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Abstract

We analyze surplus allocation problems where cooperation between agents

is restricted both by a communication graph and by a sequence of embedded

partitions of the agent set. For this type of problem, we define and characterize

two new values extending the Shapley value and the Banzhaf value, respectively.

Our results enable the axiomatic comparison between the two values and provide

some basic insights for the analysis of fair resource allocation in today’s fully

integrated societies.

Keywords: Coalitional games; Graph-restricted communication; Levels struc-

ture; Shapley value; Banzhaf value
∗Corresponding author. E-mail address: mikel.alvarez@ub.edu

1

http://www.sciencedirect.com/
https://doi.org/10.1016/j.mathsocsci.2018.02.005


1 Introduction

As a general rule, the layout of political administrations consist of a series of embedded

layers. The EU, for instance, is integrated by countries, which are organized in regions,

which, in turn, are divided into smaller administrative units, say cities, and so on. As

far as his/her relation with political institutions—and hence with political power—is

concerned, a EU citizen can typically deal with one institution only at each level. The

overall political and administrative layout typically affects the possibilities of citizens to

cooperate: there would be no administrative hurdles if no political institution existed.

For example, it is generally easier to engage in a business venture within a common

labor market under a single set of rules than across several markets, each regulated by

a different set of rules.1

The fact that citizens are integrated in a sequence of embedded layers does not

prevent them from interacting in various other ways, some of which go beyond the

lines set up by political institutions. For instance, there is a great flow of workers

between the major financial markets even though they do not belong to a common

political entity. This is possible due to the existence of certain networks, very especially

transportation and communication networks. More generally, trade between individuals

and firms does not necessarily submit to political structures, especially after the outset

of globalization. Rivers, highways, train networks, among others, facilitate business

and enable individuals and firms to use their full potential. The production chains

of some major corporations, in particular, are now distributed over several countries,

thanks to the existence of many global networks. With such non-political linkages

boosting economic growth, most of the redistribution policies—say, taxes and public

expenditures—are, however, decided only by political institutions operating at national

or regional level.

In a framework where production is not only intertwined with political institutions

but also with a host of other (binary) linkages such as social networks, is there a
1The so-called border effect is a well-documented phenomenon in international trade (see e.g. Evans,

2003).
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reasonable way to address the issue of how the aggregate spoils generated by all citizens

should be shared? Providing knowledge about solutions to this problem is the general

object of this paper. Taking here mainly a normative approach, we focus on certain

properties that may be required for surplus allocation rules. In this vein, it is worth

noting that the increase in inequality (see e.g. Atkinson, 2015) that has taken place

in the past few years in many countries has raised a major concern: policy decisions

should be adopted to guarantee that all citizens benefit from globalization. Our analysis

features some elements of fairness that revolve around this concern.

To elaborate, we analyze the class of surplus allocation problems in which coop-

eration between agents—say, citizens—is restricted both by a sequence of embedded

partitions of the agent set and by a communication graph between agents. Formally,

we consider a triple made up of a cooperative game, a levels structure, and a non-

directed graph, which we call a Game with Graph-Restricted Communication and Lev-

els Structure of Cooperation. First, the cooperative game describes the potential gains

that any subset of players can attain on their own, assuming that cooperation is unre-

stricted. Second, the sequence of embedded partitions of the player set (the so-called

levels structure) represents the different “administrative units” in which players are or-

ganized. These given arrangements among agents restrict or hinder the formation of

coalitions where some of its members belong to different units at some levels. Third

and last, the communication graph accounts for the bilateral relations that may exist

between players, e.g. due to commercial relations. We assume that a coalition of agents

can cooperate only if all of its members are path-connected within the graph. Such links

extend naturally to higher units: A city is connected with another city if there is a link

between their citizens. Likewise the levels structure, a communication graph affects

cooperation between all players, whether directly or indirectly.

Games with graph-restricted communication and levels structure of cooperation

provide an appropriate model to address the normative problem of how to allocate the

surplus that all the agents can potentially create under the restrictions placed by all

layers of political institutions and all communication networks. To make progress in

the analysis of this problem, we introduce two values (or point-valued solutions) for
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games with graph-restricted communication and levels structure of cooperation. The

first value focuses on the orderings in which coalitions are formed, while the second

value considers coalitions directly, without any reference to how they are formed. As

is standard in the literature, the first value extends the Shapley value and the second

value extends the Banzhaf value, the two classic solutions for cooperative games. We

then provide a characterization of each value by means of several properties (or axioms).

Such properties are of two types. A first type describes particular ways how the surplus

sharing should be affected by alterations of the communication graph. A second set of

properties deals with changes in the levels structure. Importantly, the latter properties

used in either characterization result are (logically) comparable. This fact may be useful

when asking whether to use one value or the other for a particular situation.2

Our contribution belongs to the extensive literature of games with restricted coop-

eration, which dates back at least to Aumann and Drèze (1974) (see also Owen, 1977;

Myerson, 1977). Owen (1977) considers situations in which cooperation is restricted by

a partition of the player set—the so-called games with coalition structure—, which are

particular instances of the more general games with coalition configuration (see Albizuri

et al., 2006; Albizuri and Aurrekoetxea, 2006; Andjiga and Courtin, 2015). In the latter

model, coalitions are not necessarily disjoint. In turn, Myerson (1977) considers situa-

tions in which cooperation is restricted by a communication graph, the so-called games

with graph-restricted communication. Several further papers have built on these models

or extended them (see e.g. Owen, 1986; Amer et al., 2002; Alonso-Meijide and Fiestras-

Janeiro, 2002, 2006). Singularly, Winter (1989) generalized the model of games with

coalition structure to include restrictions to cooperation that may exist at various lev-

els. He refers to his extended framework as games with levels structure (of cooperation).

Both types of restrictions to cooperation, i.e. levels structures and undirected graphs,

can, however, exist simultaneously. To account for this possibility, Vázquez-Brage et al.

