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Chapter 1: Introduction 

Uncertainty and risk have been fundamental concepts since the birth of 

modern science. Indeed various authors, including Bernstein (1998), claim that 

the interest in measuring and mastering the two phenomena is a threshold that 

separates modern times from the previous thousands of years of the history of 

humanity. In economics, Frank Knight was the first to postulate a distinction 

between uncertainty and risk, basically stating that the former could not be 

described by means of a probability measure while the latter could. According 

to both Knight (1921) and Keynes (1921, 1939), economic agents inhabit an 

environment of pervasive uncertainty and, therefore, there can be little hope 

of quantifying or forecasting economic variables, or even taking informed 

decisions that rely on quantitative measures of economic dynamics (in other 

words, for those authors, probabilities are incommensurable).  

Today, the distinction between risk and uncertainty remains a lively topic for 

debate on the academic agenda. Indeed, several recent studies have attempted 

to explain decision- making under uncertainty, albeit oriented more towards 

the social conventions than towards the development of rational calculations. 

Accordingly, in this branch of the literature, there is a clear need to distinguish 

between the concepts, while measuring what can be measured and not losing 

sight of what cannot be quantified in probabilistic terms. Although of obvious 

importance in its own right, this extreme Knightian differentiation between risk 

and uncertainty leads to the impossibility of defining a probability space and 

prevents us from using any variation of the Ergodic Theorem in empirical 

studies. In turn, this leads to the impossibility of conducting any science at all 

(Hendry, 1980; Petersen, 1996).  

Confronted by this panorama, the profession has moved from this Knightian 

extreme (fundamental) view of uncertainty and adopted a more promising 

approach to the concept. Today, it is widely accepted that uncertainty can (and 

indeed must) be measured, because it is intimately related to many economic 

phenomena. It is related for example to decisions on current and expected 

consumption, real and financial investment, business cycles dynamics, saving 

decisions, price formation, and to the possibility of consumption risk sharing 

(domestic and internationally). In short, it is at the core of the study of human 

wellbeing. Consistent with the discussion above, in the modern economic 

literature, uncertainty has generally been assimilated to a time-varying 

conditional second moment of the series under study, closely linked to 
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underlying time- varying structural shocks such as terrorist attacks, political 

events, economic crises, bubble collapses, systemic risk materialization 

episodes, wars and credit crunches.  

This thesis contributes to a better understanding of risk and uncertainty in the 

economics discipline. This overall objective implies the development of new 

tools to properly measuring, differentiating and managing risky and uncertain 

situations, the study of traditional investment strategies under uncertainty 

scenarios, and the quantification and analysis of the propagation of risk and 

uncertainty shocks to the international financial markets (stocks, banking and 

foreign exchange). Two main avenues are explored in this thesis to understand 

uncertainty, which reflect the current views in the profession regarding the 

topic. The first one consists on identifying uncertainty episodes based on a 

direct counting of economic and policy uncertainty-related keywords in the 

media. This approach has been pioneered by the work of Baker et al. (2016), 

which proposes an index of Economic Policy Uncertainty based on intensive 

text analysis and which can be used to gauge the level of macroeconomic 

uncertainty in a given period. The second view approaches the issue of 

measuring uncertainty from a residual perspective, which involves calculating 

the volatility of the series under study, only after their forecastable component 

has been removed (Jurado et al., 2015).   

My research adds to the resolution of two problems in finance and economics: 

i) what is macro-financial uncertainty? : How to measure it? How is it different 

from risk? How important is it for the financial markets? And ii) what sort of 

asymmetries underlie financial risk and uncertainty propagation across the 

global financial markets? That is, how risk and uncertainty change according to 

factors such as market states or market participants. I have noticed that the 

same sort of questions arises in the study of different markets such as stocks, 

foreign exchange (FX) or banking. Thus, I provide a unified framework for 

the analysis of these issues in my dissertation. In the first part of this 

manuscript (chapters 2-4), I provide answers to the former questions, while in 

the second part I deal with the latter (chapters 5-6). My research has 

implications for asset pricing, risk management, financial stability, and the 

design of optimal monetary and macroprudential policy schemes. 
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Uncertainty, Trading, and Systemic risk 

In Chapter 2, which is entitled “Momentum Uncertainties”, I study the 

relationship between macroeconomic uncertainty and the abnormal returns of 

a momentum trading strategy in the stock market. I show that high levels of 

uncertainty in the economy impact negatively and significantly the returns of a 

portfolio of stocks that consist of buying past winners and selling past losers. 

High uncertainty reduces below zero the abnormal returns of momentum, 

extinguishes the Sharpe ratio of the momentum strategy, while increases the 

probability of momentum crashes both by increasing the skewness and the 

kurtosis of the momentum return distribution. Uncertainty acts as an 

economic regime that underlies abrupt changes over time of the returns 

generated by momentum strategies. In this way, I revisit a long-standing 

controversy in economics and finance, regarding the different nature of risk 

and uncertainty. I show that investment strategies such as momentum trading, 

which are precisely based on extrapolating immediate market past 

performance, seeking to predict future market trends, would likely fail when 

macroeconomic uncertainty is ‘high’. On the contrary, when uncertainty is 

‘low’, the usual assumption of treating uncertainty episodes as if they were 

risky situations works better, and extrapolation of current market trends may 

produce consistently significant abnormal returns. One pragmatic 

recommendation that derives from the main results of my research in this 

respect is not to trade momentum when uncertainty is above a certain 

threshold. Nevertheless, beyond this direct implication for trading, the study 

of momentum strategies, which are precisely based on extrapolating the 

immediate past in order to predict the immediate future, offers a unique 

opportunity to analyze the differences between risky and uncertain situations, 

both fundamental for economics and finance. 

Also in the first part of my dissertation, in Chapter 3, “Measuring Uncertainty 

in the Stock Market”, I seek to make three contributions to the study of 

uncertainty. First, I propose a new index for measuring stock market 

uncertainty on a daily basis (or what I refer to as financial uncertainty)1. The 

index considers the inherent differentiation between uncertainty and the 

common variations between the series (which I identify as risk). Recent 

contributions in the field have given rise to the methodological tools for 

performing the task using factor models (Jurado, Ludvigson and Ng, 2015). 

                                                        
1  This index is updated regularly and is publicly available at 
http://www.ub.edu/rfa/uncertainty-index/ 
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These proposals, however, have focused their attention on the use of 

macroeconomic variables to construct their indexes, as opposed to financial 

variables. Therefore, because of the low frequency of macroeconomic series, 

the proposals lack a desirable property of traditional proxies of uncertainty 

based on financial returns (such as VXO, VIX or credit-spreads): namely, 

practitioners and policy makers cannot trace their dynamics in real time.  The 

second contribution of chapter 3 is to show how this financial uncertainty 

index can also serve as an indicator of macroeconomic uncertainty. I examine 

the circumstances under which my index might be thought to capture all the 

relevant information in the economy as a whole. I exploit the fact that 

information contained in hundreds, or even thousands, of economic indicators 

can be encapsulated by just a few prices of several stock market portfolios. 

Finally, I analyze the dynamic relationship between uncertainty and the series 

of consumption, interest rates, production and stock market prices, among 

others. This allows me to further our understanding of the role of (financial or 

macroeconomic) uncertainty, and to determine the dynamics of the economy 

as a whole.  

Chapter 4: “Uncertainty, Systemic Shocks and the Global Banking Sector: Has 

the Crisis Modified their Relationship?” is the last chapter of the first part of 

my thesis. There, I explore the stability of systemic risk and uncertainty 

propagation among financial institutions in the global economy, and show that 

it has remained stable over the last decade. Additionally, I provide a new 

simple tool for measuring the resilience of financial institutions to these 

systemic shocks. My contribution to the literature in this essay is mainly the 

examination of the characteristics and stability of systemic risk and 

uncertainty, in relation to the dynamics of the banking sector stock returns. 

Thus, I provide evidence regarding the stability of the relationship between 

systemic shocks and the banks’ responses over the last decade. This sort of 

evidence is new to the literature and is supportive of past claims, made in the 

field of macroeconomics (Stock and Watson, 2012), which hold that during 

the global financial crisis the financial system may have faced stronger versions 

of traditional shocks rather than a new type of shock. In this chapter, I also 

undertake an empirical study of the role of equity market uncertainty, as 

measured by Baker et al. (2016), as a systemic risk factor for the banking 

industry. Uncertainty is known to play a critical role in determining economic 

dynamics during episodes of crisis and, in recent years, its study has attracted 

much attention in the literature to account for the nonlinear negative dynamics 

that arise during episodes of economic distress (Bloom, 2009; Jurado et al., 



 5 

2015). The inclusion of uncertainty as an observable factor enhances our 

understanding of the banking sector behavior during episodes of systemic 

stress in the financial markets. I report that for most of the banks analyzed, 

especially over the last decade, uncertainty is indeed a relevant consideration. 

As expected, more uncertainty leads to a reduction in equity prices in the 

banking industry, and this behavior has become more pronounced in the last 

few years, especially when compared to the situation 15 years ago.  Finally, I 

emphasize the vulnerability of each institution to systemic shocks rather than 

the vulnerability of the system as a whole to the failure of one specific, 

perhaps important, financial institution. Thus, I identify systemically 

vulnerable financial institutions under scenarios of financial distress and 

provide a ranking of financial vulnerability that complements those already 

developed by the extant literature. 

International propagation of risk 

The second part of my dissertation explores the international propagation of 

financial risk, which is crucial to assess financial stability and capital market 

integration in the global capital markets. This second part consists of two 

chapters (5 and 6). In chapter 5, “Currency downside risk, liquidity, and 

financial stability”, I aim to analyze downside risk propagation across global 

currency markets and the ways in which it is related to liquidity. The 

traditional study of return and volatility spillovers in currency markets imposes 

its own symmetry on the analysis, by implicitly assuming that for any given 

country the situation is roughly the equivalent of facing depreciation or 

appreciation pressures. This assumption is at the very least controversial. In 

the worst-case scenario, central banks may lean against the wind when 

appreciation pressures emerge on the horizon, to the degree that they are 

willing (or politically allowed) to do so. On the other hand, their response is 

much more restricted when faced by an episode of depreciation. Here, in the 

worst case they are bound by the (frighteningly) lower limit of the FX 

reserves. Thus, I make two primary contributions to the literature. First, I 

estimate tail-spillovers between currencies in the global FX market. I do so by 

closely adhering to what I consider a key element in the definition of a 

currency crisis proposed by Paul Krugman: “[it] is a sort of circular logic, in 

which investors flee a currency because they fear that it might be devalued, 

and in which much (though not necessarily all) of the pressure for such a 

devaluation comes precisely from that capital flight”. Notice that by definition 

currency crises are related to periods of depreciation (or devaluation), and not 



 6 

to episodes of appreciation (or revaluation). Thus, in terms of financial 

stability, episodes of depreciation are more significant than those of 

appreciation. The tail-spillover estimates can be used to construct a new 

financial stability index for the FX market. This index is easy to build and does 

not require intraday data, which constitutes an important advantage. My 

second contribution is that I explore whether turnover is related to risk 

spillovers in global currency markets. World currencies can be expected to 

behave differently depending on how much investors trade them and, in turn, 

commonality may become evident by examining the dynamic spillovers in 

worldwide FX markets. 

Chapter 6 is entitled “Spillovers from the United States to Latin American and 

G7 Stock Markets: A VAR-Quantile Analysis”. This essay contributes to the 

studies of contagion, market integration and cross-border spillovers during 

both regular and crisis episodes by carrying out a multivariate quantile analysis. 

Most of the studies in this branch of the financial literature do not consider 

specific quantiles of the distributions and, therefore, they do not condition 

their results to specific market situations. Instead, they focus on the mean of 

the distributions, which could underestimate the real effects of an international 

shock. Even traditional quantile studies do not make any attempt to identify 

structural shocks by recourse to theory, nor are they able to analyze certain 

features of the shocks, such as their persistence, during different market 

scenarios. I focus the analysis carried out in this chapter on Latin American 

stock markets, which have been characterized by a highly positive dynamic in 

recent decades, in terms of market capitalization and liquidity ratios, after a 

far-reaching process of market liberalization and reforms to pension funds 

across the continent during the 80s and 90s. Moreover, the global financial 

crisis between 2007 and 2010 appears to have fostered financial flows into 

Latin American (LA) markets, as capital investors looked for diversification 

opportunities outside the mature markets, and as liquidity began to flourish 

around the globe, following persistently low market interest rates in the major 

economies. In general I documented smaller dependences between the LA 

markets and the US market than those between the US and the developed 

economies, especially in the highest and lowest quantiles. Nevertheless, I 

found an asymmetrical response to the shocks originating in the US market, 

depending on the conditioning quantile analyzed. This result holds regardless 

of whether the market under consideration is mature or emerging, an outcome 

that can be attributed to the phenomenon of flight-to-quality operating in the 

lowest quantiles, and a situation of liquidity spillovers between the markets in 
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the highest quantiles. These results have obvious implications in terms of the 

optimal implementation of hedging strategies, portfolio diversification, and 

risk management, but also with regards to the optimal design of monetary and 

macroprudential policies. 

The various chapters in this thesis can be found in: 

[1]. Chuliá, H., J. Fernández, and J.M. Uribe, 2017, Currency downside risk, 
liquidity, and financial stability, working paper, University of Barcelona. 

[2]. Chuliá, H., M. Guillen and J.M. Uribe, 2017, Measuring uncertainty in 
the stock market, International Review of Economics and Finance, 
48: 18-33. 

[3]. Chuliá, H., M. Guillen and J.M. Uribe, 2017, Spillovers from the US to 
Latin American and G7 stock markets: A VAR-quantile analysis, 
Emerging Markets Review, 31:32-46. 

[4]. Chuliá, H., M. Guillen and J.M. Uribe, 2017, Uncertainty, systemic 
shocks and the global banking sector: has the crisis modified their 
relationship?, Journal of International Financial Markets, 
Institutions & Money, 50: 52-68. 

[5]. Uribe, J.M., 2017, Momentum Uncertainties, working paper, University 
of Barcelona. 

I also contributed to the following original publications while writing my 
dissertation, which were substantially informed by the framework developed 
herein:  

[1]. Chuliá, H., A.D. Pinchao, and J.M. Uribe, forthcoming, Risk 
Synchronization in International Stock Markets, Global Economic 
Review, accepted.  

[2]. Chuliá, H., M. Guillen and J.M. Uribe, 2016, Modeling longevity risk 
with generalized dynamic factor models and vine copulae, Astin 
Bulletin, 46(1): 165-190. 

[3]. Chuliá, H., M. Guillen and J.M. Uribe, forthcoming, Trends in the 
quantiles of the life table survivorship function, European Journal of 
Population, accepted. 

[4]. Chuliá, H., R. Gupta, J.M. Uribe, and M. Wohar, 2017, Impact of US 
uncertainties on emerging and mature markets: Evidence from a 
quantile-vector autoregressive approach, Journal of International 
Financial Markets, Institutions & Money, 48: 178-191. 

[5]. Mosquera, S., D. Manotas, D. and J.M. Uribe, 2017, Risk asymmetries 
in hydrothermal power generation markets, Electric Power Systems 
Research, 147: 154-164. 
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[6]. Mosquera, S., J.M. Uribe, and D. Manotas, 2017, Nonlinear empirical 
pricing in electricity markets using fundamental weather factors, 
Energy, 139(15): 594-605. 

[7]. Holguín, J.S., and J.M. Uribe, 2017, The credit supply channel of 
monetary policy: Evidence from a FAVAR model with sign 
restrictions, revised and resubmitted to Empirical Economics. 
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Chapter 2: Momentum Uncertainties 
 

Abstract 

 

We show that high macroeconomic uncertainty significantly impacts the 
performance of stock momentum portfolios. Abnormal returns of winners-
minus-losers strategies disappear when uncertainty is high, their Sharpe ratio 
collapses, skewness increases and kurtosis becomes more pronounced 
(increasing the probability of momentum crashes). There is also a significant 
reduction in the exposure to momentum by equity excess returns during high 
uncertainty states. The main findings here advise against trading momentum 
when uncertainty is high and emphasize the role of uncertainty as a 
fundamental macroeconomic state underlying the changes over time of momentum 
abnormal returns. 

 

2.1. Introduction 

We study the relationship between macroeconomic uncertainty and 
momentum abnormal returns and show that high levels of economic 
uncertainty significantly and negatively impact the returns of a portfolio of 
previous winners minus previous losers in the stock market. Uncertainty reduces 
the abnormal returns of momentum below zero, causes the Sharpe ratio of the 
momentum strategy to collapse, and raises the probability of momentum 
crashes by increasing the skewness and the kurtosis of the momentum return 
distribution. We also document a change in the momentum beta, which 
measures the exposure of excess equity returns to the momentum factor. 
Indeed, this exposure is significantly reduced for most of the portfolios 
analyzed during high uncertainty episodes. All these factors emphasize the 
importance of considering the level of economic uncertainty when deciding 
whether to trade momentum or not. Uncertainty acts as an economic regime that 
underlies abrupt changes in the abnormal returns generated by momentum 
strategies, which have been extensively documented in the literature (see, for 
example, Cooper et al., 2004, and Daniel and Moskowitz, 2016). The main 
pragmatic recommendation to be derived from our results is not to trade 
momentum when uncertainty is above a certain threshold. 

Uncertainty in its original formulation (Knight, 1921; Keynes, 1921, 1939) 
implies that constructing a probability measure (for instance, seeking to build 
an accurate future forecast of a given event based on past realizations) is not 
feasible. As such, investment strategies such as momentum trading, which are 
based precisely on extrapolating the immediate past performance of winners 
and losers portfolios in order to predict future market trends, are likely to fail 
when macroeconomic uncertainty is ‘high’ enough. In contrast, when 
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uncertainty is ‘low’, the usual assumption of treating uncertainty episodes as if 
they were risky situations works better, and the future extrapolation of market 
trends may produce consistently significant abnormal returns, as is the case 
with momentum portfolios.  

We explore this hypothesis here by analyzing the monthly abnormal returns of 
a momentum portfolio (winners minus losers over the previous 2-12 months, 
WML hereinafter) from January 1927 to June 2017, almost a hundred years of 
data comprising NYSE, AMEX, and NASDAQ stocks2. We examine whether 
macroeconomic uncertainty (proxied by the Economic Policy Uncertainty 
index proposed by Baker et al., 2016) or economic activity (as measured by the 
dates of recession and expansion provided by the NBER over the last century) 
is the economic state that underlies abrupt changes in the abnormal returns of 
momentum strategies. In this respect, we adopt an approach that differs from 
that taken in the previous literature, which analyzes the dependence of 
momentum performance on a generic market state, presumably related to 
economic conditions (Gervais et al., 2001; Cooper et al., 2004; Daniel and 
Moskowitz, 2016; Ali et al., 2017). By so doing, it is our contention that we 
gain a better understanding of the nature of momentum trading and of the 
boundaries to its good performance, which are imposed by the economic 
uncertainty regime operating in the economy. We also discuss how, for the 
purposes of ‘uncertainty management’, to take advantage of recently 
developed proxies for measuring uncertainty in the macroeconomy, including 
the index developed by Baker et al. (2016).  

This contribution is relevant because momentum continues to be a pervasive 
anomaly both in the cross-section (Asness et al., 2013) and over time 
(Moskowitz et al., 2012). Since Jegadeesh and Titman (1993) reported that 
previous winners in the stock market significantly outperform previous losers, 
thus making it possible to attain Sharpe ratios that exceed those of the market 
itself, momentum trading has remained a popular strategy among practitioners 
and of great interest to academics. However, this popularity seems to have 
weakened slightly due to the astonishing higher-order risks that momentum 
trading imposes on investors, including an extremely fat-tailed and negatively-
skewed distribution of gains (Daniel and Moskowitz, 2016). The initial method 
of basically buying past winners and selling past losers has made room for 
more sophisticated strategies that use time-varying hedging mechanisms aimed 

                                                        
2  To construct the momentum portfolios, all stocks in the NYSE, Amex, and Nasdaq 

markets were ranked according to their returns from month 𝑡 − 12 to 𝑡 − 2. They were 
then classified into deciles according to NYSE thresholds. The WML strategy consists of 
shorting the lowest decile and taking a long position on the highest decile. The portfolios are 

value-weighted. The formation period for month 𝑡 excludes the returns in the preceding 
month to avoid the short-term reversals documented by the literature. See Kenneth French’s 
webpage for further details: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Benchmarks. 
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at reducing frightening momentum crashes (Blitz et al., 2011; Barroso and 
Santa-Clara, 2015; Daniel and Moskowitz, 2016). Yet momentum trading 
continues to be practiced today.  

If we turn our attention to asset pricing, it is not surprising that momentum 
remains something of a puzzle in explanations of excess returns. Countless 
factors have been proposed for analyzing this premium and its related 
anomalies (Campbell et al., 2016). However, the ever-growing set of factors 
explored to date does not yet provide a reliable substitute for momentum 
when it comes to explaining excess returns. One popular model –proposed 
recently by Fama and French (2015) includes, in addition to the three 
traditional factors of market, size and book-to-market, two factors related to 
investment strategies (conservative or aggressive) and a firm’s profitability (robust 
or weak). Yet, in their new version of the classical three-factor model, Fama 
and French (2016) acknowledge the importance of including momentum 
within the set of regressors. In short, they claim that portfolios sorted 
according to winners and losers in the prior 2-12 months elude the 
explanation provided by the five-factor model, unless the momentum factor is 
included in the set of right-hand-side (RHS) variables.  

On this playing field, it is quite natural that both rational (Johnson, 2002; 
Frazzini, 2006; Sagi and Seasholes, 2007; Liu et al., 2008) and behavioral 
explanations (Daniel et al., 1998; Hong and Stein, 1999; Cooper et al., 2004) 
have been offered to provide a definitive understanding of the momentum 
anomaly. The former seek to identify some kind of market friction, 
heterogeneous information, or firm-specific characteristics to account for 
momentum; while the latter resort to biases in the investors’ perceptions to 
explain momentum profits. In these more behavioral models, the general 
reasoning embraces overconfident (Daniel et al., 1998; Chui et al., 2010) or 
over-reacting (Hong and Stein, 1999) investors who generate the momentum 
conundrum as new waves of information reach the market3.  

All in all, there is no completely satisfactory narrative as to what drives 
momentum. Doubts even exist as to whether momentum is really momentum or 
rather whether immediate past performance is actually a proxy for medium-
horizon past performance (Novy-Marx, 2012). It seems that macroeconomic 
factors are unable to capture momentum profits after considering market 
microstructure concerns (Cooper et al., 2004), and that other sorts of 
explanation, such as the famous disposition effect, have been discarded as well 
(Birru, 2015). Clearly, momentum requires further exploration.  

                                                        
3  See Barberis et al. (2015) and references therein for recent examples of extrapolative 
investors used to generate momentum. Hiller et al. (2014) also identify over-reacting and 
overconfident biases that are reinforced by media coverage. 
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If the elusive nature of momentum were not enough, its relationship with 
excess returns and systematic risk factors is also known to be non-linear. In 
other words, as momentum has time-varying market betas (Kothari and 
Shanken, 1992; Grundy and Martin, 2001), hedging using these betas does not 
work in real time. As Barroso and Santa-Clara (2015) document this occurs 
because the main source of predictability (and variability) of the risk implied 
by momentum strategies are not the betas, but the idiosyncratic conditional 
volatility. Put briefly, momentum does not appear to share with other more 
theoretically grounded factors the comfortable linearity ubiquitous in 
traditional equivalences with stochastic discount factor representations of 

market prices4. For this reason, its treatment means making room for time-
varying risk prices, as functions of state variables5.   

This study contributes to the literature by identifying macroeconomic 
uncertainty as a major economic state underlying the performance of 
momentum strategies. Such an approach certainly provides more information 
and, hence, a better understanding of the nature and boundaries of the 
momentum strategy than when simply linking it to a market state. This study 
can be seen as a further step in the direction taken previously by Gervais et al. 
(2001), Grundy and Martin (2001), Cooper et al. (2004), Daniel and 
Moskowitz (2016) and Ali et al. (2017). Here, we estimate the abnormal 
returns, and other moments of the momentum return distribution, 
conditioning them on a state variable that measures macroeconomic 
uncertainty. In this way, we also add to a nascent strand in the financial 
literature that analyzes the impact of uncertainty on stock prices (Brogaard and 
Detzel, 2015; Segal et al., 2015; Bali and Zhou, 2016; Bali et al., 2017). Unlike 
these studies, we do not treat uncertainty as a risk factor in the set of RHS 
variables used to explain excess returns, but as a market state or regime that 
conditions both the abnormal returns of momentum above systematic risk 
factors, and the exposure of excess returns to it.  

This study is possible thanks to recent advances in macroeconomics that have 
seen the construction of more appropriate measures of uncertainty, which can 
take into account its different nature with respect to risk or risk aversion. 
Some measures are a direct estimation of unexpected variations within a given 
system (Jurado et al., 2015; Chuliá et al., 2017), while others resort to a less 
probabilistic approach, based on a direct search for uncertainty-related 
keywords in the media (Baker et al., 2016). The latter approach is more 
compatible with the original Knightian or fundamental view of uncertainty 

                                                        
4 See Cochrane (2005), Chapters 1-3.  
5 That is, for conditional pricing in which nonlinear effects arise in the form of additional 
terms that appear in the pricing equation. This is described for example by Jagannathan and 
Wang (1996); Lettau and Ludvigson (2001); Cochrane (2005: Chapter 8), and Maio and 
Santa-Clara (2012: Footnote 3).  



 13 

(Knight, 1921), since it does not rely directly on a probabilistic estimation for 
constructing the measure. For this and other reasons explained below, here we 
opt for the index developed by Baker et al. (2016) to conduct our analysis.  

The modeling set up employed in all sections of this study considers two 
extreme states: one of low uncertainty and one of high uncertainty. We model 
endogenously the probability of transition between the two states in a smooth 
fashion. The same econometric machinery is used to estimate both the 
changing abnormal returns of momentum over time, and the changing 
exposure to momentum by excess returns, according to the uncertainty states. 
As highlighted above, and as expected, we document that momentum not only 
lacks relevance as a risk factor in regimes of high uncertainty for most of the 
portfolios analyzed, but it also becomes an extremely risky and unprofitable 
strategy. We advise against trading momentum when uncertainty is high (i.e. 
above a certain threshold of the lagged uncertainty index, namely the 90th 
percentile). Finally, it is worth noticing that our results hold after controlling 
for several proxies traditionally related to the time-varying returns of 
momentum, in particular, for the market state (for instance, a down market 
and the market volatility), and also after controlling for aggregate liquidity. 
Indeed, the inclusion of high uncertainty states in the explanation of 
momentum impacts the relationship between market liquidity and momentum 
returns, to the point of extinguishing it. This helps to explain the seemly 
contradictory finding recently reported by Avramov et al. (2016) regarding a 
positive and significant correlation between momentum profits and market 
liquidity. 

2.2. Data 

We analyze the returns of a portfolio of winners minus losers in the previous 
2-12 months, taking the difference between the returns in the highest and 
lowest deciles of the portfolios, sorted according to prior performance (as in 
Barroso and Santa-Clara, 2015 and Daniel and Moskowitz, 2016). The 
portfolios, constructed each month, include NYSE, AMEX, and NASDAQ 
stocks. We condition the abnormal returns of momentum on a traditional 
Fama-French three-factor model, which allows us to explore a long time span 
covering almost a century of data (1,086 monthly observations). We also 
analyze the momentum betas of 25 value-weighted portfolios, sorted 
according to momentum and size, in the same period.  

Most of the data used in this study were retrieved from Kenneth French’s 
webpage6. The uncertainty index was taken from Baker et al. (2016) and is 
available online at http://www.policyuncertainty.com/. We used the historical 
Economic Policy Uncertainty (EPU) Index from January 1927 to February 
2014 and chained it with the EPU index from March 2014 to June 2017. This 

                                                        
6 Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
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is the longest span available for the momentum portfolios in French’s data-
library. We also used the monthly returns of 25 Value-Weighted (VW) 
portfolios sorted according to size and momentum, likewise from French’s 
library. We do not provide summary statistics of the factor-portfolios, the 
portfolios returns, or the uncertainty index, since they are well known in the 
literature and have been extensively documented elsewhere (see, for example, 
Fama and French, 2015 and 2016, Daniel and Moskowitz, 2016 and Baker et 
al., 2016). The stock level data used to estimate the turnover of the 
momentum strategy come from Wharton’s CRSP database and consist of the 
universe of NYSE, AMEX, and NASDAQ stocks, with share codes 10 or 11, 
from December 1925 to December 2016. The stock level illiquidity index, 
employed in the estimations of section V, developed by Abdi and Ranaldo 
(forthcoming) is available online at: 
https://sbf.unisg.ch/en/lehrstuehle/lehrstuhl_ranaldo/homepage_ranaldo/re
search-material. The monthly uncertainty index by Chuliá et al. (2017) used in 
section II is available online at: http://www.ub.edu/rfa/uncertainty-index/. 
Finally, the series of industrial production, employed in section II, comes from 
the FRED-database developed and maintained by the Federal Reserve of St. 
Louis: https://fred.stlouisfed.org/ 

2.3. Risk, Uncertainty and Economic States 

Uncertainty and risk have been fundamental concepts in economics and 
finance since the birth of modern science. Indeed various authors, including 
Bernstein (1998), claim that the interest in measuring and mastering the two 
phenomena constitutes a threshold that separates modern times from the 
previous thousands of years of the history of humanity. In economics, Frank 
Knight was the first to postulate a distinction between uncertainty and risk, 
basically stating that the former could not be described by means of a 
probability measure while the latter could. Following Knight (1921) and 
Keynes (1921, 1939), economic agents inhabit an environment of prevalent 
uncertainty and, therefore, there can be little hope of quantifying or 
forecasting economic or financial variables. In other words, they considered 
the probabilities associated with the occurrence of economic events as 
incommensurable objects.  

This approach to understanding uncertainty – known, today, as the fundamental 
view of uncertainty or Knightian uncertainty – while of obvious importance, makes it 
impossible to define a probability space and, therefore, to use any variation of 
the Ergodic Theorem to build the bases of empirical studies. It is for this 
reason that the profession has adopted a more flexible definition of 
uncertainty, particularly as regards macroeconomic uncertainty. Thus, 
uncertainty has come to be thought of as a time-varying conditional second 
moment, linked to underlying structural shocks, such as terrorist attacks, 
significant political events, economic crises, wars or credit crunches 
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(Bernanke, 1983; Bertola and Caballero, 1994; Abel and Eberly, 1996; Leahy 
and Whited, 1996; Caballero and Pindyck, 1996; Bloom et al., 2007; Bloom, 
2009; Bloom et al., 2013; etc.). Traditional proxies of uncertainty include stock 
returns or their implied/realized volatility (i.e., VIX or VXO), the cross-
sectional dispersion of firms’ profits (Bloom, 2009), estimated time-varying 
productivity (Bloom et al., 2013), the cross-sectional dispersion of survey-
based forecasts (Dick et al., 2013; Bachmann et al., 2013), and credit spreads 

(Fendoǧlu, 2014).  

Although it indisputable that these uncertainty proxies have provided 
considerable insights, which, in turn, have allowed a better understanding of 
economic and financial decisions made under uncertainty, most of them have 
recently been criticized. The main criticisms concern the fact that these 
traditional proxies blend uncertainty with other notions (such as, risk and risk-
aversion) and, in the case of analysts’ forecasts, that they are only available for 
a limited number of series and so might reflect differences of opinion rather 
than uncertainty per se (Diether et al., 2002). In an effort to overcome these 
shortcomings, a new branch of the literature proposes measuring uncertainty 
either by directly counting economic and policy uncertainty-related keywords 
in the media (Baker et al., 2016) or by approaching the issue from a residual 
point of view, which involves calculating the volatility of the series under 
study, only after their forecastable component has been removed (Jurado et 
al., 2015; Chuliá et al., 2017).  

Counting keywords is more compatible with the original Knightian view of 
uncertainty, as it does not rely directly on a probabilistic estimation for 
constructing the measure and, therefore, it may identify the fundamental 
difference between risk and uncertainty: under risk, a probability distribution 
based on past realizations seems natural and appropriate, under uncertainty, 
this situation does not hold. Moreover, the index proposed by Baker et al. 
(2016) is not specifically related to bad economic or market states, which are 
generally assimilated with economic recessions and market crashes, as we shall 
see. On the contrary, it may refer to both good and bad episodes of 
uncertainty. This point is crucial in what follows, because we know from the 
extant literature that recessions and bad market states negatively impact the 
performance of momentum strategies (Gervais et al., 2001; Cooper et al., 
2004; Daniel and Moskowitz, 2016). Unlike the previous studies, here the 
interest lies in measuring the effects of generalized uncertainty, both good and 
bad, on momentum abnormal returns, on other moments of the conditional 
distribution of momentum portfolio returns, and on the exposure to 
momentum factors by excess equity returns.  

Hence, the selection of the uncertainty proxy is essential in demonstrating that 
economic uncertainty, rather than economic activity (expansions and 
recessions), is the fundamental economic state underlying a significant 
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deterioration in the performance of momentum strategies. As emphasized in 
the introduction, the intuition underpinning this reasoning is simple: 
momentum strategies resort directly to the extrapolation of past performance 
to predict the immediate future and such strategies are likely to fail under 
uncertain environments that are characterized precisely by the difficulty of 
defining a probability space based, for instance, on past realizations.  

Table 2.1 shows the correlation between the EPU Index (Baker et al., 2016) – 
the main proxy for macroeconomic uncertainty used herein – and other 
variables frequently employed to account for uncertainty, including, the 
volatility of economic activity, market volatility and residual-based indexes of 
uncertainty. In examining these relations, we have focused on a set of 
measures that can be traced from the beginning of the estimation sample 
(January 1927) to the end (June 2017). In this way, we seek to preserve the 
internal coherence of the calculations reported across all the sections of this 
study.  

 

Table 2.1 

 Correlation between Macro-Uncertainty and Macroeconomic/Market Variables 

The table shows the correlation between the EPU index (Baker et al., 2016), used here as a 
proxy for macroeconomic uncertainty, and macroeconomic activity, macroeconomic 
volatility, total market volatility, ‘good’ and ‘bad’ volatility measures, and financial 
uncertainty. IP is the linearly de-trended index of industrial production for the US economy, 
IP Vol is the square of the monthly growth rate of IP, Market RV is the monthly realized 
volatility of the market portfolio using daily excess returns, Bad RV is the lower semivariance 
of the market portfolio using daily excess returns, Bad RV is the upper semivariance of the 
market portfolio using daily excess returns, and F. Unc. is a proxy for financial uncertainty 
constructed as in Chuliá et al. (2017), that is, using the residuals of an unobservable factor 
model of the excess equity returns. Semivariances were constructed following Barndorff-
Nielsen et al. (2010). All the correlations reported are statistically significant at the 99.9% 
level of confidence. The sample period spans January 1927-June 2017 for a total of 1,086 
observations. All the correlations are expressed in percentage points. Correlations between 
EPU and the other variables are highlighted in bold. 

 

 EPU IP IP Vol Market RV Bad RV Good RV F.Unc. 

EPU  - 24.68 11.58 24.95 21.94 24.66 28.03 

IP   - - 8.59 22.58 20.16 21.95 54.04 

IP Vol  - - - 25.22 20.06 27.52 32.87 

Market RV  - - - - 94.18 91.25 51.32 

Bad RV  - - - - - 72.18 44.52 

Good RV  - - - - - - 51.48 

F. Unc. 
 - - - - - - 

- 
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As can be observed, the EPU Index is positively related to economic activity 
and its volatility; to market volatility (measured as the monthly realized 
variance of the market factor); to both good and bad market volatility 
measures (measured as positive and negative semivariances, as proposed by 
Barndorff-Nielsen et al., 2010); and, also, to other uncertainty indexes based 
on the estimation of a residual volatility, calculated after controlling for the 
forecastable component of the system volatility.  

However, the main point to notice here is that none of these correlations 
exceeds 30%. That is, uncertainty, as it is proxied here, is not the same as 
economic activity, its volatility, or different market volatility measures. 
Interestingly, the index of financial uncertainty developed by Chuliá et al. 
(2017)7, which generates nearly identical macroeconomic dynamics to that of 
the macro-uncertainty index proposed by Jurado et al. (2015) and available 
from July 1967 (see Chuliá et al., 2017), presents a stronger correlation with 
economic activity, as measured by industrial production and the other selected 
market volatility proxies, than that presented by the EPU Index (Baker et al., 
2016). 

Figure 2.1 shows the dynamics of the uncertainty index between January 1927 
and June 2017, highlighting periods of high uncertainty (Panel A) and 
economic recessions (Panel B). High uncertainty episodes correspond in the 
plot to 20% of the sample associated with the highest uncertainty indicator 
values (217 observations), while economic recessions correspond to the 
months between a peak and a trough as dated by the NBER (211 observations). 
A visual inspection indicates that the two phenomena do not necessarily 
match. Indeed, in line with Harding and Pagan (2006), it is possible to 
calculate a synchronization statistic using two dummy variables: one indicating 
high uncertainty, the other indicating periods of recession. This statistic lies 
between 0 and 1, where 0 indicates that the two phenomena are perfectly 
discordant (i.e. when there is recession, there is never high uncertainty), and 1 
indicates that they are perfectly concordant (i.e. when there is recession, there 
is always high uncertainty alike). A value close to 0.5 indicates that the two 
phenomena are largely independent. Here, the concordance statistic between 
recessions and high uncertainty is 0.48, indicating that the two phenomena are 
largely independent. This confirms our analysis (see correlations in Table 2.1) 
of the nature of uncertainty: while uncertainty may be present at the same time 
as an economic recession, it is not only present during such bad economic 
states. Thus, there are also many episodes of recession during which 
uncertainty is not particularly high.  

As can be seen, the grey areas in Panel A match documented historical 
episodes, including economic recessions (1929, 1933, 1937, 1945), bubble 

                                                        
7 Publicly available at http://www.ub.edu/rfa/uncertainty-index/ 
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inflation and subsequent bursts and market crashes (1987, 2000-2002, 2007-
2008), and episodes of financial and economic turmoil (2009-2011). We also 
see episodes of high uncertainty that are unrelated to ‘bad’ economic 
conditions. Consider for instance the high-tech revolution of the early-mid 
1990s, which is identified as a state of high uncertainty. According to Segal et 
al. (2015, p. 117) “with the introduction of the world-wide-web, a common 
view was that this technology would provide many positive growth 
opportunities that would enhance the economy, yet it was unknown by how 
much”. They refer to such situations as ‘good’ uncertainty.  

 

Panel A 

 

Panel B 

 

Figure 2.1 High uncertainty vs recessionary states. Panel A plots the index developed by 
Baker et al. (2016) and highlights the months with the highest levels of uncertainty (above 
the series 80th percentile). Panel B plots the same index and highlights recessions in the US 
economy as dated by the NBER. The sample period runs from January 1927 to June 2017. 
The concordance statistic between the highest uncertainty indicator (217 obs.) and the 
recession dummy variable (211 obs.) is 48.65%.  

 

2.4. Abnormal Returns of Momentum Strategies 

A. High Economic Uncertainty and Abnormal Returns. 

One of the main contributions of this study derives from the estimation of 
equation 2.1: 

𝑊𝑀𝐿𝑡 = ±𝛼 ± 𝑏𝑅𝑀𝑅𝐹𝑅𝑀𝑅𝐹 ± 𝑏𝑆𝑀𝐵𝑆𝑀𝐵𝑡 ± 𝑏𝐻𝑀𝐿𝐻𝑀𝐿𝑡 … 

±𝑏𝐻.𝑈𝑁𝐶.𝐻. 𝑈𝑁𝐶𝑡 ± 𝑏𝑅𝐸𝐶𝑅𝐸𝐶𝑡 ± 𝑜𝑡ℎ𝑒𝑟 + 𝑛𝑜𝑖𝑠𝑒𝑡, (2.1) 

which shows the regression of the monthly returns of a portfolio of WML on 
market (RMRF), small minus big (SMB) and high minus low (HML) factors. 
Depending on the specification, it also includes a dummy variable for high 
economic uncertainty (H.UNC); a dummy variable indicating macroeconomic 
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contractions (REC), including the great depression and the great recession; 
other variables that account for ‘good’ and ‘bad’ economic uncertainty; and 
some interaction effects. The expected sign of the intercept in this regression 
is positive, which means that, after controlling for traditional risk factors, 
momentum is expected to offer statistically and economically significant 
abnormal returns. The expected signs of the loadings on the risk factors are 
negative, which implies that momentum is expected to diversify risk through 
the sample.  

Following the working hypothesis forwarded in the introduction, the expected 
sign of the indicator variable of high uncertainty is also negative, because 
during episodes of high uncertainty investors may find it more difficult to 
construct accurate expectations about future winners and losers based on past 
performance – as momentum strategies seek to do – which in turn may reduce 
average abnormal returns of momentum. In line with the literature that 
identifies a negative relationship between economic states and momentum 
performance, the expected sign of the recession indicator is negative. Finally, 
we also analyze the effects of the interaction between periods of high 
economic uncertainty and recessions, which basically means ‘bad news’, as 
investors face both bad economic states and high uncertainty (H. BAD UNC); 
between high economic uncertainty and periods of economic expansion, 
which are naturally related to episodes of ‘good’ uncertainty (H. GOOD 
UNC); and, finally, the interaction between bad economic states and low 
economic uncertainty, which is mostly a situation of low bad uncertainty (L. 
BAD UNC). 

The estimates corresponding to the different equation 2.1 specifications, and 
the associated t-statistics are presented in Table 2.2. These regressions were 
estimated using different thresholds to determine whether a situation might be 
considered to be of high uncertainty. Specifically, in Panels A, B and C, high 
uncertainty corresponds to the months in which the uncertainty index was 
above the 70th, 80th and 90th percentiles, respectively.  

The first two columns of each panel show the estimated slopes and t-statistics, 
without including any additional variable on top of the traditional risk factors. 
As such, the values in these three columns are invariable across the three 
specifications. As expected, in the three panels, the abnormal returns of 
momentum (ALPHA) are positive, after controlling for the risk factors, and 
account for an abnormal return of 1.76% per month, which corresponds to 
21.12% per year. This represents an impressive level of abnormal returns as 
emphasized by Barroso and Santa-Clara (2015), who report very similar results 
in this regard (1.75% per month, and 21% per year). Exposure to the risk 
factors is also negative, and statistically significant in these regressions. 
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Table 2.2 
 Momentum Abnormal Returns and Macroeconomic Uncertainty 

The table shows the results of a regression of WML returns on market, size and value 
factors. It also shows estimates that include, on top of the three aforementioned factors, an 
indicator variable for high economic uncertainty regimes, H. UNC (that is, above the 70th, 
80th, and 90th percentiles in the EPU index); an indicator variable for recessionary periods 
(REC), an indicator variable of whether the economy is in a high uncertainty regime and an 
expansion period, referred to as high good uncertainty (H. GOOD UNC); and, an indicator of 
whether the economy is in a recession and a high uncertainty regime, referred to as high bad 
uncertainty (H. BAD UNC). Finally, the table also shows the estimated slopes of an 
indicator that identifies episodes of recession and low uncertainty regimes (below the 
respective thresholds), labeled as low bad uncertainty (L. BAD UNC). The impact of high 
uncertainty on the abnormal returns of momentum across different uncertainty thresholds is 
in bold.  

