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    Abstract  

 
In this work we assess the role of data characteristics in the 

accuracy of machine learning (ML) tourism forecasts from a 

spatial perspective. First, we apply a seasonal-trend 

decomposition procedure based on non-parametric regression to 

isolate the different components of the time series of international 

tourism demand to all Spanish regions. This approach allows us 

to compute a set of measures to describe the features of the data. 

Second, we analyse the performance of several ML models in a 

recursive multiple-step-ahead forecasting experiment. In a third 

step, we rank all seventeen regions according to their 

characteristics and the obtained forecasting performance, and use 

the rankings as the input for a multivariate analysis to evaluate the 

interactions between time series features and the accuracy of the 

predictions. By means of dimensionality reduction techniques we 

summarise all the information into two components and project all 

Spanish regions into perceptual maps. We find that entropy and 

dispersion show a negative relation with accuracy, while the effect 

of other data characteristics on forecast accuracy is heavily 

dependent on the forecast horizon. 
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1. Introduction 
 

The increasing weight of the tourism industry in the gross domestic product of most 

countries explains the growing interest in the sector from economic circles. Bilen et al. 

(2015), Brida et al. (2016), Chou (2013), Soukiazis and Proença (2008) and Tang and 

Abosedra (2016) have recently analysed the relevance of tourism in economic growth. The 

continuous rise of tourism demand highlights the importance of correctly anticipating the 

number of arrivals at the destination level. The refinement of tourism demand forecasts has 

led to an extensive body of research, but in most of these studies data characteristics are 

overlooked (Kim and Schwartz, 2013). 

The main objective of this work is to fill this gap. With this aim we analyse the effect 

of time series features of international tourist arrivals to the different Spainsh regions on 

the forecast accuracy derived from a multiple-step-ahead forecasting evaluation. Spain is 

one of the world’s top tourist destinations after France and the United States. The country 

received more than 86 million tourist arrivals in 2017, which represents an 8.9% increase 

in relation to 2016 (Spanish Statistical Office – http://www.ine.es). As a result, Spain has 

become the world’s second most important destination after France. The fact that regional 

markets present marked differences and have evolved in very diverse forms, has led us to 

conduct the analysis at a regional level. 

The search for more accurate predictions explains that statistical learning methods 

based on artificial intelligence (AI) are being increasingly used with forecasting purposes. 

Machine learning (ML) belongs to a subfield of AI that is based on the construction of 

algorithms that learn through experience. The most commonly used AI-based techniques 

for prediction are support vector regression (SVR), which can be regarded as an extension 

of the support vector machine (SVM) mechanism, and neural networks (NNs). In recent 

years, several authors have found evidence in favour of SVRs and NNs when compared to 

more traditional time series models (Akin, 2015; Chen and Wang, 2007; Claveria and 

Torra, 2014; Hong et al., 2011; Xu et al., 2016). 

In this study we compare the time series features of tourist arrivals to Spain to the 

forecasting performance of several ML methods. On the one hand, with the aim of 

assessing the role of time series features in the accuracy of ML tourism predictions, we use 

a seasonal-trend decomposition procedure based on non-parametric regression to isolate 

the different components of the time series of international tourism demand to all Spanish 

regions and compute a set of measures to describe the features of the data. 

http://www.ine.es/
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On the other hand, we design a recursive multiple-step-ahead forecasting experiment 

to evaluate the accuracy of the predictions obtained with the different techniques. 

Specifically, we compare the forecast accuracy obtained with a Gaussian process 

regression (GPR) model to that of several SVR and NN models. GPR is a statistical 

learning technique originally devised for spatial interpolation, which has recently been used 

for time series forecasting (Ben Taieb et al., 2010). Finally, by means of dimensionality 

reduction techniques we evaluate the interactions between data characteristics of the 

different regions and the obtained accuracy for different forecast horizons. 

The study is organized as follows. The next section reviews the existing literature on 

tourism demand forecasting with ML methods. In section three, we first describe the data 

and compute a set of time series features, then we assess the predictive performance of the 

models in a multiple-step-ahead forecasting experiment in order to evaluate the role of time 

series features in the accuracy of the predictions by means of a multivariate analysis. 