(1996) and Alonso-Meijide et al. (2009) have already proposed and characterized gen-

eralizations of the Shapley value and the Banzhaf value for games with both a coalition

structure and a communication graph. The model we analyze is a natural generaliza-
2We elaborate on this issue in Section 3.3.
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tion of the latter, insofar as it considers a levels structure instead of coalition structure

(i.e, a levels structure with a single level).

The paper is organized as follows: In Section 2 we set the notation and introduce

the main concepts from the literature. In Section 3 we define two new values for games

with graph-restricted communication and levels structure of cooperation, which we

characterize by a number of properties and then compare. Section 4 concludes. The

proofs are given in the Appendix.

2 Notations and Preliminaries

2.1 Cooperative games with transferable utility

Let Ω denote the (possibly infinite) set of potential players. A cooperative game with

transferable utility (or simply a game) is a pair (N, v), where ∅ 6= N ⊆ Ω is a finite

set of players and v : 2N = {S : S ⊆ N} → R is the characteristic function, with

v(∅) = 0. For every coalition S ⊆ N , v(S) represents the worth of coalition S, i.e.,

the total payoff that members of the coalition can obtain by agreeing to cooperate. We

denote the collection of all games by G. For the sake of readability, we henceforth abuse

notation slightly and write T ∪ i and T \ i instead of T ∪{i} and T \ {i} for T ⊆ N and

i ∈ N , respectively. We use the | · | operator to denote the cardinality of a finite set.

A value on G is a map, f, that assigns a unique vector f(N, v) ∈ RN to every

(N, v) ∈ G. A permutation of N is a bijective map π : N → N . Let Π(N) denote the

set of permutations of N . Given π ∈ Π(N) and i ∈ N , let π−1[i] indicate the set of

players ordered before i in permutation π, i.e., π−1[i] = {j ∈ N : π(j) < π(i)}. Next,

we present the formal definitions of two well-known values on G, namely the Shapley

and Banzhaf values.

Definition 2.1. The Shapley value (Shapley, 1953), Sh, is the value on G defined for

every (N, v) ∈ G and i ∈ N by

Shi(N, v) =
1

|Π(N)|
∑

π∈Π(N)

[
v
(
π−1[i] ∪ i

)
− v

(
π−1[i]

)]
.
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The Banzhaf value (Banzhaf, 1965), Ba, is the value on G defined for every (N, v) ∈ G

and i ∈ N by

Bai(N, v) =
1

2|N |−1

∑
S⊆N\i

[v(S ∪ i)− v(S)] .

The differences between these values are well know from an axiomatic viewpoint

(see e.g. Young, 1985; Feltkamp, 1995; Nowak, 1997). We note that the Shapley value

can be alternatively defined as

Shi(N, v) =
∑
S⊆N\i

|S|!|N\(S ∪ i)|!
|N |!

[v(S ∪ i)− v(S)] .

2.2 Games with graph-restricted communication

A communication graph is an undirected graph without loops defined on a finite set of

nodes. That is, (N,C) is a communication graph if N is a finite set of nodes and C

is a set of links among the nodes. A link between i and j is denoted by {i : j} (note

that {i : j} = {j : i}). Given i, j ∈ S ⊆ N , we say that i and j are path-connected

(or just connected) in S by C if there is a path in S connecting them, i.e., if for some

k ≥ 0, there is a subset {i0, . . . , ik} ⊆ S such that i0 = i, ik = j, and for every

l ∈ {1, . . . k}, {il−1 : il} ∈ C. By S/C we denote the partition of S into maximal

connected components. The complete graph on a finite set N is denoted by (N,CN),

i.e., CN = {{i : j} : i, j ∈ N, i 6= j}. The set of all communication graphs is denoted

by C. Given a communication graph (N,C) ∈ C, a node i ∈ N is said to be isolated

in the graph if there is no link from her, i.e., if for every j ∈ N \ i, {i : j} /∈ C. The

communication graph (N,C−i) is obtained from (N,C) by dissolving the links in which

i is involved, i.e., C−i = {{k : l} ∈ C : k, l ∈ N \ i}. Similarly, given a link {i : j}, the

communication graph (N,C−ij) is obtained from (N,C) by eliminating the link {i : j},

i.e., C−ij = {{k : l} ∈ C : {k : l} 6= {i : j}}.

A game with graph-restricted communication is a triple (N, v, C) where (N, v) ∈ G

and (N,C) ∈ C. The set of all games with graph-restricted communication is denoted

by GC. A value on GC is a map, f, that assigns a unique vector f(N, v) ∈ RN to every

(N, v, C) ∈ GC.
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For every (N, v, C) ∈ GC, the graph-restricted game (N, vC) ∈ G assumes that

players can only communicate through (N,C). In other words, a coalition can cooperate

only if it is connected through the communication graph. Formally, for every S ⊆ N ,

vC(S) =
∑
T∈S/C

v(T ).

Two well-known values on GC that generalize the Shapley and Banzhaf values are

presented below.

Definition 2.2. The Myerson value (Myerson, 1977), SG, is the value on GC defined

for every (N, v, C) ∈ GC by

SG(N, v, C) = Sh
(
N, vC

)
.

The Banzhaf graph value (Owen, 1986), BG, is the value on GC defined for every

(N, v, C) ∈ GC by

BG(N, v, C) = Ba
(
N, vC

)
.

2.3 Games with levels structure of cooperation

Consider now that the cooperation among agents is restricted by means of a finite

sequence of partitions defined on the player set, each of them being coarser than the

previous one. Formally, Winter (1989) introduced a levels structure of cooperation

(or simply a levels structure) being a pair (N,B), where N ⊆ Ω is a finite set of

players and B is a sequence of partitions of N , B = {B0, . . . , Bk+1}, with the following

properties: B0 = {{i} : i ∈ N}, Bk+1 = {N}, and, for each r ∈ {0, . . . , k}, Br+1 is

coarser than Br. That is to say, for each r ∈ {1, . . . , k + 1} and each S ∈ Br, there

is B ⊆ Br−1 such that S = ∪U∈B U . Each S ∈ Br is called a union and Br is called

the rth level of B. The levels B0 and Bk+1 are added for notational convenience. We

denote by
(
N,B0

)
the trivial levels structure with k = 0, i.e., B0 = {B0, B1}, where

B0 = {{i}}i∈N and B1 = {N}. We further denote by L the set of all levels structures.

