branches of (Rm)−1, m ∈ N∗, in a domain D. Then {Sn}n≥1 is normal
in D.

Proof. Let C1 and C2 be two disjoint cycles of R, each of length at least 3. Sn cannot map
from outside the cycle A into A, as this would mean that by iterating under R some point
inside the cycle at some point would map outside the cycle, impossible. So outside of a finite
number of points(A), D is normal. By repeating the same argument we obtain that outside
the elements of cycle B, D is normal. Since A and B are disjoint, then D is normal .

Lemma 3.21. Let D and {Sn}n≥1 as in the previous lemma. Then if D intersects J(R), we
have that any locally uniform limit of a subsequence of {Sn}n≥1 is constant.

Proof. First we define the mapping gr such that Sn is a branch of (Rgr(n))−1 in D. Let us
suppose that Sn converge locally uniformly to a non-constant φ. So we get that every Sn is
univalent in D and implicitly, φ is univalent in D. Now consider a point z in both D and
J(R) (it exists by hypothesis) and consider a neighborhood of it contained in D. From the
uniform convergence, we get that a preimage of D through a branch contains a neighborhood
of φ(z), so this neighborhood must be in J , so we obtain that after a number of iterates
the entire Julia set must be contained in D, which is impossible, since otherwise this would
actually be true for any subdomain of D which does contain J , but intersects it. So φ is
constant on D.

Theorem 3.22. Consider R a rational map of degree d ≥ 2, which has a super attracting
fixed point at ∞. If all of the critical points of R are in the immediate basin of attraction of
∞, then J(R) is a Cantor set.

Proof. Let B be the immediate basin of attraction of ∞. From the No Wandering Domains
theorem, we have that every Fatou component eventually maps into a periodic cycle of
components, which must attract some critical point. But since all of the critical points of R
are in B, we have that all of the components will after some number of iterations be mapped
into B and so the orbits of all elements of the Fatou set eventually go to ∞.

Since the Julia set of R is compact and the orbits of the critical points are inside the
imediate basin and have∞ as a limit, there exists a Jordan curve γ which separates the Julia
set from the orbits of the critical points.
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Consider I the interior and E the exterior of the curve and S = I ∪ γ. Obviously, since
E ∩ γ is a compact set fully contained in the immediate basin of ∞, we may find n > 0 such
that Rn(E ∩ γ) ⊂ E and R−n(I ∩ γ) ⊂ I.

Now,the critical points of Rn are comprised of the critical points of R(whose orbits are
fully in B and, if n > 1, prepoles of R, which map to ∞ after 2 iterations of R.So the critical
points of Rn are all in S.

From the Lemma 3.6, we have that J(R) = J(Rn) so from now on we will just study
P = Rn and consider g its degree.

Now since P is a smooth covering of every component of the preimage of I into I and
I is simply connected, the restriction to every of the components of the preimage of I is a
homemorphism from the component to I. We consider the branches P1, P2, ...Pg of P−1 on
S and the semigroup generated by them that is

P (x1,2 , ...xk) = Px1 ...Pxk(S).

We get that for any k there exist dk pairwise disjoint compact sets, whose reunion is the
preimage through P k of S.

Consider P∞ the limit of this inverse process, that is

P∞ =
∞⋂
k=0

P−k(S).

By its definition P∞ is non-empty compact and perfect. All that remains to be shown is
that P∞ = J and , for it to be a Cantor set, that it is totally disconnected.

Since J ⊂ S, by backwards invariance of the Julia set, we have J ⊂ P∞. Now, for z ∈ P∞
its orbit is entirely in S so it does not escape to ∞. But since the orbits of all points of the
Fatou set go towards ∞, z has to lie in the Julia set, so we have P∞ = J .

Since we are in the conditions of Lemma 3.20, by Lemma 3.21, we have that any locally
uniform limit of any sequence of the type

Px1 , Px2Px1 , ...

is constant, so every such sequence converges locally uniformly on S to some point z, so

diam[P (xk, ... , x1)]→ 0

and J is totally disconnected.

Since the Julia set set is non-empty compact, perfect and totally disconnected, it is a
Cantor set.