Concluding remarks and the potential lines for future research are provided in the last 

section. 

 

 

2. Literature Review 
 

There is a growing body of literature about tourism demand forecasting. See Li et al. 

(2005), Peng et al. (2014) , Song and Li (2008) and Witt and Witt (1995) for a thorough 

review of tourism demand forecasting studies. Most of this research is based on causal 

econometric models (Cortés-Jiménez and Blake, 2011; Gunter and Önder, 2015; Lin et al., 

2015; Tsui et al., 2014), or on traditional time series models (Assaf et al., 2011; Chu, 2009; 

Gounopoulos et al., 2012; Li et al., 2013). However, the complex data generating process 

of tourism demand has fostered the use of nonlinear approaches for tourism forecasting. 

In this context, ML methods are experiencing a growing use (Zhang and Zhang, 2014). 

The first AI-based method implemented for tourism demand forecasting were NNs. There 

are many NN models. The first and most commonly used NN architecture in tourism 

demand forecasting is the multi-layer perceptron (MLP) (Burger et al., 2001; Claveria and 

Torra, 2014; Hassani et al., 2015; Kon and Turner, 2005; Law, 2000; Lin et al., 2011; 

Molinet et al., 2015; Padhi and Aggarwal, 2011; Palmer et al., 2006; Pattie and Snyder, 

1996; Teixeira and Fernandes, 2012; Tsaur et al., 2002; Uysal and El Roubi, 1999). 
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MLP are feed-forward networks in which the information runs only in one direction, 

while in recurrent networks there are bidirectional data flows (Cho, 2003). A special class 

of feed-forward architecture with two layers of processing is the radial basis function 

(RBF). The first study to implement a RBF architecture for forecasting tourism demand 

was that of Kon and Turner (2005), who used a RBF NN to forecast arrivals to Singapore. 

Cang (2014) generated predictions of UK inbound tourist arrivals and combined them in 

nonlinear models. Çuhadar et al. (2014) compared the forecasting performance of RBF and 

MLP NNs to predict cruise tourist demand at the destination level (Izmir, Turkey). 

The first implementations of SVMs for tourism demand forecasting were those of Pai 

and Hong (2005) and Hong (2006), who used SVMs to forecast tourist arrivals to Barbados. 

The recent extension of the SVM mechanism to regression analysis has fostered the use of 

SVR models for tourism prediction. Chen and Wang (2007) generated forecasts of tourist 

arrivals to China with SVR, back propagation NN and autoregressive integrated moving 

average (ARIMA) models, obtaining the best forecasting results with SVRs. Hong et al. 

(2011) also obtained more accurate forecasts with SVRs than with ARIMA models. Akin 

(2015) compared the forecasting results of SVR to that of ARIMA and NN models to 

predict international tourist arrivals to Turkey, and found that SVR outperformed NNs in 

all cases, but ARIMA models only when the slope feature was more prominent. 

The works of Smola and Barlett (2001), MacKay (2003), and Rasmussen and Williams 

(2006) have been key in the development of GPR, which can be regarded as a statistical 

learning method for interpolation. By expressing the model in a Bayesian framework, GPR 

applications can be extended beyond spatial interpolation to regression problems. From a 

wide range of ML methods, Ahmed et al. (2010) found that NN and GPR models showed 

the best forecasting performance on the monthly M3 time series competition data. In a 

similar exercise, Andrawis et al. (2011) found evidence in favour of a simple average 

combination of NN, GPR and linear models for the NN5 competition. 

Nevertheless, there are very few studies that implement  GPR for tourism forecasting 

(Claveria et al., 2016a,b; Wu et al., 2012). Claveria et al. (2016b) proposed an extension of 

the GPR model for multiple-input multiple-ouput forecasting.Wu et al. (2012) used a sparse 

GPR model to predict tourism demand to Hong Kong, obtaining better forecasting results 

than with autoregressive moving average (ARMA) and SVR models. 