Let (N,B) ∈ L with B = {B0, . . . , Bk+1} and i ∈ N . Then, (N,B−i) ∈ L(N) is the

levels structure obtained from (N,B) by isolating player i from the union she belongs
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to at each level, i.e., B−i = {B0, B
−i
1 , . . . , B−ik , Bk+1}, where, for all r ∈ {1, . . . , k},

B−ir = {U ∈ Br : i /∈ U} ∪ {S \ i, {i}} with i ∈ S ∈ Br.

A game with levels structure of cooperation is a triple (N, v,B), where (N, v) ∈ G and

(N,B) ∈ L. We denote by GL the set of all games with levels structure of cooperation.

Given (N, v,B) ∈ GL with B = {B0, . . . , Bk+1}, for each r ∈ {0, . . . , k} we define the

rth-level union game (Br, v
r, Br) ∈ GL induced from (N, v,B) as the game with levels

structure of cooperation with the elements of Br as players, characteristic function

vr given by vr(S) = v(
⋃
U∈S U) for any coalition S ⊆ Br, and with levels structure

Br = {Br
0, . . . , B

r
k−r+1} given by Br

0 = {{U} : U ∈ Br}, Br
s = {{U ∈ Br : U ⊆ U ′} :

U ′ ∈ Br+s} for s ∈ {1, . . . , k − r}, and Br
k−r+1 = {{U : U ∈ Bk}}. Note that Br = B if

r = 0, whereas Bk is the trivial levels structure B0 on the player set {U : U ∈ Bk}.

A value on GL is a map, f, that assigns to every game with levels structure of

cooperation (N, v,B) ∈ GL a vector f(N, v,B) ∈ RN . To present two values on GL,

we need to introduce some further notation. On the one hand, for every (N,B) ∈ L

with B = {B0, . . . , Bk+1}, the set of permutations of N that respect the levels structure

(N,B) is denoted by Ω(B) and is defined by

Ω(B) = {π ∈ Π(N) : ∀Br ∈ B,∀T ∈ Br,∀i, j ∈ T,

and k ∈ N, if π(i) < π(k) < π(j) then k ∈ T} .

On the other hand, for every (N,B) ∈ L and i ∈ N , let i ∈ U0 = {i} ⊆ U1 ⊆ · · · ⊆

Uk ⊆ Uk+1 such that Ur ∈ Br for all r ∈ {0, . . . , k + 1}. Then, the partition induced by

B on i is defined as

P (i, B) =
k⋃
r=0

(Br)|Ur+1\Ur .

Then, P (i, B) ∈ P(N \ i). We denote |P (i, B)| by mi, and the unions of the partition

induced by B on i, by P (i, B) = {T1, . . . , Tmi
}. Finally, the set of indices of the partition

induced by B on i is denoted byMi = {1, . . . ,mi}, and for every R ⊆Mi, TR = ∪r∈RTr.

Definition 2.3. The Shapley levels value (Winter, 1989), ShL, is the value on GL
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defined for every (N, v,B) ∈ GC and i ∈ N by

ShLi (N, v,B) =
1

|Ω(B)|
∑

σ∈Ω(B)

[
v
(
σ−1[i] ∪ i

)
− v

(
σ−1[i]

)]
.

The Banzhaf levels value (Álvarez-Mozos and Tejada, 2011), BaL, is the value on GL

defined for every (N, v, C) ∈ GC and i ∈ N by

BaLi (N, v,B) =
∑
R⊆Mi

1

2mi
[v(TR ∪ i)− v(TR)] .

The two values above yield the Shapley value and the Banzhaf value, respectively,

if the levels structure is trivial. They also generalize the Owen value (Owen, 1977) and

the Banzhaf-Owen value (Owen, 1982).3

3 Two New Solutions

We are now in a position to introduce the main mathematical objects we shall deal

with. A game with graph-restricted communication and levels structure of cooperation

(henceforth, a graph-levels restricted game) is a four-tuple (N, v, C,B) ∈ GCL where

N ⊆ Ω, (N, v) ∈ G, (N,C) ∈ C and (N,B) ∈ L. We let GCL denote the set of

all graph-levels restricted games. A value on GCL is then a map, f, that assigns to

every game with graph-restricted communication and levels structure of cooperation

(N, v, C,B) ∈ GCL a vector f(N, v, C,B) ∈ RN .

In the remainder of this section we do three things. First, we introduce and char-

acterize a new value for graph-levels restricted games, which generalizes the Shapley

value. Second, we introduce and characterize another new value for graph-levels re-

stricted games, which generalizes the Banzhaf value. Third, we build on the two char-

acterization results to discuss the differences between the two proposed values. An

example is also used to further illustrate these differences.
3These values are defined in the framework of games with coalition structure.
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3.1 The Myerson levels value

We start by proposing the natural generalization to our setting of the Shapley value,

the Myerson value, and the Shapley levels value.

Definition 3.1. The Myerson levels value, SGL, is the value on GCL, defined for every

(N, v, C,B) ∈ GCL by

SGL(N, v, C,B) = ShL
(
N, vC , B

)
.

That is, the Myerson levels value of a graph-levels restricted game, say (N, v, C,B),

is the result of a two-stage procedure. First, the (unrestricted) possibilities of coop-

eration captured by (N, v) are reduced in accordance with the communication graph

(N,C). This means that if there exist returns to scale—i.e., if the game is strictly

superadditive—, only coalitions whose members are all connected within the graph

can obtain their full potential.4 The outcome of this restriction procedure is (N, vC).

Second, the Shapley levels value is applied to the resulting game with levels structure

of cooperation
(
N, vC , B

)
. This implies that cooperation among agents is further re-

stricted, so that only permutations in which all agents are ordered in a way that respects

the levels structure (N,B) are payoff-relevant.