 
Panel A. 70th Percentile  

 
b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.76 8.43 2.17 8.78 2.35 8.83 2.18 8.84 1.96 8.44 

RMRF -0.38 -9.19 -0.39 -9.33 -0.39 -9.47 -0.39 -9.46 -0.39 -9.46 

SMB -0.20 -2.92 -0.19 -2.75 -0.19 -2.77 -0.19 -2.86 -0.20 -2.94 

HML -0.74 -12.14 -0.73 -12.14 -0.73 -12.15 -0.73 -12.14 -0.73 -12.15 

H.UNC 

 
-1.38 -3.78 -1.34 -3.00 

    
REC 

    
-0.93 -1.79 

    H. GOOD 
UNC 

      
-1.00 -2.32 

  H. BAD 
UNC 

      
-2.74 -3.25 -2.49 -3.70 

L. BAD 
UNC 

        
-0.23 -0.38 

 

 
Panel B. 80th Percentile  

ALPHA 1.76 8.43 2.16 9.33 2.34 9.29 2.17 9.39 1.97 8.49 

RMRF -0.38 -9.19 -0.39 -9.36 -0.39 -9.52 -0.39 -9.56 -0.40 -9.55 

SMB -0.20 -2.92 -0.19 -2.89 -0.20 -2.98 -0.20 -2.93 -0.20 -2.97 

HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.36 -0.75 -12.35 

H.UNC 

 
-2.00 -3.90 -1.97 -3.84 

    
REC 

    
-0.95 -1.82 

    H. GOOD 
UNC 

      
-1.37 -2.42 

  H. BAD 
UNC 

      
-4.22 -4.29 -4.31 -4.24 

L. BAD 
UNC 

        
-0.14 -0.24 

 

Panel C. 90th Percentile  

ALPHA 1.76 8.43 1.95 8.90 2.15 8.87 1.96 8.98 1.97 8.57 

RMRF -0.38 -9.19 -0.39 -9.36 -0.39 -9.46 -0.39 -9.52 -0.40 -9.53 

SMB -0.20 -2.92 -0.20 -2.91 -0.20 -2.93 -0.20 -2.92 -0.20 -2.93 

HML -0.74 -12.14 -0.74 -12.28 -0.74 -12.30 -0.76 -12.53 -0.76 -12.49 

H.UNC 

 
-1.95 -2.78 -1.88 -2.75 

    
REC 

    
-0.99 -1.89 
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H. GOOD 
UNC 

      
-0.97 -1.19 

  H. BAD 
UNC 

      
-5.57 -3.91 -5.52 -3.92 

L. BAD 
UNC                 -0.45 -0.82 

 

Interestingly, columns 3 and 4 of the table document that abnormal returns of 
momentum disappear during episodes of high uncertainty. For instance, when defining 
high uncertainty as the 20% (Panel B) of months with the highest values on 
the EPU index, the abnormal returns of momentum are 2.16% per month 
during low uncertainty regimes, and 0.16% during high uncertainty regimes 
(that is 2.16 minus 2.00%). The situation is similar if we focus on Panel A 
(from 2.17 to 0.79%, i.e. 2.17 - 2.00%) and on Panel C (from 1.95% to 0.00%, 
i.e. 1.95 - 1.95%). It seems that the more extreme the uncertainty, the greater 
the reduction in the abnormal returns of momentum (for example, when we 
go from the 70th to the 80th percentile), but this relationship is not linear. 
Rather it appears to be better described by an uncertainty threshold (because 
when we go from the 80th to the 90th percentile, the amount of abnormal 
returns does fall, but not as much as when we go from the 70th to the 80th 
percentile).  

Columns 5 and 6 of Table 2.1 specifically test whether the reduction in the 
abnormal returns of momentum might be attributed to the underlying 
economic state (i.e. recessions), as opposed to the level of uncertainty. Here, 
we included a dummy variable indicating recessionary periods as dated by the 
NBER. The results are conclusive in all three cases. The effect of uncertainty 
on abnormal returns of momentum (that is, the coefficient of the uncertainty 
dummy variable) remains unaltered when we include the recession dummy 
variable. Moreover, while the high uncertainty indicator remains significant in 
all three panels, the recession variable presents the expected sign (negative), 
but does not present a t-statistic above 2.0 in any of the three specifications 
(although it is very close to doing so, especially, in Panel C). This provides 
solid evidence in support of the hypothesis that uncertainty is the main driver 
of the reduction in momentum profits, as opposed to bad economic states. 

Columns 7 and 8 decompose the effect of uncertainty into ‘bad’ uncertainty 
situations, that is, when episodes of high uncertainty coincide with an 
economic recession, and ‘good’ uncertainty situations, in which uncertainty is 
high but there is an underlying economic expansion. Noticeably, a negative 
sign accompanies both sorts of uncertainty. That is, high uncertainty impacts 
negatively and significantly the performance of momentum portfolios, 
regardless of whether it is good or bad.  

Columns 9 and 10 show an alternative decomposition, namely, estimates of 
recessions divided between those with high and those with low economic 
uncertainty. Here again the effect of recessionary states is always negative on 
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WML performance, regardless of the level of uncertainty. However, in the 
three threshold specifications considered, the negative effects of recessions 
with low economic uncertainty are not statistically different from zero. 
Moreover, the magnitude of the effect is also considerably smaller compared 
to that estimated in the case of an economic recession coinciding with high 
uncertainty, which is by far the most damaging state for momentum returns. 
During such periods, the average monthly abnormal returns of the momentum 
strategies fall, approximately, to within a range of between -2.00 and -2.34% 
(with an uncertainty threshold of 80% when considering columns 7 and 9, 
respectively).  

B. Estimation of High Economic Uncertainty States 

The estimates in Table 2.2  suffer the drawback of being subject to the 
exogenous, and perhaps arbitrary, selection of the threshold above which 
uncertainty is considered high. However, this does not affect the main result, 
i.e. that high economic uncertainty reduces (to the point of collapse) abnormal 
returns of momentum strategies, because the sign and the magnitude of the 
effect do not vary greatly with the threshold specification. Nevertheless, it is 
preferable to offer estimates that are not open to this criticism and which can 
provide a more accurate measure of the changes in the abnormal returns of 
momentum with the level of economic uncertainty.  

For this reason, in Table 2.3  we show the estimates of a model in which the 
threshold signaling when economic uncertainty is above its ordinary levels has 
been estimated endogenously. To this end, we estimated a Smooth Transition 
Regression Model (STR) in line with McAleer and Medeiros (2008) 8  and 
Hillebrand et al. (2013)9. This framework is particularly suited to this purpose 
as it allows us to condition abnormal returns of momentum on the level of 
uncertainty in an endogenous fashion. The model assumes that the transition 
from states of low to high uncertainty is smooth and includes abrupt switches 
between the states as a special case.  

Below, we describe a specialization of the general model that transits between 
two extreme regimes associated with low and high uncertainty in the economy. 
We estimated the following equation: 

𝑊𝑀𝐿𝑡 = 𝐺(𝐗𝒕, 𝑢𝑡; 𝝍) +𝐖𝒕
′𝒃𝒘 + �̃�𝑡,   (2.2) 

                                                        
8 In this case, known as HARST, a multiple-regime smooth transition of the heterogeneous 
autoregressive model. We did not, however, consider autoregressive terms because no 
theoretical insights are to be gained from their inclusion in the model. Moreover, in contrast 
to our study, the authors of the original model use the model to estimate conditional 
volatilities of several returns of stock market indices in the global economy, using lagged 
variables to condition the transition. 
9 Variations of this model have been used in Hillebrand and Medeiros (2016) and Fernandes 
et al. (2014). 
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where 𝑊𝑀𝐿𝑡are the series of monthly returns of the winners minus losers 

strategy. 𝐺(𝐗𝒕, 𝑢𝑡; 𝝍) is a nonlinear function of the switching variables 

depending on  𝐗𝒕 , which in this case consists of a constant (i.e.  𝐗𝒕 = 𝟏) 

employed to estimate the abnormal returns of momentum (𝛼 in equation 2.1), 

and 𝑢𝑡, which is the transition variable that governs the switching between the 

two regimes (namely the uncertainty index). It also depends on  𝝍 , which 

groups the parameters associated to 𝐺 . 𝐖𝒕  is a 𝑇 × 3 matrix containing the 
risk factors with linear (non-switching) loads and their associated coefficients 

𝒃𝒘, namely 𝐖𝒕 = [𝑅𝑀𝑅𝐹𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡]. Finally, �̃�𝑡 is a vector of random 
noise residuals. This model can be further specialized as follows: 

𝑊𝑀𝐿𝑡 = 𝒃𝟎 + 𝒃𝟏𝑓(𝑢𝑡; 𝛾, 𝑐
∗) +𝐖𝒕

′𝒃𝒘 + �̃�𝑡,       (2.3) 

where 𝑓(𝑢𝑡; 𝛾, 𝑐
∗) is the logistic function given by: 

𝑓(𝑢𝑡; 𝛾, 𝑐
∗) =

1

1+𝑒−𝛾(𝑢𝑡−𝑐
∗) ,   (2.4) 

where 𝛾 is the slope parameter and 𝑐∗  can be understood as a threshold value 
that also needs to be estimated. This threshold separates low from high 

uncertainty regimes and is instrumental. Notice that 𝑓(𝑢𝑡;  𝛾, 𝑐
∗)  is 

monotonically increasing in 𝑢𝑡  and, therefore, 𝑓(𝑢𝑡;  𝛾, 𝑐
∗) → 1  as 𝑢𝑡 → ∞ 

and 𝑓(𝑢𝑡;  𝛾, 𝑐
∗) → 0 as 𝑢𝑡 → −∞. For this reason 𝒃𝟎 should be thought of 

as containing the abnormal returns of the momentum portfolio during a low 

uncertainty regime, while 𝒃𝟎 + 𝒃𝟏 are the abnormal returns of the momentum 
strategy in a high uncertainty regime. Hence, the level of uncertainty determines 
the abnormal returns provided by the momentum portfolio.  

Two interpretations of the STR model are possible. On the one hand, the 
model can be considered as a regime-switching model allowing for two 
regimes associated with the extreme values of the transition function 

𝑓(𝑢𝑡;  𝛾, 𝑐
∗) = 0 and 𝑓(𝑢𝑡;  𝛾, 𝑐

∗) = 1, where the transition from one regime 
to another is smooth. On the other hand, the STR model can be considered as 
allowing a continuum of regimes, each associated with a different value of 

𝑓(𝑢𝑡;  𝛾, 𝑐
∗). Here, we adopt the first interpretation. 

In our calculations, 𝑐∗ = 121.55  with a standard error of 12.75. This 
corresponds to the 80.15th percentile of the EPU index. Table 2.3 shows the 
estimates of the regression of WML returns on the risk factors and on the 
other covariates, as explained above. As can be seen, these estimates are 
largely similar to those for the 80th percentile in Table 2.2 (Panel B). But in this 
case they arise endogenously from the observed abnormal returns and the 
given model specification, since the uncertainty threshold was also estimated. 

As expected, columns 7-10 indicate that a combination of high uncertainty 
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regimes and recessions has the greatest impact on the performance of 
momentum strategies. Columns 7 and 9 show that abnormal returns fall to -
2.18 (2.17 minus 4.35) per month, corresponding basically to a momentum 
crash. In contrast, and consistent with the analysis reported above, 
recessionary states unaccompanied by high uncertainty regimes do not present 
statistically significant effects on abnormal returns of momentum. This 
indicates that uncertainty appears to be the economic state that underlies 
momentum performance deterioration as opposed to contractions in 
economic activity.  

 
Table 2.3 

Abnormal Returns of Momentum and Macroeconomic Uncertainty with an 
Estimated Endogenous Threshold 

The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55); an indicator variable for recessionary periods (REC); an indicator variable of 
whether the economy is in a high uncertainty regime and an expansion period, referred to as 
high good uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a 
recession and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). 
Finally, the table also shows the estimated slopes of an indicator that identifies episodes of 
recession and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The endogenous threshold was estimated using a Smooth 
Transition Regression model that consists of two extreme regimes, one of low uncertainty 
and one of high uncertainty. The transition variable in this model is the EPU index and the 
switching coefficient between the two regimes is the intercept, which measures the abnormal 
returns of momentum. The impact of high uncertainty on the abnormal returns of 
momentum is in bold. 

 

Endogenous Threshold (Percentile 80.15) 

 

b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.76 8.43 2.16 9.35 2.35 9.36 2.17 9.41 1.97 8.53 

RMRF -0.38 -9.19 -0.39 -9.38 -0.39 -9.53 -0.40 -9.70 -0.40 -9.61 

SMB -0.20 -2.92 -0.19 -2.88 -0.19 -2.89 -0.19 -2.90 -0.20 -2.93 

HML -0.74 -12.14 -0.74 -12.24 -0.74 -12.25 -0.74 -12.37 -0.75 -12.36 

H.UNC 

 
-2.20 -3.93 -1.99 -3.89 

    
REC 

    
-0.95 -1.83 

    H. GOOD 
UNC 

      
-1.37 -2.42 

  
H. BAD UNC 

      
-4.35 -4.29 -4.15 -4.81 

L. BAD UNC                 -0.13 -0.22 

 
C. Momentum Moments under High and Low Economic Uncertainty  

To gain further insights into the evolving nature of momentum under 
different regimes of uncertainty, we estimated sample statistics of the 
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momentum portfolio for the full sample and for two subsamples based on the 
above estimates of low and high uncertainty states (below and above the value 
of 121.55 on the EPU index). To construct comparable measures of skewness, 
variance, and kurtosis across the sub-samples, we decomposed the traditional 
formula for the kth central moment as follows.  

Thus,  

�̅�𝑘 =
1 𝑁∑ (𝑋𝑖−�̅�)

𝑘𝑁
1⁄

(√1 𝑁∑ (𝑋𝑖−�̅�)
2𝑁

1⁄ )

𝑘 =
1 𝑁∑ (𝑋𝑖−�̅�)

𝑘𝑁
1⁄

𝜎𝑘
,   (2.5) 

where �̅�𝑘 , is the kth standardized central moment and 𝑁 is the sample size. 
Then we have that: 

�̅�𝑘 =
1 𝑁(𝑋1−�̅�)

𝑘⁄

𝜎𝑘
+⋯+

1 𝑁(𝑋𝑁−�̅�)
𝑘⁄

𝜎𝑘
.   (2.6) 

If we group each term according to whether 𝑋𝑖 ≤ 𝑐∗  or 𝑋𝑖 > 𝑐∗ , that is, 
according to the set of low and high uncertainty regimes, respectively, we 
have: 

�̅�𝑘 =
1 𝑁∑ (𝑋𝑖−�̅�)

𝑘𝑁1
1⁄

𝜎𝑘
+

1 𝑁∑ (𝑋𝑖−�̅�)
𝑘𝑁2

1⁄

𝜎𝑘
,    (2.7) 

where 𝑁 = 𝑁1 + 𝑁2 , and 𝑁1,  𝑁2  are the observations in the low and high 
uncertainty regimes, respectively. This can be written as:  

�̅�𝑘 =
𝑁1 𝑁∑ (𝑋𝑖−�̅�)

𝑘 𝑁1⁄
𝑁1
1⁄

𝜎𝑘
+

𝑁2 𝑁∑ (𝑋𝑖−�̅�)
𝑘 𝑁2⁄

𝑁2
1⁄

𝜎𝑘
,   (2.8) 

if we define 
∑ (𝑋𝑖−�̅�)

𝑘 𝑁𝑗⁄
𝑁𝑗
1

𝜎𝑘
≡ �̅�𝑗={1,2}

𝑘 , we can decompose the original equation 

as: 

  �̅�𝑘 = �̅�1
𝑘 𝑁1

𝑁
+ �̅�2

𝑘 𝑁2

𝑁
.      (2.9) 

This is a weighted average of the sub-sample kth central moment, 

∑ (𝑋𝑖 − �̅�)
𝑘 𝑁𝑗⁄

𝑁𝑗
1 , standardized using the total-sample central moment 𝜎𝑘 , 

which in turn sums to the respective full-sample standardized moment, �̅�𝑘. 
The weights are the share of each uncertainty regime in the total sample.  

These and other sample statistics, together with the traditional Sharpe ratio 
across and within subsamples, are reported in Table 2.4. Differences across 
the uncertainty regimes are notorious. While the Sharpe ratio for the WML 
strategy in the total sample is 0.52 (independent of the uncertainty level), it 
increases to 0.75 during the low uncertainty regime, and virtually collapses 
during episodes of high uncertainty (-0.09). Moreover, the average return of 
the momentum strategies when uncertainty is low stands at 14.14, but it 
becomes negative and falls to -3.07 when uncertainty is high. Skewness ranges 
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from -2.01 in states of low uncertainty to -3.66 under high uncertainty. 
Likewise, standard deviation also increases by a factor of two, from 0.83 to 
1.70. Finally, the (excess) kurtosis increases considerably from 16.60 to 20.77. 
If we consider the changes in the mean together with the other moments of 
the momentum distribution, we document a dramatic increase in the 
likelihood of momentum crashes during periods of high uncertainty (which, 
when using the selected threshold, naturally account for approximately 20% of 

the sample, 
𝑁2

𝑁
= 19.98%). 

Table 2.4     
 Momentum Moments under High and Low Uncertainty Regimes 

 

Total  Low Uncertainty 
High 

Uncertainty 

Maximum 26.16 26.16 24.99 

Minimum -77.02 -77.02 -45.16 

Mean 14.14 18.39 -3.07 

Standard Deviation* 1.00 0.83 1.70 

Skewness* -2.34 -2.01 -3.66 

Kurtosis* 17.42 16.60 20.77 

Sharpe ratio 0.52 0.75 -0.09 

Num. Obs.  N=1086 N1 =871 N2 =215 

 

The rise in the Sharpe ratio following the abandonment of momentum trading 
when uncertainty is high is quite remarkable. For instance, if we compare the 
results in Table 2.4 with those reported by Barroso and Santa-Clara (2015), we 
see that while their volatility-managed strategy achieves an increase in the 
Sharpe ratio by an order of 1.83 (from 0.53 in the unmanaged version to 0.97 
in the managed version), here there is an increase by an order of 1.44 (from 
0.52 to 0.75) from a position of permanent momentum trading to one that 
excludes episodes of high uncertainty. Note that this result does not employ 
any time- varying scaling device, which would improve the Sharpe ratio even 
more, although this would imply higher transaction costs because of the 
portfolio rebalancing required each month, according to certain time-varying 
weights. Indeed, using stock level data from January 1927 to December 201610 
we calculate the turnover of the WML strategy as 80.62% per month, and the 
turnover of a strategy consisting of abandoning the momentum position when 
uncertainty is high, as 74.20% monthly, which implies a reduction of the 
turnover of 6.42% in average, per month 11 . All in all, excluding high 
uncertainty episodes from our momentum position represents an 

                                                        
10 Due to data restrictions in our subscription to CRSP, for the estimation of the turnover we 
had to exclude the last six months of our observations, namely, from January to June 2017.  
11 We calculate the turnover of momentum as in Barroso and Santa-Clara (2015), and as 
explained Appendix A. 
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economically significant improvement in terms of profitability, reduction of 
the transaction costs, and of the risk implied by the momentum strategy, 
which could be exploited by investors, in addition to other risk-management 
devices such as volatility scaling or other dynamic leveraging strategies. 

The inspection of the kernel densities of the three cases (i.e. total sample, low 
and high uncertainties) complements the above analysis (see Figure 2.2). As 
can be seen, excluding high uncertainty episodes not only switches the returns 
distribution to the right, but also brings about a reduction in the losses tail. 
This is evident if we compare the solid black line, corresponding to high 
uncertainty states, with the red- and blue-dotted lines, corresponding to the 
total sample and the low uncertainty states, respectively. 

 

 

Figure 2.2. Densities of WML monthly returns under high and low uncertainty. The 
kernel densities were estimated with the observations for the total sample (black solid line), 
the low uncertainty regime (blue-dotted line) and the high uncertainty regime (red-dotted 
line).  

 

D. Predictability of High Economic Uncertainty and Momentum Trading 

A strategy like the one outlined above, which basically involves a curtailment 
of momentum trading when uncertainty is high, is feasible if we can predict 
with some accuracy the state of macroeconomic uncertainty in the following 
month. Thus, investors would be able to decide in real time whether to 
continue their allocation based on momentum (if uncertainty were low 
enough) or whether to curtail their momentum exposure (if uncertainty were 
high). In this section, we analyze this possibility by assessing the persistence 
and predictability of the EPU index developed by Baker et al. (2016) and by 
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examining the variability of the high uncertainty threshold estimated around 
the 80th percentile. We also propose a strategy that can be implemented in real 
time. 

In a preliminary analysis an augmented Dickey-Fuller test was conducted and 
the null of a unit root was rejected at the 99% level of confidence. In Table 
2.5, we report the results of three regressions of the EPU index: on its first lag 
(first column); on two lagged months (third column); and, finally, on its third 
lag (sixth column). Besides the intercept of each regression (Alpha), and the 
autoregressive coefficient (Rho), the table also reports the out-of-sample R2 
(OOR2) statistic proposed by Campbell and Thompson (2008). We drew on a 
sample of 240 months to run initial regressions and then used the estimated 
coefficients and the last available observation from the EPU index, to forecast 
one-step ahead (one, two or three months ahead for each model, respectively). 
Then, each month we used an expanding window of one observation to 
produce out-of-sample forecasts and compared these with the accuracy of the 

historical mean 𝐸𝑃𝑈̅̅ ̅̅ ̅̅
𝑡, as in equation 2.10: 

𝑅𝑂𝑂𝑅2
2 = 1 −

∑ (�̂�𝑡+�̂�𝑡𝐸𝑃𝑈𝑡−𝐸𝑃𝑈𝑡+1)
2𝑇−1

𝑡=𝑇∗

∑ (𝐸𝑃𝑈̅̅ ̅̅ ̅̅ 𝑡−𝐸𝑃𝑈𝑡+1)
2𝑇−1

𝑡=𝑇∗
 ,    (2.10) 

where 𝑇∗  is the initial training sample. �̂�𝑡 , �̂�𝑡  and 𝐸𝑃𝑈̅̅ ̅̅ ̅̅
𝑡  are estimated with 

information available only up to time t, to ensure that the forecast is feasible in 
real time.  

As can be observed in Table 2.5, the EPU index is highly persistent. The one-
lag autoregressive coefficient is around 0.81 (while the two-lag and three-lag 
coefficients are 0.72 and 0.67, respectively). Moreover, the OOR2 reaches 
68% in the first case, and never falls below 47%, even when using three-
month lagged information for the EPU index. This means that the level of 
future economic uncertainty can be predicted with relative accuracy, and that 
by looking only at the current level of economic uncertainty, decisions can be 
taken about the momentum exposure of a given portfolio allocation. 
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Table 2.5 
 Predictive Power of Lags on Current Uncertainty 

The table shows the monthly estimates and t-statistics of a regression of current uncertainty 
on its own lags – that is,  one month - L(1), two months - L(2) and three months - L(3). It 
also shows the in-sample R-squared – R2, of the predictive regressions, and the out-of-
sample R-squared, OOR2, constructed as in Campbell and Thompson (2008). To estimate 
the OOR2, we used a training sample of 240 months to run the initial models. Then the 
estimated coefficients and the last sample observation of the EPU index were used to 
forecast uncertainty in the following month. Then, each subsequent month was included in 
an expanding window of observations to produce out-of-sample forecasts and compared 
with the accuracy of the historical mean.  

 

L(1) t-stat L(2) t-stat L(3) t-stat 

Alpha 17.74 9.82 26.31 12.29 30.38 13.37 

Pho 0.81 45.13 0.72 33.70 0.67 29.80 

OOR2 0.68   0.54   0.47   

 

Even if uncertainty is a persistent state, the estimation of the high uncertainty 
threshold may affect our decision as to whether to quit the momentum 
strategy in a given month – for example, if the uncertainty indicator is above a 
certain threshold. This threshold was estimated here at 121.55, which 
corresponds to the 80.15th percentile. If the uncertainty threshold (compared 
to the EPU index) is relatively stable over time, we can be confident about 
using it to inform our decision each month. In Figure 2.3 we show the time-
varying 80.15th percentile of the EPU index from April 1972 (first half of the 
sample) to the end. We estimated the empirical percentile each month using 
the information up to this point, so as to ensure that this estimation was 
feasible in real time.  

As can be observed, the uncertainty percentile is relatively stable. Indeed, the 
80.15th percentile remained close to its sample mean (115.57) during the 
sample period, with a standard deviation of 2.03, which is 17.80 times lower 
than the standard deviation of the EPU index (36.17). This constancy allows 
us to rely on the estimated percentile when fixing a future threshold of high 
uncertainty. 
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Figure 2.3. Time-varying high uncertainty percentile and EPU index. The figure 
shows the 80.15th percentile (red line) of the EPU index (black line) from April 1972 to the 
end of the sample. 

 

E. Designing the Strategy 

A simple portfolio strategy that consists on closing our exposure to 
momentum (both short and long positions) when we expect uncertainty to be 
high, leads to significant increments of the momentum profitability, and to an 
even more considerable reduction of the risks implied by the original 
momentum strategy. The threshold estimation at 121.55 presented before, was 
carried out using current uncertainty and, given that the one-lag 
autocorrelation coefficient of uncertainty is smaller than one (see table 2.5), we 
need a new (larger) threshold to implement our strategy in real time. We 
estimate this threshold at 145.02, using again our STR specification, but this 
time, employing lagged uncertainty as our state variable. Consistently, our 
proposed strategy consists of curtailing our exposure to momentum once we 
observed that last month uncertainty equals or is above 145.02. This number 
corresponds to the 90th percentile of the EPU index (see Table 2.2, panel C). 
In the second column of Table 2.6 we present the Sharpe ratio of this strategy 
alongside other moments of the return distribution of momentum, under low 
and high uncertainty states, while in Figure 2.4 we show the densities of the 
low and high expected uncertainty states, compared to the total sample 
density. Notice that this strategy leads to economic gains in terms of risk and 
return, even above those reported in Table 2.5 and Figure 2.3, and more 
importantly it is feasible in real time. 
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Table 2.6 
 Momentum Moments under High and Low Expected Uncertainty Regimes 

 

Total  Low Uncertainty 
High 

Uncertainty 

Maximum 26.16 26.16 24.99 

Minimum -77.02 -77.02 -60.17 

Mean 14.12 17.90 -19.74 

Standard Deviation* 1.00 0.81 2.67 

Skewness* -2.34 -1.49 -9.90 

Kurtosis* 7.81 7.05 12.77 

Sharpe Ratio 0.52 0.73 -0.45 

Num. Obs. 1085 976 109 

 

 

 

Figure 2.4. Densities of WML monthly returns under high and low expected 
uncertainty. The kernel densities were estimated with the observations for the total sample 
(black solid line), the low expected uncertainty regime (blue-dotted line) and the high-
expected uncertainty regime (red-dotted line).  

 

2.5. Excess Return Exposure to Momentum under Changing Economic 
Uncertainty 

A. Uncertainty as an Economic State in the Pricing Equation 

In this section, we show the results of the conditional three-factor model 
(Fama and French, 1993) augmented with a momentum factor (i.e. Cahart’s 
(1997) model), following the same STR methodology as outlined above in 
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equations 2.2-2.4. This allows us to condition the estimates of the momentum 
effects on the excess equity returns (momentum betas), and the intercept of 
the regression on the current economic uncertainty level. In so doing, we add 
to a nascent strand in the financial literature that analyzes the impact of 
uncertainty on stock prices (Brogaard and Detzel, 2015; Segal et al., 2015; Bali 
and Zhou, 2016). Unlike these authors, we describe a model that does not 
treat uncertainty as a risk factor common to all the analyzed portfolios in the 
RHS variables of the pricing equation, but as an economic regime, which has 
specific effects on each of the stock portfolios.  

The reason for undertaking this exercise is the same as that outlined in section 
I. We expect uncertainty to impact investors’ ability to construct an accurate 
probability distribution that can describe future winners and losers in the 
market and, as a result, during episodes of high uncertainty the momentum 
factor should lose relevance as an explanatory variable of excess returns. In 
other words, when uncertainty is high previous winners and losers do not 
provide a good forecasting ground of future winners and losers. Thus, 
momentum should not be priced in the cross-section of excess returns, or at 
least it should be priced to a lesser extent. In the same vein, a less relevant 
momentum factor should be associated with a lower adjustment of the four-
factor model to the data and, therefore, with higher pricing errors, when 
uncertainty is high. Below, we present evidence to support these claims. 

To this end, we estimated the following equation for each series of returns in 
25 value-weighted portfolios sorted according to size and momentum: 

𝐸𝑃𝑖𝑡 = 𝑏0𝑖
𝛼 + 𝑏0𝑖

𝑊𝑀𝐿𝑊𝑀𝐿𝑡 + (𝜆1𝑖
𝛼 + 𝜆1𝑖

𝑊𝑀𝐿𝑊𝑀𝐿𝑡)𝑓(𝑢𝑡; 𝛾𝑖 , 𝑐𝑖
∗) +𝐖𝒕

′𝒃𝒘𝒊 +
�̃�𝑖𝑡,       (2.11) 

 

where 𝐸𝑃 = 𝑅 − 𝑅𝐹  are the excess returns, 𝒃𝟎𝒊 = [𝑏0𝑖
𝛼 , 𝑏0𝑖

𝑀𝑂𝑀]  should be 
thought of as containing the linear exposure of the excess returns to the 
momentum factor, and the intercept, during a low uncertainty regime, while 

𝒃𝟎𝒊 + 𝝀𝟏𝒊  , where 𝝀𝟏𝒊 = [𝜆1𝑖
𝛼 + 𝜆1𝑖

𝑊𝑀𝐿] , is the exposure to the momentum 

factor (and the intercept) in an extreme high uncertainty regime, 𝐖𝒕 =
[𝑅𝑀𝑅𝐹𝑡 , 𝑆𝑀𝐵𝑡 , 𝐻𝑀𝐿𝑡] is a 𝑇 × 3 matrix containing the factors with linear 

(non-switching) exposure and their associated coefficients, such that  𝒃𝒘𝒊 =

[𝑏𝑅𝑀𝑅𝐹,𝑖 , 𝑏𝑆𝑀𝐵,𝑖 , 𝑏𝐻𝑀𝐿,𝑖]. 
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Table 2.7 
Non-Linear Three-Factor Model Conditioned on the Level of Economic Uncertainty  

The first five columns of the table show the estimates corresponding to the non-linear 

parameters in the smooth transition model. 𝑏𝑜
𝛼 and 𝑏𝑜

𝑀𝑂𝑀are the estimates of the intercept 

and the momentum factor, respectively, in the low-uncertainty regime. 𝜆1
𝛼 and 𝜆1

𝑀𝑂𝑀  are the 
estimates of the changes in these parameters from low to high uncertainty states, 
respectively. The last five columns show the associated t-statistics for each parameter 
(against the null of non-significance). One model was estimated for each portfolio of 25 
value-weighted portfolios sorted according to size and momentum. The variable that 
governs the transition between the two regimes was the economic policy uncertainty index. 
The estimation sample runs from January 1927 to June 2017, for a total of 1,086 
observations.  

                      

Mom  Low 2 3 4 High Low 2 3 4 High 

 
    𝑏0𝑖

𝛼      t(𝑏0𝑖
𝛼 ) 

Small -0.15 0.03 0.40 0.20 0.44 -1.28 0.32 3.69 1.76 2.53 

2 -0.14 -0.08 0.10 0.10 0.08 -1.61 -1.12 1.46 1.36 1.16 

3 -0.66 0.09 0.12 0.08 0.09 -2.78 1.44 1.38 0.89 1.33 

4 0.14 0.07 0.15 -0.02 0.08 1.30 0.80 1.59 -0.35 1.28 

Big -0.14 0.15 0.10 -0.03 0.10 -0.59 2.13 1.44 -0.42 0.65 

           

 
𝑏0𝑖
𝑊𝑀𝐿 t(𝑏0𝑖

𝑊𝑀𝐿) 

Small -0.34 -0.17 -0.15 0.00 0.05 -20.69 -11.04 -8.98 -0.25 1.87 

2 -0.40 -0.13 -0.05 0.05 0.23 -31.62 -11.42 -4.82 4.10 21.67 

3 -0.32 -0.18 -0.12 0.00 0.26 -5.27 -20.01 -8.83 -0.24 28.01 

4 -0.51 -0.25 -0.12 0.08 0.28 -30.89 -18.17 -7.41 9.17 30.48 

Big -0.50 -0.25 -0.13 0.06 0.33 -14.02 -25.01 -11.82 4.85 9.40 

           

 
𝜆1𝑖
𝛼  t(𝜆1𝑖

𝛼 ) 

Small 0.18 0.56 -0.01 0.35 -0.21 0.58 2.67 -0.03 1.03 -0.93 

2 -0.21 0.45 -0.09 0.24 0.07 -1.17 3.48 -0.51 1.53 0.34 

3 0.63 0.11 -0.07 -0.07 0.00 2.53 0.61 -0.61 -0.60 -0.01 

4 -0.31 0.02 -0.04 0.40 -0.05 -1.55 0.18 -0.38 2.44 -0.25 

Big -0.10 0.13 -0.10 0.12 -0.25 -0.16 0.69 -0.99 1.21 -1.55 

           

 
𝜆1𝑖
𝑊𝑀𝐿 t(𝜆1𝑖

𝑊𝑀𝐿) 

Small -0.16 0.06 0.16 0.18 0.16 -4.96 2.49 6.83 5.07 5.20 

2 0.07 -0.06 0.07 0.05 -0.07 3.61 -4.06 3.68 2.67 -3.40 

3 -0.12 0.09 0.08 0.11 -0.07 -1.91 4.58 5.06 6.06 -3.28 

4 0.10 0.09 0.08 -0.05 -0.05 4.43 5.56 4.29 -3.40 -2.50 

Big 0.13 0.09 0.08 0.03 -0.06 1.96 4.54 6.08 2.22 -1.75 
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The non-linear estimates of the momentum factor exposures and the pricing 
errors (the intercepts) are presented in columns 1 to 5 of Table 2.7, together 
with their t-statistics in columns 6 to 10. In the first 5 rows, we report the 
estimates of the intercepts, corresponding to the low uncertainty regime, for 
each of the momentum (columns) and size (rows) portfolio quintiles. That is, 

the estimates of parameter 𝑏𝑜
𝛼  in equation 2.11. As is evident, only in four 

cases (out of 25) do these intercepts present a t-statistic above 2.0 and, 
therefore, for most of the models they are not statistically different from zero. 
In the second set of estimates, we report the estimates corresponding to the 

momentum exposures (rows 11 to 15, parameter 𝑏𝑜
𝑀𝑂𝑀 ). In this case, the 

number of t-statistics above 2.0 rises to 22 (out of 25), which points to the 
significant role of momentum in explaining the excess returns during low-
uncertainty regimes. All the coefficients associated with the momentum factor 
in the first 3 quintiles are negative, while they are close to zero in the fourth 
quintile, and positive for the quintile of the winners (the fifth). As expected, 
the most significant exposures, be they negative or positive, are found in the 
first and the fifth quintiles of the momentum distribution.  

In rows 11 to 15 and 16 to 20, we can observe the estimates of 𝝀𝟏𝒊 =
[𝜆1𝑖
𝛼 + 𝜆1𝑖

𝑊𝑀𝐿] , that is, the estimates of the changes in the non-linear 
parameters from a low to a high uncertainty regime. Once again, the changes 
in the intercept are statistically insignificant most of the time (except in four 
cases). The point estimates of these changes are as likely to be negative (12) as 
they are positive (13), regardless of the corresponding quintile. In marked 
contrast, most of the changes in the momentum factor are associated with a t-
statistic above 2.0 (here, there are only two exceptions in which the t-statistic 
equals 1.75 and 1.97). In most cases, the changes are positive for the portfolios 
in quintiles 1 to 4 (with four exceptions) and negative for the portfolios in the 
fifth quintile (with one exception). These results seem to identify the 
momentum factor as the determinant of the non-linearity documented above, 
as opposed to the equations’ intercepts (pricing errors). 

In Panel A of Figure 2.5 the magnitude of exposure to momentum is shown 
under low and high uncertainty regimes. That is, for each portfolio, we plotted 

the coefficient 𝑏𝑜
𝑀𝑂𝑀  (in black) that measures the effect of momentum on 

excess returns, when uncertainty is low, and alongside it (in red) the exposure 

to momentum under a regime of high uncertainty (that is, 𝑏𝑜
𝑀𝑂𝑀 + 𝜆1

𝑀𝑂𝑀). In 
Panel B, the model’s estimated intercepts in both low uncertainty regimes 
(blue bars on the left) and high uncertainty regimes (grey bars on the right) are 
shown. The figure also displays 1.96 standard errors calculated as in the first 
regime. As expected, the portfolios most exposed to momentum are those in 
the first and the fifth quintiles of the momentum sort: the former in a negative 
sense, the latter positively. Between the two extreme quintiles, momentum 
exposure increases from losers to winners monotonically. Fama and French 
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(2016) document the same pattern, which is to be expected given the way in 
which the WML portfolios are constructed.    

    

Panel A. Momentum Exposures               Panel B. Intercepts (Absolute Value) 

 

Figure 2.5. Changes in the effect of momentum on excess returns and pricing errors. 
Panel A shows the coefficients associated with momentum in the “low uncertainty” (black 
bars on the left) and “high uncertainty” (red bars on the right) regimes. Panel B shows the 
absolute value of the model’s intercepts in the “low uncertainty” (grey bars on the left) and 
“high uncertainty” (blue bars on the right) regimes. The dotted line corresponds to 1.96 
times the standard error of the coefficient in the linear part of the model. These estimates 
were obtained using 25 value-weighted portfolios sorted according to size and momentum. 
The estimation sample runs from January 1927 to June 2017, for a total of 1,086 
observations. 
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Nevertheless, by visual inspection of the figure, we can confirm our main 
conclusion from Table 2.7: that is, exposure to momentum by the excess 
equity returns changes considerably depending on the regime of economic 
uncertainty. Indeed, if we divide the momentum portfolios into three groups: 
a) those that show an increase in their exposure to momentum when 
uncertainty is high, preserving the same sign in both low and high uncertainty 
states; b) those that undergo a change in the sign of their exposure during high 
uncertainty states, compared to that presented in low uncertainty; and c) those 
that show a decrease in their exposure to momentum as they move from 
episodes of low to high uncertainty, preserving the same sign in both cases, 
then we find that a generalized reduction in exposure to momentum (that is 
group c) is the most likely case (15 out of 25). The remaining portfolios either 
present a change in the sign of their exposure to momentum (four cases), or 
strengthen their low uncertainty exposure to it (six cases).  

To sum up, momentum betas become extremely volatile in regimes of high 
uncertainty, with just 24% of portfolios displaying a stronger exposure to the 
momentum factor, in the same direction as that shown during regimes of low 
uncertainty. These cases are mainly located in small firms (first and second 
quantiles in the size sorting account for four out of the six cases). All in all, 
during regimes of high economic uncertainty, momentum relevance as a risk factor disappears 
in relation to most portfolios, while it only keeps relevance for a few small firm portfolios. 

These results can be attributed to the fact that during episodes of high 
uncertainty, exposure of excess returns to the momentum factor falls, because 
investors lack the information required to construct an accurate probability of 
the expected future distribution of winners and losers, having to rely on the 
last information available before the current period, and moreover they are 
aware of this. This situation occurs precisely because uncertainty is related to 
the changing economic environment, in which it is more difficult to forecast 
than it is in a regular market. In short, investors are aware of possible changes 
in the market fundamentals that might affect the future performance of firms 
and portfolios.  

These results are also consistent with the hypothesis that the cognitive or 
behavioral biases, which are generally used to explain momentum (see, for 
example, Daniel et al., 1998, and Hong and Stein, 1999), tend to operate under 
low uncertainty regimes. Under such circumstances, they reinforce market 
trends, which means momentum profits depend on the market state (Gervais 
et al., 2001; Cooper et al., 2004), but they tend not to operate, at least with the 
same magnitude, under high uncertainty regimes. During episodes of high 
uncertainty, either the number of ‘momentum traders’ falls or the ‘reinforcing’ 
and ‘self-attribution’ biases disappear, depending on the narrative.  

This mechanism suggests a differentiated way in which investors form their 
expectations, according to the level of generalized uncertainty in the economy. 
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While under more regular risky circumstances, when uncertainty is low, they 
are more prone to the traditional biases documented by the literature (and 
which may explain the momentum anomaly), under more extreme uncertainty 
(which they do not assimilate as risk), the investors resort to a more cognitive 
approach to investment, and therefore the momentum conundrum disappears.   

B. Pricing Errors of the Three-Factor Model under High and Low Uncertainty. 

The discussion above is confirmed by decomposing the pricing errors of the 
Fama-French three-factor model augmented with the WML factor during 

episodes of low and high uncertainty. Table 2.8 exhibits 𝐴|𝑎𝑖|, which is the 
average of the absolute values of the intercepts in each regime and in the linear 

specification. The second set of estimates in the table shows  𝐴|𝑎𝑖| 𝐴|�̃�𝑖|⁄ , 
which was calculated as the average of the absolute values of the intercepts in 

each regime divided by the average of the absolute values of �̃�𝑖 . �̃�𝑖  is the 
dispersion of the equity premium temporal means around their cross-sectional mean. 
That is, we calculated the temporal means for each equity premium series 

as �̅�𝑖 = ∑ 𝑒𝑝𝑖𝑡 𝑇⁄𝑇 . Here, T varies according to the number of observations in 

each regime and in the total sample. Then, we subtracted from each �̅�𝑖   the 

cross-sectional mean: �̿� = ∑ �̅�𝑖 𝑁⁄𝑁 , such that �̃�𝑖 = �̅�𝑖 − �̿�. Finally, Table 2.7 

also reports 𝐴(𝑎𝑖
2)/𝐴(�̃�𝑖

2) , this is the average squared intercept over the 

average squared value of �̃�𝑖  corrected for the sampling error in the numerator 

and denominator. We calculated 𝐴|𝑎𝑖| in the low uncertainty regime, as the 

average absolute value of the intercepts in this regression, and 𝐴|𝑎𝑖| in the 
high uncertainty regime, as the average absolute value of the same intercepts 

plus 𝑑𝑖 in the following equation: 

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝑎𝑖 + 𝑏𝑖𝑅𝑀𝑅𝐹𝑡 + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 +𝑚𝑖𝑊𝑀𝐿𝑡 …   

+𝑑𝑖𝑑𝑖𝑡
𝑢𝑛𝑐 + 𝑖𝑖𝑑𝑖𝑡

𝑢𝑛𝑐 ∗ 𝑊𝑀𝐿𝑡 + 𝑒𝑖𝑡, (2.12) 

where 𝑑𝑖𝑡
𝑢𝑛𝑐  indicates whether the probability of the high uncertainty regime is 

higher than 0.5. We also constructed separate series of �̃�𝑖  for high and low 

uncertainty regimes, according to the probability 𝑓(𝑢𝑡; 𝛾, 𝑐) . When 

𝑓(𝑢𝑡; 𝛾, 𝑐) > 0.5, we classified the observation in a month belonging to a 

high uncertainty regime. In contrast, when 𝑓(𝑢𝑡; 𝛾, 𝑐) ≤ 0.5, we classified the 
observation in a month belonging to a low uncertainty regime.  