The first attempt to use statistical learning process for tourism demand forecasting in 

Spain was that of Palmer et al. (2006), who applied a MLP NN to forecast tourism 

expenditure in the Balearic Islands. Medeiros et al. (2008) developed a NN-generalized 
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autoregressive conditional heteroscedasticity model to estimate demand for international 

tourism to the Balearic Islands. Claveria et al. (2015) compared the performance of three 

NN architectures in a multiple-input multiple-output setting for generating predictions of 

tourist arrivals to Catalonia (Spain) from all visitors markets simultaneously, finding tha 

RBF networks provided better forecasting results than the MLP and Elman architectures. 

As a result of a comprehensive meta-analysis of recent tourism studies, Kim and 

Schwartz (2013) have pointed out that the growing interest in refining tourism predictions 

has not been matched by a similar effort in analysing the effect of data characteristics on 

forecasting results. To cover this deficit, in this work we aim to shed some light on this 

issue by focusing on time series features and ML forecasts. 

 

 

3. Time Series Features 
 

In this section we describe the characteristics of the individual series on international 

tourism demand to each of the regions of Spain. Data is obtained from the Spanish 

Statistical Office (National Statistics Institute – INE – www.ine.es) and include the 

monthly number of tourist arrivals at a regional level over the time period 1999:01 to 

2014:03. With the aim of computing time series features, we first apply the “Seasonal and 

Trend Decomposition using Loess” (STL) procedure proposed by Cleveland et al. (1990) 

to decompose the seasonal and trend comopnents of the time series. Loess is a locally 

weighted polynomial regression method originally devised by Cleveland (1979). 

STL presents several advantages over the classical decomposition method and X-12-

ARIMA: it can handle any type of seasonality, the seasonal component is allowed to change 

over time, the smoothness of the trend-cycle can be controlled, and it can be robust to 

outliers (Bergmeir et al., 2016; Hyndman et al., 2016). Given that tttt RSTY  , where 

tT  denotes the trend component, tS  the seasonal component and tR  the residual, we can 

assess the strength of each component by computing: 

 
 tt

t

SYV

RV


1 trendofstrength  

  (1) 

 
 tt

t

TYV

RV


1yseasonalit ofstrength  

  (2) 

We also compute the skewness, the kurtosis, the coefficient of variation, the first 

autocorrelation ( 1r ), and two additional statistics: the Box-Cox lambda ( 1 ) and spectral 

entropy ( H ) for tourism demand to each regional market. 

http://www.ine.es/
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The lambda value indicates the power to which all data should be raised in order to be 

normally distributed (Box and Cox, 1964). The Box-Cox power transformation searches 

within the interval [-5;5] until the optimal value is found in: 
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Spectral entropy describes the complexity of a system and can be used as a proxy for 

the predictability of a given time series. Rosselló and Sansó (2017) have recently showed 

the appropriateness of entropy as a new information tool for tourism seasonality analysis. 

H  can be computed as: 

   



 dffH yy log   (4) 

Where  yf  is the spectral density of tY . Low values of H  are indicative of more 

signal, suggesting that a time series is easier to forecast (Hyndman et al., 2016). 

In Fig. 1 we graph the evolution of tourist arrivals in each region from 1999 to 2014, 

including the three components obtained through STL decomposition. In Table 1 we 

present the descriptive analysis of the data. We can observe how the time series features 

notedly vary across regions. The Canary Islands present the highest level of strength of 

trend, but the lowest in terms of the strength of seasonality, Box-Cox lambda, and spectral 

entropy. On the other hand, the Balearic Islands present the highest values of entropy and 

dispersion. 