In the following, we introduce a number of properties that a value for graph-levels

restricted games may satisfy.

ce A value on GCL, f, satisfies component efficiency if for every (N, v, C,B) ∈ GCL

and every S ∈ N/C, ∑
i∈S

fi (N, v, C,B) = v(S).

fg A value on GCL, f, satisfies fairness in the graph if for every (N, v, C,B) ∈ GCL

and every i, j ∈ U ∈ B1 ∈ B such that {i : j} ∈ C,

fi (N, v, C,B)− fi
(
N, v, C−ij, B

)
= fj (N, v, C,B)− fj

(
N, v, C−ij, B

)
.

4A game (N, v) is strictly superadditive if v(S ∪T ) > v(S)+ v(T ) for ∅ 6= S, T such that S ∩T = ∅.
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bc A value on GCL, f, satisfies balanced contributions if for every (N, v, C,B) ∈ GCL

and every i, j ∈ U ∈ B1 ∈ B,

fi (N, v, C,B)− fi
(
N, v, C,B−j

)
= fj (N, v, C,B)− fj

(
N, v, C,B−i

)
.

clg A value on GCL, f, satisfies the communication level game property if for every

(N, v, C,B) ∈ GCL and every U ∈ Br ∈ B,∑
i∈U

fi (N, v, C,B) = fU
(
Br,
(
vC
)r
, CBr , Br

)
.

The four properties above are inspired by similar properties from the literature. ce

and fg were introduced by Myerson (1977) in the framework of games with graph-

restricted communication. bc was proposed by Vázquez-Brage et al. (1996) and clg

by Alonso-Meijide et al. (2009) for games with graph-restricted communication and a

coalition structure in both cases.

The first property, ce, requires the spoils generated by unrestricted cooperation to

be always attainable for coalitions that are maximally connected in the communication

graph, regardless of the restrictions imposed by the levels structure. The latter may

affect the payoff to specific players but not the total payoff of a maximally connected

coalition. Accordingly, there is a sense in which ce builds on the idea that “connected

markets” are always efficient. Hence, ce is rather a descriptive property of our setting

than a normative requirement.

By contrast, fg is a property with a strong flavor of equity: it requires that the

introduction or removal of a communication link between two agents has to affect

both players’ payoff equally. Redistribution tools such as taxes and public spending

could be used to ensure that this condition is fulfilled. Unlike ce, fg does not apply

independently of the restrictions imposed by the levels structure, as the two players

considered have to belong to the same administrative unit (i.e., union) at all levels. fg

is silent with regard to changes in the communication structure that affect citizens who

live in different cities, regions or countries.

Like fg, bc applies to any pair of players who belong to the same union at all levels

of the levels structure. For such a pair of players, bc requires that when one of the
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players becomes completely isolated from the administrative structure—as modeled by

the levels structure—, the effect on the other player is always the same (for that union).

Hence, for each citizen, bc equalizes the value of the current political structure with

respect to the threat that any fellow citizen (who is closest to her in the levels structure)

might leave the structure.5 In a sense, bc can be seen as a stability property for the

lowest non-trivial level of the entire administrative structure: for any two players that

belong to the same union, one’s threat against the other has to be the same.6 Note that

bc assumes that changes in the levels structure induce no changes in the communication

graph.

Finally, clg also deals with the stability of the levels structure, keeping the commu-

nication graph fixed. While bc is concerned with changes in the levels structure from a

horizontal perspective (it compares the payoff change of two citizens who belong to the

same union at all levels), clg is concerned with changes in the levels structure from a

vertical perspective. Specifically, clg demands that aggregating units cannot have an

effect on the total payoff of the administrative units (i.e., unions) being aggregated.

It turns out that the four properties we introduced single out SGL.

Theorem 3.1. The Myerson levels value is the unique value on GCL that satisfies ce,

fg, bc, and clg. Moreover, the four properties are independent.7

We point out that this result remains valid if ce and fg are only demanded when

the levels structure is trivial. What is more, we could replace this two properties by

any set that characterizes the Myerson value (see, for instance, Myerson, 1980).
5This interpretation holds generally for the minimal unit in our model, be it composed of citizens

or groups of citizens. In the latter case, bc attest to the cohesion of political units.
6In combination with clg, such a notion of stability translates into all other levels of the adminis-

trative structure.
7For the independence of the properties, we weaken ce and require its applicability only to graph-

levels restricted games where the levels structure is trivial.

12



3.2 The Banzhaf levels graph value

Next, we propose one natural generalization to our setting of the Banzhaf value, the

Banzhaf graph value, and the Banzhaf levels value.

Definition 3.2. The Banzhaf levels graph value, BGL, is the value on GCL, defined

for every (N, v, C,B) ∈ GCL by

BGL(N, v, C,B) = BaL
(
N, vC , B

)
.

The Banzhaf levels graph value is obtained by a two-stage procedure similar to

the one used to build the Myerson levels value. The main difference is that after the

transformation of the players’ cooperation possibilities set by the communication graph,

which yields a game with levels structure of cooperation, all admissible coalitions are

now assumed to be equally likely. This property is characteristic of the Banzhaf value—

upon which BGL is based— and is in sharp contrast with the assumption that lies at the

foundation of the Shapley value—upon which SGL is based—, namely that all admissible

permutations are equally likely. The differences between the two approaches are further

discussed in Section 3.3.

In the following, we introduce more properties that a value for graph-levels restricted

games may satisfy.

gi A value on GCL, f, satisfies graph isolation if for every (N, v, C,B) ∈ GCL and

every {i} ∈ N/C,

fi (N, v, C,B) = v({i}).

2-e A value on GCL, f, satisfies 2-efficiency if for every (N, v, C,B) ∈ GCL and every

i, j ∈ U ∈ B1 ∈ B such that {i : j} ∈ C,

fi (N, v, C,B) + fj (N, v, C,B) = fi (N, vij, Cij, B) + fj (N, vij, Cij, B) ,

where Cij = C−j ∪ {{i : k} : k ∈ N \ i, with {k : j} ∈ C} and for every S ⊆ N ,

vij(S) =

v(S ∪ j) if i ∈ S

v(S \ j) if i /∈ S
.
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nid A value on GCL, f, satisfies neutrality under individual desertion if for every

(N, v, C,B) ∈ GCL and every i, j ∈ U ∈ B1 ∈ B,

fi (N, v, C,B) = fi
(
N, v, C,B−j

)
.