Comparing the linear model with the non-linear estimates, we found that the 
linear model always houses smaller pricing errors on average than the low or 
high uncertainty regimes separately. Although this might at first glance appear 
surprising, as one would naively expect this intercept to lie in-between the 
intercepts of the two uncertainty states, this is not in fact the case. It is 
perfectly feasible for the linear model to exhibit an average intercept below 
that of both the low and the high uncertainty regime. This does not point to 
some superior qualities of the linear model, but rather that the value of the 
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intercepts in the linear specification, on average, conceals temporal pricing 
errors that are actually larger, but with different signs, in each of the two 
uncertainty states. On occasions the linear model overprices and on others it 
underprices the LHS portfolios and, as a result, part of the errors is cancelled 
out when the full-sample intercept is estimated (because of time-averaging, as 
opposed to cross-sectional averaging, which is taken into account using the 
absolute value operator as was explained above). 

In short, Table 2.7 shows that the pricing errors are consistently higher during 
episodes of high uncertainty, even after controlling for the excess return 
variance in each regime. The reduction in exposure to the momentum factor 
caused by the change in the level of economic uncertainty leads to a reduction 
in the model adjustment, which is consistent with our previous discussion. 

 
Table 2.8        

Pricing Errors in High and Low Uncertainty Regimes 

The table shows the statistic 
𝐴|𝑎𝑖|

𝐴|�̃�𝑖|
. 𝐴|𝑎𝑖|  is the average of the absolute values of the 

intercepts in each regime. 𝐴|�̃�𝑖|   is the average of the absolute values of �̃�𝑖 . �̃�𝑖  is the 

dispersion of the equity premium means over time around their cross-sectional mean. 𝐴(𝑎𝑖
2)/

𝐴(�̃�𝑖
2) is the average squared intercept over the average squared value of �̃�𝑖 . We estimated a 

nesting model as:  

𝑅𝑖𝑡 − 𝑅𝐹𝑡 = 𝑎𝑖 + 𝑏𝑖𝑅𝑀𝑅𝐹𝑡 + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖𝐻𝑀𝐿𝑡 +𝑚𝑖𝑊𝑀𝐿𝑡 + 𝑑𝑖𝑑𝑖𝑡
𝑢𝑛𝑐 + 𝑖𝑖𝑑𝑖𝑡

𝑢𝑛𝑐 ∗
𝑊𝑀𝐿𝑡 + 𝑒𝑖𝑡,  

where 𝑑𝑖𝑡
𝑢𝑛𝑐   indicates whether the probability of the high uncertainty regime is higher than 

0.5. We calculated 𝐴|𝑎𝑖| in the low uncertainty regime as the average absolute value of 𝑎𝑖 
and 𝐴|𝑎𝑖| in the high uncertainty regime, as the average absolute value of 𝑎𝑖 + 𝑑𝑖 .  

5X5 size-momentum portfolios 

 
𝐴|𝑎𝑖| 𝐴|𝑎𝑖| 𝐴|�̃�𝑖|⁄  𝐴(𝑎𝑖

2)/𝐴(�̃�𝑖
2) 

Linear Model 0.11 0.36 0.12 

  Low Uncertainty 0.15 0.40 0.21 

  High Uncertainty 0.20 0.60 0.40 

 

2.6. Uncertainty, Liquidity and Market States  

In this section we examine whether our findings regarding the significant 
impact of high uncertainty states on momentum abnormal returns hold, after 
controlling for several proxies for the market state (different from economic 
activity, as measured by the NBER recession series) and, in particular, for 
market liquidity. Recently, Avramov et al. (2016) documented that momentum 
profits are markedly larger in liquid market states. Their finding is not 
explained by variation in liquidity risk, exposure to traditional risk factors, or 
changes in macroeconomic condition, etc. As explained by these authors, this 
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fact contradicts a basic intuition in finance, namely, that arbitrage is easier 
when markets are most liquid, and therefore momentum profits should be 
lower in more liquid markets. We show in Table 2.9 that this is not longer the 
case, once you account for high uncertainty states (both, above the 80th 
percentile of current uncertainty- actual uncertainty-, or above the 90th 
percentile of lagged uncertainty- expected uncertainty). Hence, the reason for 
the counter intuitive finding is that market liquidity is positively correlated 
with economic uncertainty, in particular with high uncertainty episodes. 

We used as a proxy for aggregate market liquidity the average of the stock 
liquidity measure recently proposed by Abdi and Ranaldo (forthcoming). This 
measure has several advantages over the competing alternatives. For example, 
compared to other low-frequency estimates, this method utilizes wider 
information (i.e. close, high, and low prices); it also provides the highest cross-
sectional and average time-series correlations with the TAQ effective spread; 
and it delivers the most accurate estimates for less liquid stocks. Nevertheless, 
the results reported in Table 2.9 remain unaltered if we employ instead other 
measures of market liquidity such as the ones developed by Pastor and 
Stambaugh (2003) or Corwin and Schultz (2012). We also consider the effects 
of market volatility and bad market states, which are known to have a 
significant effect on the time-varying momentum profits (see for instance, 
Cooper et al., 2004; Wang and Xu, 2015; and Daniel and Moskowitz,  2016). 
As can be observed in Table 2.n one of these factors reduces the economically 
and statistically significant impact of high uncertainty on momentum abnormal 
returns (see columns 11-14). Moreover, although such factors are statistically 
significant when they are included individually in the RHS of the explanatory 
regressions of the WML returns (columns 3-8), only high uncertainty remains 
significant when all the factors are included simultaneously  (columns 13-14).  

In this table, unlike most of the tables in this manuscript, the reported t-
statistics were constructed using Newey-West’s robust standard errors, but the 
conclusions above remain unaltered if instead we had reported regular 
standard errors (as is frequently done in the literature). As so, this constitutes 
and additional robustness exercise.  
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Table 2.9 
Actual and Expected Uncertainty, Market States and Liquidity 

The table shows the results of a regression of WML returns on market, size and value 
factors. It also presents estimates that include an indicator variable for high economic 
uncertainty regimes, H. UNC (above an endogenous threshold of the EPU index equal to 
121.55, roughly equivalent to the 80th percentile); for high economic expected uncertainty 
one month ahead, EXP. H. UNC. (above 145.02, equivalent to the 90th percentile); an 
indicator variable for bad market states, DOWN (which is a dummy variable that takes the 

value of 1 if the return on the value-weighted market index during the past 24 months (t − 

24 to t − 1) is negative, and 0 otherwise, following in Cooper et al. (2004) and Avramov et al. 
(2016)); an indicator variable of market illiquidity, ILIQUID, proxied by the average of stock 
level illiquidity developed by Abdi and Ranaldo (forthcoming); and Market RV, which is the 
monthly realized volatility of the market portfolio using daily excess returns. The sample for 
the reported regressions runs from January 1929 to December 2016. The endogenous 
thresholds were estimated using a Smooth Transition Regression model that consists of two 
extreme regimes, one of low uncertainty and one of high uncertainty. The transition variable 
in each model were the EPU index and the EPU index lagged one month, for current and 
expected uncertainty, respectively. The switching coefficient between the two regimes is the 
intercept, which measures the abnormal returns of momentum. The impact of high 
uncertainty on the abnormal returns of momentum is in bold. In this table Newey–West 
(1987) adjusted standard errors were used to construct the reported t –statistics, t(b)*. 

 

Robustness checks 

 

b t(b)* b t(b)* b t(b)* b t(b)* b t(b)* b t(b)* b t(b)* 

ALPHA 1.7 9.0 2.0 9.2 3.3 4.6 2.0 9.0 2.9 4.7 2.8 4.5 2.8 4.7 

RMRF -0.4 -4.4 -0.4 -4.3 -0.4 -4.3 -0.4 -4.4 -0.4 -4.3 -0.4 -4.4 -0.4 -4.3 

SMB -0.2 -1.3 -0.2 -1.2 -0.2 -1.2 -0.2 -1.3 -0.2 -1.2 -0.2 -1.2 -0.2 -1.2 

HML -0.7 -4.3 -0.7 -4.4 -0.7 -4.3 -0.7 -4.3 -0.7 -4.4 -0.7 -4.4 -0.7 -4.5 

DOWN 

 
0.0 -1.2 -1.9 

    
-0.8 -1.4 -0.7 -1.2 -0.7 -1.3 

ILIQUID t-1 

    
-1.0 -2.1 

  
-0.6 -1.3 -0.3 -0.8 -0.4 -1.0 

MVOL t-1 

      
-1.3 -1.9 -0.8 -1.3 -0.7 -1.3 -0.6 -1.2 

HIGH 
UNCERTAINTY 

          
-1.5 -2.5 

  
EXP. HIGH 
UNCERT.                         -2.1 -2.5 

 

We carried out additional robustness exercises, which are reported in the 
Appendix. For example, in Appendix B we show that uncertainty does not 
have a smoothed impact on momentum returns. That is, that the impact of 
uncertainty (as a continuous variable) on WML abnormal returns changes 
radically after uncertainty has overpassed the high uncertainty threshold 
estimated herein. Indeed, this relation is positive and insignificant when 
uncertainty is low, while it is negative and significant when uncertainty is high. 
This supports our methodological choice of threating uncertainty as a state, 
and therefore as a binary variable, instead of approaching it as a continuous- 
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risk factor. In Appendix C, we show that the results discussed above hold, not 
only for the WML portfolio, but also for its two legs. In other words, the 
impacts of uncertainty are largely the same on both winners and losers in the 
momentum portfolio. Finally, in Appendix D we report the estimates 
corresponding to a shorter sample from June 1992 to June 2017, (the last 300 
observations in our sample). Remarkably, even tough momentum abnormal 
returns decrease in the more recent sample, as has been documented 
elsewhere, our results regarding the relationship between uncertainty and 
momentum profits reamin unaltered. 

2.7. Conclusion 

We document a non-linear behavior of momentum abnormal returns and 
other moments of the momentum return distribution, conditioning on the 
level of economic policy uncertainty, which we employed herein as a proxy for 
generalized macroeconomic uncertainty. Our results emphasize the role played 
by uncertainty to explain the abrupt changes in momentum profitability, which 
have been extensively documented in the literature. By examining the role of 
uncertainty in momentum strategies, we are able to provide a better 
understanding of the nature of momentum and of the natural boundaries 
imposed by the level of economic uncertainty on momentum trading and 
profits. 

These findings have obvious implications for asset pricing and portfolio 
allocation. Specifically, we have explored momentum moments under two regimes 
of uncertainty. Thus, we have found that the abnormal returns produced by 
momentum disappear during regimes of high uncertainty, their Sharpe ratio 
collapses, the kurtosis of the momentum strategy increases and their skewness 
becomes more pronounced, increasing the likelihood of momentum crashes. 

A simple recommendation that can be derived from these main results is not 
to trade momentum when uncertainty is expected to be high. This decision 
can be based on forecasts of economic uncertainty (which tends to be a highly 
persistent process), and the use of the threshold separating the expected 
uncertainty regimes (estimated here at the 90th percentile of the EPU index), to 
determine whether to curtail our momentum exposure. This strategy has the 
additional advantage of reducing transaction costs, via the direct reduction in 
the turnover of the momentum portfolios. 

Nevertheless, beyond this direct implication for trading, the study of 
momentum strategies, which are precisely based on extrapolating the 
immediate past in order to predict the immediate future, offers a unique 
opportunity to analyze the fundamental differences between risky and 
uncertain situations. Both of which are fundamental for economics and 
finance.  
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Our results and conclusions hold after controlling for traditional proxies for 
the market state, such as economic activity, down markets and market 
volatility. They are relevant for the two legs of the momentum portfolio 
(winners and losers), and describe equally well a long time series sample 
spanning January 1927-June 2017, and more recent ones. High uncertainty 
regimes are able to explain, as well, most of the apparently puzzling positive 
relationship between momentum profits and market aggregate liquidity, which 
has been recently documented in the literature. 

Appendices to Chapter 2 

A. Turnover calculation 

Following Barroso and Santa-Clara (2015), the monthly turnover, 𝑦𝑡, of each 
leg of the momentum strategy is given by:  

𝑦𝑡 = 0.5 × ∑ |𝑤𝑖,𝑡 − �̃�𝑖,𝑡−1|
𝑁𝑡
𝑖 ,    (2.13) 

where, 

�̃�𝑖,𝑡−1 =
𝑤𝑖,𝑡−1(1+𝑟𝑖,𝑡)

∑ 𝑤𝑖,𝑡−1
𝑁𝑡
𝑖 (1+𝑟𝑖,𝑡)

,     (2.14) 

 

wi,t is the weight of the stock i in the leg of the portfolio at time t , Nt is the 

number of stocks in the leg of the portfolio at time t, ri,t is the return on asset 

i at time t,  and w̃i,t−1 is the weight of stock i the period right before trading. 

The turnover of the WML portfolio is the sum of the turnover of the short 
and the long legs. 

B. Continuous and discrete uncertainty 
  Table 2.10 

Continuous Uncertainty against Discrete Uncertainty 

The table shows the results of a regression of WML portfolios, on market, size and 
value factors. It also presents the slopes of the regression including a the continuous 
EPU index, CONT.U.,  and an interaction effect between the continuous EPU 
index and the high economic uncertainty indicator.  

 
Continuous vs discrete uncertainty 

 
b t(b) b t(b) 

ALPHA 2.81 5.55 1.25 1.80 

RMRF -0.39 -9.31 -0.39 -9.35 

SMB -0.19 -2.81 -0.20 -2.94 

HML -0.73 -12.14 -0.74 -12.31 

CONT.U. -0.01 -2.29 0.01 1.35 

CONT.U. * H. UNC     -0.02 -3.27 
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C. Two legs of momentum 

Table 2.11 
Abnormal Returns of the Two Legs of the Winners minus Losers Portfolio 

The table shows the results of a regression of the highest and lowest deciles of the 
portfolios, sorted according to prior performance, on market, size and value factors, and  
estimates for high economic uncertainty regimes, H. UNC (above 121.55 in the EPU index); 
an indicator variable for recessionary periods (REC); an indicator variable of whether the 
economy is in a high uncertainty regime and an expansion period, referred to as high good 
uncertainty (H. GOOD UNC); and, an indicator of whether the economy is in a recession 
and a high uncertainty regime, referred to as high bad uncertainty (H. BAD UNC). Finally, 
the table also shows the estimated slopes of an indicator that identifies episodes of recession 
and low uncertainty regimes (below the endogenous threshold), labeled as low bad 
uncertainty (L. BAD UNC). The impact of high uncertainty on the abnormal returns of 
momentum is in bold. The portfolio of losers was multiplied times minus one, as to ensure a 
short position. Newey–West (1987) adjusted standard errors were used to construct the 
reported t –statistics, t(b)*. 

 

Short- Losers 

 

b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 0.9 6.1 1.0 6.6 1.2 6.9 1.0 6.7 1.0 6.4 

RMRF -1.4 -49.7 -1.4 -49.9 -1.4 -49.9 -1.4 -50.0 -1.4 -49.9 

SMB -0.5 -10.5 -0.5 -10.5 -0.5 -10.6 -0.5 -10.6 -0.5 -10.6 

HML -0.4 -10.6 -0.4 -10.6 -0.4 -10.6 -0.4 -10.7 -0.4 -10.7 

HIGH UNC. 

  
-0.9 -2.6 -0.9 -2.5 

    RECE. 

    
-0.7 -1.9 

    HIGH GOOD UNC 

      
-0.5 -1.4 

  HIGH BAD UNC 

      
-2.2 -3.2 -2.2 -3.1 

LOW BAD UNC                 -0.3 -0.7 

 

Long- Winners 

 

b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 0.9 9.2 1.1 10.4 1.2 10.0 1.1 10.4 1.0 8.9 

RMRF 1.0 52.1 1.0 52.4 1.0 52.1 1.0 52.1 1.0 51.8 

SMB 0.3 9.0 0.3 9.2 0.3 9.1 0.3 9.2 0.3 9.1 

HML -0.3 -10.7 -0.3 -10.8 -0.3 -10.8 -0.3 -10.9 -0.3 -10.9 

HIGH UNC. 

  
-1.1 -4.7 -1.1 -4.6 

    RECE. 

    
-0.3 -1.1 

    HIGH GOOD UNC 

      
-0.8 -3.1 

  HIGH BAD UNC 

      
-2.2 -4.5 -2.0 -4.2 

LOW BAD UNC                 0.2 0.6 
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D. Recent sample robustness: 

Table 2.12 
Momentum Abnormal Returns and Macroeconomic Uncertainty: 1992-2016 

The table shows the results of a regression of WML returns on market, size and value factors 
and estimates of an indicator variable for high uncertainty regimes, H. UNC (above 70th, 
80th, and 90th percentiles); an indicator for recessionary periods (REC), one for whether the 
economy is in a high uncertainty regime and an expansion period (H. GOOD UNC); and, an 
indicator of whether the economy is in a recession and a high uncertainty regime (H. BAD 
UNC). The table also shows the estimated slopes episodes of recession and low uncertainty 
regimes (L. BAD UNC). The impact of uncertainty on the abnormal returns  is in bold.  

                      

 
 70th Percentile 

 
b t(b) b t(b) b t(b) b t(b) b t(b) 

ALPHA 1.4 3.0 2.3 3.7 2.4 3.9 2.3 3.8 1.7 3.4 

RMRF -0.7 -6.0 -0.7 -6.2 -0.7 -6.4 -0.7 -6.5 -0.7 -6.3 

SMB 0.2 1.2 0.2 1.3 0.2 1.4 0.2 1.3 0.2 1.1 

HML -0.5 -3.5 -0.6 -3.7 -0.6 -3.7 -0.6 -3.8 -0.6 -3.7 

HIGH UNCERTAINTY 

  
-2.1 -2.2 -1.8 -1.9 

    RECE. 

    
-2.1 -1.3 

    HIGH GOOD UNC 

      
-1.4 -1.5 

  HIGH BAD UNC 

      
-5.4 -3.0 -4.7 -2.7 

LOW BAD UNC 

        
4.5 1.4 

 

80th Percentile  

ALPHA 1.4 3.0 2.4 4.3 2.5 4.5 2.4 4.4 1.7 3.6 

RMRF -0.7 -6.0 -0.7 -6.4 -0.7 -6.6 -0.8 -6.8 -0.7 -6.6 

SMB 0.2 1.2 0.2 1.2 0.2 1.3 0.2 1.1 0.1 1.0 

HML -0.5 -3.5 -0.6 -3.8 -0.6 -3.9 -0.6 -4.1 -0.6 -4.1 

HIGH UNCERTAINTY 

  
-3.1 -3.1 -2.9 -3.0 

    RECE. 

    
-2.2 -1.4 

    HIGH GOOD UNC 

      
-2.2 -2.2 

  HIGH BAD UNC 

      
-8.2 -3.7 -7.4 -3.4 

LOW BAD UNC 

        
1.7 0.8 

 

90th Percentile  

ALPHA 1.4 3.0 1.9 3.7 2.1 3.9 2.0 3.9 1.7 3.6 

RMRF -0.7 -6.0 -0.7 -6.2 -0.7 -6.4 -0.7 -6.7 -0.7 -6.6 

SMB 0.2 1.2 0.2 1.2 0.2 1.4 0.2 1.1 0.1 1.0 

HML -0.5 -3.5 -0.6 -3.7 -0.6 -3.7 -0.6 -4.2 -0.7 -4.2 

HIGH UNCERTAINTY 

  
-2.5 -2.2 -2.2 -1.9 

    RECE. 

    
-2.3 -1.4 

    HIGH GOOD UNC 

      
-1.1 -0.9 

  HIGH BAD UNC 

      
-8.5 -3.6 -8.3 -3.5 

LOW BAD UNC                 1.2 0.6 
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Chapter 3: Measuring Uncertainty in 
the Stock Market 

 

Abstract 

We propose a daily index of time-varying stock market uncertainty. The index 
is constructed after first removing the common variations in the series, based 
on recent advances in the literature that emphasize the difference between 
risk (expected variation) and uncertainty (unexpected variation). To this end, 
we draw on data from 25 portfolios sorted by size and book-to-market value. 
This strategy considerably reduces information requirements and modeling 
design costs, compared to previous proposals. We compare our index with 
indicators of macro-uncertainty and estimate the impact of an uncertainty 
shock on the dynamics of macroeconomic variables. Our results show that, 
even when the estimates can be considered as a measure of financial 
uncertainty, they perform very well as indicators of the uncertainty of the 
economy as a whole. 

 

4.2. Introduction  

Uncertainty and risk have been primary concerns in economics, and among 
scientists in general, since the birth of modern science. Indeed, Bernstein 
(1998) goes as far as to claim that the interest in measuring and mastering the 
two phenomena marks the threshold separating modern times from the 
previous thousands of years of history.  

In economics, Frank Knight was the first person to postulate the distinction 
between uncertainty and risk on the grounds that the former cannot be 
described by means of a probability measure while the latter can. According to 
both Knight (1921) and Keynes (1921, 1939), economic agents inhabit an 
environment of pervasive uncertainty and, therefore, there can be little hope 
of quantifying or forecasting economic variables, or of even taking informed 
decisions that rely on quantitative measures of economic dynamics (in other 
words, probabilities are incommensurable).  

Today, the distinction between risk and uncertainty remains a lively topic for 
debate on the academic agenda. Indeed, several recent studies have attempted 
to explain decision- making under uncertainty, albeit oriented more towards 
the social conventions than towards the development of rational calculations. 
Accordingly, in this branch of the literature, there is a clear need to distinguish 
between the concepts, while measuring what can be measured and not losing 
sight of what cannot be quantified in probabilistic terms (Nelson and 
Katzenstein, 2014; Ganegoda and Evans, 2014; Taleb, 2007). 
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Although of obvious importance in its own right, this extreme Knightian 
differentiation between risk and uncertainty leads to the impossibility of 
defining a probability space and prevents us from using any variation of the 
Ergodic Theorem in empirical studies. And this, in turn, leads to the 
impossibility of conducting any science at all (Hendry, 1980; Petersen, 1996) 
or, at least, the kind of social science based on ‘measurement’, as has been 
fostered by the Cowles Commission for Research in Economics since its 
foundation12. 

However, confronted by this panorama, the profession has moved from this 
Knightian extreme (fundamental) view of uncertainty and adopted a more 
promising approach to the concept. In this new strand of the literature, 
uncertainty has generally been assimilated to a time-varying conditional second 
moment of the series under study, closely linked to underlying, time- varying, 
structural shocks, such as terrorist attacks, political events, economic crises, 
wars and credit crunches. Yet, despite this, the differentiation between risk 
and uncertainty in most instances is not properly dealt with. 

Our contribution can be tough of as an attempt to measuring the ‘known’ and 
part of the ‘unknown’, in the popular taxonomy of risk proposed by Gomery 
(1995). This author differentiates between the ‘known’, the ‘unknown’ and the 
‘unknowable’, and highlights a traditional exaggerated focus on the former, 
while ignoring the other two categories. That bias can lead to misconceptions 
about the world around us, because the ‘known’ constitutes only a very small 
fraction of what we see and face on our daily decisions. Nevertheless, there is 
still the ‘unknowable’, which is clearly beyond the scope of this paper, since in 
this situation even the events defining the probability space cannot be 
identified in advance as pointed out by Diebold et al. (2010).  

In this paper we seek to make three specific contributions to the study of 
uncertainty. First, we propose a new index for measuring stock market 
uncertainty on a daily basis (or what we refer to as financial uncertainty). The 
index considers the inherent differentiation between uncertainty and the 
common variations between the series (which we identify as risk). Recent 
advances in the field have identified the methodological tools for performing 
the task using factor models (Jurado, Ludvigson and Ng, 2015; henceforth 
JLN). These proposals, however, have tended to focus their attention on the 
use of macroeconomic variables to construct their indexes, as opposed to 
financial variables. Therefore, because of the low frequency of 
macroeconomic series, the proposals lack a desirable property of traditional 

                                                        
12 ‘Science is Measurement’ was the original motto of the Cowles Commission (though it 
would later be changed in 1952 to ‘Theory and Measurement’). See Keuzenkamp (2004) and 
Bjerkholt (2014) for details about the history and methodology of econometrics and the role 
of the Cowles Commission and the Econometric Society in the transition of economics to a 
more formally based science.  
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proxies of uncertainty based on financial returns (such as VXO, VIX or credit-
spreads): namely, practitioners and policy makers cannot trace their dynamics 
in real time.  

Our second contribution is to show how our financial uncertainty index can 
also serve as an indicator of macroeconomic uncertainty. We examine the 
circumstances under which our index might be thought to capture all the 
relevant information in the economy as a whole. We exploit the fact that the 
information contained in hundreds, or even thousands, of economic indicators 
can be encapsulated by just a few stock market portfolio returns. This 
circumstance makes the construction of the index easier, in terms of its 
information requirements, modeling design and computational costs, and it 
allows us to provide a high frequency uncertainty measure. The construction 
of our index, based on portfolio returns, for which there are significant and 
timely data, provides a better basis for analyzing uncertainty compared to 
other situations, in which this kind of information and frequency are absent. 
Therefore, the extension of the methodology beyond the stock markets must 
be approached with caution, since there is little hope to extract the uncertainty 
components of less timely data, in an accurate fashion. 

Finally, we analyze the dynamic relationship between uncertainty and the 
series of consumption, interest rates, production and stock market prices, 
among others. This allows us to further our understanding of the role of 
(financial or macroeconomic) uncertainty, and to determine the dynamics of 
the economy as a whole. Our empirical model allows us to analyze the extent 
to which traditional monetary policy can be trusted to manage situations of 
uncertainty. Thus, on the one hand, we document a significant and negative 
relationship between uncertainty and real variables such as production, 
employment and consumption; on the other, we find that the interest rate 
tends to decrease after an uncertainty shock while uncertainty decreases 
following a fall in the interest rate. However, this last effect only explains a 
small proportion of the total variation in the forecasted uncertainty.  

The rest of this paper is organized as follows. First, we review theoretical and 
empirical studies of uncertainty. In section 3 we describe the methodology 
used to estimate the uncertainty index. Our approach relies on generalized 
dynamic factor models and stochastic volatility (SV) devices. In section 4 we 
present our data and in section 5 our main results. We also relate our findings 
to macroeconomic dynamics by means of a vector autoregressive (VAR) 
analysis. In the last section we conclude.  

4.2. Related literature 

A. Risk, uncertainty, economic decisions and policy intervention 

The current paradigm for understanding uncertainty was developed within the 
framework of irreversible investment, in which a firm’s future investment 
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opportunities are treated as real options and the importance of waiting until 
the uncertainty is resolved is emphasized. Hence, aggregate uncertainty 
shocks13 are thought to be followed by a reduction in investment, and possibly 
in labor, and, consequently, by a deterioration in real activity (Bernanke, 1983; 
Bertola and Caballero, 1994; Abel and Eberly, 1996; Leahy and Whited, 1996; 
Caballero and Pindyck, 1996; Bloom et al., 2007; Bachmann and Bayer, 2013). 
Nevertheless, some studies point out that after the original worsening of the 
variables, a rebound effect related to a ‘volatility over-shoot’ may be observed 
(Bloom, 2009; Bloom et al., 2013). It is worth noting that these original 
impacts on the macroeconomic variables may be amplified as a result of 
financial market frictions (Arellano et al., 2012; Christiano et al., 2014; 
Gilchrist et al., 2014).  

The study of uncertainty is not confined to the firm’s investment problem. 
For example, Romer (1990) suggests that consumers may postpone their 
acquisition of durable goods in episodes of increasing uncertainty. Ramey and 
Ramey (1995) and Aghion et al. (2010) have studied the negative relationship 
between volatility and economic growth. The effects of uncertainty on equity 
prices and other financial variables have also been analyzed. In this stream, 
Bansal and Yaron (2004) provide a model in which markets dislike uncertainty 
and worse long-run growth prospects reduce equity prices. In the same line, 
Bekaert et al. (2009) find that uncertainty plays an important role in the term 
structure dynamics and that it is the main force behind the counter-cyclical 
volatility of asset returns. 

Additionally, there has been a revival of interest in examining the relationship 
between uncertainty and policy interventions. However, there is no clear 
consensus in this resurgent research agenda. Some authors conclude that the 
optimal monetary policy does not change significantly during episodes of crisis 
and that uncertainty about crises has relatively little effect on policy 
transmission (Williams, 2012), but others report that financial uncertainty plays 
a significant role in monetary policy transmission mechanisms (Baum et al., 
2013; Bekaert et al., 2013). Neither is it clear whether a highly responsive or 
moderate monetary policy scheme is best when facing uncertainty. For 
instance, Williams (2013), in the same spirit as Brainard (1967), forwards the 
argument that, once uncertainty is recognized, some moderation in monetary 
policy might well be optimal. In marked contrast (albeit under a different 

notion of uncertainty), Fendoǧlu (2014) recommends a non-negligible 
response to uncertainty shocks.  

 

                                                        
13  Panousi and Papanikolaou (2012) explain possible sources of inefficiency in the 
investment process arising from idiosyncratic uncertainty, under high-powered incentives 
and risk-averse managers. Bachmann and Bayer (2013) also study the impact of idiosyncratic 
uncertainty shocks on business cycles.  
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B. Empirical measures of uncertainty  

Empirical studies have frequently relied on proxies of uncertainty, most of 
which have the advantage of being directly observable. Such proxies include 
stock returns or their implied/realized volatility (i.e., VIX or VXO), the cross-
sectional dispersion of firms’ profits (Bloom, 2009), estimated time-varying 
productivity (Bloom et al., 2013), the cross-sectional dispersion of survey-
based forecasts (Dick et al., 2013; Bachmann et al., 2013), credit spreads 

(Fendoǧlu, 2014), and the appearance of ‘uncertainty-related’ key words in the 
media (Baker et al., 2016).  

Although these uncertainty proxies have provided key insights to the 
comprehension of uncertainty, and have been reliable starting points for the 
analysis of the economic impacts of uncertainty on economic variables, most 
of them have come under criticism, most notably from Scotti (2016) and JLN. 
On the one hand, volatility measures blend uncertainty with other notions 
(such as risk and risk-aversion), owing to the fact that they do not usually take 
the forecastable component of the variation into account before calculating 
uncertainty. On the other, analysts’ forecasts are only available for a limited 
number of series. Moreover, it is not entirely clear whether the responses 
drawn from these surveys accurately capture the conditional expectations of 
the economy as a whole. The disagreement reported in survey forecasts could 
be more of an expression of different opinions than of real uncertainty 
(Diether et al., 2002) and even if forecasts are unbiased, the disagreement in 
analysts’ point forecasts is not generally equivalent to forecast error 
uncertainty (Lahiri and Sheng, 2010) 14 . Aimed at overcoming these 
shortcomings, a new branch of the literature has emerged, which proposes 
measuring uncertainty only after the forecastable component of the series has 
been removed (Carriero et al., 201615; Gilchrist et al., 2014; JLN).  

Our model takes into account the extraction of the contemporaneously 
forecastable component of the variation before calculating uncertainty, which 
is important in order to distinguish satisfactorily between uncertainty and risk. 
We also aim to construct estimations of uncertainty by deliberately adopting 
an atheoretical approach, in the same vein as JLN. Our study contributes to 
the existing literature by providing a daily measurement of uncertainty. This is 
important, because it means the market can be monitored in real time, while 
enabling the researcher to undertake event studies with greater precision 
including uncertainty as a variable. The literature notes that estimations of 

                                                        
14 Bachmann et al. (2013) and Scotti (2016) acknowledge these problems and address them 
by using additional proxies for uncertainty. Nevertheless, as noted by JLN, these studies 
focus on variation in outcomes around subjective survey expectations. 
15 These authors do not address the problem of measuring uncertainty directly, but still they 
use a closely related methodological approach to the one employed in this strand of the 
literature. 



 50 

impacts extracted from event studies are much more precise and less noisy as 
the frequency of the data increases (Fair, 2002; Bomfim, 2003; Chuliá et al., 
2010).  

4.2. Methodology 

The construction of our uncertainty index consists of two steps. First, we 
remove the common component of the series under study and calculate their 
idiosyncratic variation. To do this, we filter the original series using a 
generalized dynamic factor model (GDFM). Second, we calculate the 
stochastic volatility of each residual in the previous step using Markov chain 
Monte Carlo (MCMC) techniques. Then, we average the series, obtaining a 
single index of uncertainty for the stock market, and possibly for the economy 
as a whole. In sections 3.1 and 3.2 below, we explain each step in detail.  

A. Idiosyncratic component extraction 

Following Bai and Ng (2008), let 𝑁 be the number of cross-sectional units and 

𝑇  be the number of time series observations. For 𝑖 = 1, … ,𝑁  and 𝑡 =
1,… , 𝑇, the dynamic factor model (DFM) can be defined as: 

𝑥𝑖𝑡 = 𝜆𝑖(𝐿)𝑓𝑡 + 𝑒𝑖𝑡,    (3.1) 

where 𝜆𝑖(𝐿) = (1 − 𝜆𝑖1𝐿−,… ,−𝜆𝑖𝑠𝐿
𝑆)  is a vector of dynamic factor 

loadings of order 𝑠. When 𝑠 is finite, we refer to it as a DFM. In contrast, a 

GDFM allows 𝑠  to be infinite. Stock and Watson (2002, 2011) provide 
examples of the former and Forni and Reichlin (1998) and Forni et al. (2000) 

introduce the latter. In any case, the (dynamic) factors 𝑓𝑡 evolve according to:  

𝑓𝑡 =  𝐶(𝐿)𝜀𝑡,     (3.2) 

where 𝜀𝑡 are 𝑖𝑖𝑑 errors. The dimension of 𝑓𝑡, denoted 𝑞, is the same as that of 

𝜀𝑡 and it refers to the number of dynamic or primitive factors (Bai and Ng, 
2007). 

The model stated in (3.2) can be rewritten in static form, simply by redefining 
the vector of factors to contain the dynamic factors and their lags, and the 
matrix of loads accordingly, as: 

𝑋
(𝑁 × 𝑇)

=
  Λ 𝐹

(𝑁 × 𝑟)(𝑟 × 𝑇)
+

𝑒
(𝑁 × 𝑇),   (3.3) 

where 𝑋 = (𝑋1, … , 𝑋𝑁)  and 𝐹 = (𝐹1, … . , 𝐹𝑇) . Clearly, 𝐹  and Λ  are not 

separately identifiable. For any arbitrary (𝑟 × 𝑟)  invertible matrix 𝐻 , 𝐹Λ′ =
𝐹𝐻𝐻−1𝛬′ = 𝐹∗Λ′∗ , where 𝐹∗ = 𝐹𝛬  and 𝛬∗ = 𝛬𝐻−1 , the factor model is 

observationally equivalent to 𝑋 = 𝐹∗𝛬′∗ + 𝑒 . Therefore 𝑟2  restrictions are 

required to uniquely fix 𝐹  and 𝛬  (Bai and Wang, 2015). Note that the 
estimation of the factors by principal components (PC) or singular value 
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decomposition (SVD) imposes the normalization that 
Λ′Λ

𝑁
= 𝐼𝑟  and 𝐹′𝐹  is 

diagonal, which are sufficient to guarantee identification (up to a column sign 
variation). 

The GDFM is a generalization of the DFM because it allows a richer dynamic 
structure for the factors. It places smaller weights on variables with larger 
idiosyncratic (uncertainty) components. So that the idiosyncratic ‘error’ 
contained in the linear combination is minimized. In this way we ensure that 
the uncertainty component is purged from risk-related variations. 

Our first step enables us to estimate the idiosyncratic variation of the 

series  𝑒𝑖𝑡
𝑢 = 𝑋𝑖𝑡 − �̂�𝑖𝑡 , where �̂�𝑖𝑡 = 𝜆𝑖(𝐿)𝑓𝑡 . This component is primarily 

related to uncertainty, whereas the common variation (i.e., the variance of �̂�𝑖𝑡) 
can be referred to as risk.  

B. Conditional volatility estimation 

Once we recover the series of filtered returns, 𝑒𝑖𝑡
𝑢 , a SV model is specified on 

an individual level, for each 𝑖 = 1,…𝑁16, as:  

𝑒𝑡
𝑢 = 𝑒ℎ𝑡/2𝜖𝑡 ,     (3.4) 

ℎ𝑡 = 𝜇 + ∅(ℎ𝑡−1 − 𝜇) + 𝜎𝜂𝑡 ,  (3.5) 

where 𝜖𝑡 and 𝜂𝑡 are independent standard normal innovations for all 𝑡 and 𝑠 
belonging to {1, … , 𝑇} . The non-observable process ℎ = (ℎ0, ℎ1, … , ℎ𝑇) 
appearing in equation 3.5 is the time-varying volatility with initial state 

distribution  ℎ0|𝜇, 𝜙, 𝜎~𝑁(𝜇, 𝜎
2/(1 − 𝜙2)). This centered parameterization 

of the model should be contrasted with the uncentered reparameterization 
provided by Kastner and Frühwirth-Schnatter (2014): 

𝑒𝑡
𝑢~𝑁(0, 𝑒𝜇+𝜎ℎ̃𝑡),     (3.6) 

ℎ̃𝑡 = ∅ℎ̃𝑡−1 + 𝜂𝑡 , 𝜂𝑡~𝑁(0,1).   (3.7) 

Whether the first or the second parameterization is preferred for estimation 
purposes generally depends on the value of the ‘true’ parameters (Kastner and 
Frühwirth-Schnatter, 2014). Nevertheless, both of them have intractable 
likelihoods and, therefore, MCMC sampling techniques are required for 
Bayesian estimation.  

Kastner and Frühwirth-Schnatter (2014) provide a strategy for overcoming the 
problem of efficiency loss due to an incorrect selection among the 
representations in applied problems. They propose interweaving (3.4)-(3.5) 
and (3.6)-(3.7) using the ancillarity-sufficiency interweaving strategy (ASIS) as 

                                                        
16 In what follows we omit the cross-sectional subscript to simplify the notation.  
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introduced by Yu and Meng (2011). Their results indicate that this strategy 
provides a robustly efficient sampler that always outperforms the more 
efficient parameterization with respect to all parameters, at little extra cost in 
terms of design and computation. We follow their advice to estimate the 
volatilities of the idiosyncratic shocks.  

Once the idiosyncratic stochastic volatility measures have been constructed, 
we are able to estimate the uncertainty index in the stock market as the simple 
average of the individual volatilities:  

𝑈𝑡 =
∑ ℎ𝑖𝑡
𝑁
𝑖=1

𝑁
.     (3.8) 

This scheme corresponds to the equally weighted average, with  ∑ 𝑤𝑖ℎ𝑖𝑡
𝑁
𝑖=1

𝑝
→ 𝐸(𝑈𝑡) , where 𝑤 = 1 𝑁⁄ . Alternatives, such as using the first PC to 
aggregate the series of variances, are possible but have no grounding in 
econometric theory to guarantee their consistency in the estimation process 
(Jurado et al., 2013; JLN). Unlike the previously referenced studies by JLN, 
here we only use information from portfolio returns organized by different 
factor criteria; thus, there is no ex ante reason to weight each portfolio return 
using different loads. In principle, any firm might belong to any portfolio, and 
all of them are equally important in the estimation of the aggregate shock. 
Hence, it is natural to favor the equally-weighted scheme over other 
asymmetric alternatives, but note that the asymmetric scheme would be more 
appropriate when macro-variables are blended with financial or other kind of 
variables. 

4.2. Data 

In our empirical exercise we use 25 portfolios of stocks belonging to the 
NYSE, AMEX, and NASDAQ, sorted according to size and their book-to-
market value, as provided by Kenneth French on his website 17 . Those 
portfolios have been widely used in the literature examining multi-factor asset 
pricing models (Cochrane, 2005), and can be seen as a good summary of 
whole market dynamics. Moreover, Sentana (2004) justifies the use of 
portfolios for extracting the subjacent factors by proving that many portfolios 
converge to the factors as the number of assets increases. Clearly this does not 
rule out the fact that other possibilities might be explored in future research, 
such as the use of less well-known portfolios constructed on an industry 
sector basis, or using different factors to organize the series. 

Our data set spans from 1 July 1926 to 30 September 2014, which gives a total 
of 23,321 observations. More details on the portfolio formation are provided 
in Davis, Fama and French (2000) and on Kenneth French’s web page. 

                                                        
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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In section 5.3 we estimate a vector autoregressive (VAR) model. The data for 
this exercise were taken from the web page of the Federal Reserve Saint Louis 
(FRED: http://research.stlouisfed.org/). Specifically, we use the Industrial 
Production Index; the total number of employees in the non-farm sector; Real 
Personal Consumption Expenditures in 2009 prices; the Personal 
Consumption Expenditures Price Index; the New Orders Index known as 
NAPM-NOI; Average Weekly Hours of Production and Nonsupervisory 
Employees for the Manufacturing sector (the all-sector index is not available 
from the beginning of our sample); Effective Federal Funds Rate; M2 Money 
Stock in billions of dollars and Standard and Poor’s 500 index. Each series was 
taken seasonally adjusted where necessary, and the sample spans from 
February 1959 to September 2014, which is the longest period possible using 
these series.  

4.2. Results  

In this section we present our uncertainty index (section 5.1); we compare it 
with some of the main macro-uncertainty indicators (section 5.2); we analyze 
the relationship between our proposal and some real and financial variables, 
including policy variables (section 5.3); and, we perform several robustness 
exercises (section 5.4).  

A. Uncertainty index  

We estimate the GDFM using six static factors and one dynamic factor, which 
are optimal following the criteria proposed by Bai and Ng (2002) and Bai and 
Ng (2007), respectively. Based on these estimates we construct the uncertainty 
index by aggregating the conditional volatilities of the idiosyncratic residual 
series as explained in section 3. 

The daily uncertainty index is presented in Figure 3.1, together with the 
recession dates in the United States, as indicated by the NBER on its web site. 
The index peaks coincide with well-documented episodes of uncertainty in the 
financial markets and the real economy, including the Great Depression, the 
recession of 1937-38 in the US, Black Monday in October 1987, the bursting 
of the dot-com bubble and the Great Recession 2007-2009. 

Recession dates, such as August 1929 to March 1933, May 1937 to June 1938 
and December 2007 to June 2009, clearly correlate with the amount of 
uncertainty in the market, although interestingly, not all recessionary episodes 
are preceded or followed by a notable uncertainty shock. For example, the 
uncertainty peak in the index corresponding to March 2000 appears one year 
before the economic contraction in March 2001. Likewise, several recessions 
during the decades of the 40s, 50s and 60s do not seem to be associated with 
episodes of high or even increasing uncertainty.  

More importantly, uncertainty in the stock markets appears to correlate not 
only with the volatility of fundamentals (i.e., recessions), but also with 

http://research.stlouisfed.org/
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episodes of over-valuation or bubbles in the market, as discussed for example 
in Yuhn et al. (2015), namely, those of 1987 (Black Monday), 2000 
(information technology boom) and 2007 (housing market boom). Indeed, 
these episodes may well be the main drivers of uncertainty (even more so than 
the recessions), at least in the last part of our sample. Many such episodes have 
been identified in the recent literature and they constitute a particularly active 
area of current research within the financial econometrics field (Phillips and 
Yu, 2011; Phillips et al., 2011; Homm and Breitung, 2012; Phillips et al., 2015; 
Anderson and Brooks, 2014) and even outside economics, especially in the 
application of statistical mechanics tools to financial problems (see Zhou and 
Sornette (2003), Sornette and Zhou (2004), Sornette et al. (2009), Budinski-

Petkovic ́ et al. (2014) and references therein).  