 

Fig. 1. International tourism demand to Spain for each CCAA – STL Decomposition 
Andalusia Aragon 
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Fig. 1 (cont.). International tourism demand to Spain for each CCAA – STL Decomposition 
Asturias Balearic Islands 
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Fig. 1 (cont.). International tourism demand to Spain for each CCAA – STL Decomposition 
Extremadura Galicia 

 
 

 

Madrid Murcia 
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Table 1 Descriptive analysis of foreign tourist arrivals (1999:09-2013:09) 

Region 
Strength 

of trend 

Strength of 

seasonality 

Box-Cox 

lambda 

Spectral 

entropy 

ACF 

(-1) 

Coeff. of 

variation 
Skew. Kurt. 

Andalusia 0.695 0.968 0.963 0.928 0.731 35.3% -0.167 -1.285 

Aragon 0.731 0.940 0.320 1.248 0.818 44.0% 0.524 -0.290 

Asturias 0.679 0.935 0.158 1.839 0.842 64.0% 0.631 -0.598 

Balearic Is. 0.398 0.972 0.258 2.112 0.828 83.3% 0.347 -1.366 

Canary Is. 0.957 0.808 -0.351 0.585 0.877 26.0% 0.575 -0.554 

Cantabria 0.622 0.968 0.378 1.686 0.831 62.2% 0.206 -1.353 

C-Leon 0.676 0.981 0.433 1.322 0.791 48.7% 0.139 -1.306 

C-La Mancha 0.332 0.950 1.166 0.818 0.722 32.4% -0.263 -1.429 

Catalonia 0.851 0.957 0.333 1.378 0.862 49.1% 0.502 -0.516 

Valencia 0.791 0.857 0.113 0.802 0.858 30.9% 0.446 -0.647 

Extremadura 0.551 0.856 0.301 1.068 0.662 36.2% 0.634 0.909 

Galicia 0.623 0.920 0.201 1.742 0.820 58.0% 0.519 -0.869 

Madrid 0.934 0.868 0.212 0.667 0.844 28.1% 0.443 -0.495 

Murcia 0.789 0.814 0.845 0.726 0.792 28.3% 0.063 -0.443 

Navarra 0.657 0.928 0.134 1.751 0.804 58.4% 0.685 -0.300 

Basque Count. 0.797 0.908 0.025 1.501 0.849 49.9% 1.050 0.961 

La Rioja 0.435 0.939 0.345 1.785 0.630 56.8% 0.471 -0.548 

Notes: Basque Count. stands for Basque Country, C-Leon stands for Castilla-Leon, C-La Mancha stands 

for Castilla-La Mancha. Coeff. of variation denotes Coefficient of variation; ACF (-1) the first 

autocorrelation;. Skew., Skewness; and Kurt., Kurtosis. 

 

Next, we compute the forecast accuracy of the different ML models: a GPR, a linear 

and a polynomial SVR, and MLP and RBF NN architectures. The theoretical foundation 

of the GPR model (Matheron, 1973) is based on previous geostatistic research by Krige 

(1951). Comprehensive information about GPR can be found in Rasmussen and Williams 

(2006). A GPR can be regarded as a method of interpolation based on the assumption that 

the inputs have a joint multivariate Gaussian distribution characterized by an analytical 

model of the structure of the covariance matrix (Williams and Rasmussen, 1996). As GPRs 

allow specifying the functional form of the covariance functions, in this experiment we use 

a radial basis kernel with a linear trend to account for the trend component present in most 

of the time series over the training period. Alternative sets of kernels are discussed in 

MacKay (2003). See Claveria et al. (2016a.,b) and Wu et al. (2012) for a detailed 

description of the model used in this study.  

The SVR mechanism was proposed by Drucker et al. (1997) and can be regarded as an 

extension of SVMs to construct data-driven and nonlinear regressions. The original SVM 

algorithm was developed by Vapnik (1995) and Cortes and Vapnik (1995). For a 

comprehensive presentation of SVR models see Cristianini and Shawhe-Taylor (2000). 

The objective of a SVR is to define an approximation of the regression function within a 

tube generated by means of a set of support vectors that belong to the training data set. This 
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is done by introducing restrictions on the structure or curvature of the set of functions over 

which the estimation is done (Vapnik, 1998; Schölkopf and Smola, 2002). Any function 

satisfying Mercer’s condition (Vapnik, 1995) can be used as the kernel function. In this 

experiment we use both a linear and a polynomial kernel for the estimation of the 

regression. See Chen and Wang (2007) and Hong et al. (2011) for a detailed description of 

the model. 