1-clg A value on GCL, f, satisfies the 1-communication level game property if for every

(N, v, C,B) ∈ GCL and every {i} ∈ Br ∈ B,

fi (N, v, C,B) = f{i}
(
Br,
(
vC
)r
, CBr , Br

)
.

These four properties are again inspired by similar properties from the literature.

gi was introduced by Alonso-Meijide and Fiestras-Janeiro (2006) in the framework of

games with graph-restricted communication. 2-e was originally proposed by Lehrer

(1988) for games (see also Haller, 1994). The last two properties, nid and 1-clg, were

introduced by Alonso-Meijide et al. (2007) for games with coalition structure.

Because gi is weaker than ce, it allows a similar interpretation. Specifically, gi

requires that regardless of any consideration, a player who is isolated in the graph

cannot establish cooperation with any other player, and thus her payoff must be equal

to her stand-alone worth. Hence, this property builds on the positive assumption that

connectedness (in the graph) is a necessary condition for cooperation (in the game). gi

also admits a normative interpretation: no player should be allowed to rip off someone

else’s production if she is isolated in the graph. We stress that gi holds irrespective of

the levels structure.

In turn, 2-e deals with the payoff of two players who not only belong together in

all levels of the level structure of cooperation but are also directly connected in the

graph. Specifically, this property requires that if one of these players delegates her role

to another player, their aggregate payoff has to remain the same. Such an internal

reorganization may, however, have a re-distributive impact on how much each player is

eventually allocated. Note that 2-e assumes both a change in the game and a change

in the graph. One rationale for this simultaneous premise is the following: the fact that

one player delegates her role to another player means that the former has to be able
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to transfer to the latter a property right on both the production—i.e., on the potential

contributions of the game in which the delegating player is involved, provided that

the delegated player is also involved—and the network—i.e. on all links in which the

delegating player is involved. In particular, if 2-e is satisfied and either transferring the

property rights on production—e.g., by signing a contract—or transferring the links—

e.g., when they are physical, geographically-based networks—is costly, such internal

reorganizations should, in principle, not take place, and thus we should always observe

that all players take an active role in the negotiations.

Next, note that nid is stronger than bc. Indeed, while the latter property is a

symmetry condition that equalizes the effect that the departure of one player has on

any other player who belongs to the same union at all levels, nid requires that these

changes be zero. nid thus builds on the normative assumption that the threat of any

citizen to unilaterally deviate from the current administrative structure should be void

for the fellow citizens who belong to the same unions at all levels.

Finally, 1-clg is weaker than clg. Indeed, the former property results from apply-

ing the latter property to singleton unions of any level. In particular, the interpretation

of 1-clg is essentially the same as that of clg.

It turns out that in combination with fg, the four properties above single out BGL.

Theorem 3.2. The Banzhaf levels graph value is the unique value on GCL that satisfies

gi, fg, 2-e, nid, and 1-clg. Moreover, the five properties are independent.8

We point out that the result remains valid if gi, 2-e, and fg are only demanded

when the levels structure is trivial. What is more, we could replace these two properties

by any set that characterizes the Banzhaf graph value.

3.3 A comparative analysis

For Theorems 3.1 and 3.2, we have used two types of properties. The first type—

namely ce and fg for the Myerson levels value (SGL), and gi, fg and 2-e for the
8For the independence of the properties, we weaken gi and require its applicability only to graph-

levels restricted games where the levels structure is trivial.
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Banzhaf levels graph value (BGL)—is concerned with the issue of how a value should

behave with respect to changes in the communication graph. With fg being satisfied

by both values, the main difference between the two values stems from which coalitions

can attain their full potential: the Myerson levels value assumes that any coalition

that is connected in the graph can do so, while the Banzhaf levels graph value imposes

conditions relating to efficiency concerns on one- and two-player (connected) coalitions

only. From a comparative perspective, the properties of the second type—namely bc

and clg for the Myerson levels value, and nid and 1-clg for the Banzhaf levels graph

value—are also relevant. Indeed, these properties are parallel to each other in the

following sense: First, bc is a weakening of nid and hence SGL is less restrictive than

BGL regarding the effect of one agent leaving the levels structure on another. Second,

clg is a stronger requirement than 1-clg. Accordingly, SGL could be more (less)

reasonable than BGL in those situations where the stability of the levels structure is

high (low).

We conclude this section with an example that illustrates both the Myerson levels

value and the Banzhaf graph levels value, which also enables a further comparison

between both solution concepts.

Example 3.1. Given N = {1, 2, 3, 4, 5}, let (N, v) ∈ G be the simple game determined

by the set of minimal winning coalitions M = {{1, 2, 4}, {1, 2, 5}, {3, 4, 5}}.9 In this

game, players 1 and 2 are symmetric and participate in most winning coalitions. In

turn, players 4 and 5 are also symmetric, with player 3 being the one who participates in

fewer winning coalitions. Then, consider the graph-levels restricted game (N, v, C,B) ∈

GCL, where the communication graph, (N,C), and the levels structure, (N,B), are as

depicted in Figure 1.

On the one hand, the star shape of the graph describes a situation in which player 1

can enable communication among the remaining players. On the other hand, the levels

structure describes a situation in which players 3, 4, and 5 are together in all non-trivial

levels of the levels structure, with the other two players joining them sequentially: first
9That is, for every S ⊆ N , v(S) = 1 if T ⊆ S for some T ∈M , and v(S) = 0 otherwise.
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B3 = {{1, 2, 3, 4, 5}},

B2 = {{1}, {2, 3, 4, 5}},

B1 = {{1}, {2}, {3, 4, 5}},

B0 = {{1}, {2}, {3}, {4}, {5}}.