The observation above can be rationalized under a framework of agents with 
heterogeneous beliefs and bounded rationality as the one proposed by 
Hommes and Wagener (2009). In their model, there is an endogenous 
switching mechanism, governing the proportion of financial investors who 
follow a ‘perfect foresight’ forecasting rule (driven by market fundamentals), 
or alternative linear heuristics, such as ‘biased beliefs’ and ‘past trends’. 
Instabilities may follow after an increasing in the number of non-
fundamentalist traders in the market and hence, produce the apparition of 
persistent bubbles. Uncertainty, as measured by our index, is naturally related 
to this possibility. That is, in high uncertainty regimes more agents may choose 
to switch to a non-fundamentalist rule of prediction, driving the prices away 
from their fundamental path.  

In Table 3.1 we report descriptive statistics for a monthly (end-of-the-month) 

version of the uncertainty index. We construct this monthly index to facilitate 

comparisons with other macro-uncertainty proxies. The skewness, kurtosis, 

persistence and half-life of the shocks for the full sample and for two sub-

samples are presented (January 1927 to March 1940 and April 1940 to 

September 2014). This break date was chosen after testing for multiple breaks 

(Bai and Perron, 1998, 2003) in the autoregressive model of the shocks 

persistence (AR(1) with drift)18.  

 

                                                        
18 See Perron (2006) for a survey of this literature. 
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Figure 3.1: Uncertainty Index: Jan-06-27 to Sept-30-14. The first 153 observations have 

been discarded and the last 153 have been replaced by calculations using a (scaled) one-sided 

filter version of the GDFM (Forni et al., 2005). The reason for doing this is that original 

GDFM are biased at the beginning and at the end of the sample, because they make use of 

the estimation of the variance- covariance matrices of order √𝑇. Grey areas correspond to 

NBER recession dates (peak-to-trough), including the peaks and troughs. The horizontal line 

corresponds to the 95 percentile of the empirical distribution of the index from Jan-40 

onwards. The original measure is rescaled by a factor of 100 in the plot. 

 

Table 3.1. Summary statistics of the uncertainty index in two sub-samples 

 
  Sample period 

Statistic 
Jan 1927-Sept 

2014 
Jan 1927-Mar 

1940 
Apr 1940-Sept 

2014 

Skewness 1.60 0.32 1.70 

Kurtosis 4.74 1.97 6.62 

Persistence, AR(1) 0.993 0.963 0.978 

Half-life: months (years) 101 (8.42) 18.3 (1.53) 31.9 (2.65) 

 

Table 3.1 shows that using the full sample to calculate persistence can lead to a 

spurious estimation of the summary statistics. Indeed, the sample distribution 
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of the uncertainty index in the two sub-samples looks quite distinct. In the 

first part of the sample, persistence is smaller and, therefore, the ‘shocks’ 

disappear in a shorter period of time (1.53 years) than is the case in the second 

sub-sample (2.65 years). There are fewer observations distant from the mean 

and, lastly, the distribution presents a slightly asymmetric behavior (skewness 

equal to 0.32). In contrast, even when the second part of the estimation 

presents shocks of a smaller magnitude (Figure 3.1), the distribution that 

characterizes them tends to generate a higher number of ‘outliers’ (kurtosis 

equal to 6.92) and they are more likely to be above than below the mean (1.7 is 

the asymmetric coefficient). This behavior may be interpreted as uncertainty 

showing some degree of inconsistency across time, which is related to the 

knightian framework, for which uncertainty is indeed understood as a non-

predictable state.  

Our estimations of persistence of macro-uncertainty are lower than those 

reported elsewhere, for example, those provided by JLN. The latter estimate a 

persistence of 53.58 months, while in the second part of our sample our 

estimation is of 31.9 months (41.2 months from Jan. 1960 to Sept. 2014). This 

could be interpreted as evidence that financial-uncertainty shocks are not as 

persistent as macro-uncertainty shocks. Nevertheless, it should be noted that 

JLN also report the persistence and half-lives of frequently used proxies for 

uncertainty, including the VXO and the cross-sectional standard deviation of 

the returns. They show that these uncertainty-related measures are far less 

persistent than are macro-uncertainty shocks (with half-lives of 4.13 and 1.92 

months). Thus, the half-life and persistence of our uncertainty measure are 

more similar to those of the macro-uncertainty shocks than to those derived 

from the volatility measures.  

B. Correlations with macro-uncertainty indexes  

The closest measure of uncertainty to ours, methodologically speaking, is the 

uncertainty index proposed by JLN, although their proposal might be 

interpreted more directly as a ‘macro-uncertainty’ indicator, given its emphasis 

on economic variables as opposed to purely financial ones. Given these 

circumstances, it seems to be a good candidate with which to compare our 

index while seeking to identify any convergent and divergent paths. In order to 

compare the indexes, we first reduce our sample to fit theirs. Our resampled 
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data start in January 1960 and end in May 2013 19 . After so doing, we 

recalculate our uncertainty index by aiming to use the same dates as those 

employed by JLN. Second, we take the end-of-the-month value of our index, 

to resemble their index frequency (monthly).  

The results are reported in Figure 3.2. The shaded areas in the plot correspond 

to periods of ‘high’ correlation. The Pearson’s correlation for the full sample 

between the indexes is barely above 22%, which could be interpreted, at first 

glance, to indicate that different forces lie behind the macro-uncertainty and 

the financial-uncertainty. However, this correlation seems very volatile. We 

also calculate moving-window correlations of five years during the sample and 

here our findings are more informative than the static correlation. The 

correlation remains above 50% for most of the period (left panel). Moreover, 

for the last part of the sample (from around February 2009 to May 2013), this 

correlation remained above 90%, revealing practically no difference in the 

indexes’ dynamics. Even higher values were reached during the 70s and we 

observe correlations between 40 and 80% in the period from May 1994 to 

February 2003 (right panel). There are also two periods in which this 

correlation became negative, specifically from January 1992 to August 1993 

and December 2005 to September 2007. After these short phases, the indexes 

started to move in the same direction once again, and in both cases with a 

stronger impetus than before.  

Finally, an analysis of the levels of the uncertainty indexes shows them to be 

particularly different during the periods from March 1979 to May 1983 and 

July 1998 to January 2003. Our intuition regarding the explanation for these 

divergent paths during these periods is that while uncertainty in the financial 

markets is driven significantly by bubble episodes, such episodes are not 

always the drivers of the recessions in the real economy and, therefore, cannot 

be related on a one-to-one basis with macro-uncertainty. Thus, the financial-

uncertainty index highlights uncertainty associated with bubble episodes (for 

instance, during the dot.com collapse) that did not materialize as strong 

recessionary phases in the real economy and which, therefore, are not 

captured by the JLN-uncertainty index. In the same vein, recessionary 

episodes not directly related to the financial market (such as those from 1979 

to 1983) are not especially pronounced in our financial-uncertainty indicator.  

                                                        
19  The JLN-index is publicly available for this period on Sidney Ludvigson’s web page: 
http://www.econ.nyu.edu/user/ludvigsons/ 
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Figure 3.2: Uncertainty Comparisons I. The solid line represents our Uncertainty Index 
(U), while the dotted line represents the Jurado-Ludvigson-Ng’s Index (JLN) with forecast 

horizon ℎ = 1, both from Apr-65 to May-13. In the panel on the left, the shaded areas 
correspond to correlation periods above 0.5. In the panel on the right, the shaded areas are 
the actual correlations. Correlations were calculated using rolling windows of five years. 

 

We also compare our index with the VIX, another frequent proxy for macro- 

and financial-uncertainty (Figure 3.3), but which is only available after January 

1990. We found a correlation of 65.2% using the full sample. The dynamics of 

the VIX and the uncertainty index appear to be largely similar with a 

correlation above 70% for the last ten years of the sample. However, these 

dynamics are considerably different (considering the correlation levels) for the 

first ten years of the sample. Here again, the results could be linked to the fact 

that volatility as a risk measure is inversely related to the presence of over-

valuation in the stock markets, whereas over-valuation appears to be positively 

related to uncertainty.  

 

Figure 3.3: Uncertainty Comparisons II. The solid line represents our uncertainty index 

(U), while the dotted line represents the VIX, both from Jan-90 to Sept-14. Shaded areas 

correspond to the five-year rolling correlations and, therefore, start only after Jan-95. 

Correlations are measured along the right axis. 
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C. VAR dynamics: Uncertainty, economic activity and policy variables  

In this section, we explore the dynamic relationship between our uncertainty 

index and some macroeconomic and financial variables. To do so, we use the 

model proposed by Christiano et al. (2005). This model has been widely 

studied in the literature and is, therefore, useful for comparing our uncertainty 

estimates. The model is given in reduced form by: 

𝑌𝑡 = 𝐴(𝐿)𝑌𝑡−1 + 𝑒𝑡,     (3.9) 

where, 𝑌𝑡 = [𝑌1𝑡 , 𝑅 , 𝑌2𝑡 , 𝑈 ]′ is a matrix (𝑇 × 𝑁) containing the 𝑁  column-

vectors of the model. 𝑌1𝑡 contains slow-moving variables which do not react 

contemporaneously to a monetary policy shock: Production, Employment, 

Consumption, Inflation, New Orders, Wages and Labor. 𝑅  refers to the 

Federal Funds Rate, understood as the monetary policy instrument. 𝑌2𝑡 refers 

to the fastest variables, which are assumed to respond contemporaneously to 

the policy innovation, such as: the Stock Market Index and M2. Finally, we 

place our Uncertainty Index U in last position (as do JLN and Bloom, 2009)20. 

We estimate a VAR with 12 lags, as opposed to the four quarters used in 

Christiano et al. (2005) to cover the same time-span. All the variables enter in 

log-levels, with the exceptions of the Federal Funds Rate and Uncertainty, 

which enter in original units, and M2, which enters in growth rates. We 

recover the structural innovations by means of a Cholesky factorization of the 

variance-covariance matrix. As is well known, the Cholesky decomposition 

implies a certain ordering of the set of variables, depending on whether they 

react or not to other variables contemporaneously. Following Christiano et al. 

(2005), the variables are sorted from more exogenous to more endogenous as 

stated above. The impulse response functions are presented in Figure 3.4.  

The reactions of Production and Employment to uncertainty shocks have 

been studied elsewhere, for example in JLN and Bloom (2009). The former 

report very similar results to ours even when using their uncertainty index, 

which requires considerably more information, processing time and modeling 

design than are required by our index (see also section 5.4). Production reacts 

negatively to uncertainty increments and the persistence of the shock extends 

beyond the two-year horizon. In the sixth months after the innovation, 10.5% 

of the forecast error of the production series is explained by the uncertainty 

                                                        
20 See section 3.4 for a more detailed description of the data used in this section. 
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shock, and up to 23.8% is explained 12 months on21. 

  

  

   

Figure 3.4: Economic Dynamics under Uncertainty. We use a VAR (12) comprising 11 

variables. The axes are in percentages but the Federal Funds Rate is in basic points. The 

figure shows the reaction of the variables to an unexpected increment of uncertainty. The 

estimation period runs from February 1959 to September 2014. Confidence bands (86%) are 

calculated using bootstrapping techniques as explained in Efron and Tibshirani (1993). The 

variables are defined as: IP: Industrial Production Index, E: Employment, NO: New Orders, 

C: Consumption, R: Federal Funds Rate, SP: Standard and Poor’s 500. 

 

                                                        
21 See Table 3.2 in the Appendix. 
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Analogously, although at a smaller magnitude, employment decreases 

following a positive uncertainty shock and the impact persists for two and a 

half years (that is, six months more than in the case of production)22. Neither 

we nor JLN find any evidence supporting the ‘rebound’ effect proposed by 

Bloom (2009) in the case of production. However, the rebound effect is 

evident when analyzing the New Orders variable, which is a better proxy for 

current investment. First, new orders decrease in the face of uncertainty – a 

negative impact that lasts approximately eight months, but there is a 

statistically significant rebound effect in months 16 to 19. The reason why a 

similar effect is not detected in the production dynamics could be that 

following the original uncertainty shocks, negative feedback is obtained from 

consumption and expected demand.  

Although there are theoretical claims explicitly linking uncertainty shocks and 

consumption (see, for instance, Romer, 1990), little empirical evidence has 

been presented to document this relationship. Here, we find that after an 

increment in uncertainty, consumption is severely affected (indeed, more or 

less in the same proportion as production, and more so than employment). 

However, the shock tends to disappear more quickly (1.3 years before the 

upper confidence band reaches zero), but it is also apparent that it causes the 

series to stabilize at a lower level relative to that of the production series. 

In line with the theory, financial prices, such as the stock market index, are 

significantly affected by uncertainty in the financial markets. Indeed, the 

marked fall in the market index in the face of uncertainty, and the stabilization 

of the sequence at a lower level, is consistent with the theoretical discussion in 

Bansal and Yaron (2004). Basically, the intuition is tied to the fact that markets 

do not like uncertainty and after an increase in uncertainty, the discount of the 

expected cash flows is greater, causing the market to reduce the price of the 

stock.  

As can be seen from Table 3.2 in the Appendix, a variance decomposition of 

the forecast errors of the series confirms the importance of uncertainty as a 

driver of the economy’s dynamics. One year after the original structural 

innovation, it accounts for 23.8% of the variance in production, 19.5% of new 

                                                        
22 JLN report an impact of their uncertainty shock on production that persists for more than 
60 months. We also find that the IRF tends to stabilize at a lower level following a shock, as 
can be seen in Figure 3.4, although this is only true for the average level. Note that the 
bootstrapped confidence intervals of our exercise prevent us from fixing the effects beyond 
three years as statistically different from zero.  
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orders, 13.2% of employment and 15.9% of the stock market prices. In all 

cases, it is the second or third largest source of variation. It also affects other 

series, albeit to a lesser degree, including consumption (7.6%) and Federal 

Funds (4.7%), being in these cases the fourth or fifth cause of variation among 

the eleven variables considered.  

Lastly, the Federal Funds Rate also seems to be sensitive to uncertainty. In the 

face of an uncertainty shock the Federal Reserve tends to reduce the interest 

rate (thereby confirming that the reduction in equity prices is due to 

uncertainty and not to possible confounding interest movements). The 

reduction is particularly persistent during the first year before it begins to 

disappear. Nevertheless, the uncertainty shock only accounts for between 4 

and 5% of the total variation in the Fed rate according to the variance 

decomposition. 

  

Figure 3.5: Policy intervention and uncertainty. We use a VAR (12) comprising 11 

variables. The axes are in basic points and units, respectively. We replicate the left panel 

from Figure 3.5 and we multiply by minus one the response to an increase in the Federal 

Funds Rate, to be consistent with the text. The estimation period runs from February 1959 

to September 2014. Confidence bands (86%) are calculated using bootstrapping techniques 

as explained in Efron and Tibshirani (1993).  
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expansionary monetary policy decrease uncertainty? As can be observed in 

Figure 3.5, a loosening monetary policy does affect uncertainty. The effects are 

expected to occur with a lag of one year, to last for a further year, and after 

this period, to disappear. This finding is in line with similar effects 

documented by Bekaert et al. (2013), although they use non-corrected 

uncertainty measures and an alternative strategy to differentiate it from risk.  
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Our results in this direction add to the research field by exploring the 

relationship between policy intervention and uncertainty. However, the effects 

are small in magnitude (see Table 3.2 in the Appendix), with between 2 and 

6% being due to the monetary policy innovations.  

Finally, in Figure 3.6, using our proposed index and JLN’s index, we compare 

the responses of the variables facing uncertainty. However, the qualitative and 

quantitative results reported above do not vary significantly depending on the 

uncertainty measure used. 

  

  

  

Figure 3.6: Economic Dynamics under Uncertainty. Comparison of the JLN and U 

Indexes. We use a VAR (12) comprising 11 variables. The figure displays the reaction of the 

variables to an unexpected increment in two standardized uncertainty measures, the U index 
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(solid line) and the JLN index (dotted line). The estimation period for the U index runs from 

February 1959 to September 2014 whereas the JLN index is only publicly available from July 

1960 to May 2013 on one of its author’s web pages; therefore, we use this latter period to 

estimate the IRFs in this case. The variables are defined as: IP: Industrial Production Index, 

E: Employment, NO: New Orders, C: Consumption, R: Federal Funds Rate, SP: SP500. 

 

4.2. Robustness 

We perform several robustness exercises varying the econometric 

methodology employed to extract the idiosyncratic component.  

  

  

Figure 3.7: Robustness exercises. The uncertainty index using GDFM (solid line) is 

compared with different alternatives: a DFM (top left), a one-sided filter version of the 

GDFM (top right), a recursive algorithm (bottom left) and a conditional volatility measure of 

the original series (bottom right). All the indexes have been standardized to make proper 

comparisons. 
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opposed to the two-sided original GDFM, for the full sample; we estimate the 

index as the stochastic volatility without using any factor model to extract the 

idiosyncratic component and, finally, we estimate the idiosyncratic component 

in a recursive fashion, recalculating each model with rolling windows of 80 

days (approx. one quarter). The latter approach speaks directly about 

parameter stability. The main results are summarized in Figure 3.7. 

In general the uncertainty index behaves in a very similar fashion, regardless of 

the factor methodology used to extract the idiosyncratic components of the 

series. Nor does it change when we use recursive estimations. Nevertheless, its 

behavior is considerably different to that of the stochastic volatility of the 

original series. This, however, is not surprising and is indeed in-line with 

previous findings in the literature. Volatility measures tend to overestimate the 

uncertainty of the economy because they confuse uncertainty with risk or risk 

aversion. 

4.2. Conclusions 

We propose an index of time-varying financial uncertainty. The construction 

of this index is relatively simple as it does not rely on excessive data mining 

devices nor does it have to satisfy demanding information requirements. We 

construct the index on a daily basis, for the United States’ economy between 

1927 and 2014. As such, the index can be used to perform event studies, that 

is, to evaluate the impact of policy treatments on economic uncertainty, thanks 

to the higher frequency it offers compared to other proposals. 

Our estimations allow us to identify several periods of uncertainty, some of 

which coincide with well-documented episodes, including major recessions, 

wars, and political upheavals. Others, especially those occurring in more recent 

decades, are more closely associated with bubble regimes in the stock market. 

We also document a change in the persistence of uncertainty between 1940 

and 2014 compared to that recorded between 1927 and 1940. Current 

uncertainty is more persistent and is plagued with more extreme observations, 

although current periods tend to be smaller in magnitude than earlier periods.  

We discuss the circumstances under which our index is a better measure of 

financial uncertainty and when it is in agreement with measures available 

elsewhere. We conclude that significant departures between macro-uncertainty 

and financial uncertainty can be expected during bubble episodes and we 

present evidence of this. 

However, the economic dynamics that we document here (using a VAR 
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model) are consistent with theoretical expectations and previous empirical 

studies (when available). For example, we find that after an uncertainty shock, 

production and employment react negatively and the effects of the shock tend 

to disappear slowly. We also present novel empirical evidence regarding the 

negative effect of uncertainty on consumption, inventory investment 

(including overshooting) and stock market prices.  

Finally, we explore the relationship between uncertainty and policy variables. 

We find that there is indeed a relation between the reference interest rate in 

the economy and uncertainty. The interest rate tends to decrease in the face of 

an uncertainty shock, while the uncertainty shock decreases following a 

loosening of the monetary policy position, with a lag of one-year. However, 

this latter effect is very small in terms of accounting for the total variation of 

the forecast errors of the uncertainty variable. This result raises questions 

regarding the capability of the central banks to combat uncertainty by means 

of traditional monetary policy. 

Appendix to Chapter 3 

In the estimations we make use of some routines from the web page of Serena Ng 

(http://www.columbia.edu/~sn2294/) to estimate the DFM, and to select the optimal 

number of static and dynamic factors. To estimate the GDFM, both, one-side and two-sides 

filters, we use codes from the web page of Mario Forni. 

(http://morgana.unimore.it/forni_mario/matlab.htm). To estimate stochastic volatilities we 

use the r-package ‘stochvol’ (Kastner, 2016), to estimate structural breaks in the index we 

employ the r-package ‘strucchange’ and to estimate the VAR model the r-package ‘vars’ was 

used. 

Table 3.2: Variance Decomposition of the Forecast Errors 

  Industrial Production 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 95.2% 68.2% 41.8% 23.7% 16.8% 95.2% 

Employment 0.7% 3.6% 3.2% 2.1% 5.3% 7.1% 

Consumption 0.1% 0.2% 1.0% 0.8% 1.7% 2.2% 

Inflation 0.3% 0.2% 2.4% 15.4% 17.0% 18.7% 

New Orders 2.5% 8.1% 4.6% 4.9% 3.6% 8.2% 

Wage 0.0% 0.1% 0.2% 0.5% 1.0% 1.1% 

Hours 0.8% 0.6% 0.4% 0.7% 0.4% 0.9% 

R 0.0% 1.6% 4.5% 12.8% 26.0% 26.3% 

S&P500 0.0% 5.0% 11.8% 9.8% 6.8% 13.7% 

M2 0.0% 1.8% 6.3% 7.7% 7.7% 7.9% 

Uncertainty 0.3% 10.5% 23.8% 21.7% 13.7% 25.3% 

  

http://www.columbia.edu/~sn2294/
http://morgana.unimore.it/forni_mario/matlab.htm
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  New Orders 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 10.9% 7.5% 8.4% 7.7% 7.3% 10.9% 

Employment 3.1% 5.3% 5.9% 5.4% 5.0% 6.1% 

Consumption 2.9% 1.9% 1.8% 1.5% 1.4% 3.1% 

Inflation 1.9% 2.7% 9.2% 12.6% 12.6% 12.8% 

New Orders 78.7% 48.2% 39.9% 33.8% 31.5% 78.7% 

Wage 0.0% 0.3% 0.4% 0.5% 0.5% 0.5% 

Hours 0.5% 0.8% 1.7% 1.5% 1.5% 1.7% 

R 0.0% 5.7% 7.2% 8.8% 9.7% 10.5% 

S&P500 1.6% 4.9% 4.5% 10.5% 12.7% 13.3% 

M2 0.2% 1.2% 1.5% 1.4% 1.4% 1.6% 

Uncertainty 0.1% 21.5% 19.5% 16.4% 16.4% 22.6% 

 

  Consumption 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 2.9% 5.3% 3.9% 2.1% 1.7% 6.7% 

Employment 0.7% 4.8% 3.5% 1.8% 3.4% 5.3% 

Consumption 93.8% 62.7% 45.0% 31.9% 25.4% 93.8% 

Inflation 0.6% 6.4% 14.4% 24.3% 25.4% 26.1% 

New Orders 0.3% 0.8% 2.1% 5.0% 4.8% 5.2% 

Wage 0.0% 0.3% 0.4% 0.3% 0.4% 0.4% 

Hours 0.0% 0.8% 1.0% 0.9% 0.7% 1.1% 

R 0.5% 7.4% 12.1% 19.0% 23.6% 23.8% 

S&P500 0.7% 3.9% 4.8% 3.3% 2.1% 5.0% 

M2 0.2% 2.3% 5.1% 6.6% 9.5% 10.8% 

Uncertainty 0.3% 5.3% 7.6% 4.7% 3.1% 7.8% 

 

  Employment 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 32.8% 29.5% 19.1% 11.8% 8.8% 35.1% 

Employment 66.1% 53.2% 42.5% 26.3% 11.5% 66.1% 

Consumption 0.1% 0.6% 0.4% 0.5% 0.3% 0.8% 

Inflation 0.0% 0.1% 0.8% 9.0% 13.3% 14.1% 

New Orders 0.7% 4.4% 2.3% 1.9% 2.0% 4.5% 

Wage 0.1% 0.1% 0.3% 0.8% 1.4% 1.4% 

Hours 0.1% 0.1% 0.4% 1.8% 2.2% 2.3% 

R 0.0% 2.5% 7.4% 19.6% 41.4% 44.5% 

S&P500 0.1% 3.9% 10.4% 9.2% 7.5% 12.5% 

M2 0.0% 0.9% 3.3% 4.2% 3.4% 4.2% 

Uncertainty 0.0% 4.6% 13.2% 14.7% 8.2% 15.5% 
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  Standard & Poor's 500 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 0.3% 0.5% 0.4% 0.5% 1.2% 1.2% 

Employment 0.1% 1.3% 2.7% 4.1% 5.6% 6.2% 

Consumption 0.3% 0.9% 1.8% 1.8% 1.6% 1.8% 

Inflation 0.5% 0.4% 4.0% 6.9% 5.8% 6.9% 

New Orders 0.3% 1.3% 3.8% 5.7% 4.6% 5.7% 

Wage 0.0% 0.2% 2.2% 4.3% 8.0% 9.0% 

Hours 0.6% 1.0% 0.8% 0.9% 1.0% 1.0% 

R 1.0% 1.5% 1.1% 1.2% 2.1% 2.1% 

S&P500 94.5% 73.6% 63.6% 54.1% 44.7% 94.5% 

M2 0.2% 3.4% 3.6% 3.9% 3.7% 4.0% 

Uncertainty 2.2% 15.9% 15.9% 16.7% 21.7% 23.4% 

 

 
Federal Funds -R 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 0.0% 6.4% 5.4% 4.9% 6.2% 6.5% 

Employment 0.0% 1.7% 6.5% 8.6% 8.2% 9.1% 

Consumption 0.0% 0.5% 2.5% 3.3% 8.5% 11.0% 

Inflation 0.0% 2.2% 3.7% 3.5% 4.0% 4.0% 

New Orders 0.0% 10.6% 11.2% 9.2% 7.6% 11.2% 

Wage 0.0% 0.8% 0.7% 0.8% 0.8% 0.9% 

Hours 0.0% 1.0% 1.1% 1.1% 1.3% 1.3% 

R 0.0% 72.8% 55.9% 47.8% 42.2% 91.7% 

S&P500 0.0% 1.7% 6.8% 13.3% 14.4% 16.9% 

M2 0.0% 0.5% 1.6% 1.7% 1.5% 1.7% 

Uncertainty 0.0% 1.9% 4.7% 5.9% 5.4% 6.1% 

 

  Uncertainty 

              

Period 1 6 12 24 48 Max 

              

Ind. Production 0.5% 1.9% 2.4% 2.0% 2.2% 2.4% 

Employment 0.1% 0.8% 1.0% 1.4% 1.2% 1.5% 

Consumption 0.0% 0.5% 1.6% 1.3% 1.1% 1.6% 

Inflation 0.4% 2.6% 5.9% 4.8% 5.6% 6.0% 

New Orders 0.1% 0.3% 0.4% 1.0% 2.0% 2.1% 

Wage 0.0% 0.7% 3.7% 3.5% 3.3% 4.3% 

Hours 0.0% 0.7% 1.4% 1.9% 2.2% 2.2% 

R 0.0% 0.1% 0.2% 4.0% 4.8% 5.0% 

S&P500 1.3% 3.8% 7.1% 22.6% 28.2% 28.6% 

M2 1.8% 3.1% 3.1% 2.6% 3.3% 3.4% 

Uncertainty 95.7% 85.6% 73.2% 54.9% 46.1% 95.7% 

NOTE: We use a VAR (12) comprising 11 variables, in the following Cholesky-order 

Production, Employment, Consumption, Inflation, NO, Wages, Labor, R (Federal Funds 

Rate), Stock Market Index, M2 and the Uncertainty Index.  
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Chapter 4: Uncertainty, Systemic 
Shocks and the Global Banking Sector: 
Has the Crisis Modified their 
Relationship? 
 

Abstract 

We estimate the impact of equity market uncertainty and an unobservable 
systemic risk factor on the returns of the major banks in the global banking 
sector. Our estimation combines quantile regressions, structural changes, and 
factor models and allows us to explore the stability of systemic risk 
propagation among financial institutions. We find that risk propagation has 
remained stable over the last decade, and we report evidence indicating that 
equity market uncertainty is a major factor for the global banking system. 
Additionally, we provide a new simple tool for measuring the resilience of 
financial institutions to systemic shocks. 

 

4.1. Introduction 

Systemic risk can be defined as the risk that a financial institution faces during 
periods of widespread financial distress, following exposure to an extreme 
negative shock in the market. This shock may arise either as a consequence of 
the failure of an individual firm of sufficient size and connectedness that it 
imposes significant marginal distress costs on the rest of the system, or as a 
common shock to the financial structure that is absorbed and amplified by 
various firms depending on their own particular resilience (Jobst, 2014a). The 
materialization of systemic risk may lead to disruptions in the provision of key 
financial services due to impairments of all or parts of the financial system, 
which may in turn have adverse consequences for the functioning of the real 
economy (see Acharya et al., 2017, and Adrian and Brunnermeier, 2014).  

For these reasons, in recent years systemic risk has become a growing concern 
for regulators, who have made great efforts not only to measure the impact of 
systemic risk on individual firms, but also to identify systemically important 
financial institutions (SIFIs) that should adhere to stronger capital 
requirements to avoid giving rise to shocks which might destabilize the whole 
system. As a result, significant advances have been made in systemic risk 
regulation, as documented by both the Financial Stability Board (FSB) and the 
International Association of Insurance Supervisors (IAIS).23  

                                                        
23 See for example FSB (2011, 2012, 2013) and IAIS (2009, 2012, 2013). 
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Several methodologies have been proposed for measuring systemic risk, above 
all in the banking sector. 24  The most common seek to estimate marginal 
increments in the value-at-risk statistics (VaR) of financial institutions, or 
increments in the marginal expected shortfall (ESF) of each firm, under a 
scenario of financial turmoil. 25  The reason for focusing on a financial 
institution’s VaR or ESF is because extreme negative scenarios are naturally 
related to the lowest quantiles of the distribution of a set of financial variables 
(including, stock returns) and, hence, to systemic risk scenarios. However, 
traditional methods based on quantiles do not allow the researcher to identify 
the source of the shocks to the system; rather, they calculate the marginal 
contribution of each company to the risk of the system as a whole.  

Our contribution to the literature is the examination of the characteristics and 
stability of systemic risk and uncertainty, in relation to the dynamics of the 
banking sector stock returns. Particularly, we are interested in exploring 
relevant hypotheses for the economics discipline regarding the stability of the 
systemic risk propagation mechanism across the global banking sector, and 
about the importance of equity market uncertainty as a source of systemic risk 
for global financial institutions. Both issues are instrumental for the design of 
macro policies, seeking to reduce systemic risk materialization episodes, or to 
construct a more resilient global banking sector in the forthcoming decades. 
Hence, we aim to measure the systemic risk in the global banking sector that 
arises from two primary sources: an unobservable systemic risk factor by 
White et al. (2015) and an economic equity market uncertainty factor (EMU) 
provided by Baker et al (2016). Our proposal is novel in three respects. First, 
we consider the evolving nature of systemic risk, a characteristic mainly 
overlooked in the literature despite having evident policy and practical 
implications for the banking industry.26 We provide evidence regarding the 
stability of the relationship between systemic shocks and the banks’ responses 
over the last decade. This sort of evidence is new to the literature and is 
supportive of past claims, made in the field of macroeconomics (Stock and 
Watson, 2012), which hold that during the global financial crisis the financial 
system may have faced stronger versions of traditional shocks rather than a 
new type of shock.  

Second, we undertake an empirical study of the role of equity market 
uncertainty, as measured by Baker et al. (2016), as a systemic risk factor for the 
banking industry. Uncertainty is known to play a critical role in determining 
economic dynamics during episodes of crisis and, in recent years, its study has 

                                                        
24 See Bisias et al. (2012) for a review. 
25  These methods were originally proposed by Acharya et al. (2017) and Adrian and 
Brunnermeier (2014). Numerous empirical implementations followed, for example, in the 
work of Anginer et al. (2014a, 2014b), Bernal et al. (2014), or Drakos and Kouretas (2015). 
26 Two exceptions to this point are the studies by Straetmans and Chaudry (2015) and Kolari 
and Sanz (2017), which we discuss in the next section. 
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attracted much attention in the literature to account for the nonlinear negative 
dynamics that arise during episodes of economic distress (Bloom, 2009; Jurado 
et al., 2015). Empirical tools are now available that can provide accurate 
measurements of uncertainty (Baker et al. 2016), and its inclusion as an 
unobservable factor enhances our understanding of banking sector behavior 
during episodes of systemic stress in the financial markets. We report that for 
most of the banks analyzed, especially over the last decade, uncertainty is 
indeed a relevant consideration. As expected, more uncertainty leads to a 
reduction in equity prices in the banking industry, and this behavior has 
become more pronounced in the last few years, especially when compared to 
the situation 15 years ago.  

Finally, we emphasize the vulnerability of each institution to systemic shocks 
(either EMU or systemic risk factors), rather than the vulnerability of the 
system as a whole to the failure of one specific, perhaps important, financial 
institution. The perspective we adopt has received considerably less attention 
in the literature27. By implementing our model, we are able to rank banks in 
accordance with their vulnerability to two common shocks: an unobservable 
systemic risk factor and the equity market uncertainty shock. Thus, we seek to 
identify systemically vulnerable financial institutions under scenarios of 
financial distress. Notice that the two factors in our model were selected as to 
measure two main different sources of vulnerability in the global banking 
sector. While the systemic risk indicator may be interpreted as a “financial” 
risk shock, the EMU index quantifies  "economic" uncertainty related with 
equity markets. This theoretical separation allows us to interpret our main 
findings as arising from the financial and macroeconomic (real) sides of the 
economic system. This distinction and the importance of its inclusion in the 
empirical exercise that we conduct in what follows are crucial to achieving a 
deeper understanding of the way in which the propagation of shocks occurs 
within and between financial and real markets.28. 

Our model involves combining dynamic factor models with quantile 
regressions, in line with Ando and Tsay (2011) and White et al. (2015).29 Yet, 
unlike Ando and Tsay (2011), who are not concerned with systemic risk but 
rather with forecasting asset returns, we construct the factors for inclusion in 
the factor-augmented quantile regression by differentiating between a 
traditional systemic risk factor and an equity market uncertainty factor. Similar 

                                                        
27 Some noticeable recent examples given by Hartmann et al. (2006), Jonghe (2010) and 
Straetmans and Chaudhry (2015). 
28 See for example the theoretical by Brunnermeier and Sannikov (2014) to motivate the 
importance of considering the interplay between macro and financial markets. 
29  Factor models are popular in the asset pricing literature (Fama and French, 1993; 
Cochrane, 2005), while quantile regressions have gained considerable impetus in the financial 
branch in recent years (Engle and Manganelli, 2004; Li and Miu, 2010; Ciner et al. 2013; 
Mensi et al., 2014; among others). 
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to White et al. (2015), we consider the systemic factor as being 
contemporaneously exogenous from the point of view of each bank. In 
contrast with them, we do not construct (pseudo) quantile impulse response 
functions, and this allows us to expand the analysis by including more relevant 
factors (e.g., the uncertainty factor). That is, our model lacks dynamics, and 
therefore it may exist additional feedback beyond the first period going from 
the idiosyncratic bank dynamics to the system dynamics. This can conduce to 
a total impact of the systemic shock higher than the one observed in the first 
period, which we report here. Nevertheless, we restrict our attention to the 
effect observed when the systemic shock first arises, which is the most 
relevant point in the total dynamic impact30. This contemporaneous reaction is 
crucial in terms of systemic risk and we aim at examining its stability through 
time. To this end we test for the stability of the quantile coefficients in an 
endogenous fashion, following the proposals made by Oka and Qu (2011). 
This last step allows us to determine whether there were changes in the 
propagation of systemic risk in the global banking industry during and after 
the crisis. The outcome we report is, in general, negative in this regard. 

In sum, we measure, by the first time, the role of equity market uncertainty as 
a systemic risk factor for the global banking sector. We test whether the 
relationship between economic uncertainty and banks’ returns, and a 
previously identified systemic risk factor and banks’ returns is stable during the 
sample period, which includes the global financial crisis, in an endogenous 
fashion, which is also new for the literature. We employed a methodology that 
allows us to focus on a specific quantile of interest, conditional on the 
systemic risk factors that we identified. This is also new, given that in the 
systemic risk exercises that have used quantiles so far, systemic risk factors are 
omitted and the estimates refer to unconditional quantiles of the dynamic 
distribution of returns (or to estimates conditional on certain observation as 
opposed to quantiles). Finally, we also provide a ranking of systemically 
vulnerable financial institutions that focuses on the vulnerability of each 
institution to the systemic risk factors, as opposed to the extant literature that 
has mainly focused on the effect of each institution on the rest of the system. 

The rest of this paper is organized as follows. In the next section we undertake 
a general review of the literature examining systemic risk, so as to place our 
study in a broader context and to illustrate just where our contribution fits in 
the field. The third section provides a detailed explanation of our 
methodology. In the fourth section we present our main results and, finally, in 
the fifth section we conclude and discuss the limitations of this study and 
identify future lines of research. 

 

                                                        
30 See for example Figures 2 to 4 in White et al. (2015) in which the first effect is always the 
maximum of the pseudo impulse responses. 
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4.2. Related literature 

Systemic risk is traditionally considered as comprising various phenomena that 
represent substantial costs to the real economy and which, as such, have 
attracted significant research efforts. Allen and Carletti (2013) summarize 
these phenomena as panics (associated with banking crises due to multiple 
equilibria); banking crises due to asset price falls; contagion; and, foreign 
exchange mismatches in the banking system. The authors stress the historical 
importance of panics in accounting for systemic risk. Panics, they argue, are 
self-fulfilling events that arise because agents have uncertain consumption 
patterns and, consequently, uncertain investment plans, which are costly to 
implement. In a scenario in which depositors believe that other depositors will 
withdraw their funds prematurely, then all agents find it optimal to redeem 
their claims, sending the market into panic (see the seminal works by Bryant, 
1980, and Diamond and Dybvig, 1983). 

In the case of banking crises, Allen and Carletti (2013) identify several possible 
reasons as to why the prices of assets held by banks might drop, generating the 
appearance of systemic risk in the real economy. They include, but are not 
limited to, the business cycle dynamics, the bursting of real estate bubbles, 
mispricing due to inefficient liquidity provision and limits to arbitrage, 
sovereign defaults and interest rate increases. In each of these cases, whether 
they are related to natural economic dynamics (for instance the real cycles of 
the economy, as reviewed by Allen et al., 2009) or to behavioral biases in agent 
decision-making (Allen and Gale, 2007), when asset prices fall, this might 
result in significant solvency problems for banks and, hence, in systemic risk.  

Contagion is another important source of systemic risk that seems to have 
been particularly relevant in the most recent global financial crisis. This 
phenomenon refers to the possibility that the distress of one financial 
institution propagates to others in the system and, thus, leads to a systemic 
crisis (Allen et al., 2009, provide a survey of this literature). Finally, Allen and 
Moessner (2010) describe currency mismatches in the banking system, created 
by banks lending in a low interest rate foreign currency, and then funding 
these loans in domestic currency. When exchange rate reversals are made, as 
occurred during the Asian crisis in 1997, the solvency and liquidity of the 
whole banking system may be compromised.  

More recently, systemic risk has received considerable attention from both 
academics and regulators, since it is thought to lie at the core of the 2007-2009 
crisis and to be a key factor in understanding crisis propagation to the real 
economy. In the main, research has explored data series from the US and the 
Eurozone and has analyzed systemic risk from a range of perspectives.  

One strand of this literature has analyzed the systemic risk arising from 
individual financial institution spillovers, i.e., it has focused on measuring the 
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impact that individual shocks attributable to specific institutions may have on 
the system as a whole. For example, Avramidis and Pasiouras (2015), using 
factor models and multivariate extreme dependency statistics, study spillovers 
between individual financial institutions. They highlight the significant 
underestimation of the capital requirements of financial institutions if extreme 
event dependence is ignored when estimating solvency ratios. Kanno (2015) 
and Cont and Minca (2016) undertake network analyses to explore interbank 
bilateral exposures and over-the-counter credit default swaps, respectively, and 
report large spillovers during the global financial crisis. In the same line of 
research, Bongini et al. (2015) and Castro and Ferrari (2014) analyze 
systemically important financial institutions (SIFIs) and their market effects. 
While the former apply event study methodology to determine the impact of 
inclusion as a SIFI on market prices, the latter explore the use of CoVaR 
(Conditional Value at Risk) as a measure of an institution’s systemic 
importance.31  

Alternative measures, including V-Lab stress tests, designed to account for 
‘the risk that risk itself may change’, have been compared with the stress test 
indicators used by the Supervisory Capital Assessment Program in the US and 
by the European Banking Authority (which replaced the Committee of 
European Banking Supervisors) in the EU (see Acharya et al., 2012; Acharya 
et al., 2014). In the same vein, nonlinear models using flexible 
parameterizations, such as those allowed by vine copulas, have been analyzed 
for example in Brechmann et al. (2013), with empirical applications to both 
the insurance and banking sectors. Finally, Singh et al. (2015) analyze the risk 
behavior of the banking sector at the individual level and then scale these 
outcomes at the EMU-country level, using distance-to-default models and 
vector autoregression estimates. 

Another strand of the literature has analyzed the systemic risk arising from 
extreme market scenarios in an aggregate fashion. In other words, it has 
explored the sensitivity of financial institutions to ‘systemic factors’, which can 
be treated as observable or unobservable. The former are related, for example, 
to liquidity considerations, as studied by Pierret (2015) and Jobst (2014b). 
While the first of these authors constructs a model that blends questions of 
liquidity and solvency, the second proposes adjusting traditional systemic risk 
indicators using liquidity constraints. Other observable factors include 
disruptions in economic conditions, as studied for example by Calmès and 
Théoret (2014), and such factors as interbank exposures, asset prices, and 
sovereign credit risks (Paltalidis et al., 2015). 

In contrast, a number of studies have preferred to focus on unobservable 

                                                        
31 CoVaR was originally proposed by Adrian and Brunnermeier (2014) for the estimation of 
increments in a firm’s marginal expected shortfall, under a scenario of financial turmoil. It 
has been extended to the bivariate setting, for example, by Lopéz-Espinosa et al., 2015.  
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factors. For example, Kim and Kim (2014) estimate a ‘systemic bubble index’ 
to determine the investment dynamics of stock investors for financial 
institutions, and which should serve as an early warning signal of systemic 
fragility. Alter and Beyer (2014) quantify spillovers between sovereign credit 
markets and banks in the euro area, but they treat the factors as exogenous-
unobservable forces affecting the dynamics of CDSs.  

Finally, a new branch of the systemic risk literature has started to explore the 
evolving nature of systemic risk. This branch (implicitly or explicitly) considers 
systemic risk as a policy regime-dependent problem. As such, it seeks to take 
into account changes in terms of the regulatory framework (i.e., Basel III, the 
Dodd-Frank reform), macro-prudential regulation, and individual risk 
preferences. Claessens et al. (2013) investigate the efficacy of macro-prudential 
policy for preventing systemic risk and report that such measures have helped 
mitigate bank leverage and exposure to the volatility of financial assets. 
However, others, such as Calluzzo and Dong (2015), question whether the 
reduction in risk faced by individual institutions correlates with a decrease in 
systemic risk. They conclude that it does not, and indeed, using a quasi-
experimental design, they document an increment in the amount of contagion 
in the post-crisis financial system, and hence in the vulnerability of the 
financial market to systemic risk.  