A very common way to characterize chaotic systems is by using symbolic dynamics and
this will be the next objective for rational maps.
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Definition 3.23. Let d ∈ N∗.Consider Πd the space of infinite sequences with elements in
{1, ...d}. The continous map σ defined by

σ(x1, x2, x3...) = (x2, x3, ...)

is called the shift map on d symbols.

Theorem 3.24. Consider R as in the hypotheses of the previous theorem. Then it is conju-
gated to a shift map on d symbols, where d is the degree of the rational map R.

Proof. To every point from Πd, (x1, x2, ...xn) we can associate the limit of the sequence

Px1 , Px2 , ...

and every point of the Julia set can be obtained by this, from the previous theorem. So we
have a homeomorphism h from Πd to J .

Now, since Pxi are defined as branches of R−1, RPxi = Id. All that is left is to compute

RP (x1, ...xk) = RPx1 ..Pxk(S) = Px2 ..Pxk(S) = P (x2, ...xk)

So there exists a homeomorphism such that R ◦ h = h ◦ σ, so , by definition, R and h are
conjugated.

The following lemmas (see [2]), that we will give without proof, considered together gives
that if the Julia set of a hyperbolic rational map is connected it is also locally connected and
this will be critical in proving the local connectivity of the Julia set in the Sierpinski curve
case.

Lemma 3.25. Let U be a simply connected Fatou component of a hyperbolic rational map.
Then, the boundary of U , (∂U) is locally connected.

Lemma 3.26. Let R be a rational hyperbolic map with a connected Julia set. Then ∀ε > 0,
there exists a finite number of Fatou components of diameter> ε.

Lemma 3.27. Let K ⊂ Ĉ be a compact set such that every component of Ĉ \ K has lo-
cally connected boundary and ∀ε > 0, there exists a finite number of Fatou components of
diameter> ε, then K is locally connected.

Now we are going to introduce a crucial result regarding quasiconformal surgery of
Shishikura. This work is not an introduction to quasiconformal maps (see [4]). However,
a major result regarding quasiconformal surgery will be used in the final section.

Theorem 3.28. (First Shishikura principle)

Consider f : Ĉ→ Ĉ a quasiregular map and p ≥ 1. Suppose the following exist:
(a) U = U1 ∪ U2 ∪ ... ∪ Up, p disjoint open sets of the Riemann sphere such that

f(Ui) = Ui+1, i = 1, p− 1 and f(Up) ⊆ U1
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(b) ψ : U → Ũ , a quasiconformal homeomorphism (called the ”glueing map”) which maps U
into Ũ ⊂ Ĉ
(c) G : Ũ → Ũ quasiregular with Gp holomorphic
such that:

fU = ψ−1 ◦G ◦ ψ and
∂f

z̄
= 0 a.e in f−N (U), where N ≥ 0.

Then f is quasiconformally conjugate to a rational map.

However, to be able to use the Shishikura principle, we will need the following lemma.

Lemma 3.29. Let 0 < ρ1, ρ2 and two quasisymmetric orientation preserving homeomor-
phisms ψ1 : S1 → S1 and f2 : S1ρ1 → S1ρ2. Then there exists an extension f : Aρ1 → Aρ2,
which is quasiconformal in the interior.
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4 Trichotomy

The most basic family of maps studied in holomorphic dynamics is represented by Pn(z) =
zn+ c, where n ∈ N, n ≥ 2. For n = 2, for example, we have the famous Dichotomy theorem,
which states that the set of parameters for which J(Pc) is connected (that is, the Mandelbrot
set) is the same with the set of points for which the orbit of the critical point 0 is bounded.

A more difficult problem appears when a perturbation is added, even more so when the
pole of the perturbation coincides with a critical point. So from now on, the family that will
be studied is Fλ(z) = zn + λ

zd
, where n ≥ 2 and d ≥ 1, both n, d ∈ N.

This map has 0 and ∞ as critical points (actually, since Fλ(∞) = ∞ and F ′λ(∞) = ∞,
∞ is a super attracting fixed point). There are also (n+d) critical points which appear from
solving the equation F ′λ(z) = 0, which is just nzn+d − dλ = 0.