Figure 1: The communication graph and the levels structure.

player 2, then player 1.

To compute the Myerson levels value of (N, v, C,B), we consider the 24 permutations

that are admissible given the levels structure, and for each such permutation we identify

the player who has a pivotal position with respect to the game with graph-restricted

communication. For the computation of the Banzhaf levels graph value, by contrast, we

compute the partitions induced by the levels structure, namely P (1, B) = {{2, 3, 4, 5}},

P (2, B) = {{1}, {3, 4, 5}}, P (3, B) = {{1}, {2}, {4, 5}}, P (4, B) = {{1}, {2}, {3, 5}},

and P (5, B) = {{1}, {2}, {3, 4}}. With all these ingredients, we obtain

ShL(N, v, C,B) =

(
1

2
, 0,

1

12
,

5

24
,

5

24

)
, and

BaL(N, v, C,B) =

(
1

2
, 0,

1

8
,
1

4
,
1

4

)
.

The above outcomes illustrate some of the differences between the players’ (rela-

tive) payoff as given by the two solution concepts. For instance, according to ShL,

players 4 and 5 receive more than two times what player 3 is assigned. In contrast,

according to BaL, the importance of players 4 and 5 is exactly the double of player

3. We also note that the outcome prescribed by the Banzhaf levels graph value is not

efficient.

4 Conclusion

We have introduced and characterized two new values for graph-levels restricted games.

As argued in the Introduction, our analysis offers some worthwhile insights about in-
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come redistribution in today’s world economy, in which cooperation between agents is

concurrently influenced by embedded political units and networks.

Several aspects of our model deserve scrutiny in the future, of which we mention

two. First, a closer mapping of our model to real data may help us discern whether

it is the Shapley-like or the Banzhaf-like approach, if any, that is prevalent. Second, a

purely non-cooperative model of public finance that implements our two values could

guide policy-making, based on the normative considerations raised by our paper.
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Appendix

Proof of Theorem 3.1.

The proof proceeds in three steps. First, we prove that the Myerson levels value

satisfies ce, fg, bc, and clg. Second, we prove that there is at most one value on GCL

satisfying ce, fg, bc, and clg. Third, we prove that the four properties are logically

independent.

Existence

First, we check that SGL satisfies ce. Let (N, v, C,B) ∈ GCL and S ∈ N/C. By

definition of vC , for every i ∈ S and T ⊆ N \ i,

vC(T ∪ i)− vC(T ) = vC((T ∩ S) ∪ i)− vC(T ∩ S). (1)

Then, ∑
i∈S

SGL
i (N, v, C,B) =

1

|Ω(B)|
∑

σ∈Ω(B)

∑
i∈S

[
vC
(
σ−1[i] ∪ i

)
− vC

(
σ−1[i]

)]
=

1

|Ω(B)|
∑

σ∈Ω(B)

∑
i∈S

[
vC
(
(σ−1[i] ∩ S) ∪ i

)
− vC

(
σ−1[i] ∩ S

)]
=

1

|Ω(B)|
∑

σ∈Ω(B)

vC(S) = v(S),

where the first equality is obtained by switching the order of the summations, the second

equality results from applying Eq. (1), and the last equality follows by definition of

vC and the observation that for every ordering of the agents in S, adding the marginal

contributions of every player to her set of predecessors yields vC(S) − vC(∅) = vC(S).

Indeed, let S = {i1, . . . , is}, with s = |S|, be such that σ−1[ij] < σ−1[il] if and only if

j < l. Then ∑
i∈S

[
vC
(
(σ−1[i] ∩ S) ∪ i

)
− vC

(
σ−1[i] ∩ S

)]
=

s∑
l=1

[
vC (i1 ∪ . . . ∪ il)− vC (i1 ∪ . . . ∪ il−1)

]
= vC (i1 ∪ . . . ∪ is) .
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Second, we check that SGL satisfies fg. Let (N, v, C,B) ∈ GCL and i, j ∈ U ∈ B1 ∈

B be such that {i : j} ∈ C. Define w = vC − vC
−ij . Since SGL is additive (see pp

229-230 in Winter, 1989),

SGL
i (N, v, C,B)− SGL

i

(
N, v, C−ij, B

)
= ShLi (N, v

C , B)− ShLi (N, v
C−ij

, B)

= ShLi (N,w,B). (2)

We show that i and j are symmetric players in (N,w). Indeed, let S ⊆ N \ {i, j}.

Then, because (S ∪ i)/C = (S ∪ i)/C−ij and (S ∪ j)/C = (S ∪ j)/C−ij, it must be that

w(S ∪ i) = w(S ∪ j) = 0.

Next, since i, j ∈ U ∈ B1 ∈ B and ShL satisfies symmetry (see pp 23-24 in Álvarez-

Mozos and Tejada, 2011), ShLi (N,w,B) = ShLj (N,w,B). Finally, observe that in Eq.

(2) the roles of i and j can be replaced. Combining the last equality with these two

versions of Eq. (2), we obtain that SGL satisfies fg.

Third, SGL satisfies bc by its definition and the fact that ShL satisfies the level

balanced contributions property (see p 24 in Álvarez-Mozos and Tejada, 2011).

Fourth and last, SGL satisfies clg because for every U ∈ Br ∈ B,∑
i∈U

SGL
i (N, v, C,B) =

∑
i∈U

ShLi (N, v
C , B) = ShLU

(
Br, (v

C)r, Br

)
= ShLU

(
Br,
(
(vC)r

)CBr

, Br

)
= SGL

U

(
Br, (v

C)r, CBr , Br

)
,

where the first and last equalities are by definition of SGL, the second one is due to the

fact that ShL satisfies the level game property (see p 24 in Álvarez-Mozos and Tejada,

2011), and the third holds from the observation that when the communication graph

is complete, the game with graph-restricted communication corresponds to the game

itself.