NN models are used to identify related spatial and temporal patterns by learning from 

experience. A complete summary on the use of NNs with forecasting purposes can be found 

in Zhang et al. (1998). In this study we use two NN models: MLP and RBF. See Claveria 

et al. (2017a) for a detailed description of the models applied. In this experiment, we have 

used the Levenberg-Marquardt algorithm to estimate the parameters of the networks. 

The first 52% of the observations were used as the initial training set, the next 33% as 

the validation set, and and the last 15% as the test set. This partition is done sequentially. 

The estimation of the models is done recursively for different forecast horizons (1, 2, 3, 6 

and 12 months) during the out-of-sample period (2013:01-2014:01). Forecast accuracy 

results are summarized by means of the Mean Absolute Percentage Error (MAPE). The 

results of the forecasting experiment are presented in Table 2. 

Regarding the different models, we find that the MLP NN model shows lower MAPE 

values than the rest of the models in 40% of the cases. For one- and six-month ahead 

forecasts, this percentage goes up to 59% and 65% respectively. Nevertheless, for three-

month ahead forecasts the MLP never outperforms the rest of the models, being the 

polynomial SVR the model that presents the lowest MAPE values in 65% of the cases. 

The lowest MAPE in each region is usually obtained either with the MLP NN or the 

linear SVR. The exceptions are Castilla-La Mancha and La Rioja, where the GPR 

outperforms the rest of the models, and the Basque Country and the Canary Islands, where 

the RBF NN generates the forecasts with the lowest MAPE values. In the Canary Islands 

the RBF outperforms all the other methods for all forecast horizons. 

Results of the forecasting experiment are summarized in Table 3, where we present the 

number regions in which each model provides the lowest MAPE. The results show that the 

MLP NN outperforms the rest of the models in most of the regions, and both for one- and 

six-month ahead forecasts. 
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Table 2. Forecast accuracy. MAPE (2013:01-2014:01) 

 Support Vector Regression 

models 

Gaussian 

Proces 

Regression 

Neural Networks 

models 

Forecast 

horizon 
SVR linear SVR poly GPR RBF MLP 

Andalusia

a 

     
h=1 0.342 0.447 0.356 0.387 0.363 
h=2 0.465 0.398 0.451 0.442 0.438 

h=3 0.453 0.455 0.418 0.447 0.420 
h=6 0.325 0.401 0.384 0.396 0.346 

h=12   0.135* 0.258 0.136 0.275 0.173 

Aragon      
h=1 0.385 0.331 0.361 0.303 0.295 
h=2 0.440 0.433 0.412 0.370 0.364 
h=3 0.366 0.352 0.370 0.367 0.388 

h=6 0.291 0.321 0.270 0.298   0.224* 
h=12 0.303 0.302 0.286 0.273 0.244 

Asturias      
h=1 0.776 0.882 0.754 0.672 0.611 
h=2 0.991 0.938 0.913 0.750 0.801 

h=3 0.645 0.681 0.745 0.733 0.778 
h=6 0.398 0.587 0.406 0.459 0.340 

h=12   0.285* 0.374 0.289 0.420 0.318 

Balearic Islands     
h=1 5.462 8.156 5.177 4.346 3.977 
h=2 7.193 9.461 6.719 5.724 5.679 
h=3 5.434 4.628 5.994 6.052 5.660 

h=6   0.909* 2.585 0.956 3.136 1.313 
h=12 1.596 2.876 1.659 2.618 1.685 

Canary Islands     
h=1 0.463 0.540 0.460 0.419 0.424 
h=2 0.432 0.450 0.442 0.413 0.416 

h=3 0.438 0.467 0.439 0.414 0.419 
h=6 0.411 0.424 0.418 0.411 0.411 

h=12 0.465 0.518 0.446   0.410* 0.425 

Cantabria

a 

     
h=1 1.129 1.393 1.066 0.947 1.031 
h=2 1.383 1.696 1.185 0.998 1.033 
h=3 1.128 0.956 1.034 1.049 1.048 