Similarly, Straetmans and Chaudhry (2015) evaluate multiple market-based 
measures for US and eurozone individual bank tail risk and bank systemic risk, 
and report results that suggest that both are higher in the US than in the 
eurozone regardless of the sample period (pre- and post-crisis). They also find 
that the magnitude of the two risk types increased in both samples, taking the 
crisis as a threshold. This contribution can be seen as the closest to ours. The 
authors analyze systemic spillovers using extreme value theory and they aim to 
test for the stability of the results. They do both an analysis of the whole 
system sensitiveness to each financial institution, and of each bank to 
aggregate systemic factors (such as stock market indices, sectorial world-wide 
and regional indices and housing prices). Nevertheless, their systemic factors 
are different to ours and their estimates correspond to co-crash probabilities 
of banks, conditioning on sharp drops on the non-diversifiable factors. To do 
the latter they need to focus on particular dates at witch the systemic risk 
indicators drop in a significant magnitude. By the contrary, we use our full 
sample to estimate the conditional quantiles of the banks’ return distributions. 
These quantiles are by construction conditional on our systemic factors and in 
this way we manage to use the information more efficiently. More importantly, 
we test for the stability of the estimates describing the propagation 
mechanism, but different from Straetmans and Chaudhry (2015) who impose 
ad hoc the possible structural change of the series, we do so in an endogenous 
fashion, following the proposal by Oka and Qu (2011). The latter approach 
has several advantages, which have been extensively documented in the 
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literature of structural changes in time series analysis (see Perron (2006) for a 
survey). Basically, imposing the break dates might derive in spurious detection 
of changes in the data generating process. Therefore the search should be 
ideally carried up in an endogenous fashion. 

The selection of our systemic factors and our quantile regression 
methodology, unable us to obtain stable model coefficients, before and after 
the global financial crisis. This means that our factors suffice to explain the 
quantile variations before and after the crisis, while Straetmans and Chaudry 
(2015) estimates experience a great amount of variation (with marked jumps of 
the “tail-betas” that they calculate). This is an advantage, because our model 
does not become invalid once the systemic risk factors achieve a certain 
threshold. 

The present study is related to all three branches of the literature outlined 
above, but primarily with the last two. It is closely associated with the second 
group of studies because we are concerned with the sensitivity of individual 
institutions to factors of systemic risk. In line with Kim and Kim (2014) and 
White et al. (2015), we treat these factors as unobservable in nature and, in line 
with Calmès and Théoret (2014), Alter and Beyer (2014), and Paltalidis et al. 
(2015), we treat them as exogenous from the point of view of each financial 
institution. It is also closely associated with the third group because it focuses 
on the dynamics of systemic risk. We explicitly test for the stability of the 
parameters in our factor quantile model, seeking to identify any possible 
structural changes in the shape of risk transmission during the sample period, 
in an endogenous fashion. Finally, in relation to the first set of papers, our 
study can be considered as providing a tool to account for the ‘risk that risk 
itself may change’, in line with the V-Lab stress test (although using different 
methodologies).  

Kolari and Sanz (2017) utilize neural network mapping technology to assess 
the dynamic nature of systemic risk over time in the banking industry. They 
report informal graphical evidence suggesting that systemic risk peaked in 
2009 and remained thereafter. Their strategy consists of a visual inspection of 
the changes in the network’s maps of the 16 main commercial banks in the US 
during the crisis period. The changes reported by the authors are gradual, so 
they are not related to dramatic changes or structural breaks from one year to 
another. Different to these authors we focus here in permanent changes of the 
systemic risk propagation mechanisms following the global financial crisis and 
we provide statistical tests of such changes. We also analyze a longer period of 
time and a considerable greater number of banks. 

Notice that different to ours, other measures of systemic risk, based on 
quantiles, such as the marginal expected shortfall (MES) of Acharya et al. 
(2017) estimate the stock return reaction of bank i to bad market outcomes. 
They are intended to provide a measure of the resilience of each individual 
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institution to systemic distress scenarios. In this way, they aim to estimate the 
marginal contribution of each bank to systemic financial distress: The more 
negative the outcome of a particular bank is, the more this institution will 
contribute to destabilize the system during periods of generalized distress. You 
can notice that the emphasis of the exercise using MES is precisely on how 
much the system will be affected by the idiosyncratic bank performance during bad market 
times. On the contrary, our definition of SVFIs emphasizes on how the system 
impacts on the bank i, at any time, which is a complementary approach. For this 
reason, we do not restrict our attention to bad market outcomes, but to bad 
individual stock realizations of the financial institutions (i.e. to the lowest 
quantiles of the banks’ return distribution). 

4.3. Methodology 

As discussed, our methodological proposal involves combining dynamic factor 
models with quantile regression. Thus, we construct the factors to be included 
in the factor-augmented quantile regression, differentiating between a 
traditional, systemic risk factor affecting the global financial sector and an 
equity market uncertainty factor. We conduct the estimation in a three-step 
approach: first, we construct the systemic factor; second, we use this and the 
EMU factor provided by Baker et al. (2016) as explanatory variables in a 
traditional quantile regression; and, third, we test the stability of the 
parameters, seeking to identify changes in factor load coefficients that might 
be attributable to the crisis.  

Following Bai and Ng (2008), let 𝑁 be the number of cross-sectional units, 

that is, the number of banks in our sample, and let 𝑇 be the number of time 

series observations. For 𝑖 = 1…𝑁 and 𝑡 = 1…𝑇, our factor model can be 
defined as: 

𝑥𝑖𝑡 = 𝜆1,𝑖𝑓1,𝑡 + 𝜆2,𝑖𝑓2,𝑡 + 𝑒𝑖𝑡 ,  (4.1) 

or more compactly as 𝒙𝑡 = 𝜶𝒇𝑡 + 𝒆𝑡  with 𝒙𝑡 = (𝑥1𝑡 , … , 𝑥𝑁𝑡)′ ,  𝒇𝑡 =
(𝑓1𝑡 , 𝑓2𝑡)′ , 𝒆𝑡 = (𝑒1𝑡 , … , 𝑒𝑁𝑡)′  . 𝒙𝑡  is a N-dimensional observable random 

vector of stock returns of the banks in our sample, 𝒇𝑡  is a 2-dimensional 
vector of latent factors.  

𝑓1,𝑡  is an unobservable systemic risk factor that impacts the N financial 

institutions in our sample via coefficients 𝜆1,𝑖 . Thus, it can be estimated using 

the first principal component of the (𝑁 × 𝑇) matrix of financial institutions’ 
stock returns in the cross-sectional dimension. This procedure enables us to 
treat the consistently estimated factors as non-generated regressors in 
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subsequent stages of our procedure (Bai and Ng, 2002; Stock and Watson, 
2002), which is important for inference.32  

𝑓2,𝑡 is a general equity market uncertainty factor that may potentially impact 

the banks via  𝜆2,𝑖 . This uncertainty factor is, in principle, unobservable, as 

well. However, recent advances in the discipline mean we can construct 
indices of economic uncertainty that impact the equity market. Specifically, 
here, we use the equity market uncertainty factor proposed by Baker et al. 
(2016). These authors construct their measure of uncertainty by searching each 
paper in the NewsBank database looking for terms related to economic and 
policy uncertainty.33 This direct measure of equity market uncertainty allows us 
to trace the dynamic of this unobservable and systemic factor.  

The first unobservable factor was previously identified in the literature by 
White et al. (2015), as we already emphasized. Moreover, it is naturally related 
to a market factor, because it summarizes the common variation in all the 
series of stock returns in the financial sector in a CAPM’ style, and therefore, 
it should be the starting point of any factor analysis about systemic risk (or 
asset pricing).  

The inclusion of EMU requires a more detailed explanation. We need a factor 
that helps to identify recessionary states in the market, and that provides new 
information additional to the market factor. We ideally require a variable with 
predictive power on the state of the economy and at the same time with a 
theoretical justification to support its inclusion. Indeed, this is the case of very 
few factors in the literature and uncertainty is one of them. Balcilar et al. 
(2016) and Segnon et al. (2016) provide evidence of the predictive power of 
uncertainty in the GDP forecast and Balcilar and Gupta (2016) provide 
evidence of the prediction power of uncertainty in inflation. On the other side, 
Bansal and Yaron (2004), Bloom et al. (2007), Bloom (2009), Jurado et al. 
(2015) and Chuliá et al. (2017), to name just a few, have extensively 

                                                        
32 We construct the systemic risk measure in line with White et al. (2015). Unlike us, they 
estimated the principal components of each financial sector (banks, insurers and others) and 
then aggregated the factors using the market capitalization of each sector as weights. We also 
tried estimating the factors that affect each sector separately, and included all three in the 
estimations, but the amount of multicollinearity among the three factors, indicated that they 
were likely to be measuring the same unobservable shocks. For this reason, we preferred to 
include only one general factor as we explain in the main text. 
33  Specifically, they search for articles containing the words 'uncertainty' or 'uncertain'; 
'economic' or 'economy'; and, one or more of the following terms: 'equity market', 'equity 
price', 'stock market', or 'stock price'. Thus, to satisfy their criteria for inclusion, the article 
must include a term from each of the three categories (that is, uncertainty, the economy, and 
the stock market). Further details about the construction of the index can be found at 
www.policyuncertainty.com and in Baker et al. (2016). 
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documented, and modeled, how uncertainty may affect price formation in the 
market, or how it may shape the dynamics of the economic activity as a whole.  

Finally, one could argue that while the market factor is more related to 
expected variations within the financial system, equity market uncertainty is 
more related to unexpected movements in the time series returns, related to 
the economic system. Therefore they are complementary and hence natural 
candidates to construct our factor model (see for example Chuliá et al. (2017) 
for an extensive discussion of the differences between expected and 
unexpected shocks). 

Here we keep the focus on the systemic risk interpretations accompanying our 
factors, but we acknowledge that this exercise is much related to those 
performed within the asset pricing literature aiming to explain the equity 
premium, and therefore, other factors such as size, book to market ratios, 
momentum, etc. might be explored in future exercises. Nevertheless, the 
theoretical constructs that underlie uncertainty are very appealing and for this 
reason we consider that it remains an attractive starting point for systemic risk 
analysis. 

The model in Eq. 1 relates the ‘average’ scenarios for the bank stock returns 
distribution to the systemic factors. However, our definition of systemic risk 
means we need to focus on the shocks that occur during extreme negative 
scenarios. To this end we expand regression (4.1) as: 

𝑞𝑖
𝜏(𝑥𝑖𝑡|𝒇𝒕; 𝜶) = 𝜶(𝜏)′𝒇𝒕,   (4.2) 

where α(τ)  is a vector of coefficients that depends on the quantile 𝜏 , 𝑞𝑖
𝜏 . 

Unlike classical factor theory, which focuses on the factor’s mean impact on 
the endogenous variables, quantile estimates allow us to explore different 
portions of the conditional distribution of the stock returns. Quantile 
regressions are known to be robust to outliers and this is particularly 
important when analyzing financial time series. They are also semi-parametric 
in nature and, therefore, we require minimal distributional assumptions on the 
underlying data generating process. Moreover, quantile regressions offer 
greater flexibility in the analysis of different market scenarios. For instance, 
lower quantiles can be interpreted as extreme negative situations, 

corresponding for example to setting 𝜏 = 0.1, and therefore the estimations 
are directly related to systemic risk scenarios. Quantile regressions have been 
incorporated in the factor pricing literature, for instance in Gowlland et al. 
(2009), Ando and Tsay (2011), Allen et al. (2013) and Autchariyapanitkul et al. 
(2015), but they remain underexplored in the systemic risk framework. 

Moreover, using the matrix �̂�(𝜏), the banks can be sorted according to their 
sensitivity to each of the underlying factors. The ordering is bi-dimensional in 
nature, and so the companies with greatest exposure to the two factors can be 
identified as systemically vulnerable financial institutions (SVFIs), which we 
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propose as a complementary concept to Global-SIFIs. This ranking provides 
valuable information from the point of view of the banks that participate in 
the market, since it provides the basis for capital adjustments that take into 
account the idiosyncratic vulnerabilities of each institution.  

Finally, we use recent advances in the econometrics literature to test the 

stability of the load coefficients in the matrix �̂�(𝜏). These include a test for 
multiple endogenous structural breaks in single quantile regression 
coefficients, as explored in Oka and Qu (2011). By so doing, we are able to 
determine whether the financial crisis has significantly shaped the systemic risk 
dynamics in the banking industry. The procedure devised by Oka and Qu 
(2011) involves constructing a break estimator that is the global minimizer of 
the check function over all permissible break dates. The underlying 
assumptions are mild, and they restrict only a neighborhood surrounding the 
quantiles of interest, which makes it a suitable tool for our purposes.  

In what follows, we briefly review their proposal, but we invite the interested 
reader to consult the full article by Oka and Qu (2011) for further 
methodological details about derivations and their main underlying 
assumptions.  

For the purposes of estimation, we assume the conditional quantile function in 

Eq. 2 to be linear in parameters and to be affected by 𝑚 structural changes, as 
follows: 

𝑞𝑖
𝜏(𝑥𝑖𝑡|𝒇𝒕; 𝜶) =

{
 

 
𝜶1(𝜏)

′𝒇𝑡 ,                    𝑡 = 1,… , 𝑇1
0          

𝜶2(𝜏)
′𝒇𝑡 ,                   𝑡 = 𝑇1

0 + 1,… , 𝑇2
0

⋮
𝜶𝑚+1(𝜏)

′𝒇𝑡 ,              𝑡 = 𝑇𝑚
0 + 1,… , 𝑇  

 ,  (4.3) 

where 𝜏 denotes the quantile of interest, and where, as stated before, 𝜶𝑗(𝜏) 
(𝑗 = 1,… ,𝑚 + 1) are the unknown parameters that are quantile dependent, 

and 𝑇𝑗
0  (𝑗 = 1,… ,𝑚)  (𝑗 = 1, … ,𝑚)  are the unknown break dates. In the 

absence of structural change, the model in Eq. 3 can be estimated by solving: 

min
𝜶 ∈ ℝ𝑁

∑ 𝜌𝜏(𝑥𝑖𝑡 − 𝜶′𝒇𝒕)
𝑇
𝑡=1 ,    (4.4) 

where ℝ𝑁  are N-dimensional Real, for each cross-sectional unit in the factor 

model, but we eliminate the sub-index in 𝑖 = 1,… ,𝑁 to avoid unnecessary 

notation. 𝜌𝜏(𝑢) is the check function given 𝜌𝜏(𝑢) = 𝑢(𝜏 − 1(𝑢 < 0)) (see 

Oka and Qu, 2011, and Koenker, 2005, for further details). Now suppose that 

the 𝜏th quantile (in our case a low quantile, such as the 10th percentile) is 

affected by 𝑚  structural changes, occurring at unknown dates (𝑇1
0, … , 𝑇𝑚

0 ) . 
Then, we can define the following function for a set of feasible break dates 

𝑇𝑏 = (𝑇1, … , 𝑇𝑚): 
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𝑆𝑇(𝜏, 𝜶(𝜏), 𝑇
𝑏) = ∑ ∑ 𝜌𝜏(𝑥𝑖𝑡 − 𝜶𝑗+1

′ (𝜏)𝒇𝒕)
𝑇𝑗+1
𝑡=𝑇𝑗+1

𝑚
𝑗=0 ,     (4.5) 

where 𝜶(𝜏) = (𝜶1(𝜏), … . , 𝜶𝑚+1(𝜏)), 𝑇0 = 0 and  𝑇𝑚+1 = 𝑇. Following Bai 

(1995, 1998), Oka and Qu (2011) propose estimating the break dates and 

coefficients 𝜶(𝜏) jointly by solving the following minimization problem: 

(�̂�(𝜏), �̂�𝑏) = argmin𝜶(𝜏),𝑇𝑏∈𝕋𝑆𝑇(𝜏, 𝜶(𝜏), 𝑇
𝑏),     (4.6) 

where �̂�(𝜏) = (�̂�1(𝜏), … , �̂�𝑚+1(𝜏)) and  �̂�𝑏 = (�̂�1, … , �̂�𝑚). Specifically, for 

a given partition of the sample, the coefficients are estimated by 

minimizing  𝑆𝑇(𝜏, 𝜶(𝜏), 𝑇
𝑏) . Then a search has to be conducted over all 

permissible partitions to find the break dates that achieve the global minimum. 

In Eq. 4.6, 𝕋 denotes this set of possible partitions and ensures that each 
estimated regime is a positive fraction of the sample. This is what we referred 
to above when discussing the feasible break date. 

In our empirical application, we permit a maximum number of regimes 𝑚 =
3, corresponding to two structural changes, so as to limit computational costs. 
This means our break dates should be interpreted as the “biggest” structural 

changes in the sample. Nevertheless, we used the 𝑆𝑄𝜏 statistic proposed by 
Qu (2008) to determine the optimal number of breaks in case it was less than 

three. The 𝑆𝑄𝜏 test is designed to detect structural changes in a given quantile 

𝜏, and is defined as: 

𝑆𝑄𝜏 =
sup

𝜆 ∈ [0,1] ‖(𝜏
(1 − 𝜏))

−1/2
[𝐻𝜆,𝑇(�̂�(𝜏)) − 𝜆𝐻1,𝑇(�̂�(𝜏))]‖

∞
,      (4.7) 

where, 

𝐻𝜆,𝑇(�̂�(𝜏)) = (∑ 𝒇𝒕
𝑇
𝑡=1 𝒇𝒕

′)−1/2∑ 𝒇𝒕
⌊𝜆𝑇⌋
𝑡=1 𝜓𝜏(𝑥𝑖𝑡 − �̂�′(𝜏)𝒇𝒕),          (4.8) 

�̂�′(𝜏)  is the estimate using the whole sample and assuming no structural 

change. ‖∙‖∞  is the sup norm. We also require the test labeled 𝑆𝑄𝜏(𝑙 + 1|𝑙) 
in case we detect more than one break. This test is employed as follows: 

suppose a model with 𝑙 breaks has been estimated with the estimates denoted 

by  �̂�1, … , �̂�𝑙 . We proceed by testing each of the 𝑙 + 1  segments for the 

presence of an additional break. We let 𝑆𝑄𝜏,𝑗 denote the 𝑆𝑄𝜏 test applied to 

the 𝑗th segment as follows: 

𝑆𝑄𝜏,𝑗 =
sup

𝜆 ∈ [0,1]
‖(𝜏(1 − 𝜏))

−1/2
[𝐻𝜆,�̂�𝑗−1,�̂�𝑗 (�̂�𝑗(𝜏)) − 𝜆𝐻1,,�̂�𝑗−1,�̂�𝑗 (�̂�𝑗(𝜏))]‖∞

,  (4.9) 

and analogous definitions for 𝐻𝜆,�̂�𝑗−1,�̂�𝑗  and 𝐻1,,�̂�𝑗−1,�̂�𝑗  to those presented in 

Eq. 8. In this case 𝑆𝑄𝜏(𝑙 + 1|𝑙) is equal to the maximum of the 𝑆𝑄𝜏,𝑗 over 

𝑙 + 1 segments: 

𝑆𝑄𝜏(𝑙 + 1|𝑙) =
max

1 ≤ 𝑗 ≤ 𝑙 + 1𝑆𝑄𝜏,𝑗 .   (4.10) 
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We reject this in favor of a model with 𝑙 + 1 breaks if the resulting value is 

sufficiently large and provided 𝑙 < 2, so as to keep the computational costs to 
a minimum. The critical values for performing these comparisons are provided 
by Oka and Qu (2011), while their construction is in line with the logic 
underpinning the work by Bai and Perron (1998). 

4.4. Data 

To construct the systemic risk factor affecting the financial institutions in our 
sample we used 113 banks, 59 insurance companies (life, non-life and 
reinsurance), and 50 firms providing other financial services (i.e., asset 
management, specialty finance, financial administration, and investment 
services). All 222 financial institutions are listed in Table 4.1 (banks) and Table 
A in the appendix. Our sample resembles that employed by White et al. 
(2015). Those authors used in their estimations firms belonging to three main 
global sub-indices: banks, financial services and insurance, according to the 
firms’ market capitalization. We do so seeking for some comparability between 
our results, in terms of the stability of the quantile coefficients, and the main 
findings of White et al. (2015). Their data set include the biggest institutions in 
terms of market capitalization in each region and therefore we expect them to 
be the most relevant ones in terms of global financial stability. We eliminated 
from our original sample companies with a large number of missing 
observations at the beginning or the end of the sample period. All data were 
taken from Datastream. The sample includes weekly closing prices, for each 
Friday, from 21 July 2000 to 20 November 2015. Prices were transformed into 
continuously compounded log- returns, giving an estimation sample size of 
800 weeks in total.  

The equity market uncertainty index was retrieved from the webpage 
www.policyuncertainty.com. We aggregated this daily index over the week to 
obtain a weekly index. In this way, we avoided excluding any uncertainty 
episodes that occur on days of the week other than Friday. We transformed 
the original index to natural logarithms and performed two unit root tests (the 
augmented Dickey-Fuller test and the Dickey-Fuller generalized least squares 
test) on the series. In both cases, we rejected the null of a unit root with 
statistics equal to -4.52 and -6.48, respectively, and associated critical values at 
the 1% significance level: 2.58 and -2.57. This means that the equity market 
uncertainty index can be included without differentiating it in the quantile 
regressions that we present in what follows. This eases the explanation of the 
results, as the estimated effects will be directly attributable to the impact of 
log-uncertainty variations on the banks’ returns.  

 

  



 83 

Table 4. 1. Banks in our Sample 

NAME MNE NAME MNEM NAME MNEM NAME MNEM 

77 BANK SSBK 
COMMERZBAN
K (XET) CBKX 

HUNTINGTON 
BCSH. HBAN 

PEOPLES 
UNITED 
FINANCIAL PBCT 

ALLIED IRISH 
BANKS ALBK 

CREDIT SUISSE 
GROUP N CSGN 

HYAKUGO 
BANK OBAN 

ROYAL 
BANK OF 
SCTL.GP. RBS 

ALPHA BANK PIST 
BCA.PICCOLO 
CDT.VALTELL CVAL 

HYAKUJUSHI 
BANK OFBK 

REGIONS 
FINL.NEW RF 

AUS.AND 
NZ.BANKING 
GP. ANZX 

CANADIAN 
IMP.BK.COM. CM IYO BANK ISP 

RESONA 
HOLDINGS DBHI 

AWA BANK AWAT CHIBA BANK CHBK 
INTESA 
SANPAOLO IYOT 

ROYAL 
BANK OF 
CANADA RY 

BANK OF 
IRELAND BKIR 

CHUGOKU 
BANK CHUT 

JP MORGAN 
CHASE & CO. ISP SEB 'A' SEA 

BANKINTER 
'R' BKT 

SUMITOMO 
MITSUI 
TST.HDG. SMTH JYSKE BANK JYS 

STANDARD 
CHARTERED STAN 

BARCLAYS BARC CITIGROUP C JOYO BANK JOYO 

SVENSKA 
HANDBKN.'A
' SVK 

BB&T BBT COMERICA CMA JUROKU BANK JURT 
SWEDBANK 
'A' SWED 

BANCA 
CARIGE CRG 

COMMONWEA
LTH BK.OF 
AUS. CBAX KBC GROUP KB SYDBANK SYD 

BANCA 
MONTE DEI 
PASCHI BMPS 

DANSKE 
BANK DAB 

KAGOSHIMA 
BANK KABK 

SAN-IN 
GODO BANK SIGB 

BANCA 
POPOLARE DI 
MILANO PMI 

DBS GROUP 
HOLDINGS DBSS KEIYO BANK CSOG SHIGA BANK SHIG 

BANCA 
PPO.DI 
SONDRIO BPSO 

DEUTSCHE 
BANK (XET) DBKX KEYCORP KEY 

SHINKIN 
CENTRAL 
BANK PF. SKCB 

BANCA 
PPO.EMILIA 
ROMAGNA BPE DEXIA DEX 

LLOYDS 
BANKING 
GROUP LLOY 

SUMITOMO 
MITSUI 
FINL.GP. SMFI 

BBV.ARGENT
ARIA BBVA 

DNB NOR 
(FRA) DNB M&T BANK MTB 

SUNTRUST 
BANKS STI 

BANCO 
COMR.PORTU
GUES 'R' BCP DAISHI BANK DANK 

MEDIOBANCA 
(FRA) MB 

SURUGA 
BANK SURB 

BANCO 
ESPIRITO 
SANTO SUSP BES 

EUROBANK 
ERGASIAS EFG 

NATIONAL 
BK.OF 
GREECE ETE 

TORONTO-
DOMINION 
BANK TD 

BANCO 
POPOLARE BP 

ERSTE GROUP 
BANK ERS NATIXIS KN@F US BANCORP USB 

BANCO 
POPULAR 
ESPANOL POP 

FIFTH THIRD 
BANCORP FITB 

NORDEA 
BANK NDA UBS 'R' UBSN 

BANCO 
SANTANDER SCH 

FUKUOKA 
FINANCIAL 
GP. FUKU NANTO BANK NANT UNICREDIT UCG 

BNP PARIBAS BNP 
SOCIETE 
GENERALE SGE 

NATIONAL 
AUS.BANK NABX 

UNITED 
OVERSEAS 
BANK UOBS 

BANK OF 
AMERICA BAC GUNMA BANK GMAB 

NAT.BK.OF 
CANADA NA VALIANT 'R' VATN 

BANK OF 
EAST ASIA BEAA 

HSBC 
HOLDINGS HSBC 

NEW YORK 
COMMUNITY 
BANC. NYCB 

WELLS 
FARGO & CO WFC 

BANK OF 
KYOTO KYTB 

HACHIJUNI 
BANK HABT 

NISHI-NIPPON 
CITY BANK NSHI 

WESTPAC 
BANKING WBCX 

BANK OF 
MONTREAL BMO 

HANG SENG 
BANK HSBA 

OGAKI 
KYORITSU OKBT 

WING HANG 
BANK DEAD WHBK 



 84 

BANK 

BK.OF NOVA 
SCOTIA BNS 

HIGO BANK 
DEAD HIGO 

OVERSEA-
CHINESE BKG. OCBC 

YAMAGUCHI 
FINL.GP. YMCB 

BANK OF 
QLND. BOQX 

HIROSHIMA 
BANK HRBK 

BANK OF 
PIRAEUS PEIR 

  BANK OF 
YOKOHAMA YOKO 

HOKUHOKU 
FINL. GP. HFIN 

PNC 
FINL.SVS.GP. PNC 

  BENDIGO & 
ADELAIDE 
BANK BENX 

HUDSON CITY 
BANC. HCBK 

POHJOLA 
PANKKI A POH 

  

Note: The other financial institutions included in our sample are listed in Table A in the 
appendix and adhere to the following sector classification: Asset Management, Specialty 
Finance, Investment Service, Consumer Finance, Financial Administration, Life Insurance, 
Property and Casualty Insurance, Full Line Insurance, Insurance Broker, and Reinsurance. 
Although we used all the institutions to estimate the systemic factor, we only employed the 
banks to estimate the systemic risk models. Data and classification were taken from 
Datastream.  

 

4.5. Results and discussion 

In this section we present our main results, including, the number of break 
dates in the empirical model for Eq. 2 for each of the 113 banks in our 
sample, and a summary of the coefficients associated with each regime, which 
relate equity market uncertainty and systemic risk factor to the banks’ returns. 
We imposed a maximum number of breaks equal to 2, in the interests of 
reducing computational costs. As we already mentioned in the methodology, 
we permit a maximum number of structural breaks equal to 2. This means our 
break dates should be interpreted as the biggest structural changes in the 
sample. In principle, it would be possible to find more breaks (although not 
many of them, because only 40.71% of the sample presents at least two 
breaks), but in any case, such breaks would be smaller than the ones reported 
here. We emphasize that the reported break dates would not change if we 
allow for a greater number of breaks, because the estimation procedure is 
recursive: only after one statistically significant break has been detected, the 
algorithm searches for a new break point. Therefore our results are robust, by 
construction, to setting a higher upper bound for the number of breaks. This 
strategy would not change our conclusions and instead would complicate, not 
only the estimation, but also the presentation of our results. 

A. The stable nature of systemic risk 

Figure 4.1 shows our main results. For the 10th percentile we plotted each 
bank and its corresponding estimated break dates (the latter only when the 
null of no breaks is rejected and, therefore, at least one break is identified 

during the sample). A summary of the 𝑆𝑄 statistics associated with these dates 
and the critical values are provided in Table 4.2.  From these estimates, we 
find that 30 of the 113 banks (26.54% of the sample) did not present any 
structural breaks during the sample period; 37 (32.74%) presented only one 
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statistically significant break; and 46 banks (40.71% of the sample) achieved 
the maximum number of breaks allowed (i.e., 2).  

When structural breaks were present, they tended to concentrate on two dates: 
the first corresponded to weeks 27-28 (26 January 2001) and the second to 
week 55 (10 August 2001). The institution that houses a break date furthest 
from the sample origin was Deutsche Bank, with a break located at week 213 
(20 August 2004). The estimations of the first break dates, however, might be 
biased, since our sample partition started in the 27th week, which means this 
first break date might be earlier. However, this does not change our main 
finding, namely, in none of the 10th percentile cases (corresponding to the 
worst scenarios in terms of market returns for the banking industry) were we 
able to detect a structural change in the model’s parameters at a date close to 
that of the global financial crisis (2007-2009). Most of the banking returns that 
presented structural changes did so during a short interval, usually less than a 
year, corresponding roughly to 2001-2002 (though perhaps commencing a 
little earlier).  

The period spanning 2000-2001 was associated with the dotcom crisis. This 
crisis had more pronounced effects in North America and its main financial 
partners than in other markets (and the break points tend to concentrate in a 
greater proportion in these markets). The period 2001-2004 was also related to 
a change in the monetary policy posture of the US’ Fed and some regulatory 
changes in the main financial markets. The burst of the dotcom bubble had 
small effects on the real economy, which could have contributed to a change 
in the parameters relating the individual returns of some banks and the 
systemic factors, rather than to a change in the systemic factors themselves. 
Indeed, if the shocks witnessed by the markets during those years (2001-2004) 
had been more associated with the state of the economy, the model would 
have likely captured them, via the systemic factor that is calculated as the first 
principal component of the system. Indeed, the latter was probably the case 
during the global financial crisis in which there was not change in the 
parameters relating the factors and the banks. Nevertheless, as we emphasize 
in what follows, after analyzing the results in Table 4.3 we observe that, 
considering these breaks, the empirical distribution of the model’s parameters 
seems remarkably stable, when we compare the beginning with the end of the 
sample. This stability prevents us from pursuing a more detailed explanation 
of these particular break dates at the beginning of the sample, or to 
overemphasize the statistical regimes that we found, even though they are 
practically equivalent in economic terms. In any case, our intuition points 
more to idiosyncratic factors explaining the breaks in 2000-2001 and 2004, 
than to a dramatic change in the market conditions or in terms of the way in 
which systemic risk propagates during the sample 
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Table 4.2. Summary Statistics of the Estimated (𝑺𝑸(𝝉 = 𝟎. 𝟏) Statistics 

 

Number of 
Breaks SQ1 SQ 2 

25th percentile 0.00 1.496 1.45 

50th percentile 1.00 1.871 1.70 

75th percentile 2.00 2.345 2.27 

Average 1.14 2.093 1.833 

Critical value - 1.624 1.521 

Note: In the first column, we present summary statistics of the number of breaks 
detected (the maximum allowed being 2). In columns 2 and 3, we present the 
same information, plus the critical values for each SQ statistic at a 5% significance 
level. If the null is rejected, the associated break is statistically significant. 

 

The results may appear somewhat surprising at first glance, given that they 
point to the relative stability of systemic risk transmission over the last decade 
– i.e., the coefficients describing the relationship between the common shocks 
affecting the financial institutions around the globe and the financial returns of 
those firms did not experience significant changes after (or during) the global 
financial crisis. Yet, our results are in line with previous findings in the 
macroeconomics literature. Stock and Watson (2012), seeking to elucidate the 
macroeconomic dynamics of the 2007-2009 Great Recession in the United 
States and the subsequent slow recovery, use a dynamic factor model with 200 
variables. They draw two general conclusions: first, that the macroeconomic 
effects of many of the events that occurred during the 2007-2009 collapse 
were just larger versions of shocks previously experienced, and, as such, the 
economy responded in an historically predictable fashion; and second, that 
uncertainty and financial disruptions were two major forces behind the macro 
shocks that hit the economy during the crisis.   
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Figure 4.1. Structural Changes in Quantile Coefficients: Each horizontal bar represents 
a bank. The first regime in the sample is blue, the second regime is white and the third 
regime is grey. Only 30 banks display one regime, 37 two regimes and 46 three regimes (the 
maximum allowed). The regimes were identified endogenously, using a quantile regression 
with breaks. The model included two systemic factors: one common unobservable shock 
and equity market uncertainty. 
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These two main conclusions concern us here. First, we also found that the 
shocks to the financial industry during the crisis did not give rise to effects 
beyond those expected prior to the crisis. On the contrary, the banks’ financial 
returns responded in a predictable way to the same shocks (uncertainty and 
the common shock). Stock and Watson’s (2012) second conclusion also seems 
particularly relevant in this context. To understand why this is so, we first 
present (see Table 4.3) the summary statistics describing the set of coefficients 
for the “first” and “last” regimes in our sample. In other words, to make the 
estimations for the 113 banks comparable, we grouped the institutions’ first 
and last regime coefficients, respectively. Note that the first regime for the 30 
banks with no breaks is equal to the second and third regimes, given that there 
are no structural breaks in their models. For a further 37 banks (those with 
one break), these estimates correspond to the first and second regimes, and, 
finally, for the remaining 46 banks (those with two breaks), they correspond to 
the first and third regimes.  

 

Table 4.3. First and Last Regime Summary Statistics of the Coefficients 

 First regime Last regime 

 𝛼0 𝛼1 𝛼2 𝛼0 𝛼1 𝛼2 
Average -0.27 0.13 -0.32 -0.37 0.15 -0.41 
Std. Dev. 1.76 0.06 0.43 1.13 0.06 0.37 
Median -0.31 0.12 -0.25 -0.31 0.13 -0.37 
75th perc. 0.40 0.17 -0.11 0.25 0.19 -0.20 
25th perc. 0.39 0.17 -0.11 0.26 0.19 -0.20 
Max 7.22 0.39 0.72 4.02 0.32 0.41 
Min -5.72 0.00 -2.44 -4.04 0.02 -2.18 

Note: We present the summary statistics for the estimated coefficients for the first 

and last regimes in our sample: intercept, α1 (τ=0.1) and α2 (τ=0.1).  

 

Note that in most instances the coefficients accompanying the uncertainty 
factor display a negative sign. Indeed in 84.07% of cases during the first 
regime, these coefficients are negative, and only in 15.93% are they positive 
and in no instances are they statistically significant. The same is true for the 
last regime, where only 8.77% of the coefficients are positive, but none are 
statistically significant. 

In Table 4.4, we also report the percentage of coefficients that are statistically 

different from zero 𝛼1(𝜏 = 0.1), at the 95% confidence level, which relate the 
returns of each bank and the common components of the system at the 10th 

percentile, and 𝛼2(𝜏 = 0.1) , which relates the returns and the market 
uncertainty factor, also at the 10th percentile. Table 4.4 also discriminates 
between the banks with no breaks, and banks with at least one break.  
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Table 4.4. Percentage of Statistically Significant Coefficients 

 
First regime Last regime 

 
𝛼1 𝛼2 𝛼1 𝛼2 

Total 76.99% 35.40% 99.12% 56.64% 

No breaks 100.00% 56.67% 100.00% 56.67% 
At least one 
break 68.67% 27.71% 98.80% 56.63% 

Note: We present the percentage of statistically significant coefficients at the 95% 
confidence level. We discriminated between banks with at least one break and banks 
with no breaks during the full period. 

 

Several conclusions can be drawn from Tables 4.3 and 4.4. First, as expected, 

most of the time, 𝛼1 is statistically significant at the 95% confidence level – 
that is, for 76.99% of the banks, the systemic shock (estimated as the first 
principal component of the system) matters during the first regime in the 
sample. The sign of the coefficient does not provide any information, because 
the factors are identified up to a column sign change when estimated using 
principal components (Bai and Ng, 2008). The number of significant 
relationships increases during the last regime when 99.12% of the institutions 
respond to this systemic factor in a statistically significant way.  

Second, the uncertainty factor also seems relatively important as a systemic 
factor. During the first regime, 35.40% of the banks respond to this factor, 
and the proportion increases notably during the last regime, when 56.64% of 
the banks are affected by this equity market uncertainty factor in a statistically 
significant fashion. When we split the sample between those banks that faced 
no structural changes during the period analyzed, and those that faced at least 
one, we found that the equity market uncertainty factor was more important 

for banks with no breaks (56.67% of the times 𝛼2 was significant at the 95% 
level) than it was for banks with breaks (27.71% in the first regime vs 56.63% 
in the last regime). Notice that the number of banks with a significant 
uncertainty-driven relationship may be even higher, because uncertainty and 
the unobservable component are likely to be correlated, and, moreover, for 
the first regime, the number of observation is considerably lower than for the 
second regime, which has well-documented effects on the estimated statistics 
for measuring significance.   

All in all, equity market uncertainty is an important determinant of global 
banking system performance, and this importance seems to have increased 
after 2002. However, it remained equally important during and after the 2007-
2009 global financial crisis, and it experienced no change after, for instance, 
the European debt crisis. The considerable shocks to the system during these 
episodes of crisis had predictable consequences on the banks’ performance, 
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but they did not change the nature or the shape of systemic risk. Notice that 
the two factors in our model measure two different sources of vulnerability in 
the global banking sector and for this reason, as expected, they both are 
significant. While the systemic risk indicator is to be interpreted as a 
“financial” risk shock, the EMU index quantifies  "economic" uncertainty 
related with equity markets. This theoretical separation allows us to interpret 
our main findings as arising from the financial and macroeconomic (real) sides 
of the economic system.  

We can also conclude that the impact of equity market uncertainty on the 
financial returns of the global banking sector is negative. This result is novel to 
the literature, but it is well grounded on theoretical preconceptions concerning 
uncertainty. Specifically, aggregate uncertainty shocks are thought to be 
preceded by a reduction in investment and, possibly, in labor, and, 
consequently, by a deterioration in real activity (Bernanke, 1983; Bertola and 
Caballero, 1994; Abel and Eberly, 1996; Leahy and Whited, 1996; Caballero 
and Pindyck, 1996; Bloom et al., 2007; Bachmann and Bayer, 2013), which in 
turn has obvious consequences for banking. Moreover, this impact on 
macroeconomic variables may be amplified as a result of financial market 
frictions (Arellano et al., 2012; Christiano et al., 2014; Gilchrist et al., 2014). In 
the case of financial markets, Bansal and Yaron (2004) explain why markets 
dislike uncertainty and how more uncertainty leads to worse long-run growth 
prospects, thus reducing equity prices. Basically, the intuition is linked to the 
fact that markets do not like uncertainty and after an increment in uncertainty, 
the discount of the expected cash flows is higher, which leads the market to 
reduce the price of the stock. Here we find that higher levels of uncertainty 
impact negatively and significantly on the financial performance of the global 
banking system. We believe therefore, that market uncertainty should be 
included as a major force behind the systemic shocks faced by financial 
institutions in the global financial markets, and that it should be consistently 
monitored by regulators and supervisors.    

B. Systemically vulnerable financial institutions 

The previous literature has routinely explored the case of systemically 
important financial institutions or SIFIs (FSB, 2011; 2012; 2013; IAIS, 2009; 
2012; 2013). Here, in contrast, we have focused on systemically vulnerable 
financial institutions (SVFIs), which while not unrelated, respond to a 
different logic. The ranking we present is constructed by taking into account 
the magnitude of the responses of each bank to the two systemic shocks 
analyzed here, which is not the same as considering which institutions are 
more likely to disrupt the financial system after experiencing a sizeable loss. As 
such, SVFIs should be seen as complementing SIFIs. 

Our ranking is bi-dimensional: on the one hand, it measures the sensitivity of 
each bank to the unobservable systemic risk factor and, on the other, it 
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measures their response to the equity market uncertainty factor. The responses 
to the former were transformed using absolute values, because the principal 
component estimates do not allow us to interpret the sign of the factor. In 

Figure 4.2, we present a scattergram of the coefficients |𝛼1|(𝜏 = 0.1) plotted 

against the coefficients 𝛼2(𝜏 = 0.1) , where |∙|  denotes the absolute value 
function.  

The banks were then sorted on the basis of these values and classified into 
quartiles – that is, the banks in quadrant IV (bottom-right) are our first SVFIs 
candidates. These banks are the ones that respond most to both the systemic 
traditional shock and to the uncertainty shock. In other words, the respective 
coefficient for each institution in quadrant IV is lower than the vertical median 

of 𝛼2 and higher than the horizontal median of  𝛼1 . In contrast, the more 
resilient institutions lie in quadrant I (top-left), where the responses to both 
economic uncertainty and the systemic risk factor are the smallest in the 
sample.  

The further a bank is from the origin in both directions considered here, the 
more vulnerable it is to the shocks. For instance, if we take the banks that lie 

above the 90th percentile in terms of 𝛼1 and below the 10th percentile in terms 

of 𝛼2, we find the most vulnerable financial institutions, namely, Allied Irish 
Bank, Bank of Ireland, Barclays, Mediobanca (France) and Royal Bank of 
Scotland. In contrast, the most resilient institutions are: Bank of Montreal, 
Bank of Nova Scotia, Canadian Imperial Bank of Commerce and Valiant ‘R’. 
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Figure 4.2. Sensitivity to the two risk factors: uncertainty and common 

componentFor each of the 113 banks making up our sample, we plotted α2 (τ=0.1) against 

α1 (τ=0.1). The banks located in quadrant I (top-left) are the least vulnerable to the risk 

factors: 𝑓1 (common unobservable shock – horizontal axis) and  𝑓2 (market uncertainty – 
vertical axis). In contrast, the banks in quadrant IV (bottom-right) are the most vulnerable 
following exposure to the two risk factors. 

 

In Table 4.5, we provide a full ranking for the two dimensions. Notice that the 
differences between the institutions are marked. For example, if we consider a 
shock to (log) uncertainty of one standard deviation in the market, the most 
vulnerable institution in our sample, Dexia, would experience a reduction in 
the 10th percentile of its weekly returns distribution of around 1.77 percentage 
points (Dexia’s average weekly return during the sample was -0.33%), while 
the impact is practically negligible for institutions in the fourth quartile. The 
median impact is around -0.30 percentage points.  