The immediate basin of attraction of ∞ will have the notation of B. The neighborhood
of the origin maps directly into a neighborhood of∞, which is part of B and so 0 will belong
to a Fatou component. For some values of the parameter λ, this Fatou component will not
coincide with B, and it will be called the trapdoor, denoted by T , since it is the only way for
complex points to escape directly into B (0 is the only point in the complex plane to map
directly to ∞).

The main result we are going to use is the escape trichotomy for singularly perturbed
rational maps by Devaney-Look-Uminsky :

Theorem 4.1. Suppose the free critical orbits of Fλ go to ∞(and so the map is hyperbolic).
Then exactly one of the following three holds:
(a) If there exists a critical value in B, then J(Fλ) is a Cantor set and the restriction of Fλ
on it is a one-sided shift on (n+ d) symbols.
(b) If there exists a critical value in T , then J(Fλ) is a Cantor set of Jordan curves.
(c) If there exists a critical value in a preimage of T , then J(Fλ) is a Sierpinski curve.

The proof of the theorem splits in three parts, according to three possibilities. Before
proving the theorem, we will first state and prove some results regarding different kinds of
symmetry of the map.

4.1 Preliminaries

Lemma 4.2. (Dynamical symmetry). Assume ω such that ωn+d = 1. Then Fλ(ωz) =
ωnFλ(z).

Proof. The proof of this result follows easily from the following computation:

Fλ(ωz) = (ωz)n + λ
(ωz)d

= ωn(zn + λ
zdωn+d

) = ωn(zn + λ
zd

) = ωnFλ(z).

Remark. The critical points which are the solutions of the equation

nzn+d − dλ = 0
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will have their orbits either all go to∞ or all be attracted to periodic cycles. So the assumption
of the theorem, that the free critical orbits go to ∞, is equivalent to the orbit of one of the
critical values going to ∞. Since ∞ is a super attractive fixed point, it has an immediate
basin of attraction and outside of this Fatou component the only component which may map
directly into it is the one containing the origin (they may coincide!). So we have that if the
free critical orbits go to ∞, the critical values may only lie in B, T or preimages of T .

Lemma 4.3. (Symmetry of B and T .) B and T have (n+d)-fold symmetry.

Proof. Let S be the set of points z ∈ B for which ωz ∈ B, which is non empty, as there exist
an open neighborhood around ∞ in B. S is also open, since if x ∈ ∂S ∩ S, ωx has points
in its neighbourhood which belong to B and some who don’t, so x ∈ ∂B. But x ∈ B, so we
would have a contradiction.
Now, assume S 6= B.Let x ∈ B ∩ ∂S. So ωx does not belong to B, but there are points in
its neighborhood, which do, so x must belong to ∂B. Now we observe that since x is in the
immediate basin of attraction of ∞, Fnλ (x)→∞, but Fnλ (ωx) does not tend to ∞. However
this gives a contradiction, because of the dynamical symmetry lemma.
Analogously, if z ∈ T , then ωz ∈ T .

Corollary 4.4. If one of the critical points lies in B (respectively T ), then all of them lie in
B (respectively T ).

This corollary combined with the following lemma shows that if a critical point is either
in B( or T ), then B (or T ) surrounds the origin, which as it may be seen further may lead
to the appearance of several annuli in the dynamical plane.

Lemma 4.5. Consider S a Fatou component of Fλ. Now consider x ∈ S such that there
exists j ∈ N∗, for which ωj 6= 1 (where ωn+d = 1, ω 6= 1), so that ωjx ∈ S. Then ∀i ∈ N ,
ωix ∈ S, so S has (n+ d)-fold symmetry and surrounds the origin.

Proof. Consider i ∈ N such that ωix /∈ S. Let C1 be a continous curve from x to ωjx, which
is entirely in S. Now define C2 = ωjC1. By symmetry, it also lies in a Fatou component.
Since ωjx lies in the Fatou component S, C2 must also belong to S. Analogously we can
keep constructing Cn ∈ S, n ≥ 3.
Now consider the smallest l ∈ N∗ such that ωjl = 1. Then the reunion of Ci, i = 1, l is a
closed curve C in S, which surrounds the origin. By repeating the previous construction such
that Dn = ωiCn, we obtain D = ωiC, which is a closed curve surrounding the origin which
lies in the Fatou component ωiS, which is different from S because ωix ∈ ωiS, but ωix /∈ S.
Finally, because both C and D surround the origin and D is a rotation of C around the origin(
ωiC = D), we have that they must intersect, so they are in the same Fatou component,
contradiction.