h=6 0.333 0.596 0.373 0.513 0.382 
h=12   0.291* 0.495 0.330 0.566 0.315 

Castilla-Leon     
h=1 0.597 0.741 0.606 0.590 0.522 
h=2 0.763 0.816 0.697 0.645 0.655 

h=3 0.704 0.491 0.661 0.661 0.661 
h=6 0.307 0.467 0.308 0.389 0.263 

h=12   0.171* 0.345 0.183 0.357 0.232 

Castilla-La Mancha     
h=1 0.324 0.394 0.326 0.311 0.282 
h=2 0.405 0.433 0.372 0.361 0.357 
h=3 0.405 0.505 0.367 0.379 0.375 

h=6 0.261 0.316 0.267 0.278 0.231 
h=12 0.113 0.220   0.112* 0.209 0.137 

Catalonia

a 

     
h=1 0.415 0.461 0.392 0.372 0.377 
h=2 0.509 0.506 0.467 0.418 0.436 

h=3 0.448 0.376 0.420 0.416 0.418 
h=6 0.400 0.367 0.319 0.313 0.296 

h=12 0.331 0.413 0.321 0.296   0.262* 

Notes: * Model with the lowest MAPE 
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Table 2 (cont.). Forecast accuracy. MAPE (2013:01-2014:01) 

 Support Vector Regression 

models 

Gaussian 

Proces 

Regression 

Neural Networks 

models 

Forecast 

horizon 
SVR linear SVR poly GPR RBF MLP 

Valencia      
h=1 0.299 0.485 0.297 0.310 0.273 
h=2 0.360 0.327 0.356 0.332 0.331 

h=3 0.346 0.340 0.371 0.343 0.355 
h=6 0.335 0.276 0.343 0.342 0.354 

h=12 0.290 0.520 0.271 0.296   0.246* 

Extremadura     
h=1 0.321 0.379 0.328 0.365 0.334 
h=2 0.414 0.404 0.393 0.399 0.392 
h=3 0.380 0.423 0.362 0.392 0.367 

h=6 0.351 0.404 0.386 0.370 0.327 
h=12   0.185* 0.363 0.196 0.295 0.208 

Galicia      
h=1 0.859 1.014 0.848 0.764 0.723 
h=2 1.074 1.068 0.982 0.869 0.889 

h=3 0.815 1.054 0.884 0.895 0.918 
h=6 0.525 0.747 0.546 0.628 0.458 

h=12   0.347* 0.899 0.352 0.520 0.394 

Madrid (Community)     
h=1 0.269 0.351 0.259 0.264 0.244 
h=2 0.256 0.290 0.248 0.253 0.235 
h=3 0.260 0.191 0.253 0.251 0.241 

h=6 0.260 0.255 0.245 0.253   0.234* 
h=12 0.238 0.424 0.243 0.253 0.245 

Murcia (Region)     
h=1 0.236 0.233 0.258 0.220 0.227 
h=2 0.286 0.275 0.319 0.250 0.267 

h=3 0.261 0.233 0.342 0.277 0.302 
h=6 0.248 0.214 0.287 0.270 0.307 

h=12 0.199 0.255 0.187 0.195   0.175* 

Navarra      
h=1 0.594 0.674 0.585 0.567 0.534 
h=2 0.716 0.800 0.709 0.619 0.654 
h=3 0.654 0.609 0.632 0.622 0.634 

h=6 0.378 0.545 0.333 0.471 0.333 
h=12 0.307 0.447 0.305 0.404   0.304* 

Basque Country     
h=1 0.410 0.390 0.411 0.373 0.438 
h=2 0.459 0.427 0.437 0.390 0.411 

h=3 0.389 0.382 0.394 0.391 0.401 
h=6 0.418 0.358 0.351   0.330* 0.343 

h=12 0.390 0.427 0.377 0.358 0.348 

La Rioja      
h=1 0.562 0.732 0.589 0.565 0.527 
h=2 0.773 0.615 0.713 0.672 0.676 
h=3 0.774 0.647 0.699 0.704 0.690 

h=6 0.456 0.636 0.478 0.447 0.302 
h=12 0.194 0.389   0.190* 0.390 0.229 

Notes: * Model with the lowest MAPE 
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Table 3. Out-of-sample forecast accuracy. Summary 