Uniqueness

Let f be a value on GCL satisfying the four properties and let (N, v, C,B) ∈ GCL

be a graph-levels restricted game with k levels. We show uniqueness of f(N, v, C,B) by

induction on k.
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First, let k = 0, i.e., B = B0. Define fc, a value on GC, by fc(N, v, C) = f(N, v, C,B0)

for every (N, v, C) ∈ GC. Since f satisfies ce and fg, fc satisfies the two properties of

the characterization of Myerson (1977). Then fc = SG, and f(N, v, C,B0) is uniquely

determined. Note that we only use ce for graph-levels restricted games (N, v, C,B)

where B = B0, i.e., where the levels structure is trivial.

Second, suppose that the payoffs according to f are unique for any graph-levels

restricted game with less than k levels. Then, let (N, v, C,B) ∈ GCL be a graph-levels

restricted game with k levels, so that we have B = {B0, . . . , Bk+1}. Let i ∈ U ∈ B1.

We show uniqueness of fi(N, v, C,B) by a second induction on the cardinality of U .

On the one hand, suppose that U = {i}. Then, by clg,

fi(N, v, C,B) = fU
(
B1, (v

C)1, CB1 , Br

)
.

Note that
(
B1, (v

C)1, CB1 , Br

)
is a graph-levels restricted game with k−1 levels. Then,

the payoff above is unique by the first induction hypothesis. On the other hand, suppose

that the payoff according to f is unique for any player that belongs to a union of the

first level with a cardinality smaller than u > 1, and let i ∈ U ∈ B1 ∈ B be such that

|U | = u. Take j ∈ U \ i. By bc,

fi(N, v, C,B)− fj(N, v, C,B) = fi(N, v, C,B
−j)− fj(N, v, C,B

−i). (3)

Note that the payoffs in the right-hand side of the above equation are unique by the

second induction hypothesis. Adding up Eq. (3) for every j ∈ U \ i, we obtain that

u · fi(N, v, C,B)−
∑
j∈U

fj(N, v, C,B) (4)

is uniquely determined. Finally, by clg,∑
j∈U

fj(N, v, C,B) = f[U ]

(
B1, (v

C)1, CB1 , Br

)
,

which is also unique by the first induction hypothesis. Together with Eq. (4), this fact

concludes this step of the proof.

Logical independence

It only remains to check that the four properties are independent.
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(i) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL and i ∈ N by

fi(N, v, C,B) = 0.

Then, f satisfies fg, bc, and clg but not ce.

(ii) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL as follows: If

N = {i, j} and C = CN , then

fi(N, v, C,B) =
3

4
(v(N)− v(j)) +

1

4
v(i)

fj(N, v, C,B) =
1

4
(v(N)− v(i)) +

3

4
v(j)

Otherwise, f(N, v, C,B) = SGL(N, v, C,B).10

Then, f satisfies ce, bc, and clg but not fg.

(iii) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL by f(N, v, C,B) =

SGL(N, v, C,B0).

Then, f satisfies ce, fg, and bc, but not clg.

(iv) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL and i ∈ N by

fi(N, v, C,B) =
SGL

U

(
B1, (v

C)1, CB1 , B1

)
|U |

, where i ∈ U ∈ B1.

Then, f satisfies ce (for B0), fg, and clg, but not bc.

�

Proof of Theorem 3.2.

The proof proceeds in three steps. First, we prove that the Banzhaf levels graph

value satisfies gi, fg, 2-e, nid, and 1-clg. Second, we prove that there is at most one

value on GCL satisfying gi, fg, 2-e, nid, and 1-clg. Third, we prove that the five

properties are logically independent.

Existence

First, we check that BGL satisfies gi. Let (N, v, C,B) ∈ GCL be such that {i} ∈

N/C. Then, by definition of a game with graph-restricted communication, for every
10 Here we assume that i and j can never be the label of any player that results from the merging

of “core” players of the lowest level of the levels structure considered in clg.
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S ⊆ N \ i, it holds that vC(S ∪ i)− vC(S) = v(i). Accordingly, i is a dummy player in

(N, vC) and gi then follows from the fact that BaL satisfies the dummy player property

(see pp 23-25 in Álvarez-Mozos and Tejada, 2011).

Second, we check that BGL satisfies 2-e. Let (N, v, C,B) ∈ GCL and i, j ∈ U ∈

B1 ∈ B be such that {i : j} ∈ C. By definition of P (i, B), P (i, B)\{j} = P (j, B)\{i}.

Then, define P (ij, B) = P (i, B) \ {j} = {T1, . . . , Tmij
} and Mij = {1, . . . ,mij}, and

note that mij = mi − 1. On the one hand,

BGL
i (N, v, C,B) + BGL

j (N, v, C,B) = BaLi
(
N, vC , B

)
+ BaLj

(
N, vC , B

)
=
∑
R⊆Mij

1

2mi

[
vC(TR ∪ i)− vC(TR) + vC(TR ∪ j ∪ i)− vC(TR ∪ j)

]
+
∑
R⊆Mij

1

2mi

[
vC(TR ∪ j)− vC(TR) + vC(TR ∪ i ∪ j)− vC(TR ∪ i)

]
=
∑
R⊆Mij

1

2mi−1

[
vC(TR ∪ j ∪ i)− vC(TR)

]
.

On the other hand,

BGL
i (N, vij, Cij, B) = BaLi

(
N, (vij)

Cij , B
)

=
∑
R⊆Mi

1

2mi

[
(vij)

Cij(TR ∪ i)− (vij)
Cij(TR)

]
=
∑
R⊆Mij

1

2mi

[
(vij)

Cij(TR ∪ i)− (vij)
Cij(TR) + (vij)

Cij(TR ∪ j ∪ i)− (vij)
Cij(TR ∪ j)

]
=
∑
R⊆Mij

1

2mi−1

[
vC(TR ∪ j ∪ i)− vC(TR)

]
.
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where the last equality follows from the following four observations:

(vij)
Cij(TR ∪ i) =

∑
S∈(TR∪i)/Cij

vij(S) =
∑

S∈(TR∪i)/Cij

vij(S \ j)

=
∑

S∈(TR∪i∪j)/C

vij(S \ j) =
∑

S∈(TR∪i∪j)/C

v(S) = vC(TR ∪ i ∪ j),

(vij)
Cij(TR) =

∑
S∈TR/C

vij(S) =
∑

S∈TR/C

v(S) = vC(TR),

(vij)
Cij(TR ∪ i ∪ j) =

∑
S∈(TR∪i∪j)/Cij

vij(S) = vij(j) +
∑

S∈(TR∪i∪j)/C

vij(S \ j)

=
∑

S∈(TR∪i∪j)/C

v(S) = vC(TR ∪ i ∪ j),

(vij)
Cij(TR ∪ j) =

∑
S∈(TR∪j)/Cij

vij(S) = vij(j) +
∑

S∈TR/C

vij(S)

=
∑

S∈TR/C

v(S) = vC(TR).