Now we can start the proof Theorem 4.1. We will split in 3 parts, depending on the
location of the critical values: in B, T , or preimages of T (they have to lie in one of these
since the orbits of the critical points go to ∞ and, if it exists T is the only Fatou component,
except for B, to map directly into B).
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4.2 Cantor set

The first part that will be proved of the trichotomy will be the Cantor set one. This will be
accomplished by showing that all the critical points lie in this in case in B, which allows the
use of theorems 3.22 and 3.24 for rational maps to reach the desired result.

Proposition 4.6. Assume that there exists a critical value of Fλ in B. Then all of the
critical points of Fλ are in B.

Proof. From Lemma 4.3 we get that if there exists a critical point in B, then all of them are
in B. Suppose there is no critical point in B.
We have that ∞ is attracting, so we have an analytic homeomorphism Φλ, defined in a
neighborhood of ∞, where it conjugates Fλ to z → zn on the unit disk. We have no critical
points in B, by their topological definition it means it can be pulled back by F−1λ , until the
neighborhood, let’s call it N , contains a critical value, and by symmetry all of them.
Now consider Green’s function associated to Φλ and one of its level sets γ, which bounds an
open connected set surrounding N ,let’s call it M . Now consider the preimage of M under
Fλ which contains 0. We have that:

• M is simply connected.

• there are (n+ d) critical points different from 0 in the preimage of M , since all of the
critical values are in M , which have multiplicity 1.

• the preimage contains 0(the preimage of ∞) and it has multiplicity (d-1)

• since in the neighborhood of the origin, Fλ can be conjugated to z → zd, in the preimage
Fλ must have degree d.

So now, we just use the Riemann-Hurwitz formula and get that the preimage of N has n+d+1
distinct boundary components, which are all mapped into γ, which is a simple closed curve.
Since the critical values are in N , they cannot be on γ, so there are no critical points on the
boundary of the preimage of M .
So γ has at least (n+d+1) preimages, but the degree of Fλ is (n + d) which gives us a
contradiction. So there exists a critical point in B, and by symmetry, all of them are in
B.

Corollary 4.7. Since a singularly perturbed map is a rational map of degree (n+ d), and by
the previous proposition all of its critical points lie in B, from the theorems 3.22 and 3.24
we have that the Julia set of Fλ is indeed a Cantor set in this case and Fλ is conjugated to a
shift map on (n+ d) symbols.
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Figure 13: The Julia set for n = 3, d = 3, λ = 0.4 + 0.4i is a Cantor set.

4.3 Cantor set of Jordan curves

The second case of the Trichotomy was first observed by McMullen, for very small values
of the parameter λ. Now it is known that the Julia set is a Cantor set of circles when a
critical value of Fλ lies in T (so B and T are disjoint) and each connected component in the
parameter plane for which this happens is called a McMullen domain.

Proposition 4.8. Suppose a critical value of Fλ is in T . Then the preimage of T is a
connected set containing all of the critical points.

Proof. Assume there is no component of the preimage of T with at least 2 critical points, so
the preimage of T has (n+d) components, each mapping 2-to-1 into T . So we have that each
component has 2 prepoles, so we have 2(n+d) prepoles, contradiction.
So there exists a component with 2 critical points. By the Lemma 4.5, all of them lie in the
same Fatou component, which is connected and surrounds the origin.

Proposition 4.9. If there is a critical value of Fλ in T , then the preimage of T is an
annulus that divides the region between B and T into two open subannuli, each mapped into
Ĉ− (B ∪ T ).

Proof. Since ∞ ∈ B and the (n+ d) solutions of zn+d + λ = 0 are in the preimage of T , the
only critical point in T is 0, so T is simply connected. Also, since the degree of Fλ on the
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preimage of T is (n+d) and it has exactly (n+d) critical points, from the Riemann-Hurwitz
formula we get that it has 2 boundary components, so it is an annulus. From the previous
proposition, we know that it also surrounds the origin.
Finally, since the preimage of T maps into T , but B and T map into B, we have that the
boundary of the preimage maps into ∂T , respectively ∂B and ∂T map into ∂B and considering
that the preimage of T surrounds the origin, the proof is finished.