 Support Vector Regression 

models 

Gaussian 

Proces 

Regression 

Neural Networks 

models 

Forecast 

horizon 
SVR linear SVR poly GPR RBF MLP 

h=1 2 0 0 5 10 

h=2 0 3 0 9 5 

h=3 2 11 3 1 0 

h=6 3 1 0 2 10 

h=12 8 0 2 1 6 

 

Summarizing, we find that: 

 There are significant differences across regions regarding forecast accuracy. 

 The MLP NN outperforms the rest models in most of the regions, as opposed to the 

GPR. 

 The linear SVR relatively improves its forecasting performance for longer forecast 

horizons (six- and twelve-month ahead predictions), as opposed to the RBF NN. 

 Regardless of the ML method, forecast accuracy improves for longer horizons. Claveria 

et al. (2017b) obtained similar results when comparing GPR to NN models. 

 

With the aim of analysing the effects of data characteristics on forecast accuracy, we 

link the resuls of the two previous analysis: the time series features (Table 1) and the 

forecasting results (Table 2). Following the multivariate positioning approach proposed by 

Claveria (2016), we first rank each region according to its data charateristics and its MAPE 

values in increasing order. These rankings are then used as the input for an ordinal 

multivariate analysis that allows us to synthesise all the information in order to evaluate 

the effect of time series features on forecast accuracy. 

Multivariate techniques for dimensionality reduction have been widely used in tourism 

studies. The principal components analysis (PCA) framework has been progressively 

extended to deal with nonlinear relationships in data and with qualitative information. 

Categorical principal components analysis (CATPCA) can be regarded as a development 

of PCA (Meulman et al., 2012). See Gifi (1990) for a historical overview, and Linting et 

al. (2007) for an exhaustive treatment of nonlinear PCA. In the biplot in Fig. 2 we project 

the two dimensions obtained with CATPCA. According to the values of the component 

loadings in Table 4 we labelled the first dimension as “seasonality, trend and forecast 

accuracy”, and the second as “predictability and dispersion”. 
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Table 4. Rotated component loadings 

 
Dimension 

1 2 

Strength of trend 0.760 0.397 

Strength of seasonality 0.625 -0.208 

Optimal Box-Cox transformation -0.425 0.725 

Spectral entropy -0.031 0.869 

Autocorrelation function (r1) 0.657 0.252 

Coefficient of variation 0.091 0.930 

Skewness -0.129 -0.790 

Kurtosis 0.720 -0.058 

MAPE for h=1 -0.779 0.437 

MAPE for h=6 -0.768 0.455 

MAPE for h=12 0.923 0.206 

Note: Component loadings indicate Pearson correlations between 

the quantified variables and the principal components 

(ranging between -1 and 1). 

 

Along both dimensions the biplot overlaps the object scores (regions) and the rotated 

component loadings (Table 4). The coordinates of the end point of each vector are given 

by the loadings of each variable on the two components. Long vectors are indicative of a 

good fit. The variables that are close together in the plot, are positively related; the variables 

with vectors that make approximately a 180º angle with each other, are closely and 

negatively related; finally, non-related variables correspond with vectors making a 90º 

angle. 