The same holds for the systemic factor retrieved as an unobservable and 
common component of the system. In this case, the most vulnerable 
institution is the Bank of Ireland, and a one standard deviation shock to the 
systemic factor would increase its weekly VaR in the 90th percentile by 2.80 
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percentage points. In this case, the median impact is around 1.09 and the 
impact for the least vulnerable institution is around 0.18 percentage point 

 

Table 4.5. SVFIs’ ranking  

Common unobservable factor   Market uncertainty factor 

Q1 Q 2 Q 3 Q4   Q 1 Q 2 Q 3 Q 4 

BKIR 0.32 CSGN 0.19 CVAL 0.13 CHUT 0.10   DEX -2.18 BP -0.55 HRBK -0.37 BENX -0.19 

KB 0.30 DAB 0.19 BPE 0.12 NA 0.10   ALBK -1.76 HIGO -0.54 PBCT -0.36 CVAL -0.19 

UCG 0.29 SCH 0.18 POH 0.12 USB 0.10   BKIR -1.63 HBAN -0.53 UOBS -0.36 JOYO -0.19 

ERS 0.27 SWED 0.18 HFIN 0.12 BEAA 0.10   RBS -1.22 YMCB -0.53 ETE -0.35 CBAX -0.19 

FITB 0.27 POP 0.18 YOKO 0.12 NSHI 0.10   PIST -0.98 DNB -0.53 BEAA -0.35 PNC -0.19 

ALBK 0.26 EFG 0.17 HIGO 0.12 BOQX 0.10   DAB -0.97 C -0.52 FUKU -0.35 SMFI -0.17 

BARC 0.25 SMTH 0.17 HABT 0.12 SIGB 0.10   LLOY -0.95 CSGN -0.5 PMI -0.35 JURT -0.16 

BAC 0.24 WFC 0.17 OKBT 0.12 KABK 0.10   MB -0.93 HFIN -0.5 SVK -0.35 YOKO -0.16 

BBVA 0.24 CMA 0.17 SVK 0.11 GMAB 0.09   JYS -0.84 MTB -0.49 ERS -0.33 GMAB -0.15 

RBS 0.24 PMI 0.17 YMCB 0.11 SHIG 0.09   BARC -0.78 KB -0.49 BCP -0.33 USB -0.14 

MB 0.24 SMFI 0.17 MTB 0.11 HCBK 0.09   KEY -0.75 BOQX -0.47 TD -0.32 KABK -0.12 

BP 0.23 PIST 0.17 OFBK 0.11 SSBK 0.09   SGE -0.75 SWED -0.47 CHBK -0.32 NA -0.1 

IYOT 0.23 DNB 0.17 HSBC 0.11 DBHI 0.09   STI -0.74 BNP -0.46 NABX -0.31 BPSO -0.1 

LLOY 0.23 DEX 0.16 SURB 0.11 BPSO 0.09   BKT -0.71 BAC -0.45 SCH -0.31 WBCX -0.1 

C 0.22 BES 0.16 ANZX 0.11 TD 0.09   RF -0.7 ISP -0.45 NSHI -0.3 KYTB -0.07 

BMPS 0.22 BCP 0.16 HRBK 0.11 RY 0.09   FITB -0.69 WFC -0.44 CHUT -0.29 CSOG -0.07 

KEY 0.22 DBKX 0.16 OBAN 0.11 AWAT 0.08   IYOT -0.69 NDA -0.44 AWAT -0.29 HSBA -0.06 

CBKX 0.22 PNC 0.15 CSOG 0.11 DBSS 0.08   CBKX -0.69 BBT -0.43 DANK -0.28 NANT -0.05 

STI 0.22 SYD 0.14 JURT 0.11 BENX 0.08   HCBK -0.68 OKBT -0.43 SSBK -0.26 OBAN -0.03 

SGE 0.21 BKT 0.14 KYTB 0.11 ISP 0.08   CMA -0.66 SIGB -0.43 SURB -0.26 VATN 0.01 

ETE 0.21 NDA 0.14 WBCX 0.11 UOBS 0.08   EFG -0.66 OFBK -0.42 POH -0.26 BMPS 0.08 

KN@F 0.20 BBT 0.14 JOYO 0.11 BNS 0.07   SYD -0.66 NYCB -0.41 SKCB -0.25 SHIG 0.09 

HBAN 0.20 FUKU 0.14 NABX 0.10 BMO 0.07   SEA -0.66 SMTH -0.4 HABT -0.25 CM 0.1 

BNP 0.20 CRG 0.13 NANT 0.10 OCBC 0.07   KN@F -0.62 UBSN -0.38 PEIR -0.24 BNS 0.11 

RF 0.19 JYS 0.13 DANK 0.10 PBCT 0.07   DBSS -0.62 UCG -0.38 HSBC -0.24 CRG 0.14 

PEIR 0.19 ISP 0.13 NYCB 0.10 CM 0.06   BES -0.6 BPE -0.37 ANZX -0.23 BMO 0.14 

SEA 0.19 STAN 0.13 WHBK 0.10 HSBA 0.05   WHBK -0.6 OCBC -0.37 RY -0.22 ISP 0.16 

UBSN 0.19 CHBK 0.13 CBAX 0.10 VATN 0.04   POP -0.57 DBHI -0.37 BBVA -0.2 STAN 0.28 

            SKCB 0.02               DBKX 0.41 

Note: In the first eight columns we provided the ranking of the institutions according to 

factor 𝑓1, the common unobservable shock (in absolute values). We discriminated in each 
couple of columns between the quartiles of the ranking.  In last eight columns we ordered 

from most sensitive to least sensitive the banks in our sample, according to 𝑓2 , the 
uncertainty factor. Again we separated in quartiles of 28-29 banks.  

 



 94 

We believe this ranking of SVFIs should be useful for regulators as well as for 
bank administrators since it provides new information when measuring the 
resilience of institutions to systemic shocks. 

C. Comparisons with marginal expected shortfall (MES) 

In this section we compare our two dimensions of systemic risk with the MES 
proposed by Achayra et al. (2016). Recall that MES is defined as the bank’s 
losses in the tail of the system’s loss distribution and as such it is intended to 
measure the expected contribution to systemic risk of a particular bank, during 
episodes of financial distress. Therefore, our estimates, which are based on the 
quantiles of the banks’ return distributions, instead of those of the system, can 
be thought of as natural complements in the analysis of systemic risk. Notice 
that in our case we have a direct estimation of the system’s outcome, namely, 
the common unobservable market factor, calculated as the first principal 
component of our data set. Therefore, the construction of the MSE is 
straightforward: We average the banks’ returns observed at the 5% lower tail 
of the market factor distribution.   

In Figure 4.3 we plot the MES against the market factor (left) and the 
economic uncertainty factor (right). As it can be seen, the market factor and 
MES display a negative and clear relationship. Indeed, the coefficient of 
determination when we regress the market factor slopes on MES, is equal to 
79.6%, and the slope of the regression (-3.8) is statistically significant at 99% 
level of confidence. This strong relationship is expectable although is not 
obvious. On the one hand MES is conditioned on the quantiles of the system, 
while in the other hand the market factor slopes are conditioned on the banks’ 
quantiles. Also, there is around 20% of the variation in our measure that is not 
captured by the MSE.  

The case for the uncertainty factor is even clearer. There is a positive 
relationship between the slopes associated to uncertainty and MES. In this 
case we document, once again, a statistically significant slope (12.9) at 99% of 

confidence, but now 𝑅2 = 25.1%. Thus, more or less 75% of the information 
provided by the uncertainty factor is not captured by MES.  
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Figure 4.3: Relationship between the market factor and MES (left) and the 
uncertainty factor and MES (right). For each of the 113 banks making up our 

sample, we plotted α2 (τ=0.1) against MES and α1 (τ=0.1) against MES. The banks 
located in quadrant I (top-left) are the least vulnerable to the risk factors. In 
contrast, the banks in quadrant IV (bottom-right) are the most vulnerable following 

exposure to the two risk factors. 

Regulators are generally interested not only on the level of exposure to 
the systemic risk factors, but also in generating rankings among the 
institutions on these grounds. Once again, there is more information, 
otherwise absent, that we can assess using our proposed systemic 
factors. In Table 4.6 we present the first 11 institutions in each 
ranking, according to the three factors. That is, the 10% most 
vulnerable institutions. As can be noted, only 3 institutions belong to 
the three sets. Also the order is different in each ranking, indeed, not 
single bank in Table 4.5 remains in the same position of the three 
rankings. When we expand the analysis to the first quartile of the 
banks (28 institutions), 85.7% of those banks that belong to the first 
quartile of the MES’ ranking also belong to the first quartile according 
to the market factor sensitivity; on the other side, 57.1% of those in 
the uncertainty ranking belong as well to the most vulnerable 
institutions according to MES. 
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DBSS

DBKX

DNB

DANK

EFG
ERS

FITB

FUKU

SGE

GMAB

HSBC

HABT

HSBA

HIGO
HRBK

HFIN

HCBK

HBAN

OBANOFBK
ISP

IYOT

ISP

JYS

JOYO

JURT

KB

KABKCSOG

KEY

LLOY

MTB
MB

ETE

KN@F

NDA

NANT

NABX
NANYCB

NSHI

OKBT
OCBC

PEIR

PNC

POH

PBCT

RBS

RF

DBHI RY

SEA

STAN

SVK

SWED

SYD

SIGB
SHIG

SKCB

SMFI

STI

SURB

TD

USB

UBSN

UCG

UOBS

VATN

WFC

WBCXWHBK
YMCB



 96 

Table 4.5 

Institutions’ ranking according to different criteria 

Market Uncertainty MSE 

BKIR DEX KB 

KB ALBK ALBK 

UCG BKIR RBS 

ERS RBS C 

FITB PIST FITB 

ALBK DAB BARC 

BARC LLOY BKIR 

BAC MB BAC 

BBVA JYS LLOY 

RBS BARC PEIR 

MB KEY BP 

Note: In the columns we provided the ranking of the institutions according to 
the market factor, the uncertainty factor and the MES. The bolded institutions 
belong to the 10% most vulnerable set according to the three measures.  

 

4.6. Conclusions  

We measure systemic risk in the global banking sector attributable to two main 
sources: an unobservable common shock to the market, previously identified 
in the literature as a financial systemic shock, and an economic uncertainty 
factor in the equity market. The two measures are, in most instances, 
statistically significant in terms of explaining systemic risk, above all during the 
final regime of our sample. The two factors in our model measure two 
different sources of vulnerability in the global banking sector and for this 
reason, as expected, they both remain significant within the model. While the 
systemic risk indicator is to be interpreted as a “financial” risk shock, the 
economic equity market uncertainty index reflects  "economic" uncertainty 
related with the equity market. This theoretical separation allows us to 
interpret our main findings as arising from the financial and macroeconomic 
(real) sides of the economic system. 

We are able to identify regimes after conducting a recursive search for 
structural changes in the model’s parameters. This allows us to test explicitly 
for the stability of systemic risk propagation in the global banking sector. We 
found that the parameters containing the expected impact of a given shock to 
the system on the financial institutions have not experienced any significant 
changes over the last decade, above all after and during the 2007-2009 global 
financial crisis. We interpret this as evidence of claims that during the financial 
crisis the economy was not affected by a new type of shock, but rather the 
shocks were of the same nature, albeit of an unusually high magnitude.  
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We also provide a ranking of systemically vulnerable financial institutions, 
which serves to complement existing alternatives in the literature and allows 
regulators and administrators alike to identify the banks that are most 
vulnerable to the types of shock analyzed here.  

Yet, inevitably, further research is required. Here, for example, we only 
consider the impact of contemporaneous systemic shocks on the system – that 
is, we do not estimate a dynamic model for each financial institution, which 
would clearly help enrich any description of the system’s dynamics. The 
construction of dynamic lagged functions in this regard is critical, but the 
approach has yet to be resolved when employing quantile regressions. We 
leave this for future research. 

We recognize that it is always possible to include other candidates as systemic 
shocks, in addition to that of equity market uncertainty. For example, 
traditional proxies based on CDS, sovereign credit risk, interbank exposures, 
liquidity ratios, or even other indices of policy uncertainty could be explored. 
We consider our proposal as representing one step in the direction of 
explaining systemic risk, and believe uncertainty to be one of the first natural 
candidates for consideration as a systemic shock. Eventually, any unobservable 
factor should optimally be replaced by more clearly identifiable factors 
identified in the literature.  

Appendix to Chapter 4 

 
Table A 

Non-banking firms in the sample 

INSURANCE OTHER 

NAME NAME NAME NAME 

ACE 
MANULIFE 
FINANCIAL 3I GROUP MAN GROUP 

AEGON MAPFRE ABERDEEN ASSET MAN. MARFIN INV.GP.HDG. 

AFLAC MARKEL 
ACKERMANS & VAN 
HAAREN 

MITSUB.UFJ LSE.& 
FINANCE 

AGEAS (EX-FORTIS) 
MARSH & 
MCLENNAN ACOM MOODY'S 

ALLIANZ (XET) 
MS&AD INSURANCE 
GP.HDG. AMERICAN EXPRESS MORGAN STANLEY 

ALLSTATE 
MUENCHENER 
RUCK. (XET) ASX NOMURA HDG. 

AMERICAN INTL.GP. OLD MUTUAL 
BANK OF NEW YORK 
MELLON NORTHERN TRUST 

AMLIN PARTNERRE BLACKROCK ORIX 

AMP 
POWER 
CORP.CANADA CHARLES SCHWAB PARGESA 'B' 

AON CLASS A POWER FINL. CHINA EVERBRIGHT PERPETUAL 

ARCH CAP.GP. PROGRESSIVE OHIO CI FINANCIAL PROVIDENT FINANCIAL 
ASSICURAZIONI 
GENERALI PRUDENTIAL 

CLOSE BROTHERS 
GROUP RATOS 'B' 

AVIVA 
QBE INSURANCE 
GROUP COMPUTERSHARE SCHRODERS 
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AXA 
RENAISSANCERE 
HDG. CREDIT SAISON SLM 

AXA ASIA PACIFIC 
HDG. 

RSA INSURANCE 
GROUP 

DAIWA SECURITIES 
GROUP SOFINA 

CHALLENGER SAMPO 'A' EATON VANCE NV. STATE STREET 

CHUBB SCOR SE EQUIFAX SUNCORP GROUP 

CINCINNATI FINL. STOREBRAND EURAZEO T ROWE PRICE GROUP 

CNP ASSURANCES SWISS LIFE HOLDING FRANKLIN RESOURCES 
TD AMERITRADE 
HOLDING 

EVEREST RE GP. SWISS RE 'R' GAM HOLDING WENDEL 

FAIRFAX FINL.HDG. TOPDANMARK GBL NEW   

GREAT WEST LIFECO TORCHMARK GOLDMAN SACHS GP.   
HANNOVER RUCK. 
(XET) TRAVELERS COS. ICAP   
HARTFORD 
FINL.SVS.GP. UNUM GROUP IGM FINL.   
HELVETIA HOLDING 
N 

VIENNA INSURANCE 
GROUP A INDUSTRIVARDEN 'A'   

ING GROEP GDR W R BERKLEY 
INTERMEDIATE 
CAPITAL GP.   

JARDINE LLOYD 
THOMPSON XL GROUP INVESTOR 'B'   

LEGAL & GENERAL 
ZURICH FINL.SVS. 
(IRS) KINNEVIK 'B'   

LINCOLN NATIONAL 
ZURICH INSURANCE 
GROUP LEGG MASON   

LOEWS   MACQUARIE GROUP   

Note: The sector classification used in the sample includes Banks, Asset Management, 
Specialty Finance, Investment Service, Consumer Finance, Financial Administration, Life 
Insurance, Property and Casualty Insurance, Full Line Insurance, Insurance Broker, and 
Reinsurance. Although all the institutions were used to estimate the systemic factor, only the 
banks were used to estimate the systemic risk models. Data and classification were taken 
from Datastream. 
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Chapter 5: Currency downside risk, 
liquidity, and financial stability 
 

Abstract 

We estimate volatility- and quantile (depreciation)-based spillovers across 20 
global currencies against the US Dollar. In so doing, we reveal significant 
asymmetries in the propagation of risk across global currency markets. The 
quantile-based statistic reacts more significantly to events that have a sizable 
impact on FX markets (e.g. Brexit vote and the FX crash following the 
subprime crisis), and which are missed by the volatility- and return-based 
statistics. As such, our tail-spillover estimates constitute a new financial 
stability index for the FX market. This index has the advantages of being easy 
to build, of not requiring intraday data and of being more informative about 
currency crises and pressures than traditional spillover statistics based on 
volatilities. Finally, we also document differences in the relation between both 
liquidity and volatility and quantile spillovers, respectively.  

 

5.1. Introduction 

Currency crises have been of particular concern for policy-makers, regulators, 
practitioners and academics since at least the post-Bretton Woods era 
(Krugman, 2000). In the intervening years, one of the most frequently 
examined – albeit one of the least understood – issues related to such crises 
have been the mechanisms of propagation of currency shocks, be they a 
consequence of macro-fundamentals, coordinated polices, common-lenders, 
speculative attacks or simply a result of unexpected (or unexplained) 
mechanisms (pure-contagion) 34 . Yet, co-movements and risk spillovers in 
currency markets can have an enormous economic and social impact on 
financial and macroeconomic stability and, hence, on wellbeing35. Currency 
shock spillovers have been shown to be closely linked to global imbalances, 
investor speculation, sovereign debt concerns (Chen, 2014), sudden stops, 
sharp real depreciations and asset price crashes (Apostolakis and 
Papadopoulos, 2015; Korinek and Mendoza, 2014) and, therefore, to financial 
collapses. Currency trading, measured in dollar volume, represents the largest 
financial market on the planet: an average of $5.1 trillion each day according to 
the latest Triennial Central Bank Survey conducted by the Bank for 
International Settlements (Bank of International Settlements, 2016). Hence, 
understanding spillovers in foreign exchange (FX) markets is critical for 
maintaining financial stability. 

                                                        
34 See Rigobon (2002) and references therein for a discussion about contagion, including 
currency markets. 
35 See Krugman (2000) and references therein. 
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There is a well-established branch of the macro-financial literature that 
empirically studies spillovers in FX markets (Hong, 2001; Melvin and Peiers, 
2003; Cai et al., 2008; Bekiros and Diks, 2008; Bubák et al., 2011; Li, 2011; 
Antonakakis, 2012; Kavli and Kotzé, 2014; Diebold and Yilmaz, 2015; 
Greenwood-Nimmo et al., 2016). Some of these studies focus specifically on 
spillovers between highly traded currencies (for instance, Greenwood-Nimmo 
et al., 2016) while others also include emerging market currencies with lower 
trade volumes (e.g. Kavli and Kotzé, 2014). 

The study of return and volatility spillovers in currency markets imposes its 
own symmetry on the analysis, by implicitly assuming that for any given 
country that the situation is roughly the equivalent of facing depreciation or 
appreciation pressures36. This assumption is at the very least controversial. In 
the worst-case scenario, central banks may lean against the wind when 
appreciation pressures emerge on the horizon, to the degree that they are 
willing (or politically allowed) to do so. On the other hand, their response is 
much more restricted when faced by an episode of depreciation. Here, in the 
worst case they are bound by the (frighteningly) lower limit of the FX 
reserves.  

The aim of this paper is to analyze downside risk propagation across global 
currency markets and the ways in which it is related to liquidity. We make two 
primary contributions to the literature. First, we estimate tail-spillovers between 
currencies in the global FX market. Unlike previous studies that focus on 
return co-movements and volatility spillovers in currency markets, we directly 
address the issue of risk spillovers in the left tail of the daily variations in 
currency prices (depreciations). We do so by closely adhering to what we 
consider a key element in the definition of a currency crisis proposed by Paul 
Krugman: “[it] is a sort of circular logic, in which investors flee a currency 
because they fear that it might be devalued, and in which much (though not 
necessarily all) of the pressure for such a devaluation comes precisely from that 
capital flight” (Krugman, 2000, p 1. The emphasis is ours). Notice that by 
definition currency crises are related to periods of depreciation (or 
devaluation), and not to episodes of appreciation (or revaluation). Thus, in 
terms of financial stability, episodes of depreciation are more significant than 
those of appreciation. Our strategy allows us to consider specifically downside 
risk in currency markets, corresponding in this instance to episodes of 
depreciation of the global currencies against the US dollar. This is more 
consistent with the definition of a currency crisis. Moreover, our tail-spillover 

                                                        
36  The importance, on empirical grounds, of considering asymmetries when modeling 
exchange rate variations has been documented for instance by Patton (2006) and Reboredo 
et al. (2016). Unlike the analysis reported herein, these studies neither consider dynamic 
spillovers nor focus on currency crises and systemic risk, rather they model pairs of series – 
the Deutsche Mark and US Dollar in the former case and stock returns against exchange 
rates for emerging economies in the latter. 
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estimates can be used to construct a new financial stability index for the FX 
market. This index is easy to build and does not require intraday data, which 
constitutes an important advantage. Our second contribution is that we 
explore whether turnover is related to risk spillovers in global currency 
markets. In this respect we draw inspiration from Mancini et al. (2013) and 
Karnaukh et al. (2015), who document a significant relationship between 
currency liquidities (i.e. commonality). Our intuition is that liquidity matters 
for spillovers. World currencies can be expected to behave differently 
depending on how much investors trade them and, in turn, commonality may 
become evident by examining the dynamic spillovers in worldwide FX 
markets. 

In line with Diebold and Yilmaz (2015), we opted to include in our sample of 
20 currencies against the US dollar those with high trading volume ratios 
(Euro, Yen, British Pound, Australian Dollar, Canadian Dollar, Swiss Franc, 
Swedish Krona, Mexican Peso, New Zealand Dollar, Singapore Dollar, and 
Norwegian Krone) as well as those with considerably lower market transaction 
levels (South Korean Won, Turkish Lira, Indian Rupiah, Brazilian Real, South 
African Rand, Polish Zloty, Thai Baht, Colombian and Philippine Pesos). In 
this way, we seek to provide a more comprehensive panorama of global FX 
market dynamics.  

Our methodology consists of two steps. First, we estimate intraday range 
volatilities and conditional quantiles. Then we use these series as input to 
construct traditional Diebold and Yilmaz (2012, 2014) statistics, net pairwise 
statistics and networks. Obvious alternatives for constructing asymmetric 
spillovers are semi-variances, as performed by Barndorff-Nielsen et al. (2010). 
However, these semi-variances, especially the measure of ‘bad volatility’, are 
based on ‘fill-in asymptotics’, and require intraday prices to be constructed on 
a daily basis. Our measure is based on conditional quantiles and does not 
require this level of detailed information. Second, our measure focuses 
specifically on a high quantile (95th percentile), as opposed to the full 
spectrum of ‘bad volatility’, which refers approximately to 50% of the 
variations. It is our contention that the two steps outlined above represent 
compelling advantages of our proposal.  

We document significant asymmetries in terms of risk propagation that 
become evident after comparing volatility-based and quantile-based spillover 
measures. The quantile-based statistic reacts more significantly to events that 
have a sizable impact on FX markets (e.g. the Brexit vote and the FX crash 
following the subprime crisis), and which are missed by the volatility- and 
return-based statistics. We also gain insights into the relation between liquidity 
and spillovers. For example, while Karnaukh et al. (2015) document that the 
most liquid currencies are more strongly affected by global risk factors during 
turbulent times, we complement this analysis by showing that during the 
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subprime crisis and its aftermath (between 2008 and 2012) the most liquid 
currencies not only behaved as net-receivers of volatility shocks (in this 
respect in line with Karnaukh et al., 2015), but also that this pattern is reversed 
for the period 2012-2016, indicating that the most liquid currencies are also 
able to destabilize the rest of the market during episodes of relative calm. 
Interestingly, the shocks propagate as in a cascade: the more liquid a set of 
currencies is, the more likely it affects all the other currencies, during periods of 
depreciation (against the USD). Conversely, the more liquid it is, the more likely 
it is affected by all the other currencies during turbulent periods that lack a clear trend 
in terms of appreciation or depreciation.  

Our analyses provide new perspectives on the relation between liquidity and 
volatility (quantile) spillovers. In the case of tail-spillovers, most liquid 
currencies are, by rule, net-receivers and the least liquid currencies are net-
transmitters. However, in the case of volatility spillovers, the (receiving or 
transmitting) role of the currencies is sorted by liquidity changes during 
periods of depreciation, appreciation or turbulence.   

The significant asymmetries that we reveal by contrasting quantile- and 
volatility-based measures of spillovers are critical for financial stability, and 
should be taken into consideration when conducting exercises that seek to 
monitor financial fragility around the world. Our findings are also relevant for 
designing the hedging mechanisms that are of such instrumental importance 
for international investors.  

The rest of the paper is organized as follows. Section 2 presents the 
methodological approach we adopt and section 3 describes our data. The 
results of the spillover analysis are discussed in section 4 and section 5 
concludes.  

5.2. Methodology 

We used variance decomposition of forecast errors, as proposed by Diebold 
and Yilmaz (2012), to analyze spillovers between range-based volatilities and 
between quantiles of daily log-variations in foreign exchange markets. To 
estimate the latter, we employed an asymmetric slope Conditional 
Autoregressive Value at Risk model (CAViaR) as introduced by Engle and 
Manganelli (2004). We also used graphical networks to analyze specific dates 
in the foreign exchange markets, in line with Diebold and Yilmaz (2014).   

A. Volatility Measure 

We calculated the volatilities of each of the 20 currencies using the range-
based volatility framework proposed by Parkinson (1980). We opted for this 
framework given its efficiency and simplicity both of estimation and 
interpretation (Alizadeh et al., 2002). The daily variance of each market i is 
calculated based on the highest and lowest daily prices on day t as follows: 
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𝜎𝑖𝑡
2 = 0.361[ln 𝑃𝑚𝑎𝑥𝑖𝑡 − ln 𝑃𝑚𝑖𝑛𝑖𝑡]

2,    (5.1) 

where 𝑃𝑚𝑎𝑥 is the highest price of currency i on day t and 𝑃𝑚𝑖𝑛 is the lowest 

price of currency i on day t for 𝑖 = 1, …𝑁  and 𝑡 = 1,… , 𝑇 . The annualized 
volatility in percentage points was calculated as: 

�̃�𝑖𝑡
2 = 100√365 𝜎𝑖𝑡

2 .      (5.2) 

B. CAViaR model 

The CAViaR model for variable 𝑦𝑡 can be expressed as: 

𝑞𝑡(𝛽, 𝛼) = 𝛿0(𝛼) + ∑ 𝛿𝑖(𝛽, 𝛼)
𝑠
𝑖=1 𝑞𝑡−𝑖(𝛼) + ∑ 𝛾𝑗(𝛼)

𝑝
𝑗=1 𝐹(𝑥𝑡−𝑗 , 𝜔),    (5.3) 

where 𝛼 is the level of confidence of the associated VaR, 𝑥𝑡 are the variables 

on which we condition the estimation of the quantile, 𝛽  is a vector of 

unknown parameters of size p, 𝜔 is the information set, and 𝑞𝑡(𝛽, 𝛼) is the 𝛼 

quantile at time t of the variable 𝑦𝑡, which in our case corresponds to the daily 
log variation of each FX in our sample. The second term in the equation 
relates to the autoregressive component that allows for the smooth dynamics 
of the quantile, while the third term is related to the conditioning variables. 
Specifically, the asymmetric slope CAViaR can be expressed as: 

𝑞𝑡(𝛽, 𝛼) = 𝛽0(𝛼) + 𝛽1(𝛼)𝑞𝑡−𝑖(𝛽, 𝛼) + 𝛽2(𝛼)𝑦𝑡−1
−
+ 𝛽3(𝛼)𝑦𝑡−1

+
,   (5.4) 

where 𝑦𝑡
−  and 𝑦𝑡

+  are the negative and positive values of 𝑦𝑡 , respectively. 
This specification captures the asymmetric effect in the slope of the quantile, 
conditional on the value and on the sign of the returns. 

The CAViaR model was estimated following the quantile regression 
framework provided by Koenker and Bassett (1978). In this framework, the 
parameters are estimated as a special case of the least absolute deviation 
(LAD) estimator. The maximization of the likelihood function was performed 
using numerical methods (BFGS quasi-Newton with Hessian updates). 

C. Spillover measures 

The spillover indices are based on a VAR with N=20 variables, and were built 
on the associated forecast error variance decomposition (FEVD). The errors 
were estimated from the moving average representation of the VAR as 
follows: 

𝑋𝑡 = Θ(𝐿)𝜀𝑡,      (5.5) 

𝑋𝑡 = ∑ 𝐴𝑖𝜀𝑡−𝑖
∞
𝑡=0 ,      (5.6) 

where 𝑋𝑡  is a matriz 𝑇 × 𝑁 , Θ(𝐿) = (𝐼 − 𝜙(𝐿))−1  and 𝐴𝑖 = 𝜙𝐴𝑖−1 +
𝜙𝐴𝑖−2 +⋯+ 𝜙𝐴𝑖−𝑝 is the parameters’ matrix, p is the number of lags used in 

the estimation, and T is the number of periods. To estimate the FEVD from 
the h-step ahead forecast, we first had to identify the structural VAR 
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innovations by imposing restrictions on the MA parameters. In line with 
Diebold and Yilmaz’s suggestion (2012), we followed the eclectic path 
proposed by Koop et al. (1996) and Pesaran and Shin (1998), namely the 
generalized VAR, for the construction of the FEVD. 

The errors in the FEVD can be divided into own variance shares or cross variance 
shares. The former are the fractions of the errors that are related to a shock to 

𝑥𝑖 on itself, while the latter are the portion of the shocks on 𝑥𝑖 related to the 
rest of the variables in the system. The h-step ahead FEVD can be defined as: 

𝜃𝑖𝑗(𝐻) =
𝜎𝑗𝑗
−1∑ (𝑒𝑖′𝐴ℎΣ𝑒𝑗)

2𝐻−1
ℎ=0

∑ (𝑒𝑖′𝐴ℎΣ𝐴ℎ′𝑒𝑖)
𝐻−1
ℎ=0

,    (5.7) 

where Σ is the variance matrix of 𝜀𝑡, 𝜎𝑗𝑗 is the standard deviation of the j-th 

equation, and 𝑒𝑗 is a selection vector, with ones in the i-th element and zero 

otherwise. To guarantee that the sum of each row is 1, ∑ 𝜃𝑖𝑗(𝐻) = 1𝑗 , each 

entry of the variance decomposition must be normalized as follows: 

�̃�𝑖𝑗(𝐻) =
𝜃𝑖𝑗(𝐻)

∑ 𝜃𝑖𝑗(𝐻)
𝐻−1
𝑗=1

.     (5.8) 

With the normalized variance decomposition, a total spillover index can be 
calculated as: 

𝐶(𝐻) =
∑ �̃�𝑖𝑗(𝐻)
𝑁
𝑖,𝑗=1,𝑖≠𝑗

∑ �̃�𝑖𝑗(𝐻)
𝑁
𝑖,𝑗=1

× 100.    (5.9) 

This index measures the percentage variance that can be explained by cross-
spillovers. It can be extended to a dynamic version, known in the literature as 

a directional spillover index, in which the effect of a shock to 𝑥𝑗 on the variable 

𝑥𝑖 , for every period, is given by: 

𝐶𝑖∗(𝐻) =
∑ �̃�𝑖𝑗(𝐻)
𝑁
𝑗=1,𝑖≠𝑗

∑ �̃�𝑖𝑗(𝐻)
𝑁
𝑖,𝑗=1

× 100,    (5.10) 

conversely, a shock to 𝑥𝑖 on 𝑥𝑗 is given by: 

𝐶∗𝑖(𝐻) =
∑ �̃�𝑗𝑖(𝐻)
𝑁
𝑗=1,𝑖≠𝑗

∑ �̃�𝑖𝑗(𝐻)
𝑁
𝑖,𝑗=1

× 100,    (5.11) 

with the two directional spillover indices we construct a net spillover index, 
given by: 

𝐶𝑖(𝐻) = 𝐶∗𝑖(𝐻) − 𝐶𝑖∗(𝐻).    (5.12) 

 

The net spillover index is a measure of the effect related to a shock in the 

variable 𝑥𝑖 on the rest of the system. Therefore, each variable will be either a 
net receiver or a net transmitter of shocks in each period. It is also possible to 
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construct a net pairwise spillover index, that accounts for the net spillover effect 

of the exchange rate 𝑥𝑖  on 𝑥𝑗 , where 𝑖 ≠ 𝑗 . The net pairwise index can be 

defined as: 

𝐶𝑖𝑗(𝐻) =
�̃�𝑗𝑖(𝐻)−�̃�𝑖𝑗(𝐻)

∑ �̃�𝑖𝑗(𝐻)
𝑁
𝑖,𝑗=1

× 100.    (5.13) 

 

D. Networks 

In line with Diebold and Yilmaz (2014, 2015), we also employed graphical 
network analysis. Unlike those authors, we used graphs to highlight the 
differences between volatility-based and quantile-based measures in FX 
markets. Nodes and edges constitute network graphs: the former given by a 
certain currency and weighted according to the turnover of this currency 
during the last year in the sample; and the latter by the net pairwise spillover 
indices on a certain date. In Figure 5.5 we only include the highest quartile of 
the net pairwise statistics so as to better appreciate the main results.  

5.3. Data 

We use a database comprising twenty of the most traded currencies per US 
dollar (currency/US dollar) that have either a free floating, floating or 
managed floating exchange rate regime (see Table 5.1). Currency selection was 
based on the information provided by the Bank of International Settlements’ 
Triennial Central Bank Survey of foreign exchange and OTC derivatives 
markets (Bank of International Settlements, 2016). This report ranks foreign 
exchange currencies according to their daily turnover. The exchange rate 
regime for each of the currencies was obtained from the International 
Monetary Fund’s Annual Report on Exchange Arrangements and Exchange 
Restrictions (International Monetary Fund, 2014). 

We retrieved the data that correspond to the close, high and low quotes of the 
exchange rates from Bloomberg. Our data span the period January 1, 2003 to 
September 5, 2016, for a total of 3,569 daily observations for each of the 
currencies. The year 2003 was chosen as the starting date in order to include in 
our database emerging market currencies (including the Colombian Peso and 
the Polish Zloty) that did not adopt a floating or managed floating exchange 
rate regime until around this date. We omit countries with fixed exchange rate 
regimes because their artificially low exchange rate risk would bias the results. 
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Table 5.1. Selected currencies ordered according to turnover 

Code Currency Country Exchange Regime 

EUR Euro Europe Free Floating 

JPY Yen Japan Free Floating 

GBP Pound Sterling United Kingdom Free Floating 

AUD Australian Dollar Australia Free Floating 

CAD Canadian Dollar Canada Free Floating 

CHF Franc Switzerland Managed Floating 

SEK Swedish Krona Sweden Free Floating 

MXN Mexican Peso Mexico Free Floating 

NZD New Zealand Dollar New Zealand Floating 

SGD Singapore Dollar Singapore Managed Floating 

NOK Norwegian Krone Norway Free Floating 

KRW Won South Korea Floating 

TRY Lira Turkey Floating 

INR Rupee India Floating 

BRL Real Brazil Floating 

ZAR Rand South Africa Floating 

PLN Zloty Poland Free Floating 

THB Baht Thailand Floating 

COP Colombian Peso Colombia Floating 

PHP Philippine Peso Philippines Floating 

Source: Bank of International Settlements (2016) and International Monetary Fund (2014). 

 

A. Descriptive statistics of daily log variations in FX markets 

Table 5.2 provides the summary statistics of the annualized FX log returns in 
our sample. In Tables A1 and A3 in the appendix, we provide the descriptive 
statistics for the estimated volatilities and VaRs. FX returns are characterized 
by heavy tails and some by negative skewness. The ZAR displays the highest 
one-day depreciation in the sample, with a 15 percent drop in October 2008. 
The range (difference between daily max. and min.) of the currencies of the 
developing economies and the commodity exporting countries is, in general, 
greater than that of the currencies of the developed economies. Consistent 
with this, the former currencies present higher risk, with a greater standard 
deviation, than that presented by the mature markets.  
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Table 5.2. 
Summary statistics of annualized FX log returns 

Our data span January 1, 2003-September 5, 2016. We use a database comprising twenty of 
the most traded currencies per US dollar (currency/US dollar) that have either a free 
floating, floating or managed floating exchange rate regime. 

  EUR JPY GBP AUD CAD CHF* SEK MXN NZD SGD 

 Mean 0.03 0.04 0.00 0.08 0.05 0.08 0.04 -0.03 0.08 0.03 

 Median 0.03 0.00 0.00 0.14 0.04 0.00 0.03 0.04 0.14 0.06 

 Maximum 13.42 14.92 11.27 35.25 15.64 103.58 20.20 27.45 17.09 7.28 

 Minimum -8.50 -18.12 -26.40 -23.38 -11.19 -28.25 -14.30 -22.57 -21.81 -7.89 

 Std. Dev. 2.29 2.36 2.16 3.10 2.24 3.05 2.89 2.61 3.12 1.13 

 Skewness 0.19 0.27 -0.66 0.18 0.03 10.96 0.18 -0.16 -0.14 -0.30 

 Kurtosis 4.80 7.25 11.12 13.80 5.51 378.48* 5.92 12.96 5.37 7.48 

  NOK KRW TRY INR BRL ZAR PLN THB COP PHP 

 Mean 0.02 0.04 -0.01 -0.02 0.08 0.03 0.06 0.03 0.04 0.02 

 Median 0.00 0.04 0.12 0.00 0.00 0.07 0.11 0.00 0.00 0.00 

 Maximum 19.67 37.33 25.89 13.51 32.25 28.56 26.28 14.09 31.92 8.10 

 Minimum -16.26 -25.32 -23.92 -10.95 -21.23 -43.22 -16.87 -22.64 -22.10 -9.28 

 Std. Dev. 2.92 2.71 3.17 1.69 3.75 4.10 3.41 1.56 2.86 1.40 

 Skewness 0.03 1.11 -0.26 0.05 0.16 -0.32 0.08 -0.87 0.53 -0.02 

 Kurtosis 5.52 31.03 9.23 9.24 8.40 9.18 6.97 32.21 14.04 5.24 

*In September 2011, the Swiss National Bank adopted a fixed exchange rate with the Euro 
and, subsequently, in January 2015, it abandoned the peg. These two episodes explain the 
abnormal maximum, kurtosis and skewness of the Swiss Franc (CHF). Except for these 
episodes, the CHF is remarkably stable, with a standard deviation of 2.46, a skewness of 
0.37, and a kurtosis of 6.54. We include it in our sample due to its historical and financial 
importance as a ‘haven’ currency. 

 

B. Trends in currency markets 

Figure 5.1 presents a subsample of three high- and three low-traded currencies 
against the US Dollar from January 1, 2003 to September 5, 2016. The period 
from the beginning of the sample until July 2008 features a general 
depreciation of the US dollar. However, the period from August 2008 to May 
2012 is more difficult to characterize. Thus, while the US dollar was 
depreciating against AUS, JPY and BRL, it recorded various changes in terms 
of appreciation and depreciation against EUR, TRY and MXN. Caballero, 
Farhi, and Gourinchas (2008) document a significant flow of capital across the 
global economy during this period, which helps to explain the turbulence 
observed. Basically, the subprime crisis created an abnormal demand for 
higher returns outside the main markets (i.e. in the emerging and commodity 
markets), which in turn fostered a higher demand for the foreign currencies of 
net-exporters of commodities. The last period in the sample – from June 2012 
until September 2016 – was characterized by an appreciation of the US Dollar 
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(although one exception to this pattern was Japan at the end of the sample). 
This US appreciation followed on from the events of the 2010 European debt 
crisis; the sharp fall in commodity prices at the end of 2011, and the crises 
faced by such countries as Greece (May 2010), Ireland (November 2010), and 
Portugal (May 2011), which subsequently escalated to affect Cyprus 
(December 2011) and Spain (July 2012). The final years in the sample were 
also characterized by the progressive recovery of the US economy.  

This raw characterization, which identifies the depreciation of the US Dollar 
from 2003 to 2007, a period of turbulence from 2008 to 2012, and a period of 
appreciation from 2013 onwards, also provides a reasonable fit with the 
behavior of the other exchange rates in our sample, but that are not included 
in the plot. We use this characterization below to describe some of our results. 

 

   

   

Figure 5.1. Subsample of three high- and three low-traded currencies against US 
Dollar. The figure illustrates the behavior of the exchange rates in both mature (top row) 
and emerging (bottom row) economies. The period from the beginning of the sample until 
July 2008 is characterized, in general, by the depreciation of the US dollar (the Mexican Peso 
being an exception). The period from August 2008 to May 2012 is difficult to characterize, 
while the US dollar was depreciating against AUS, JPY and BRL, it recorded marked changes 
against EUR, TRY and MXN. As such, it can be labelled as a period of turbulence. Finally, 
from June 2012 until the end of the sample in September 2016, there was a general 
appreciation of the US Dollar (with Japan being one exception at the end of the sample). 
This characterization also fits reasonably well with the behavior of the other exchange rates 
in our sample. Our data span January 1, 2003- September 5, 2016. 
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5.4. Results 

We organize our results in four sections. First, we describe the variance-
decomposition exercise using the full sample, and both the log-volatility and 
log-quantile statistics. Second, we present our systemic index of financial 
fragility in global currency markets, and we compare it with a more traditional 
index based on volatility spillovers, similar to that proposed by Diebold and 
Yilmaz (2015) and which is updated regularly on their web page37. Third, in 
seeking to emphasize the differences between volatility and tail spillovers, we 
analyze two recent, relevant dates in the global currency market in terms of 
financial stability using graphical network representations. Finally, we show 
how turnover as a measure of liquidity helps us understand the way in which 
currency shocks propagate in the market. 

A. Static variance decomposition of currency shocks: volatilities versus left tails 

In Tables 5.3 and 5.4, we show the 10-day-ahead variance decomposition of 
our two specifications. The currencies are organized from left to right (and 
from top to bottom) according to their turnover. The greatest turnover in the 
sample is displayed by the Euro-USD pair (EUR/USD), 31.3% of the total, 
while the lowest turnover is associated with the Philippine Peso, 0.1% of the 
total, according to the Bank of International Settlements (2016). This exercise 
is useful for identifying currencies with a high capacity to destabilize global 
currency markets, by generating significant shocks to the rest of the system. It 
also allows us to identify the most vulnerable currency pairs in our sample.  

Several common patterns emerge from a comparison of the two tables. For 
example, the least liquid currencies in the sample are neither transmitters nor 
receivers in absolute terms. COP, THB and PHP display the greatest 
percentage of variability arising from their own shocks, both in terms of 
volatility and depreciation-VaRs. Various other currencies, while more liquid, 
present evidence of a similar behavior. This is the case of INR and SGD 
(especially in volatilities). None of these markets transmits (receives) a shock 
to (from) any other market above 7.0%38.  

We also observe that TRY and PLN tend to transmit shocks to the market 
above 7.0% and, in all circumstances, more frequently than they receive 
shocks of the same magnitude. This holds for the analysis of both quantiles 
and volatilities. The most liquid currencies in our sample also tend to be more 
integrated with the rest of the system, rarely displaying a number above 50% 
along their main diagonal, with the exceptions of JPY and CHF in the 
depreciation tails. In the case of these last two currencies, an interesting 
finding is highlighted by comparing the two tables: in terms of volatility 
spillovers, the amount of variation explained by their own shocks is below 

                                                        
37 http://financialconnectedness.org/FX.html.  
38 7% is approximately the 90th percentile in both the volatility- and VaR spillover tables. 
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50%, but this decreases for the left tail VaRs. This means that these currencies 
tend to receive fewer shocks from the market on the depreciation tail than 
they do in their volatility. Moreover, due to the symmetric nature of volatility, 
this might also signal that they are more prone to receive shocks on the right 
tail (appreciation) than they are on the left. This behavior is expected, because 
as haven currencies, the central banks in these countries are generally more 
concerned about episodes of strong appreciation than they are about 
depreciations, given that they are more sensitive on the appreciation tail of 
their distributions.  

The Euro provides us with a notorious example of asymmetry when we 
compare the linkages in the left tail of the distribution with those involving 
volatility. While in the latter case the Euro transmits shocks above 7.0% on 
the markets of Switzerland (14%), Norway (8%) and Sweden (10%), in the left 
tail, the shocks transmitted by the Euro on these three markets are 
considerably smaller in magnitude, and only above 7.0% in the cases of 
Sweden (9%) and Norway (7%). Note that this should not necessarily be the 
case because by construction the FEVDs are normalized; thus, they are 
directly comparable in volatilities and quantiles. What it provides evidence of 
is the asymmetric nature of the propagation of shocks. 