Proposition 4.10. The boundaries of B, T and of the preimages of T are simple closed
curves surrounding the origin.

Proof. The idea is to show that B is a simply connected domain whose boundary is a Jordan
curve. As a consequence, the boundaries of T and its preimages are as stated.
Let A = C− (B∪T . The preimage of T is in A, by the previous proposition. So if we remove
the preimage of T from A, we have two open components. Let us denote them by Ai and Ae,
first one sharing the boundary with T and being d-to-1 on A and the other bordering B and
being n-to-1 on A.
Consider γ1 a Jordan curve in Ai surrounding the origin and γ2 its preimage in Ae. We have
that Fλ maps n-to-1 from γ2 to γ1, so it is n-to-1 in the exterior of γ2.
Let U = Ext(γ2) and V = Ext(γ1). Let ρ < 1. Let φ : Ĉ \ V → Dρ.

Now consider the homeomorphism ψ1 : γ1 → S1pn , the restriction to γ1 of the continous
extension of φ to γ1. We can also define ψ2 : γ2 → S1p such that ψ1Fλ(z) = (ψ2(z))

n.

∂U ∂V

S1ρ S1ρn

Fλ

ψ2 ψ1

zn

Since ∂U and ∂V are Jordan curves, we may extend the maps ψ1 and ψ2 to a homeomor-
phism ψ of A0 = V \ U :

ψ : A0 → Ap = S1
p \ S1

pn .

such that ψ|∂V = ψ1 and ψ|∂U = ψ2 (by the Lemma 3.29). In fact, ψ is quasiconformal in
◦
A0. Now, finally we can define:

G(z) =


Fλ(z), if z ∈ U
φ−1(ψ(z))n, if z ∈ V \ U
φ−1(φ(z))n, if z ∈ Ĉ \ V.

G is a quasiregular (quasiconformal with some critical points) map whose critical points
are 0 and ∞. By the first Shishikura principle and the Bottcher coordinates G is quasicon-
formally conjugate to z → zn. So its Julia set will be conjugate to a quasicircle. Since ∂B
is invariant under Fλ and in V , it is the Julia set of the quasiconformal map. So ∂B is
a quasicircle and so a Jordan curve, which also means that all of its preimages are Jordan
curves.
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Figure 14: The Julia set for n = 3, d = 3, λ = 0.00489 − 0.0012i is a Cantor set of Jordan
curves.

Now, consider that when 1
n + 1

d ≥ 1, by a major result of McMullen, there will be no
critical values in the trapdoor (see [6]).

Otherwise, the same as before, for every Fatou component situated in an annulus, its
preimage will consist of two disjoint annuli. Of course, the annuli corresponding to different
numbers of iterations cannot coincide, or there would be some points which would, everyone
of them, map to several other points, impossible, by the definition of a map. Now considering
the boundaries of these Fatou components, which will be Jordan curves, we obtain that the
Julia set is a Cantor set of Jordan curves.

4.4 Sierpinski curve

In the final part of the Trichotomy the critical values lie in a preimage of T , which leade to
the Julia set being a Sierpinski curve (a planar set which is homeomorphic to the Sierpinski
carpet), that is, it is compact, connected, locally connected, nowhere dense and any two
complementary domains are bounded by disjoint Jordan curves.

Proposition 4.11. Assume there is no critical value in either B or T . Then C − B has a
single open, connected component.

Proof. Suppose there exist more open, connected components and let C0 be the one contain-

29



ing the origin. Since T is the Fatou component surrounding the origin, it is entirely in C0.
We now show that there exists a prepole in C0. Assume not, then by the symmetry
lemma,then either everyone of them is in different Fatou component,or all of them are in
the same Fatou component .
In the first case, every point from the boundary of T (which is part of ∂B has a preimage
from the boundaries of every of the Fatou components and d preimages from its boundary.
So a point has (n+ 2d) preimages, contradiction.
Now, assuming all of the prepoles are in the same Fatou component, it must surround the
origin and hence it separates B from C0. But since ∂C0 ⊂ ∂B, so we have a contradiction.