Entropy and dispersion, measured by the coefficient of variation, tend to coalesce 

together, indicating a close and positive relation between both rankings, but no relation 

with skewness, which stands apart. Entropy and dispersion clearly show a negative relation 

with accuracy. The same could be said for the Box-Cox lambda and accuracy for twelve-

months ahead forecasts. In contrast, the power to which all data should be raised in order 

to be normally distributed ( 1 ) is relatively close to the accuracy for h=1 and h=6. The 

strength of trend, the first autocorrelation, and the MAPE for h=12 also coalesce together, 

and are close to the strength of seasonality and kurtosis, all of which seem unrelated to the 

rankings regarding entropy, dispersion and skewness, and negatively related to the rankings 

based on the MAPE for one- and six-month ahead forecasts. 
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Fig. 2. Biplot (CATPCA) 

 
 

Note: Rotation Method: Varimax with Kaiser Normalization. Acf_1 denotes the first autocorrelation. 

For visual clarity, we have coded each region with a number: Andalusia (1), Aragon (2), Asturias 

(3), Balearic Islands (4), Canary Islands (5), Cantabria (6), Castilla-Leon (7), Castilla-La Mancha 

(8), Catalonia (9), Valencia (10), Extremadura (11), Galicia (12), Madrid (13), Murcia (14), 

Navarra (15), Basque Country (16), La Rioja (17). 

 

This latter result suggests that the strength of the seasonal and the trend components 

have a different effect on accuracy depending on the forecast horizon. As a result, we find 

that the overall effect of the time series features on forecast accuracy is heavily dependent 

on the forecast horizon. This finding is in line with the results obtained by Hassani et al. 

(2017) in a recent study, who undertake a comprehensive forecasting accuracy evaluation 

in ten European countries and find that in order to increase forecast accuracy, model 

selection should be counry-specific and based on the forecasting horizon. 

Finally, we analyse the rankings through Multidimensional scaling (MDS) in order to 

group the regions according to both dimensions. MDS is also known as principal 

coordinates analysis (Torgerson, 1952). See Borg and Groenen (2005) for an overview of 

MDS, and Marcussen (2014) for a review of the literature regarding the application of MDS 

to tourism research. Via MDS we generate a two-dimensional projection of the results in a 

perceptual map, where we position the seventeen regions according to the similarity 

between them in terms of their time series features and forecasting resuts. 



 15 

 

Fig. 3. Perceptual map (MDS) 

 
 

 

 

Both techniques depict a similar positioning of the regions. In both analysis the Basque 

Country and La Rioja are grouped together. This result could be due to geographical 

proximity. Aragon and Galicia are also closely positioned. Asturias and the Balearic 

Islands, which are the regions that display the worse forecast accuracy for most forecast 

horizons, are also close together. Catalonia and Murcia are grouped apart from most of the 

rest of the regions. 

 

 

7. Conclusions 
 

The increasing importance of the tourism industry worldwide is fostering a growing 

interest in new approaches to tourism modelling and forecasting. As more accurate 

predictions become crucial for effective management and policy planning at the regional 

level, AI techniques allow forecasters to refine predictions. With this objective, we evaluate 
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the interrelations between time series features and the forecast accuracy of tourism demand 

predictions obtained with several ML methods (GRP, SVR and NN models). 

Making use of international tourism demand to all seventeen regions of Spain, we first 

apply a seasonal-trend decomposition procedure to compute a set of time series features 

such as the strength of the trend and the strength of the seasonal component. In a second 

step, we design a multiple-step-ahead forecasting experiment. We obtain substantially 

different results across regions. Regarding the different techniques, NNs provide better 

forecasting results than the other statistical learning models based on interpolation. Finally, 

we combine the descriptive analysis and the forecasting results, synthesising all the 

information in two components labelled as “seasonality, trend and forecast accuracy”, and 

“predictability and dispersion”. By projecting these results on perceptual maps we find that 

while entropy and dispersion show a negative relation with accuracy for all forecast 

horizons, the effect of other time series features is heavily dependent on the horizon. 

This work provides researchers and practitioners with some evidence on the effect that 

data characteristics may have on the accuracy of tourism predictions, as well as on the 

appropriateness of ML techniques for tourism forecasting depending on the forecast 

horizon. A question left for further research is the incorpation of additional data 

characteristics in the analysis. Finally, extending the analysis to regions of other 

destinations would allow to test if there are significant differences across countries. 
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