Figure 5.2 complements the analysis by showing the sums of the rows and 
columns presented in Tables 5.3 and 5.4. That is, it shows the total spillovers 
from each market to the rest of the system, and from the rest of the system to 
each market, in volatility (Panel A) and depreciation-VaR (Panel B). It is now 
readily apparent that the most vulnerable currencies in terms of volatility (let’s 
say with above 70% of their shocks being explained by other markets) are the 
Euro, and the two Nordic currencies in the sample (NOK, SEK). These 
markets are also highly prone to receiving shocks in the depreciation tail, but 
other markets are also above the 70% threshold here, including GBP, AUD, 
and NZD.
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Table 5.3. Volatility spillovers between the most traded free-floating currencies in the exchange rate market. The market that transmits the 
shock is shown in the columns, while the market that receives it is shown in the rows. Our sample runs from December 17, 2003 to September 5, 
2016. The forecasting horizon was set at 10 days, and we used two lags in the case of volatility and one lag in the case of quantiles (following the BIC 
criterion) 

  EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD NOK KRW TRY INR BRL ZAR PLN THB COP PHP All to i 

EUR 18.8 2.0 5.0 4.9 3.5 10.6 9.3 3.0 3.9 0.5 8.8 1.7 5.8 0.1 2.7 2.5 15.0 0.9 0.7 0.3 81.2 

JPY 2.7 43.7 3.6 5.8 2.0 2.5 1.6 3.6 5.3 0.8 1.9 4.4 8.3 0.6 1.7 2.7 4.4 2.1 1.2 1.0 56.3 

GBP 5.9 3.0 35.1 6.1 4.2 3.4 4.3 3.2 5.3 0.8 5.2 3.1 4.5 0.1 1.7 4.1 7.4 0.8 1.3 0.3 64.9 

AUD 2.5 2.1 2.5 28.3 6.8 1.4 2.8 5.1 12.1 0.9 3.2 3.9 7.9 0.8 4.4 4.5 5.4 1.9 2.2 1.3 71.7 

CAD 1.9 1.0 2.3 8.6 40.4 1.2 2.4 5.7 5.1 0.6 2.9 3.1 6.7 0.2 3.9 3.5 4.3 1.6 3.3 1.2 59.6 

CHF 14.0 3.1 4.0 3.6 2.7 36.6 6.3 1.8 3.2 0.2 6.5 1.4 3.3 0.0 1.4 1.4 9.3 0.7 0.3 0.0 63.4 

SEK 10.0 1.7 3.7 6.0 4.2 5.1 20.3 3.9 4.0 0.6 9.7 1.9 7.2 0.1 3.3 3.2 13.1 0.8 0.6 0.5 79.7 

MXN 1.0 0.7 0.9 3.2 2.5 0.6 1.2 51.8 2.1 0.6 1.2 2.3 10.0 0.8 8.0 4.2 4.7 1.2 2.7 0.4 48.2 

NZD 2.3 2.2 2.7 15.1 4.5 1.3 2.5 4.5 30.2 0.8 2.9 3.3 8.1 0.2 4.6 3.9 5.4 1.9 2.3 1.3 69.8 

SGD 1.3 0.8 0.9 3.7 1.1 1.1 0.7 3.6 2.4 53.1 1.3 8.3 3.4 2.4 1.6 1.2 3.3 5.9 1.6 2.0 46.9 

NOK 8.0 1.5 4.0 6.5 4.4 4.4 8.9 3.7 4.3 1.0 24.3 2.3 6.2 0.3 3.6 3.2 10.3 1.2 1.1 0.5 75.7 

KRW 0.9 1.2 1.0 3.5 2.0 0.4 0.9 2.5 2.0 2.8 1.6 58.7 4.7 2.0 3.6 1.6 3.4 3.3 1.7 2.1 41.3 

TRY 0.8 0.7 0.6 3.0 1.9 0.6 1.1 4.4 1.7 0.5 1.1 1.7 66.8 0.6 3.6 3.7 3.0 1.5 1.8 1.0 33.2 

INR 0.1 0.5 0.1 0.9 0.2 0.1 0.2 1.5 0.6 1.1 0.1 1.3 1.0 86.5 1.0 0.4 0.6 1.5 0.9 1.4 13.5 

BRL 0.5 0.9 0.3 2.7 1.9 0.3 0.6 6.5 2.1 0.4 0.5 3.2 8.5 0.4 63.1 2.0 1.4 1.0 3.3 0.5 36.9 

ZAR 1.7 1.5 1.7 6.4 3.3 1.2 2.0 8.8 4.1 0.5 1.7 2.7 14.4 0.1 4.9 34.9 5.4 1.9 1.7 1.0 65.1 

PLN 6.6 1.0 3.0 4.5 2.8 3.6 5.0 5.4 3.6 0.6 4.2 2.4 9.0 0.4 2.8 3.5 38.2 1.4 0.9 0.9 61.8 

THB 0.3 0.2 0.3 1.2 0.7 0.2 0.3 0.5 0.9 0.9 0.7 1.7 0.8 1.2 0.2 0.6 1.2 85.8 0.6 1.7 14.2 

COP 0.2 0.4 0.4 0.7 1.7 0.2 0.2 1.7 1.1 0.8 0.2 1.6 3.3 1.2 3.7 0.6 0.7 1.0 79.8 0.4 20.2 

PHP 0.3 0.3 0.3 2.1 1.6 0.1 0.4 1.4 1.5 1.3 0.5 4.3 4.9 2.6 1.2 0.7 1.4 5.6 1.2 68.3 31.7 

Total 79.7 68.7 72.6 116.9 92.7 74.9 71.0 122.9 95.5 68.9 78.3 113.3 184.8 100.6 121.3 82.5 138.1 122.1 109.2 86.0 
 

i to all  60.9 25.0 37.5 88.6 52.3 38.2 50.7 71.1 65.3 15.8 54.1 54.6 118.0 14.1 58.2 47.6 99.9 36.3 29.4 17.7 51.8 
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Table 5.4. VaR spillovers between the most traded free-floating currencies in the exchange rate market. The market that transmits the shock 
is shown in the columns, while the market that receives it is shown in the rows. Our sample runs from December 17, 2003 to September 5, 2016. The 
forecasting horizon was set at 10 days, and we used two lags in the case of volatility and one lag in the case of quantiles (following the BIC criterion). 

  EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD NOK KRW TRY INR BRL ZAR PLN THB COP PHP All to i 

EUR 17.6 1.2 4.5 5.4 3.2 2.5 9.5 3.1 3.4 2.4 9.2 2.5 6.1 0.3 3.0 4.6 19.6 0.6 1.0 0.4 82.4 

JPY 1.0 56.0 2.6 4.8 2.1 3.0 0.9 3.5 4.0 0.7 1.5 4.0 3.6 0.9 1.8 2.9 2.1 1.7 1.7 1.2 44.0 

GBP 5.4 2.9 28.9 7.0 4.2 0.9 4.3 3.5 5.0 2.6 5.3 4.4 4.9 0.5 1.8 6.5 9.2 0.6 1.6 0.4 71.1 

AUD 2.2 2.0 2.1 24.6 5.0 0.2 2.7 5.5 9.5 2.8 3.1 5.2 9.2 1.6 4.8 7.4 6.9 1.2 2.6 1.4 75.4 

CAD 1.6 1.3 2.1 8.8 34.9 0.6 2.2 6.4 4.8 1.7 3.1 4.2 5.8 0.3 4.4 5.7 5.4 1.5 3.9 1.2 65.1 

CHF 6.6 9.5 1.8 0.5 2.0 67.3 1.7 0.9 1.3 0.0 4.1 0.1 0.0 0.2 0.6 0.1 2.3 0.8 0.1 0.0 32.7 

SEK 9.0 1.3 3.3 6.7 3.6 0.8 16.4 4.8 3.3 2.4 9.2 3.2 8.2 0.6 3.4 5.6 16.3 0.5 1.1 0.6 83.6 

MXN 1.0 1.0 0.8 4.7 2.4 0.2 1.6 39.6 2.3 1.9 1.6 3.4 10.8 1.3 8.0 7.9 6.1 1.0 3.9 0.6 60.4 

NZD 2.3 2.2 2.3 14.9 3.9 0.2 2.6 4.8 23.5 2.6 3.0 4.7 8.6 0.9 4.6 6.7 6.9 1.4 2.6 1.4 76.5 

SGD 1.7 0.7 1.3 5.0 1.5 0.2 1.4 4.1 2.9 38.8 1.9 11.1 5.0 3.6 2.7 3.5 6.0 4.3 2.1 1.9 61.2 

NOK 7.0 1.4 3.6 6.7 4.1 1.3 7.9 4.4 3.8 2.5 22.0 3.1 6.2 0.9 4.2 5.5 12.0 0.9 1.7 0.7 78.0 

KRW 1.0 0.9 1.0 4.7 1.7 0.0 1.4 2.9 2.1 6.2 1.8 45.7 8.1 4.1 2.9 3.6 5.2 2.0 2.4 2.1 54.3 

TRY 1.0 0.7 0.7 4.4 1.5 0.1 1.6 5.7 2.0 2.2 1.5 4.4 50.8 1.3 4.4 7.4 5.7 0.8 2.7 1.3 49.2 

INR 0.2 0.7 0.2 2.0 0.2 0.0 0.5 2.1 1.0 2.6 0.4 3.6 3.3 73.2 2.0 1.7 1.7 1.4 1.6 1.6 26.8 

BRL 0.5 1.1 0.3 3.8 2.0 0.0 0.8 7.2 2.2 1.5 0.7 3.9 9.0 1.2 52.4 4.7 2.4 0.9 4.6 0.7 47.6 

ZAR 1.4 1.2 1.5 6.9 2.8 0.2 2.0 8.0 3.3 2.2 1.7 4.0 13.1 0.6 5.4 34.5 6.3 1.3 2.7 0.8 65.5 

PLN 5.9 0.5 2.4 5.1 2.5 0.5 5.1 5.8 2.9 2.5 4.1 3.8 9.3 1.2 3.3 6.2 35.7 0.9 1.3 1.0 64.3 

THB 0.2 0.2 0.3 1.1 0.7 0.1 0.2 0.6 0.9 1.6 0.6 1.5 0.3 1.4 0.3 0.7 1.1 86.0 0.6 1.5 14.0 

COP 0.2 0.4 0.4 1.0 1.5 0.0 0.4 3.0 0.9 1.7 0.4 2.9 4.5 1.6 3.7 2.1 1.3 0.9 72.3 0.6 27.7 

PHP 0.4 0.3 0.4 2.7 1.6 0.0 0.6 1.6 1.7 3.0 0.7 6.1 4.0 4.2 1.9 2.0 2.5 5.9 1.9 58.5 41.5 

Total 66.5 85.5 60.4 120.8 81.2 78.2 63.8 117.8 80.7 82.0 75.8 122.0 170.9 99.7 115.6 119.4 154.9 114.6 112.2 78.1   

i to all  48.8 29.5 31.5 96.2 46.3 10.8 47.4 78.1 57.2 43.2 53.9 76.2 120.1 26.6 63.2 84.8 119.2 28.6 39.9 19.6 56.1 
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A. Volatility spillovers 

 

               B. VaR spillovers 

 

Figure 5.2. Total spillovers (static) during the sample period. The figure shows the sum 
of the rows and columns in Tables 5.3 and 5.4. That is, it shows the total spillovers from 
each market to the rest of the markets, and from the rest of the markets to each market, in 
volatility (Panel A) and depreciation-VaR (Panel B). The estimation sample runs from 
January 1, 2003 to September 5, 2016.  

 

Yet, a comparison of the two figures does not allow us to establish whether, in 
general, the shocks propagate more in the left tail or in the volatilities, given 
that for some markets volatility shocks dominate, while for others quantile 
shocks dominate. Important asymmetries are found, for example, in the 
markets of South Africa, India, and South Korea. All these markets change 
from net-transmitters of volatility to net-receivers of shocks in the left tail. 
Once again this points to the asymmetric nature of their reactions to 
international FX spillovers. In general, after comparing Panels A and B in 
Figure 5.2, the analysis of JPY and CHF conducted above is confirmed. 

B. Total volatility and VaR spillover indices 

The static analysis reveals some interesting results but it is based on fixed 
parameters and, therefore, is not helpful in understanding how spillovers 
change over time. In order to assess the time-varying nature of spillovers, we 
estimate the model using a 250-day rolling window and a 10-day predictive 
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horizon for the underlying variance decomposition39. Figure 5.3 shows the 
total volatility and quantile indices from December 17, 2003 to September 5, 
2016.  

 

Figure 5.3: Total Volatility and VaR spillover indices. The figure shows the total 
(dynamic) indices based on volatility- and VaR-statistics for the full sample, which runs from 
December 17, 2003 to September 5, 2016 (the first observations were lost in the estimation 
process). The estimations were performed using rolling windows of 250 observations, 
forecasting horizon of 10 days, and two lags in the case of volatility and one lag in the case 
of VaR-statistics (following the BIC criterion). The VaR were constructed using an 
asymmetric CAViaR model that allows the two tails of the FX distribution to be treated 
differently. 

The two systemic measures tend to co-move during the sample period, 
showing an increasing trend until 2012. However, while the volatility spillover 
index is lower than the quantile spillover index until 2012, this situation is 
reversed from 2012 onwards, coinciding with a huge reduction in quantile 
spillovers. Interestingly this reduction coincides with a reduction in the 
volume traded in FX markets40. It seems that extreme cross-market shocks are 
positively related to the total market turnover. This is important because, as 
shown by Mancini et al. (2013), liquidity in the foreign exchange market is not 
as stable as previously thought and it can foster financial crises in other 
markets of significant magnitudes.  

                                                        
39  Our main results are not sensitive to realistic changes in the window length and the 
forecasting horizon. We adhered to the most frequent settings in the extant literature; see for 
example Greenwood-Nimmo et al. (2016). 
40  Daily FX market volumes fell from 5.4 to 5.1 trillion dollars between 2013 and 2016. Prior 
to 2013, the FX market witnessed an unstoppable year-on-year increment, accumulating an 
increment of 61% between 2007 and 2013 
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Meteor showers (cross-spillovers) were more important during the subprime 
crisis and its aftermath than during the rest of the sample, this finding only 
being evident when we focus on the quantile index. This means the volatility 
spillover index underestimated the impact of cross-spillovers by as many as 
1,000 basis points (bp) in the year following the subprime crisis (July 2007 – 
August 2008) and by almost 500 bp during the European debt crisis in 2010. 
Since then the volatility spillover index has consistently overestimated the 
effect of meteor showers on the global FX market.  

Furthermore, the quantile-based index seems more sensitive than the 
volatility-based index to events that impacted global currency markets, 
including the escalation in the Russian and Ukrainian conflict in 2014, the 
Greek referendum in June 2015, and Brexit in June 2016. The reduction of 
risk shown by the quantile-based index is also consistent with the recovery 
experienced by the US economy towards the end of the sample. The demand 
for US dollars and the lower demand for foreign currencies may explain the 
reduction in cross-spillovers between commodities and emerging market 
currencies during the period 2012-2016. 

C. Network analysis of two dates: subprime and Brexit 

Next we analyze some of the asymmetries in the propagation of shocks which 
can be observed when comparing net-spillovers on specific dates that were 
important for the FX market in terms of financial stability. In Figure 5.4, we 
plot the indices’ dynamics before and after two major events in the global 
currency markets. Panel A shows both measures in the period around the 
subprime crisis – from August 1 to August 31, 200741, and Panel B shows the 
measures before and after the Brexit vote, held on June 23, 2016. Both were 
largely unexpected events with significant consequences for carry trade 
strategies and for the strength of the British Pound and other currencies, 
respectively. As can be observed, before August 16 the two systemic-currency 
indices, based on volatility and on left-tail-VaR statistics, displayed similar 
dynamics. Cross-spillovers accounted for around 53% of the total variation in 
the exchange rate markets according to the volatility index, and around 63% 
according to the VaR index. After August 16, the date identified by Melvin 
and Taylor (2009) as marking the onset of the crisis in the FX market, cross-
spillovers rose to 59.12%, according to the volatility index, and remained at 
this level over the following days, while the increment was of 963 bp from 63 
to 72.63%, according to the VaR index. The Brexit vote provides another 
significant example. While the volatility index (which was roughly 1,000 bp 
above the VaR-index during this episode) increased from 69.32% on June 24 
to 72.82% on June 28 (350 bp), between the same dates the VaR index 

                                                        
41 Melvin and Taylor (2009) pin the origin of the FX crisis to August 16, 2007, when a major 
unwinding of carry trade occurred and many currency investors suffered huge losses. 
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increased from 60.10% to 68.63% and remained at this level thereafter (that is, 
853 bp above its initial magnitude).  

 

A. August 1 to August 31 – 2007 

 

B.  June 22 to June 30 – 2016 

 

Figure 5.4: Total Volatility and VaR spillovers on two dates. The figure shows the two 
indices, based on volatility- and depreciation-VaR, during two turbulent episodes faced by 
the exchange rate market: the aftermath of the subprime crisis and the days immediately 
before and after the Brexit vote. The two statistics display different sensitiveness to these 
events. The plot was constructed after estimating volatility and VaRs using 20 series of the 
most traded floating currencies in our sample. 

 

These significant differences have a critical impact on financial stability and 
need to be taken into consideration when conducting exercises that seek to 
monitor financial fragility around the world and when designing enhanced 
hedging mechanisms for international investors.  

Figure 5.5 shows the graphical network representation of the volatility and 
quantile spillovers for the two periods analyzed above. The nodes represent 
each currency pair and their respective sizes are given by the turnover of each 
market, while the direction of the edges is given by the sign of the net pairwise 
spillover. We have plotted two dates: August 20, 2007, at the beginning of the 
global financial crisis and June 28, 2016, just after the Brexit vote. For the sake 
of clarity, we have only plotted the highest spillovers (above the 75th 
percentile) for each date.  
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(a) 20 August 2007: net-volatility spillovers 

 

(b) 20 August 2007: net-quantile spillovers 

 

(c) 28 June 2016: net-volatility spillovers 

 

(d) 28 June 2016: net-quantile spillovers 

Figure 5.5: Net volatility and quantile spillovers on selected dates. The figure shows 
the net-volatility (left) and depreciation (right) spillovers among the 20 markets in our sample 
for two selected dates August 20, 2007 (subprime FX crash) and June 28, 2016 (Brexit). We 
only plot the highest 25% spillovers for each date. The size of each node is given by the 
turnover of each market in 2016. 

 

Panel (a) presents the pairwise spillovers in volatilities for August 20, 2007. It 
shows that the Euro, Yen, Swiss Franc, and to a lesser extent other liquid 
currencies such as the Australian Dollar, were the main receivers of shocks. In 
contrast, if we focus on panel (b), which shows the net pairwise spillovers 
across quantiles, it is Turkey and the other emerging markets that received 
most of the shocks. We believe that these outcomes reflect the fact that the 
subprime crisis led to massive flows of capital and the reallocation of carry-
trade portfolios, which experienced considerable losses. This process primarily 
affected strong currencies, such as the Euro and Yen, in the right tail of their 
distributions (appreciations), but it also affected weaker currencies, such as the 
Turkish Lira, in their left tails. In terms of financial stability, it is necessary to 
understand these phenomena and to monitor not only the appreciation 
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pressures of strong currencies, but also (and we would add mainly) the 
depreciation pressures faced by weaker currencies, which all told are more 
likely to have to face currency crises. 

A similar analysis can be conducted in the wake of the Brexit vote. Clearly, the 
net receivers of volatility shocks were the commodity currencies and strong 
currencies, in other words the currencies associated with more developed 
markets. Nevertheless, panel (d) shows that other currencies, including the 
South African Rand, the Turkish Lira and the Indian Rupiah, were also 
affected in the left tail of their distributions. Naturally, some currencies, 
including the Euro and Swiss Franc, were affected regardless of the measure, 
because the quantiles are not independent of the variances. Surprisingly, the 
British Pound only received net-shocks in volatility from Poland and Mexico, 
and in the quantiles from Switzerland, Sweden and Colombia. The impact 
recorded by the currencies of the eastern European countries is as expected, 
given that they are directly affected by the variations suffered by the Euro 
market.  

D. D. Turnover, liquidity and spillovers 

Finally, we are also interested in analyzing how traded volume helps us 
understand the patterns of global volatility and VaR spillovers in the FX 
market. Figure 5.6 shows the net-volatility spillovers among the quartiles of 
the currencies in our sample, sorted according to traded volume in 201642. The 
analysis runs from December 17, 2003 to September 5, 2016. The first quartile 
corresponds to the most traded currencies, while the last quartile groups the 
least traded currencies. The traded volume is as reported in the Bank of 
International Settlements (2016). The group in the column is the one that 
transmits the shock while the group in t he row is the one that receives it.  

Our intuition based on the literature on exchange rate fundamentals rooted in 
market microstructures, as in Evans (2011), is that, rather than macro-
fundamentals, liquidity matters for spillovers. Thus, world currency spillovers 
should behave differently according to how much investors trade them. 
Indeed, we are able to document that this is in fact the case. In general, if we 
divide our sample into three periods – corresponding roughly to US dollar 
depreciation (from January 2003 to June 2008), market turbulence without any 
clear trend in the US dollar series (from July 2008 to May 2012), and US dollar 
appreciation (from June 2012 to September 2016, when our sample ends)43 – 
we can document several trends. As far as volatility spillovers are concerned 
(Figure 5.6), the least traded currencies (those in quartile 4) are almost always 
net-receivers of volatility shocks and, when they are transmitters, the net 

                                                        
42Individual net volatility and VaR spillover measures are provided in Figures 5.8 and 5.9 of 
the appendix. 
43 See Figure 5.2. 
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spillover is low. If we examine the currencies in quartiles 1, 2 and 3, we see 
that during the period of dollar depreciation there was no clear trend in the 
direction of net spillovers, but that they were relatively low. During turbulent 
times, the more liquid a currency was the more shocks it received from less 
liquid currencies. This behavior was reversed during the period of US dollar 
appreciation, when the more liquid a currency was the more shocks it 
transmitted to the rest of the markets.  

Interestingly, the shocks propagate as in a cascade: the more liquid a set of 
currencies is the more likely it affects all the other currencies, during depreciation 
periods (against the USD). Conversely, the more liquid it is the more likely it gets 
affected by all the other currencies during turbulent periods that lack a clear trend in 
terms of appreciation or depreciation. 

The situation is very different when we examine tail spillovers (Figure 5.7). 
Currencies in quartiles 1 and 2 (the most liquid) are, by rule, net-receivers, 
while those in quartiles 3 and 4 (the least liquid) are net-transmitters. This is 
very likely a consequence of the latter being considerably more exposed to 
downside risk in the global currency markets. Notice, in any case, that this is a 
net result and as such it is mute above the size of the shocks. 

 

 

Figure 5.6: Net volatility spillovers among world currencies sorted according to 
traded volume. The figure shows net-volatility spillovers among the quartiles of the 
currencies in our sample, sorted according to traded volume in 2016. The first quartile 
corresponds to the most traded currencies, while the last quartile groups the least traded 
currencies. The traded volume is as reported in the Bank of International Settlements 
Triennial Report (BIS, 2016). The group in the column is the one that transmits the shock 
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while the group in the row is the one that receives it. The estimations were performed using 
rolling windows of 250 observations and a forecasting horizon of 10 days.  

 

 

Figure 5.7: Net VaR spillovers among world currencies sorted according to traded 
volume. The figure shows the net-VaR spillovers among the quartiles of the currencies in 
our sample, sorted according to traded-volume in 2016. The first quartile corresponds to the 
most traded currencies, while the last quartile groups the least traded currencies. The traded 
volume is as reported in the Bank of International Settlements Triennial Report (BIS, 2016). 
The group in the column is the one that transmits the shock while the group in the row is 
the one that receives it. The estimations were performed using rolling windows of 250 
observations and a forecasting horizon of 10 days. The VaR were constructed using an 
asymmetric CAViaR model that allows the two tails in the distribution to be treated 
differently. 

 

5.5. Conclusions 

We estimate spillovers between volatilities and between downside risk VaRs 
(associated with depreciations) for 20 currencies of both mature and emerging 
FX markets. Our depreciation tail measure was constructed using a CAViaR 
model with asymmetric slopes that allows us to treat each tail of the daily 
variations in the FX market differently.  

First, we find that risk measurement varies considerably depending on the part 
of the distribution targeted by the analysis. That is, the most vulnerable FX 
markets differ if we focus on the depreciation tail as opposed to on volatility. 
To document this, we analyzed recent events in the history of FX markets – 
specifically the subprime crash and the Brexit vote – by means of directional 
pairwise statistics and graphical networks.  
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Thus, we find that the least liquid currency markets tend to be more 
vulnerable and to transmit more shocks in the left tail of the distribution than 
is the case with volatility. This is fundamental for the correct assessment of 
systemic risk in currency markets and for monitoring financial fragility and 
distress in currency markets around the world. In keeping with this outcome, 
we construct an index of financial fragility based on cross-spillovers among 
the left tails of the distributions (depreciation episodes) and show that this 
index is much more sensitive than a traditional volatility index to such events 
as political upheavals and global crises.  

Finally, for each currency in our sample, we employed turnover as a proxy for 
liquidity. This has helped us shed new light on the propagation mechanisms of 
currency shocks. We find that the most liquid currencies are generally net-
transmitters of volatility during periods of US dollar appreciation, while the 
most liquid currencies are net-receivers of volatility in periods of turbulence 
lacking any clear trend. Similarly, the least liquid currencies almost always 
behave as net-receivers of volatility, rarely interacting with the rest of the 
systems, which shows their lack of integration in global financial markets.  

In contrast, when we focus on tail spillovers corresponding to depreciation 
tails, the general perspective changes considerably. The most liquid currencies 
are almost always net-receivers of shocks, while those in the least liquid 
quartiles (3 and 4) are net-transmitters. This finding underlies the nature of the 
latter, which are considerably more exposed to downside risk in global 
currency markets than are the former. It also highlights the convenience of 
using a measure like the one proposed here, based on depreciation-quantiles, 
when assessing global financial stability conditions in FX markets.  
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Appendix to Chapter 5 

 

Table A1. Summary statistics of the annualized volatility of the FX log-variations 

The table shows summary statistics of FX volatility in annualized terms. The third and 
fourth moments of the series are presented for the logarithmic volatilities, which were used 
in the estimation of the spillover volatility indices. As expected, the series with the highest 
standard deviations and means are found in developing countries (i.e. South Africa, Brazil, 
and Colombia). In contrast, the lowest levels are found in developed countries (i.e. Europe 
and Japan).  

 
EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD 

Mean 10.73 10.61 10.12 13.66 10.41 11.51 13.32 11.26 14.90 5.81 

Median 9.57 9.26 8.83 11.64 9.26 10.30 11.61 9.34 13.11 5.07 

Maximum 52.93 86.29 145.60 124.69 68.25 227.90 87.92 203.75 100.69 33.58 

Minimum 0.00 0.42 0.00 1.53 1.27 0.00 1.82 0.00 2.19 0.33 

Std. Dev. 5.58 6.33 6.06 8.66 5.65 7.11 7.25 9.05 8.12 3.10 

Skewness -0.13 -0.02 0.15 0.35 0.02 0.02 0.26 0.04 0.26 0.10 

Kurtosis 3.50 3.89 3.86 3.91 3.31 4.02 3.17 4.43 3.59 3.96 

 
NOK KRW TRY INR BRL ZAR PLN THB COP PHP 

Mean 13.81 9.43 13.58 6.36 15.98 19.82 15.63 6.75 10.76 5.80 

Median 12.24 7.39 11.20 5.46 13.62 17.03 13.41 5.08 8.19 5.32 

Maximum 84.92 164.88 90.23 60.87 131.59 193.68 95.92 83.92 232.30 30.94 

Minimum 2.06 0.00 0.00 0.00 0.00 1.48 0.45 0.00 0.00 0.00 

Std. Dev. 7.31 9.03 9.14 5.28 10.47 11.28 9.27 6.04 9.97 3.65 

Skewness 0.17 -0.35 -0.01 -0.77 -1.11 0.27 0.07 0.23 -0.89 -0.93 

Kurtosis 3.23 4.49 4.63 3.76 7.24 3.89 3.70 4.09 5.09 4.36 
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Table A2. CAViaR estimation results 

The table shows the regression results after fitting a CAViaR model at 95% level of 
confidence with asymmetric slopes, to each FX series. The following equation was employed 
in each case. 

𝑞𝑡 = 𝛽0 + 𝛽1𝑞𝑡−𝑖 + 𝛽2𝑦𝑡−1
− + 𝛽3𝑦𝑡−1

+ 

Negative and positive shocks are seen to have a different effect on the depreciation tail, 

which supports the use of an asymmetric-slope approach. 

 

Currency 𝛽0 𝛽1 𝛽2 𝛽3 

EUR 0.01 0.97 0.09 0.00 

JPY 0.03 0.91 0.08 -0.15 

GBP 0.01 0.95 0.12 -0.07 

AUD 0.03 0.92 0.19 -0.08 

CAD 0.01 0.92 0.17 -0.12 

CHF 0.01 0.96 0.04 -0.09 

SEK 0.02 0.95 0.10 -0.04 

MXN 0.02 0.91 0.24 -0.10 

NZD 0.02 0.93 0.16 -0.08 

SGD 0.01 0.91 0.19 -0.10 

NOK 0.02 0.93 0.13 -0.08 

KRW 0.02 0.93 0.23 0.03 

TRY 0.06 0.84 0.39 -0.15 

INR 0.01 0.89 0.32 -0.14 

BRL 0.04 0.88 0.28 -0.14 

ZAR 0.05 0.90 0.22 -0.07 

PLN 0.02 0.91 0.24 -0.09 

THB 0.01 0.87 0.27 -0.22 

COP 0.03 0.87 0.30 -0.14 

PHP 0.03 0.88 0.20 -0.14 

Mean 0.02 0.91 0.20 -0.10 

Median 0.02 0.91 0.20 -0.09 

Maximum 0.06 0.97 0.39 0.03 

Minimum 0.01 0.84 0.04 -0.22 

Std. Dev. 0.02 0.03 0.09 0.06 

Skewness 1.12 -0.18 0.18 0.32 

Kurtosis 3.62 2.56 2.48 3.41 
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Table A3. Estimated VaR summary statistics 

The summary statistics were calculated from the VaR estimated after fitting a CAViaR model 
with asymmetric slopes. Commodity currencies, such as AUD, CAD, SEK, NZD, NOK, 
BRL, and ZAR, possess a higher risk than most of the other currencies. A second aspect that 
can be seen is that countries with capital control and with a history of foreign exchange 
interventions, such as INR, SGD and THB, have lower volatility. 

 
EUR JPY GBP AUD CAD CHF SEK MXN NZD SGD 

Mean 0.99 0.97 0.96 1.30 0.97 1.03 1.27 1.14 1.36 0.48 

Median 0.96 0.93 0.90 1.19 0.89 0.98 1.19 1.03 1.27 0.45 

Maximum 2.13 2.61 2.61 6.19 3.51 2.46 2.88 5.98 4.40 1.43 

Minimum 0.47 0.50 0.40 0.66 0.41 0.47 0.77 0.44 0.69 0.22 

Std. Dev. 0.29 0.26 0.34 0.55 0.36 0.28 0.36 0.54 0.44 0.15 

Skewness 0.93 1.51 2.14 4.16 2.49 1.14 2.01 2.92 2.32 1.55 

Kurtosis 4.40 7.43 9.43 28.88 13.47 5.55 7.59 17.90 11.86 7.19 

 
NOK KRW TRY INR BRL ZAR PLN THB COP PHP 

Mean 1.27 0.95 1.41 0.74 1.57 1.79 1.44 0.57 1.08 0.62 

Median 1.20 0.80 1.26 0.67 1.40 1.66 1.28 0.49 0.91 0.59 

Maximum 3.47 7.17 7.48 3.38 7.35 7.65 5.25 3.77 5.05 1.34 

Minimum 0.65 0.32 0.58 0.08 0.55 0.93 0.52 0.17 0.30 0.30 

Std. Dev. 0.35 0.68 0.63 0.40 0.74 0.59 0.63 0.35 0.57 0.16 

Skewness 1.86 4.54 2.66 1.40 2.71 3.16 2.13 3.77 1.92 0.98 

Kurtosis 8.91 30.91 14.98 6.77 15.56 21.59 9.39 22.55 9.25 4.20 
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Figure 5.8: Net volatility spillovers from all markets to market i. The figure shows net-
volatility spillovers from the rest of the markets to each market. A positive value indicates 
that the market is a net-receiver, while a negative sign indicates that it is a net-transmitter of 
volatility on a certain date. The estimations were performed using rolling windows of 250 
observations, a forecasting horizon of 10 days, and two lags in the case of volatility and one 
lag in the case of VaR-statistics. The VaR were constructed using an asymmetric CAViaR 
model 
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Figure 5.9: Net VaR spillovers from all markets to market i. The figure shows the net-
value at risk spillovers from the rest of the markets to each market. A positive value indicates 
that the market is a net-receiver, while a negative sign indicates that it is a net-transmitter of 
volatility on a certain date. The estimations were performed using rolling windows of 250 
observations, a forecasting horizon of 10 days, and two lags in the case of volatility and one 
lag in the case of VaR-statistics. The VaR were constructed using an asymmetric CAViaR 
model. 
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Chapter 6: Spillovers from the United 
States to Latin American and G7 Stock 
Markets: A VAR Quantile Analysis 

Abstract 

We estimate multivariate quantile models to measure the responses of the six 
main Latin American (LA) stock markets to a shock in the United States (US) 
stock index. We compare the regional responses with those of seven 
developed markets. In general, we document weaker tail-codependences 
between the US and LA than those between the US and the mature markets. 
Our results suggest possible diversification strategies that could be exploited 
by investing in Latin America following a sizable shock to the US market. We 
also document asymmetrical responses to the shocks depending on the 
conditioning quantile at which they are calculated. 

 

6.1. Introduction 

The analysis of spillovers between cross-national stock market returns is of 
increasing interest in the empirical finance literature. A better understanding of 
the phenomenon is important for practitioners and policy makers alike since it 
can provide a sound basis for designing portfolio allocation, market 
diversification and hedging strategies, at the same time as highlighting market 
scenarios under which an actively guided monetary or macroprudential policy 
is likely to achieve the best outcomes in terms of preserving financial stability, 
for instance, in seeking to avoid international financial contagion.  

However, research in the field has overwhelmingly focused on evaluating the 
effects of shocks on the first two conditional moments of return distributions, 
while ignoring other parts of the distributions. In this strand of the literature, 
studies analyzing stock market return spillovers, interdependence and 
contagion abound, which means a complete summary of this work would be 
impracticable in the scope of this paper. To name just a few, Becker et al. 
(1995), Bekaert et al. (2005), Bekaert et al. (2009), Jayasuriya (2011), Ehrmann 
et al. (2011), Bekaert et al. (2014) study the spillovers between the means of 
the return distributions, while other authors analyze the conditional variance 
spillovers to the mean (Bae et al., 2007; Diebold and Yilmaz, 2009; Beirne et 
al., 2010), and the pure volatility spillovers (Arouri et al., 2011; Rittler, 2011; 
Neaime, 2012; Lee, 2013).  

There are also many related studies that specifically test the existence of 
financial integration, market interdependence and contagion, considering Latin 
American markets, following a significant shock to global financial markets, 
especially from the US. Among this group we observe a first generation of 
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studies that using linear models, most notably cointegrated vectors, document 
a strong relationship between the Brazilian, Mexican, Argentinian, Chilean, 
Colombian and Venezuelan markets and the US market, particularly during 
crises episodes. This results lead to suggest that potential diversification of risk 
trough investing in different Latin American markets is very limited from the 
perspective of an international investor (Chen et al., 2002; Fernández and 
Sosvilla, 2003; Pagan and Soydemir, 2000). Some authors have pointed out to 
the high trade of LA markets with the US, as a possible factor underlying such 
a strong relationship (Johnson and Soenen, 2003).  

Nevertheless, some of the first-generation studies also documented a non-
linear relation between Latin American markets and the US market, using 
structural break tests as in Fernández and Sosvilla (2003), partitions of the 
sample into sub-periods as in Chen et al. (2002) or even logistic regression and 
extreme value theory as in Bae et al. (2003). In the same vein, Chan-Lau et al. 
(2004), estimate bivariate extreme dependency measures, to quantify negative 
and positive equity returns contagion. They report a higher degree of 
integration between the LA markets and the US market, compared to the level 
of integration of East Asian markets and the US, and they document as well 
stronger ‘bear’ contagion than ‘bull’ contagion. That is, a greater probability of 
contagion following extreme negative than following extreme positive returns 
in a given market, particularly in the LA markets.  

This apparent non-linearity of the relationship has been subsequently 
confirmed by Lahrech and Sylwester (2011). Those authors use dynamic 
conditional correlations, blended with smooth transition models, for testing 
the degree of market integration between LA markets and the US. They find 
that indeed the level of market integration increased from 1988 to 2004, for all 
the LA markets, but they also document an asymmetric behavior at this 
respect within the LA markets. For instance, while Argentina, Brazil and 
Mexico show a high correlation with the US market and experienced a 
substantial increment in their market correlations during the sample period, 
Chile still displays a more stable lower correlation with the US, becoming a 
possible diversification opportunity from the perspective of an international 
investor.  

Other studies have clearly pointed out to other sources of non-linearity in the 
relationship between LA markets and the US market. For instance, Chiang and 
Zheng (2010) studied herd behavior in global stock markets. They report two 
key findings: first they identify the role of the US market in examining local 
market herding behavior (the evidence shows that in the majority of cases, 
investors in each national market are herding around the US market). Second, 
they find evidence of herding behavior occurring in developed markets and in 
Asian markets, but less supportive evidence for herding behavior in Latin 
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American markets. Moreover, herding behavior is clearly more apparent 
during crisis episodes than during regular times.  

Given the literature above, the strategy of focusing solely in analyzing the 
transmission across the markets in the first two moment of the return 
distributions, and by means of linear models, does not appear completely 
justified on empirical grounds. Moreover there seems to be a strong temporal 
dependence between the quantiles of the univariate distributions of financial 
returns, and not only between their second moments (Engle and Manganelli, 
2004; Baur et al., 2012). Thus, it seems plausible to forecast a fuller range of 
the distribution using contemporaneous information, and our attention need 
not be restricted solely to the first two moments.  

Quantile regression models constitute a promising tool for obtaining a better 
understanding of the way in which financial spillovers occur and for 
quantifying the sensitivity of different markets to international shocks. These 
models are known to be robust to outliers, which is particularly important for 
analyzing financial time series. They are also semi-parametric in nature and, 
therefore, require minimal distributional assumptions on the underlying data 
generating process (DGP). Moreover, they offer greater flexibility for 
analyzing different market scenarios. For instance, while lower quantiles can 
be associated with bearish markets, higher quantiles are intuitively associated 
with bullish markets. Therefore, very high or very low quantiles can be 
expected to be related to other widely studied financial phenomena, such as 
bubbles, contagion or episodes of financial distress.  

For the aforementioned reasons, it is not surprising, therefore, that quantile 
models have been incorporated into the financial literature. For instance, 
Basset and Chen (2001) use quantile regressions to study the way in which 
different portfolio styles (based on their sensitivity to certain market indexes) 
influence the whole distribution of the portfolios conditional returns, 
especially at the tail of this distribution. Engle and Manganelli (2004) use 
conditional quantile models to directly calculate Value at Risk statistics, instead 
of recovering them by estimating the conditional moments of a set of stock 
returns. Baur and Schulze (2005) analyze coexceedances in the markets, over 
specific thresholds, as they seek to identify episodes of financial contagion. Li 
and Miu (2010) employ a binary quantile model to examine predictions of 
bankruptcy employing market- and accounting-based factors.  

More recently, Tsai (2012) documents a negative relationship between 
exchange rates and the stock price index in the highest and lowest quantiles of 
the distribution; however, the study does not provide evidence of a significant 
relationship between the variables in the quantiles near the median. Lee and Li 
(2012) document a non-linear diversification effect on firm performance, 
dependent on the quantile of the distribution. Ciner et al. (2013) use quantile 
regressions to explore whether the dependences between different asset 
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classes in the US and the UK differ during episodes of extreme price 
movements. Gebka and Wohar (2013), using quantile regressions, document a 
strong non-linear causality in the highest and lowest quantiles of the series of 
volume and stock returns in the Pacific Basin countries. They also report a 
non-statistically significant relationship between volume and returns in the 
median of the distribution. Finally, Rubia and Sanchis-Marco (2013) analyze 
the predictability of different stock portfolios in the tails of the distribution, by 
using variables that proxy for market liquidity and trading conditions.  

In common with any traditional regression, quantile models are susceptible to 
reverse causality, simultaneous equations, omitted variables, and, in general, to 
endogenous regressor considerations. Within the framework of cross-national 
spillovers, these concerns acquire particular relevance and so theoretical 
restrictions need to be identified before quantifying the relationship between 
markets in different quantiles of the returns distribution. Such restrictions can 
be very naturally imposed in the multivariate quantile setting proposed by 
White et al. (2015). Their framework can be thought of as a vector 
autoregressive (VAR) extension to quantile models, enabling the direct analysis 
of the degree of tail interdependence among different random variables. 

In this paper we measure the response of the six main Latin American (LA) 
stock markets to a shock in the United States (US) stock index. We analyze the 
markets of Brazil, Chile, Mexico, Colombia, Argentina and Peru and we also 
report the results for six mature markets, for the sake of comparison (the 
United Kingdom, Germany, France, Canada, Italy and Japan). Unlike previous 
studies that make use of traditional quantile regressions to analyze dependence 
or spillovers between markets (Mensi et al., 2014)44, we use the multivariate 
quantile model proposed by White at al. (2015). This model has an additional 
advantage over reduced form models that analyze dependence in a broader 
sense than the traditional regression framework, using, for example, copula 
functions (Aloui et al., 2011). Namely, it allows the direct tracing of structural 
shocks from the US to the other markets, through the estimation of different 
quantiles of the multivariate distribution of market returns and by imposing 
minimal theoretical restrictions on the multivariate DGP describing the data. 
By so doing, we are able to compute pseudo impulse-response functions 
(PIRFs) during different market scenarios, and to document facts about the 
persistence and dynamics of the system after facing a shock conditional on the 
quantiles of the returns distribution. 

In short, this study contributes to studies of contagion, market integration and 
cross-border spillovers during both regular and crisis episodes by applying 
multivariate quantile analysis to solve traditional problems in finance. Most of 
the studies in this branch do not consider specific quantiles of the 

                                                        
44 These authors study the impact of shocks on the BRICs’ markets. 
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distributions and, therefore, they do not condition their results to specific 
market situations. Instead, they focus on the mean of the distributions, which 
could underestimate the real effects of an international shock. Even traditional 
quantile studies do not make any attempt to identify structural shocks by 
recourse to theory, nor are they able to analyze certain features of the shocks, 
such as their persistence, during different market scenarios.  

We focus our analysis on Latin American stock markets, which have been 
characterized by a highly positive dynamic in recent decades, in terms of 
market capitalization and liquidity ratios, after a far-reaching process of market 
liberalization and reforms to pension funds across the continent during the 
80s and 90s (Gill et al., 2005; De la Torre et al., 2007). Moreover, the global 
financial crisis between 2007 and 2010 appears to have fostered financial flows 
into LA markets, as capital investors looked for diversification opportunities 
outside the mature markets, and as liquidity began to flourish around the 
globe, following persistently low market interest rates in the major economies.  