So there is a prepole in C0 and by symmetry, all of them, so Fλ has degree (n+ d) in C0.
So C0 cannot have preimages outside C0.
Suppose there exists another component of C − B. Consider c in its boundary such that
c /∈ ∂C0. By Montel’s theorem, a neighborhood (which can be chosen such that it does not
intersect with C0 will map forward in W0, contradiction.

Proposition 4.12. The Julia set of Fλ is a Sierpinski curve.

Proof. This trichotomy makes the assumption that all of the critical orbits go to ∞, so the
Julia set is C −

⋃
F−nλ (B). So, the Julia set is C without countably many open, simply

connected sets. So it is compact and connected. Because it is not C, it is also nowhere dense.
From the hyperbolic lemmas we have that since the orbits of the critical points go to ∞, the
Julia set is locally connected. So for the Julia set to be a Sierpinski curve.

We also have that since B is simply connected, ∂B is locally connected.

All that is left to be proven is that he boundary of B and all of its preimages are disjoint
simple closed curves.

Because the boundary of B is locally connected, all external rays land at a point in ∂B.
To show that it is a simple closed curve it is enough to show that no two external rays land
at the same point, as by definition we will be able to build an injective map from a circle to
it.
From the previous proposition C0 is connected and simply connected. Assume there exists
p ∈ ∂B, such that γ(t1) and γ(t2) land at p. We have that C0 lies entirely in one of the
two open sets. Consider the other open set, γ(t1, t2), which is made of all the external rays
between t1 and t2. Now we use that there have to exist a, b ∈ N such that

γ
(a
b
,
a+ 1

b

)
⊂ γ(t1, t2).

Otherwise, we have that all the external rays of argument between t1 and t2 land at p and
we would obtain a contradiction since the set of angles θ ∈ R − Z that land at a point has
measure 0.
Consider such a, b exist and we have that because of the conjugacy with zn after enough
iterations, γ(ab ,

a+1
b ) is mapped over all B. So there will be an external ray landing at a

point on ∂C0. So it will have in its neighborhood points in C0, but its preimage before the
iterations did not have was not on ∂C0 so we have a contradiction, since we’d have a point

30



outside C0 mapping, after a finite number of iterations in C0.
So ∂B and all its preimages are Jordan curves. Now we prove that not two of the curves
intersect.
First , for B and T , if there exists a point which belongs to both ∂B and ∂T , there exists
an external ray in B and a preimage of an external ray , in T , landing at the point, so it is
a critical point, contradiction, because the critical points go to ∞, they are not part of ∂B.
For the other cases, if the preimages which intersect need the same number of iterations to
reach B, are iterated until they reach it, we once again get a critical point on ∂B, or , if they
ened a different number, map them until the one who needs more iterations gets to T and
we have arrived to the first case.

Figure 15: The Julia set for n = 3, d = 3, λ = 0.02525 + 0.03348i is a Sierpinski curve.

31



References

[1] Beardon, Alan F. Iteration of Rational Functions: Complex Analytic Dynamical Systems.
New York: Springer, 2000. Print.

[2] Milnor, John W. ”Dynamics in One Complex Variable” (Annals of Mathematics Studies;
No. 160). N.p.: Princeton UP, 2006. Print.

[3] Carleson, Lennart, and Theodore W. Gamelin. ”Complex Dynamics”. New York NY:
Springer New York, 1993. Print.

[4] Branner, Bodil, and Nuria Fagella. ”Quasiconformal Surgery in Holomorphic Dynamics”.
Cambridge: Cambridge U.P., 2014. Print.

[5] Devaney, Robert L., Daniel M. Look, and David Uminsky. ”The Escape Trichotomy for
Singularly Perturbed Maps”. Indiana University Mathematics Journal 54.6 (2005): 1621-
1634. Print.

[6] McMullen, Curt. ”Automorphisms of Rational Maps”. Berkeley, CA: Mathematical Sci-
ences Research Institute, 1986. Print.

[7] Steinmetz, Norbert. ”Rational Iteration Complex Analytic Dynamical Systems”. Berlin:
W. De Gruyter, 1993. Print.

32