Taking into account that j is isolated in Cij, that BGL satisfies gi and that vij({j}) = 0,

it then follows that BGL satisfies 2-e.

Third, to verify that BGL satisfies fg, we can replicate the argument in the proof of

Theorem 3.1. Indeed, note that BaL satisfies additivity and symmetry (see pp 24-25 in

Álvarez-Mozos and Tejada, 2011).

Fourth, BGL satisfies nid by definition and by the fact that BaL satisfies the level

neutrality under individual desertion property (see pp 24-25 in Álvarez-Mozos and

Tejada, 2011).

Fifth and last, to verify that BGL satisfies 1-clg, we can replicate the argument in

the proof of Theorem 3.1, because BaL satisfies the singleton level game property (see

pp 24-25 in Álvarez-Mozos and Tejada, 2011).

Uniqueness

Let f be a value on GCL satisfying the five properties and (N, v, C,B) ∈ GCL be a

graph-levels restricted game with k levels. We show the uniqueness of f(N, v, C,B) by

induction on k.
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First, let k = 0, i.e., B = B0. We show the uniqueness of f(N, v, C,B0) by induction

on the number of links |C|. In the case |C| = 0, every i ∈ N is isolated in C, and hence

fi(N, v, C,B0) = v(i) follows from gi. Next, suppose that payoffs are unique for any

graph-levels restricted game with a trivial levels structure and less than c > 0 links,

and let (N, v, C,B0) be a graph-levels restricted game with c links. Take i ∈ N . If i

is isolated in the graph, uniqueness follows again from gi. Otherwise, i.e. if i is not

isolated in the graph, let j ∈ N be such that {i : j} ∈ C. On the one hand, by fg

fi
(
N, v, C,B0

)
− fj

(
N, v, C,B0

)
= fi

(
N, v, C−ij, B0

)
− fj

(
N, v, C−ij, B0

)
. (5)

On the other hand, by 2-e

fi
(
N, v, C,B0

)
+ fj

(
N, v, C,B0

)
= fi

(
N, v, Cij, B0

)
+ fj

(
N, v, Cij, B0

)
. (6)

By definition, both modified communication graphs above, namely C−ij and Cij, have

less than c links. Then, the payoffs in the right-hand side of Eqs. (5) and (6) are uniquely

determined by the second induction hypothesis. Consequently, the payoffs in the left-

hand side are also determined, thereby implying the uniqueness of fi
(
N, v, C,B0

)
and

fj
(
N, v, C,B0

)
—and hence that of f(N, v, C,B0). Note that uniqueness follows because

Eqs. (5) and (6) define a determinate compatible system of equations in the two

unknowns fi
(
N, v, C,B0

)
and fj

(
N, v, C,B0

)
.

Second, suppose that the payoffs according to f are unique for any graph-levels

restricted game with less than k > 0 levels. Let (N, v, C,B) ∈ GCL be a graph-levels

restricted game with k levels, i.e., B = {B0, . . . , Bk+1}. Take i ∈ U ∈ B1. We show the

uniqueness of fi(N, v, C,B) by a second induction on the cardinality of U . On the one

hand, suppose that U = {i}. Then, by 1-clg

fi(N, v, C,B) = f[U ]

(
[B1], (vC)1, C [B1], Br

)
.

Note that
(
[B1], (vC)1, C [B1], Br

)
is a graph-levels restricted game with k − 1 levels.

Then, the payoff above is unique by the first induction hypothesis. On the other hand,

suppose that the payoff according to f is unique for any player that belongs to a union
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of the first level with a cardinality smaller than u > 1 and let i ∈ U ∈ B1 be such that

|U | = u. Take j ∈ U \ i. Then, by nid

fi(N, v, C,B) = fi(N, v, C,B
−j).

The payoff fi(N, v, C,B
−j) is unique by the second induction hypothesis, which con-

cludes this step of the proof.

Logical independence

It only remains to check that the five properties are independent.

(i) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL and i ∈ N by

fi(N, v, C,B) = 0.

Then, f satisfies fg, 2-e, nid, and 1-clg but not gi.

(ii) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL as follows: If

N = {i, j} and C = CN , then

fi(N, v, C,B) =
3

4
(v(N)− v(j)) +

1

4
v(i)

fj(N, v, C,B) =
1

4
(v(N)− v(i)) +

3

4
v(j)

Otherwise, f(N, v, C,B) = BGL(N, v, C,B).

Then, f satisfies gi, 2-e, nid, and 1-clg11 but not fg.

(iii) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL and i ∈ N by

fi(N, v, C,B) =
∑
R⊆Mi

|R|!(mi − |R| − 1)!

mi!

[
vC(TR ∪ i)− vC(TR)

]
.

Then, f satisfies gi, fg, nid and 1-clg, but not 2-e.

(iv) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL by f(N, v, C,B) =

BGL(N, v, C,B0).

Then, f satisfies gi, fg, 2-e, and nid but not 1-clg.
11The same remark as in Footnote 10 applies here.
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(v) Let f be the value on GCL defined for every (N, v, C,B) ∈ GCL and i ∈ N by

fi(N, v, C,B) =
BGL

U

(
B1, (v

C)1, CB1 , B1

)
|U |

, where i ∈ U ∈ B1.

Then, f satisfies gi (for B0), fg, 2-e, and 1-clg but not nid.

�
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