Thus, between 2005 and 2014, the combined domestic market capitalization, 
reported on the webpage of the World Federation of Exchanges, of the 
markets in Buenos Aires, Sao Paolo, Santiago, Bogota, Mexico City and Lima, 
rose by almost a hundred per cent, climbing from USD 972.50 billion to USD 
1,843.11 billion, in less than ten years. The indicator peaked in 2010 at USD 
2717.47 billion, when global financial conditions began to be regularized, 
primarily in the US. After 2010, a marked fall was recorded in the indicators of 
the regional markets, especially in the largest, that of Brazil, which represents 
around a half of the total. In all likelihood this can be attributed to flight-to-
quality scenarios and disparate expectations among investors in terms of the 
future of the emerging markets’ economic fundamentals, for instance, in 
relation to commodity exports45.  

The dynamics of these regional markets is of interest, especially for 
institutional investors around the globe who are constantly looking for 
opportunities to diversify their portfolios. Moreover, a shock originating in the 
US market is of considerable interest for the LA economies given that the US 
economy is the destination of around 40% of the region’s total exports and 
imports, making it by far the main commercial partner of LA countries46. 

In general we documented smaller dependences between the LA markets and 
the US market than those between the US and the developed economies, 
especially in the highest and lowest quantiles. Nevertheless, we found an 

                                                        
45 Among the markets in our sample the percentage of total market capitalization is: Brazil 
(38.3%), México (31.4%), Chile (14.9%), Colombia (6.7%), Peru (4.4%) and Argentina 
(4.4%). The market with the highest market capitalization (relative to GDP ) is Chile 
(79.2%). http://data.worldbank.org/ 
46 Data taken from the webpage of the Comisión Económica para América Latina y el Caribe 
(CEPAL).  
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asymmetrical response to the shocks originating in the US market, depending 
on the conditioning quantile analyzed. This result holds regardless of whether 
the market under consideration is mature or emerging, an outcome that can be 
attributed to the phenomenon of flight-to-quality operating in the lowest 
quantiles (a positive shock in the US is followed by a negative reaction in the 
other markets), and a situation of liquidity spillovers between the markets in 
the highest quantiles (a positive shock in the US is followed by a positive 
reaction in the other markets).  

Another useful way to understand our results is to consider the unconditional 
stock return distributions without focusing on any specific quantiles. In this 
case, a shock to the US market can be expected to flatten the distribution of 
financial returns in all other markets. This increases the likelihood of 
observing extreme returns in these markets in the period following the original 
shock. In other words, a shock to the US market will increase the Value at 
Risk (VaR) statistics associated with the other markets. However, this change 
is not symmetrical in the tails.  For some countries, the right tail of the returns 
increases more than the left tail; for others, the situation is reversed. These 
results have obvious implications in terms of the optimal implementation of 
hedging strategies, portfolio diversification, and risk management, but also 
with regards to the optimal design of monetary and macroprudential policies.  

The rest of the paper is organized as follows. First, we present a brief 
introduction to quantile modeling and the specific multivariate multiquantile 
MVMQ (1,1) employed here. We then describe the data used to perform the 
estimations. The main results and discussion are presented in the next section. 
Finally, we outline the conclusions that can be drawn from this study. 

6.2. Methodology 

Since Koenker and Basset’s (1978) seminal contribution, quantile models have 
been of growing interest in many fields of economics, being applied in 
disciplines that range from finance to macroeconomics and labor economics 
(Koenker, 2005). Quantile regression allows the researcher to study the 
relationship between economic variables not only at the center but also across 
the entire conditional distribution of the dependent variable. In traditional 
quantile regression, the quantiles of a dependent variable are assumed to be 
linearly dependent on a set of conditioning variables.  

As in any structural modeling set up, causal relationships can only be identified 
after maintaining the exogeneity condition of the conditioning variables (Pearl, 
2014; Heckman 2008). In a continuously integrating global financial market, 
this condition is difficult to assume in practice. Global investors can rapidly 
change their positions, by restructuring their portfolios. In turn, this has a 
feedback effect on global markets, breaking down the exogeneity requirement. 
Therefore, in order to recover the effects of specific structural innovations 
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over a given system of financial prices, it is necessary to resort to the 
traditional multivariate time series tools, such as structural vector 
autoregressions (Sims, 1980), which have been available in the literature for 
decades.  

Multivariate quantile models (MVMQ) allow the researcher to perform this 
task. They were recently proposed by White et al. (2015) as a multivariate 
extension of the influential CAViaR model developed by Engle and Maganelli 
(2004). The authors use an MVMQ (1,1) model to analyze the sensitivity of 
financial institutions to systemic shocks (a market index constructed as a 
common factor of financial institutions’ returns). This allows them to 
construct a measure of the performance of each financial institution facing 
financial distress (with a specific focus on the low quantiles). The general idea 
behind MVMQ models is that the quantiles of the distribution of a time series 

𝑟𝑡 potentially depend on its own lags and on the lags of certain covariates of 
interest. Specifically, the MVMQ (1,1) model employed in this study is given 
by the following two equations: 

𝑞1𝑡 = 𝑐1(𝜃) + 𝑎11(𝜃)|𝑟1𝑡−1| + 𝑎12(𝜃)|𝑟2𝑡−1| + 𝑏11(𝜃)𝑞1𝑡−1 + 𝑏12(𝜃)𝑞2𝑡−1,      (6.1) 

𝑞2𝑡 = 𝑐2(𝜃) + 𝑎21(𝜃)|𝑟1𝑡−1| + 𝑎22(𝜃)|𝑟2𝑡−1| + 𝑏21(𝜃)𝑞1𝑡−1 + 𝑏22(𝜃)𝑞2𝑡−1,       (6.2) 

or more compactly by: 

𝑞𝑡 = 𝑐 + 𝐴|𝑅𝑡−1| + 𝐵𝑞𝑡−1,      (6.3) 

 

where 𝑞𝑖𝑡  is implicitly defined as Pr[𝑟𝑖𝑡 ≤ 𝑞𝑖𝑡|ℱ𝑡−1] = 𝜃, 𝑖 = 1,2 . That is, 

quantiles of stock return series 𝑟𝑖𝑡, at level 𝜃, depend on the first lag of the 

returns 𝑅𝑡−147, via the matrix A, and on the first lag of the quantiles in the 

bivariate system, via the matrix 𝐵 . Notice that the elements in the main 

diagonal of 𝐵 measure the dependence of the quantiles on its own lags. In 
contrast, elements outside the main diagonal measure the tail codependence 
between the quantile series. 

Assuming one suitable exogeneity restriction in the system, it is possible to 
recover the structural innovations and, therefore, to calculate quantile pseudo 
impulse-response functions as proposed by White et al. (2015). Here, we use 
the fact that the US market can be taken as the origin of recent major shocks 
to the global financial markets, as documented by Ehrmann et al. (2011) and 
also the fact that this market mainly reacts to its own news, given its 
significant size and liquidity (Ehrmann et al., 2011; Brazys et al., 2015). In this 

                                                        
47 An alternative specification of the model described in the main text consists of including 
squared returns, or other proxies for the volatility of the returns, instead of their absolute 
values. This approached has been recently explored, in the empirical application provided by 
Han et al. (2016), regarding their ‘cross-quantilogram’. 
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way, while we impose the restriction that the US index is contemporaneously 
insensitive to external shocks, every other market reacts contemporaneously to 
the US index. This assumption remains a plausible and simple alternative in all 
cases, supported by the empirical literature, and it is much more suitable than 
assuming strict exogeneity of the global factors. 

Pseudo impulse-response functions (PIRFs) differ from traditional functions 

because, unlike the latter where a one-off intervention 𝛿 is given to the error 

term 𝜀𝑡 , PIRFs assume that the one-off intervention 𝛿  is given to the 

observable return 𝑟𝑡 only at time 𝑡. At all other times there is no change in 𝑟𝑡. 
In this way, the pseudo 𝜃th quantile impulse-response function for the ith 

return 𝑟𝑖𝑡 is defined as: 

∆𝑖,𝑠(�̃�𝑖𝑡) = �̃�𝑖,𝑡+𝑠 − 𝑞𝑖,𝑡+𝑠,     𝑠 = 1,2,3…𝑇    (6.4) 

where �̃�𝑖,𝑡+𝑠 is the 𝜃th-conditional quantile of the treated series, �̃�𝑖𝑡, and 𝑞𝑖,𝑡+𝑠 

is 𝜃th-conditional quantile of the contra-factual series, 𝑟𝑖𝑡. One advantage of 

PIRFs  ∆𝑖,𝑠(�̃�𝑖𝑡) is that they retain the traditional interpretation of IRFs, even 

when they can be calculated for different quantiles of the distribution. In this 
way, they allow us to enhance the analysis of extreme codependences between 
pairs of time series, approaching the problem of estimating tail dependences in 
a direct fashion, instead of indirectly, by recovering them using models of the 
first and second conditional moments.  

6.3. Data 

We used MSCI daily stock price indexes, as calculated by Morgan Stanley 
between 30 June 1995 and 30 June 2015, giving a total of 20 years of 
transactions (5218 observations). All data were obtained from Datastream 
International. The period was selected primarily on the basis of data 
availability for the whole sample. These indices measure the price behavior of 
the assets traded on the stock market in each country, without accounting for 
dividends. They are constructed in a standard way for each country, which 
allows market prices to be compared. We transformed the original prices into 
logarithmic returns by taking natural logs and differentiating. 

In the case of Latin America, we used the country indexes of Argentina, 
Brazil, Chile, Colombia, and Peru, the largest, most liquid markets in the 
region. We selected the markets of the G7 economies as a benchmark, and so 
used the MSCI indicators for the United Kingdom, Canada, Germany, France, 
Italy and Japan. We also worked with the US index constructed by Morgan 
Stanley.  

The period analyzed was marked by several crises, frequently preceded by 
boom-bubble episodes in the global financial markets. For instance, the period 
witnessed the Argentine debt crisis of 2002; the Colombian crisis of 1999; the 
last part of the Mexican crisis, known as the ‘tequila crisis’ in 1994-1995; the 
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Asian crisis in 1997; the Russian crisis in 1998; the dotcom crisis in the US in 
2000; the September 11 terrorist attacks; the global financial crisis from 2007 
to 2009; and the European debt crisis in 2010, among others. 

6.4. Results and Discussion 

The events outlined above provided the motivation for our analysis of the 
time series quantiles48. Reactions to the shocks originating in the main global 
financial market in periods of pronounced rallies are expected to differ 
markedly from those experienced during economic crashes. Reactions may 
also differ between periods of normal and extreme economic activity. All these 
episodes are naturally related to different quantiles of the market return 
distributions.  

Below, we test the hypothesis of statistical dependence between the series of 
quantiles for the different markets, with the US index serving as a pivot point. 
First, we present the results of the reduced form vector autoregression (VAR), 
followed by the results for the pseudo impulse-response functions following a 
structural shock to the US index. Finally, we introduce various performance 
tests and robustness exercises.  

A. Reduced Form Vector Autoregression  

Tables 6.1 and 6.2 provide a summary of the estimated coefficients for the six 
main Latin American and the six mature markets in the reduced form model. 
We present the coefficients associated with Equation 6.2 that best describe the 

relationship of each index with the US indicator. The coefficients 𝑎21 and 𝑏21 

were estimated at three different quantiles of the distribution of returns: 𝜃 =
{0.01, 0.5, 0.99} , for each country. We also report the joint statistical 

significance of the coefficients outside the main diagonal of the matrixes 𝐴, 𝐵, 
in each case.  

We estimated bivariate VAR models between the US index and each of the 
twelve market indicators. Although this approach runs the risk of incurring 
bias due to omitted variables, it has the advantage of allowing us to use the 
PIRFs provided by White et al. (2015) in our analysis. 

  

                                                        
48 Nevertheless, we also tested for parameter instabilities in the linear model specifications, 
outline in footnote 4. In all the cases, both for emerging and mature markets (but Italy), we 
rejected the null of stability in favor of an alternative of structural changes. We used 
cumulative-sum (CUSUM) statistics and dynamic confidence bounds. The results are 
available upon request. 
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Table 6.1 
Reduced form VAR coefficients at 50th percentile 

50% 

   c2   a21   a22   b21   b22   js     c2   a21   a22   b21   b22   js  

Arg 0.00 0.00 0.01 -0.08 0.08 0.54 Can 0.00 0.00 0.00 0.00 0.00 0.01 

  0.04 0.02 0.01 0.70 0.76     0.00 0.00 0.00 0.70 1.20   

Bra 0.00 0.00 0.01 -0.03 0.00 0.33 Fra 0.09*** 0.00 0.00 -0.20 -0.94** 4.62 

  0.03 0.02 0.02 0.69 1.84     0.00 0.00 0.00 0.10 0.10   

Chil 0.00 0.00 0.01 -0.04 0.02 2.03 Ger 0.15*** 
-

0.07**
* 

0.0 -1.5 0.1 
17.7
3*** 

  0.02 0.02 0.02 0.35 3.80     0.00 0.00 0.00 1.00 0.60   

Col -0.01 0.00 0.03 0.10 0.03 0.07 Ita 0.00 0.00 0.00 -0.30 -0.40 1.85 

  0.02 0.01 0.02 0.40 0.44     0.00 0.00 0.00 0.40 0.60   

Mex 0.04 -0.01 0.02 0.07 
-

0.78*** 
1.02 Jap 0.00 0.00 0.00 0.00 1.00 1.50 

  0.03 0.02 0.01 0.15 0.24     0.00 0.00 0.00 1.00 1.60   

Peru 0.03 0.00 0.03 -0.38 -0.27 0.84 UK 0.08*** 
-

0.07**
* 

0.00 -0.60 -0.50** 
10.7
4** 

  0.03 0.02 0.02 0.51 0.66     0.00 0.00 0.00 0.40 0.30   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, a22 
is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-coefficients and 
js is the statistic associated to the joint significance of the cross-coefficients.  

 

The statistics in Table 6.1 highlight certain similarities between the emerging 
and the advanced economies included in our sample. For instance, if we focus 
on the transmission of shocks between markets in the 50th percentile (the 
median), we observe that the estimations of the cross-sectional effects, which 
relate the US market with the rest of the sample, tend to be non-significant. In 
the developed economies, only Germany and the United Kingdom show a 

negative and statistically significant coefficient 𝑎21 , as associated with 
Equation 6.2. The effects in the median, however, for the LA markets and the 
other mature economies are non-significant in all cases. The same result is 
found for the joint significance test (last column, Table 6.1).  

The autoregressive coefficients, relating the median values with their own lags, 
are also insignificant in almost all cases (with the exceptions of France, Mexico 
and the UK). These results are consistent with the weak form of the efficient 
market hypothesis and support past evidence in the literature about the 
unpredictability of asset returns in the central fragment of the distribution, 
within a daily frequency framework (White, 2000; Christoffersen and Diebold, 
2006).  
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Table 6.2 
Reduced form VAR coefficients at 1st and 99th percentiles 

  1% 99% 

   c2   a21   a22   b21   b22   js   c2   a21   a22   b21   b22   js  

  Latin American Stock Markets 

Arg -0.17** -0.16* -0.35 -0.05 0.88*** 17.71*** 0.20* 0.02 0.31** 0 0.87*** 5.28 

  0.1 0.11 0.19 0.03 0.05   0.11 0.13 0.13 0.06 0.03   

Bra -0.18** -0.14 -0.28** -0.06 0.89*** 6.08 0.05 0 0.24*** 0.03 0.89*** 0.94 

  0.11 0.2 0.12 0.05 0.05   0.06 0.11 0.05 0.06 0.02   

Chi -0.12** -0.08 -0.39*** -0.04 0.86*** 5.36 0.02 0 0.30*** 0.03 0.87*** 5.00 

  0.05 0.08 0.07 0.03 0.03   0.03 0.07 0.06 0.02 0.03   

Col -0.27*** -0.21 -0.58*** 
-

0.08**
* 

0.78*** 18.52*** 0.40*** 0.08 0.80*** 0 0.63*** 4.68 

  0.06 0.15 0.09 0.03 0.03   0.1 0.06 0.14 0.03 0.08   

Mex -0.03 -0.05 -0.09** -0.01 0.96*** 3.56 0.01 0.10** 0.22*** -0.03 0.93*** 4.57 

  0.04 0.1 0.04 0.03 0.02   0.02 0.05 0.06 0.02 0.02   

Per -0.08*** -0.12 -0.27*** -0.04 0.91*** 15.36*** 0.06*** 0.06 0.15*** -0.01 0.93*** 3.64 

  0.02 0.08 0.08 0.03 0.03   0.02 0.07 0.02 0.02 0.01   

  Mature G7 Stock Markets 

Can -0.18** -0.16 -0.34** -0.05 0.88*** 17.92*** 0.21* 0 0.36** 0.01 0.86** 5.45 

  0.1 0.11 0.19 0.03 0.05   0.12 0.15 0.18 0.07 0.05   

Fra -0.16*** 
-

0.13**
* 

-0.21*** 0.01 0.85*** 16.58*** 0.07*** 
0.14**

* 
0.29*** -0.02 0.86*** 

27.32*
** 

  0.04 0.05 0.05 0.05 0.06   0.03 0.04 0.03 0.02 0.03   

Ger -0.15*** -0.12 -0.25*** 0.03 0.83*** 9.10* 0.04* 0.20* 0.14*** -0.04 0.92*** 
12.44*

* 

  0.05 0.07 0.05 0.02 0.04   0.03 0.11 0.03 0.03 0.04   

Ita -0.07 -0.11 -0.25 -0.04 0.92*** 7.48 0.07*** 0.08 0.14*** -0.02 0.94*** 3.42 

  0.08 0.09 0.24 0.05 0.06   0.03 0.08 0.02 0.03 0.01   

Jap -0.55*** 
-

0.39**
* 

-0.38*** -0.03 0.65*** 76.99*** 0.09** 
0.35**

* 
0.19*** 

-
0.09**

* 
0.89*** 

110**
* 

  0.13 0.05 0.09 0.05 0.09   0.04 0.04 0.03 0.03 0.03   

UK -0.11** 
-

0.22**
* 

-0.19*** 0.05 0.78*** 77.66*** 0.03** 
0.11**

* 
0.11*** -0.03 0.95*** 

21.77*
** 

  0.05 0.08 0.04 0.22 0.27   0.01 0.04 0.02 0.02 0.02   

Note:  *** significant at 99%, ** significant at 95%, * significant at 90%. Reduced form VAR 
coefficients at 50th percentile. c2 is a constant, b22 is the autoregressive quantile coefficient, 
a22 is the autoregressive mean coefficient, a21 and b21 are the autoregressive cross-
coefficients and js is the statistic associated to the joint significance of the cross-coefficients. 

 

Another common pattern that can be documented at this stage of the analysis 
(Table 6.2) is the fact that tail-codependences appear to be more significant in 
the lowest quantile than they are in the highest one, independently of whether 
the market is mature or emerging. Indeed, 8 out of 12 markets present 
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statistically significant cross-dependence at 𝜃 = 0.01 and only 4 out of 12 do 

so at 𝜃 = 0.99 (see joint test results in columns 7 and 12). In other words, 
shocks experienced by the US market tend to lengthen the tails of the return 
distributions in the other markets in an asymmetrical fashion. In a related 
study, Baur and Schulze (2005) analyzed 11 markets in Asia and four aggregate 
regional indexes in Europe, LA, Asia and the USA and similarly documented a 
stronger dependence between extreme negative returns than between extreme 
positive returns. However, these authors do not provide statistics for the 
dynamics of the system after a shock, nor do they undertake specific 
comparisons between LA markets and markets in rest of the world. 

The similarities found in the median of the distributions of advanced and 
emerging markets contrast with the differences found in their highest and the 

lowest quantiles. Recall that high quantiles (i.e., 𝜃 = 0.99) are likely associated 
with bullish market episodes and financial bubble periods, in which sharp rates 

of growth in stock prices are recorded. In contrast, low quantiles (i.e., 𝜃 =
0.01 ) are mainly associated with bearish markets, periods of crises and 
scenarios of financial distress. These lower quantiles, when calculated at very 

low levels, such as 𝜃 = 0.01, 0.05, can be interpreted as Value at Risk (VaR) 
statistics.  

Bearing this in mind, Table 6.2 makes evident that at  𝜃 = 0.99 there is a 
greater codependence between the US and the mature markets than between 
the US and the LA markets. The joint hypothesis of quantile cross-
dependence is maintained for Germany, the UK, France and Japan and it is 
rejected only in the cases of Canada and Italy.   

If we examine the Latin American markets, a contrasting landscape emerges. 
In none of the six markets in our sample do we record a statistically significant 
cross-tail-codependence. Only Mexico exhibits an individually significant 

relationship in the case of the coefficient 𝑎21 . In all other instances, the 
autoregressive terms are statistically significant, but the codependence terms 
are not. This result indicates that there is a clear statistical dependence 
between the right tail of the marginal distributions in each market, but this 
dependence does not extend to the bivariate distribution. In other words, after 
a high-value realization in the returns of these markets, a high-value realization 
is expected to follow in the next period. However, this cannot be attributed to 
high (or low) realizations in the US market. This result contrasts with those 
recorded for most of the mature economies and is in line with previous 
findings in the literature that report a lower degree of financial 
interdependence between the LA and the global (and US) financial markets 
than that found with Western Europe markets (see Bekaert et al., 2005 and 
Bekaert et al., 2014). 
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It is also possible to analyze the left tail of the return distributions by 

inspecting the quantile in which 𝜃 equals 0.01 – that is, the ‘Value at Risk’ 
scenarios, the worst scenarios that can be expected during regular market 
conditions. Specifically, in 99% of occasions the returns are expected to be 
greater than the 1st estimated percentile. In such cases, the evidence of tail-
codependence between the US market and the other developed markets in the 
sample is decisive. Indeed, 5 out of 6 mature markets exhibit tail-
codependence when we take the joint hypothesis statistic (Table 6.1) into 
account. Only in the case of Italy can the cross-dependence be disregarded. In 
the emerging Latin-American economies the evidence is more balanced. While 
tail-dependence is significant in the cases of Colombia, Peru and Argentina, it 
is not in those of Brazil, Chile and Mexico. This scenario is consistent with 
hypotheses forwarded in the literature that highlight the importance of 
amplifying mechanisms during crises, which induce contagion during episodes 
of financial distress. Although the argument has been made within a market 
(Brunnermeier and Oehmke, 2013), the same mechanisms could be operating 
at an international level.  

B. Structural VAR - Pseudo impulse-response functions 

The analysis of the PIRFs at different quantiles substantiates the interpretation 
of the results above. We constructed PIRFs for each market, after identifying a 
structural shock as two standard deviations from the US index. Using the 
Cholesky factorization, we assume that the US is contemporaneously 
exogenous in each bivariate system.  

The main results for the LA markets are presented in Figure 6.1 while Figure 
6.2 shows the mature economy benchmarks. While the results are in line with 
the previous discussion, the PIRFs tend to be statistically significant in most 
cases with the exception of the central cases (associated with the medians of 
the distributions, which are not reported for reasons of space). These impulse-
response functions have the advantage of allowing the observation of the time 
persistence of the shocks as well as the direction of the effects at each specific 
quantile. 

An interesting trend clarified by observing the PIRFs is the fact that the two-
standard deviation shock to the US market induces effects with opposite signs 
depending on the quantile. This observation holds in all cases, regardless of 
whether the market is mature or emerging. This means that a sizeable positive 
shock to the US index increases the probability of a very high or a very low 
observation in the other markets. Thus, a shock increases the highest and 
lowest quantiles by enlarging the whole support of the unconditional return 
distributions. In other words, conditioning on a specific quantile we find that, 
while in higher quantiles the shock produces a positive response, this is related 
to a negative effect in lower quantiles.  

  



 140 

Argentina 
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Figure 6.1. Impulse-response functions of the LA markets to a two-standard 
deviation shock in the US market. Note: The solid top line is the response at the 99th 
percentile, and the corresponding 95% confidence interval is the shaded area. The solid 
lower line is the response at the 1st percentile and the dotted lines are the corresponding 
confidence intervals.   
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Canada 

 

France 

 
Germany 

 

Italy 

 
Japan 

 

United Kingdom 

 

Figure 6.2. Impulse-response functions of the G7 markets to a two-standard 
deviation shock in the US market. The solid top line is the response at the 99th percentile, 
and the corresponding 95% confidence interval is the shaded area. The solid lower line is the 
response at the 1st percentile and the dotted lines are the corresponding confidence 
intervals.   

These results also present novel empirical evidence in favor of different 
trading strategies, depending on the location of an observed market realization 
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among the quantile categories. Although it would be optimal to go long in 
developed or emerging markets in the highest quantiles, after a positive shock 
to the US market is observed, the strategy would be inappropriate in the 
lowest quantiles. Indeed, the opposite may well be the optimal course in such 
a scenario.  

The methodology employed here also allows us to identify asymmetries in the 
size of the effects, and not just in the signs of the tails. For instance, Japan 
presents a clear case of asymmetry. Thus, while the shock reduces the 1st 
percentile by 2.62 percentage points (pp), in the following 20 days it increases 
the 99th percentile by 4.25 pp in the same amount of time. This same pattern is 
documented in the case of Mexico (-3.57 pp in the left tail versus 5.56 pp in 
the right tail); however, several markets present asymmetries in the other 
direction. That is, in the cases of Canada, Peru and Argentina the shock 
decreases the lowest quantiles by -6.62 pp, -4.94 pp, and -6.60, respectively, 
while it increases the highest quantiles by only 1.28 pp, 3.54 pp and 4.76 pp.  

The sign asymmetries documented in all markets can be related to episodes of 
flight-to- quality in the lowest quantiles and possible liquidity spillovers in the 
highest quantiles. Flight-to-quality refers to an environment in which investors 
seek to sell assets that are perceived as risky and to purchase safe assets instead 
(Caballero and Kurlat, 2008). In a global financial market characterized by a 
very limited supply of financial instruments considered liquid by the 
international investors during episodes of financial distress, (Caballero et al. 
2008), it is not surprising that a positive shock to the US market, which 
increments the VaR in the other markets, will be followed by flows in the 
direction of the central economy, which is considered less risky, by all 
standards.  

On the other hand, although a liquidity spillover is sometimes referred to in 
the literature as a situation of illiquidity in one market that is transmitted to the 
other market, we use the term here to refer to an episode in which excess 
liquidity in one market (presumably that of the US) increases the liquidity in 
the other markets. The high liquidity increases the amount of trading and 
purchasing taking place in markets other than that of the US, as investors look 
for profitable opportunities around the world and seek to avoid abnormally 
low interest rates in US government-backed securities and other assets. 

In short, at low quantiles following a positive shock to the US markets, capital 
prefers to migrate to this market, increasing the likelihood of a loss in the 
other markets; in contrast, at high quantiles, a positive shock to the US market 
possibly reflects greater liquidity in the global economy, which can potentially 
overshoot to other markets, especially the more highly developed markets, but 
to some extent also to those in the emerging economies. Thus, the statistic is a 
suitable tool for measuring contagion episodes driven by flight-to-quality 
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considerations or episodes of increasing correlation between markets, due to 
high liquidity levels in the global economy. 

Note also that the differences in the responses are considerable within our 
sample, even within the Latin American zone. This points to the need for a 
careful analysis of the idiosyncrasies of each market before exploiting 
opportunities for diversification. For instance, Chile appears to represent a 
good opportunity for diversification most of the time: it does not present tail 
codependence in its high, median and low quantiles with the US markets, and 
the cumulated effect of the PIRFs is one of the smallest in the sample. In 
contrast, although Colombia, Peru and Argentina seem insensitive to the US 
market shocks in their highest quantiles, they are strongly affected in their 
lowest quantiles (financial distress episodes), which makes them less suitable 
locations for portfolio diversification during times of crisis.  

Note as well that those results can be directly interpreted as risk (or volatility) 
spillovers from the US market to Latin American markets, since the returns 
are included in the reduced form model, in absolute values, in equations 6.1 
and 6.2.   

Finally, regarding the persistence of the shocks in the markets, we first 
counted the number of days during which the shock remained statistically 
different from zero in each market. We then counted the number of days after 
which at least half of the shock’s total impact (i.e., its half-life) had been 
absorbed (Table 6.3). In this way we can draw meaningful comparisons 
between the markets. Interestingly, the half-lives of the shocks in the LA and 
mature markets are very similar. The half-life median in bearish markets, both 
in mature and LA markets, is four days, while the half-life median in bullish 
markets is six days in emerging and five days in mature markets. In both cases 
there is a slight asymmetry, with the shocks being more persistent during 
positive extreme return scenarios than during negative extreme returns. On an 
individual basis, the market that houses the shortest persistence is Colombia, 
with two days in both tails (very similar in this respect to Japan). In contrast, 
Chile reaches nine days in the 99th percentile and Mexico and Peru seven days, 
in the same tail. 

Table 6.3 
Persistence (half-life in days) 

  1% 99%   1% 99% 

Argentina 4 4 Canada 4 4 

Brazil 3 4 France 5 4 

Chile 3 9 Germany 4 5 

Colombia 2 2 Italy 4 6 

Mexico 9 7 Japan 2 3 

Peru 5 7 UK 4 6 

Note: half-life of the shocks, in days, for different markets.  
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C. Performance tests 

In this section we assess the overall performance of the models at 𝜃 =
{0.01, 0.99}. This is possible by counting the number of exceedances of the 
actual returns above the highest quantile, and the number of exceedances 
below the lowest quantile. As usual, provided that we are constructing the 
quantiles at 1 and 99 per cent, we expect a number of exceedances in each 
case of around 1% of the times.  

We present the returns of the markets and the estimated quantiles for the LA 
markets in Figure 6.3 and for the G7 markets in Figure 6.4. We also present 
the percentage of exceedances in Table 6.4. 

As can be seen by visual inspection of the figures, and also by observation of 
the statistics in Table 6.4, the performance of the models appears to be highly 
satisfactory, both in the highest and lowest quantiles. We found percentages of 
exceedances in line with theoretical expectations for the selected confidence 
level, ranging from 0.98 to 1.02, with a mean value of 0.998.  
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Mexico 

 

Peru 

 

Figure 6.3. 1st and 99th percentiles and stock returns for Latin American markets: 

Time series of stock returns and quantiles at 𝜃 = 0.01  and 𝜃 = 0.99. The dotted blue lines 
can be interpreted as VaR statistics at the right and left tails with a 99% of confidence. 
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Figure 6.4. 1st and 99th percentiles and stock returns for G7 markets: Time series of 

stock returns and quantiles at 𝜃 = 0.01  and 𝜃 = 0.99 . The dotted blue lines can be 
interpreted as VaR statistics at the right and left tails with a 99% of confidence. 

 
Table 6.4 

Percentage of Exceedances 

 

 
1% 99% 

 

1% 99% 

Argentina 1.00 1.00 Canada 1.00 0.98 

      
Brazil 1.02 1.02 France 1.00 1.00 

      
Chile 1.02 1.00 Germany 1.00 1.00 

      
Colombia 0.98 1.02 Italy 0.98 1.00 

      
Mexico 0.98 1.02 Japan 1.02 1.00 

      
Peru 0.98 0.98 UK 1.02 1.00 

      
Note: Percentage of exceedances of stock returns above percentile 99th and below the 1st 
percentile. It is expected a percentage of exceedances similar to 1% in the two cases. The 
calculations highlight the accuracy in the construction of both the high and the low quantiles.  
 

D. Implications for asset allocation: 

There is not doubt that the principle of portfolio diversification as introduced 
by Markowitz (1952) is one of the most influential insights in contemporaneous 
finance. Both, practitioners and academics have definitively embraced it. 
Nevertheless, authors such as French and Poterba (1991) and Vanguard (2014) 
have documented a persistent ‘higher than optimal’ share of domestic stocks in 
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portfolios of global investors, which seem reluctant to hold well-diversified 
portfolios, on a global basis.  

Here we provide the basis for the developing of trading strategies that benefit 
from international diversification in LA markets, in a very simple and plausible 
fashion. We document diversification benefits in previously unaccounted ways: 
first, we show diversification benefits that appear only during extreme market 
scenarios (either at very high or very low quantiles of the stock market returns); 
second, we isolate the effect that a US market shock induces on several 
markets, making it possible to compare their reactions and therefore, to identify 
less risky investment allocations, during turbulent episodes. 

These results are particularly appealing in a scenario of increasing global stock 
returns correlations, which has made more difficult to achieve traditional 
portfolio diversification benefits, especially for investors with short-term 
horizon preferences (see Viceira et al. (2016)).  Our exercise relies on the 
identification of structural innovations in the market. And therefore, it gives us 
insights that are not possible to extract from alternative reduced-form 
approaches such as traditional covariance analyses (or even more general 
formulations to measure dependence such as copula or dynamic copula 
models). That is, we construct a counterfactual scenario of each market 
dynamics following a shock to the US stock market. Disentangling such effect 
is simply not possible by recurring to the reduced-form alternatives. 

In Table 6.5 and 6.6 we inform simple trading strategies that allow minimizing 
market-risk during extreme market scenarios, following a sizeable shock to the 
US market. In Table 6.5 we report the historical VaR at 99% of confidence for 
the left tail of the stock returns distribution. Then we report the cumulated 
loses at different horizons that an investor may expect to experience in each 
market, after a negative shock has impacted the US market. In Table 6.6 we 
report the same for the right tail.  

As can be seen, in general, highest diversification opportunities can be achieved 
by investing in LA markets, compared to the mature markets. The only 
exception is Argentina that seems particularly sensitive to US shocks, especially 
at the lower tail and, on the side of the mature markets, Japan, which 
constitutes a very good diversification alternative in market distressed scenarios 
(the left tail). 

However, the diversification opportunities depend on the preferred investment 
horizon of an asset manager. In other words, the cumulated loses are of 
different sizes, depending on the number of days elapsed after the original 
shock has been observed. Thus, different markets constitute a more 
appropriate investment, seeking to reduce the total risk of the portfolio; 
depending on how many days the investor will hold a given position.  
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For instance, in a situation of market distress, which can be easily identified as 
observing a return above the historical VaR (in absolute terms), with an 
investment horizon of 1 day, the best alternative is to invest in Mexico, which 
houses the lowest potential lost in the sample. For an investment horizon of 20 
days the best alternatives are Chile and Colombia. Notice that, for example, the 
situation is very different for Colombia under these two horizons. After one 
day, Colombia experiences one of the highest loses in the LA countries, but 
due to the lack of persistence of the shock, the situation reverts after 20 days. 
Chile represents an attractive diversification opportunity, both, at left and right 
tails. 

 
Table 6.5 

Cumulated loses after a shock to the US market (left tail) 

 VaR 99% 1 day 5 days 10 days 20 days 

Japan 3.534 -1.049 -2.567 -2.739 -2.622 
Germany 4.440 -0.684 -2.562 -3.745 -4.581 
UK 3.191 -0.754 -2.553 -3.632 -4.307 
France 4.068 -0.606 -2.261 -3.287 -3.975 
Italy 4.376 -0.626 -2.496 -3.839 -4.862 
Canada 3.448 -1.054 -3.939 -5.677 -6.623 

Brazil 5.007 -0.895 -3.341 -4.818 -5.634 
Chile 2.708 -0.548 -1.906 -2.542 -2.641 
Colombia 3.519 -0.800 -2.272 -2.500 -2.079 
Mexico 3.914 -0.279 -1.259 -2.227 -3.573 
Peru  4.779 -0.663 -2.613 -3.970 -4.940 
Argentina 6.296 -1.041 -3.897 -5.630 -6.598 

Note: The first column shows the historical simulated VaR at 99% of confidence. Columns 2 
to 5 show the cumulated loses after a show to the US market. The lowest loses are 
highlighted in for each horizon.  

Table 6.6 
Cumulated loses after a shock to the US market (right tail) 

 VaR 99% 1 day 5 days 10 days 20 days 

Japan 3.355 0.909 3.149 4.172 4.251 
Germany 3.750 0.717 2.849 4.384 5.613 
UK 3.045 0.404 1.635 2.564 3.390 
France 3.642 0.756 2.745 3.867 4.453 
Italy 3.585 0.396 1.647 2.663 3.672 
Canada 3.180 0.704 2.680 3.972 4.912 

Brazil 4.818 0.497 2.162 3.648 5.311 
Chile 2.584 0.277 1.231 2.109 3.109 
Colombia 3.683 0.596 1.451 1.601 1.628 
Mexico 4.146 0.629 2.583 4.116 5.556 
Peru  4.447 0.353 1.499 2.477 3.541 
Argentina 5.961 0.652 2.525 3.798 4.765 

Note: The first column shows the historical simulated VaR at 99% of confidence. Columns 2 
to 5 show the cumulated loses after a show to the US market. The lowest loses are 
highlighted in for each horizon.  
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6.1. Conclusions 

We document common and divergent patterns in reactions in LA and mature 
markets to a sizeable shock in US stock market returns. On the one hand, 
both the LA and mature markets in our sample show asymmetrical responses 
to the US market shock, dependent on the quantile analyzed. Following a 
positive shock in the US market, a positive effect is expected on the return 

distribution, provided the market is around the highest quantiles (𝜃 = 0.99). 
In contrast, at the lowest quantiles (𝜃 = 0.01), a positive shock to the US 
index produces a negative response in the other markets. We relate this first 
result to considerations of international liquidity overshooting, and the second 
to flight-to-quality effects among the US market and global financial markets.  

A different interpretation is possible if we consider the unconditional 
distribution of the stock returns, without focusing on specific quantiles. In this 
case, what we find is that a positive shock to the US market is followed by a 
significant increase in the VaR statistics of the rest of the world sample, i.e., a 
risk increment. Nevertheless, the increments in the tails of the distributions 
follow irregular patterns, which depend on the idiosyncratic markets. For 
instance, while the increments in the right tail are higher for Japan and 
Mexico, the opposite is the case for Canada, Peru and Argentina.  

Finally, we document a weaker tail-codependence among the LA markets in 
our sample than among the mature markets (except Argentina) with respect to 
the US index, as indicated by both the coefficients of the reduced form VAR 
and the highest value of the PIRFs. This points to possible diversification 
strategies that could exploit investments in the LA markets following a shock 
to the US market.  

However, the differences within the LA sample are notorious. While Chile and 
Colombia appear to represent good diversification strategies both in times of 
crisis and during economic rallies, Peru and Argentina present higher tail-
codependences during bearish scenarios than they do during bullish scenarios 
with regard to the US market. This makes them less suitable for 
diversification, especially during times of economic trouble, when 
diversification opportunities are more valuable for global investors.  

In future research, it would be interesting to extend the cross-country 
comparisons performed here to include other emerging and developed 
economies. In this way, it would be possible to analyze global diversification 
strategies beyond the LA markets, using an endogenous multivariate setting. A 
further avenue for future research would be to incorporate more factors into 
the model structure, in addition to the US market index; however, this would 
require major extensions to the estimation process of the PIRFs and the 
MVMQ model, in general. Finally, further risk-diversification benefits could 
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be explored within the region, which would require analyzing spillover across 
all LA markets and not only from the US market. 
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Conclusions 

This dissertation contributes to the resolution of two fundamental problems in 

economics and finance: i) what is macro and financial uncertainty? How to 

measure it? How is it different from risk? How important is it for domestic 

and international financial markets? And ii) what sort of asymmetries underlie 

the international propagation of financial risk and uncertainty? That is, how 

risk and uncertainty propagation changes according to factors such as market 

states or market participants. The first part of this thesis (chapters 2 to 4) 

provides answers to the former questions, while the second part examines the 

latter (chapters 5 and 6). This study has implications for asset pricing, risk 

management, financial stability, and the optimal design of monetary and 

macroprudential policies.  

In chapter 2, I empirically study the relationship between macroeconomic 

uncertainty and momentum abnormal returns. I show that high levels of 

uncertainty in the economy negatively impact the returns of a portfolio that 

consists of buying previous winners and selling previous losers, in the stock 

market. Uncertainty acts as an economic regime that underlies abrupt changes 

over time of momentum returns. The main pragmatic recommendation to be 

derived is not to trade momentum when uncertainty is above a certain 

threshold. Nevertheless, beyond this direct implication for trading, the study 

of momentum strategies, which are precisely based on extrapolating the 

immediate past in order to predict the immediate future, offers a unique 

opportunity to analyze the fundamental differences between risky and 

uncertain situations.  

In chapter 3, I perform a systematic examination of several proxies for 

uncertainty in the literature, and propose an uncertainty index, built on stock 

market data. This proposal has several advantages over the competing 

alternatives, for example its higher frequency and the reduced computational 

costs for regularly updating it. I use my uncertainty estimator to carry out an 

analysis of the way in which uncertainty impacts economic activity. I find that 

uncertainty impacts significantly economic activity, and I document a 

reduction and a subsequent rebound effect in investment dynamics following 

an uncertainty shock. In Chapter 4, I study the propagation of equity market 

uncertainty to the global stock market and analyze the role of uncertainty as a 

systemic risk factor for the global banking sector. I find that the effects of risk 

and uncertainty on banks returns have remained stable over the last decade, 
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and that economic policy uncertainty is indeed a relevant driver of returns in 

the banking sector. I also provide a new simple tool to measure vulnerable 

financial institutions (as opposed to the popular category of systemically 

important ones). 

In the second part of my thesis I emphasize the asymmetric nature of the 

international propagation of risk across financial markets, which depends, for 

instance, on the market state, or the market participants. In chapter 5 I show 

that FX markets house their own idiosyncrasies, which are not considered in 

traditional analysis of return and volatility spillovers in currency markets, 

which implicitly assumes that for any given country the situation is roughly the 

equivalent of facing depreciation or appreciation pressures. This assumption is 

at the very least controversial. Consistently, I propose quantile-based statistics 

of downside risk, and construct an index to monitor financial stability of FX 

markets, while I explain the asymmetric nature of risk resorting to liquidity 

considerations. I find that the least liquid currency markets tend to be more 

vulnerable and to transmit more shocks in the left tail of the distribution than 

is the case with volatility. This is fundamental for the correct assessment of 

systemic risk in currency markets and for monitoring financial fragility and 

distress in currency markets around the world. I also find that the most liquid 

currencies are generally net-transmitters of volatility during periods of US 

dollar appreciation, while the most liquid currencies are net-receivers of 

volatility in periods of turbulence lacking any clear trend.  

Finally in the last chapter of my thesis, chapter 6, I explore the central role of 

the US stock market as a net-exporter of volatility to Latin American and G7 

stock markets, while document important asymmetries in the international 

propagation of shocks during bullish and bearish markets, and for emerging 

and developed economies. I document a weaker tail-codependence among the 

LA markets in our sample than among the mature markets (except Argentina) 

with respect to the US. This points to possible diversification strategies that 

could exploit investments in the LA markets following a shock to the US 

market. 

It is worth to add, in the sake of future discussion, that the sorts of 

asymmetries that I have considered in this thesis are also relevant for instance, 

for energy and insurance markets. Indeed, electricity markets are a good 

example in which the risk faced by suppliers and consumers are substantially 

different (Mosquera, Manotas and Uribe, 2017a), and where the negative or 

positive variations of prices are described in dissimilar ways by market 
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fundamentals, such as weather (Mosquera, Manotas and Uribe, 2017b). 

Another example of the asymmetries that I investigate is found naturally in the 

context of insurance markets, in which mortality and longevity risks, from the 

perspective of insurance companies and pension funds on the one hand, and 

households on the other, are featured by different fundamentals and, 

therefore, should be measured in flexible and specific ways (Chuliá, Guillen 

and Uribe, 2017a,b).  

The study of uncertainty and of risk nature and the asymmetric ways of their 

propagation across assets and markets is of paramount importance for the 

economics profession, yet it is still in its infancy. This dissertation is only an 

initial step in this direction, which I expect to explore in depth in the 

forthcoming years.  
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