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ABSTRACT

In many fields of economic analysis the order of integration of some
economic magnitudes is of particular interest. Among other aspects, the order of
Integration determines the degree of persistence of that magnitude.

The rate of inflation is a very interesting example because many
contradictory empirical results on the persistence of inflation rates can be found
in the literature. Moreless, the persistence of inflation rates is of particular interest
as much for the macro economy as for the taking of political decisions. Recently,
Hasser and Wolters (1995) argue that these contradictions may be due to the
fact that either process 1(0) or I(1) are considered.

In this paper we assume inflation rates in European Union countries may in
fact be fractionally integrated. Given this assumption, we obtain estimations of
the order of integration by means a method based on wavelets coefficients.
Finaly, results obtained allow reject the unit root hypothesis on inflation rates. It
means that a random shock on the rate of inflation in these countries has
transitory effects that gradualy diminish with the passage of time, that this, said

shock hasn't a permanent effect on future values of inflation rates.

KEY WORDS: Long memory, fractiona integration, inflation rates.
JEL classification: C22, E3



1. Introduction

In many fields of economic anaysis the order of the integration of the
analysed magnitudes is of particular interest, insofar as it determines some of its
most important characteristics. Therefore, among other aspects, the degree of
integration of an economic variable determines the degree of persistence of that
variable, when persstence is taken to mean to what extent the future vaues of
this variable depend on the shocks that may have impinged upon it in the past.

A good example of an economic magnitude, for which it is of particular
interest to know its degree of persistence, is the inflation rate as much for the
macro economy as for the taking of political decisons. Therefore, what could
happen is that a random shock on the inflation rate has transitory effects that
gradualy diminish with the passage of time or aternatively that this said shock
has a permanent effect on future values.

Intuitively, we think inflation rates may be mean-reverting (perhaps dowly
mean-reverting) because any economic theory alows permanent effects of
inflation rates shocks. Nevertheess, and despite this sad interest, in the
specidised literature abundant number of contradictory results can be found
regarding the degree of persstence of the inflation rate in different countries.

Recently, Hasder and Wolters (1995) argue that the contradictions
obtained in relation to the order of integration of the inflation rates — and other
variables — may be due to the fact that either process| (0) or | (1) is considered,
removing the possbility of intermediate Stuations. To solve this limitation,
Hasder and Wolters (1995) have proposed the use of more flexible models,
autoregressive, fractionaly integrated and moving average models (ARFIMA) to
analyse the degree of integration without imposing the redtriction that the said

order of integration must be a natural number.



Moreover, the knowledge regarding the said degree of persistence has
lately acquired a specia importance due to the process of monetary integration
which has taken place in the European Union (EU). Furthermore, and related to
the said degree of persistence, the possible existence of relationships between the
inflation rates in different countries is of consderable interest given that it has
important implications for the interdependence of nationa politics, the validity of
the hypothesis of the parity of purchasing power.

In the work presented here, the aim is a contribution to the investigation in
both respects, through the use of a much more flexible and general modelisation
than is usua in this type of analysis. To be specific, an anaysis of the order of
fractional integration is proposed in these countries and the differentials of
inflation among them is proposed without the necessity of assuming a specific
generating process of data for said rates. As far as the main difficulty that this
process presents, the use of the estimator proposed recently by Jensen (1999)
based on the theory of wavelets is proposed.

In order to achieve said objectives, the article is organised in the following
way: in the first place, the concept of (fractional) integration and the concept of
persistence are briefly synthesised, then in section 3 an estimation of the order of
fractional integration through the use of wavelets is presented. In section 4, this
method of estimation is used to obtain clear evidence aginst of the presence of
unit roots in the inflation rates in European Union. In section 5 we analyse aparent
contradiction with results obtained with interannua inflation rates. The fina

section concludes.



2. Relationship between fractional integration and persistence.

To formulate the concept of persistence in relation to atime series X, , itis

supposed that a shock is produced of the magnitude d that leadsto avariationin

the said varigble a the moment t in such away that X¢= X, +d. Thisresultsina
variation of the said variable in the moment t+n: X¢ =X, +md.

Given these assumptions, the way in which the shocks are transmitted to

the future values of X, are characterised by a succession of coefficients m_, in

such away that a good measurement of the degree of persistence in the long term

IS m, :Ini(gg m,. Therefore, in what follows, the concept of persistence is

associated with the coefficient m, .

In addition, in the analyses of persistence, it is customary to assume that

the series accepting differences allows a representation of Wold in away that
(1- L)X, =m+b(L)e, =m+(@A+bL+b,L* +b’...)e, (1)

where the innovations € are white noise. Note that said formulation allows the
series to contain not only a determinist tendency (in the customary notation for
the series - TS, trend stationary) but also a stochastic process (in the customary
notation of the series DS, difference stationary)

Naturaly, the degree of persistence of the series X, depends on the

succession of coefficients of the polinomio b(L). Therefore, if we assume that
(1- L)X, isan ARMA process with polonomiosf (L) and (L), X, isTSif and
only if the polinomio q(L) contains a unit root because in this case,
X, =mi+a(L)e with a(L) =b(L)@L- L). On the other hand, when q(L) does
not have a unitary root, then X, is DS. Therefore, if b(1) =0 then m, =0, and if

b(1)t 0 this means that the polinomio b(L) contains a unitary root and,



therefore, m, = 5 b, that, in generd is different from zero. Therefore, if X, isa
j=0

randomwalk m, =1 isrealised.

Nonetheless, the 1(0) and 1(1) models represent very extreme Situations as
far as its properties are concerned and for that reason, the literature related to an
analysis of tempora series has shown great interest in fractiondly integrated
models given that these allow modélization of intermediate Situations.

A good pat of this recent interest is due to the development of
autoregressive moving average and fractionaly integrated models (ARFIMA).
This models dlows, in a rdatively smply way, the modelization of intermediate
situations between the ARMA models (stationary and with little persstence) and
the ARIMA models (integrated and, therefore, with infinite persstence). To be

more specific, it is said that a stochastic process X, follows a process ARFIMA
if
f(L)@- L)* X, =a(L)e, )

where the polinomios from (2) are defined by

f(L)y=1-fL-..-f L (3)
q(L)=1-qlL-..-qlL° 4
(1- L)=1- dL- %(1- d)L>... (5)

and g is a white noise process. If the polinomios (3) and (4) that describe the
behaviour in the short term have all there roots outside the unit circle and the
parameter d isfound in theinterval (- 1/2,1/2) then the process is stationary and
invertible but when d 3 1/2, the process is not stationary.

In relation to the concept of persistence, said models are of great use given

that they include, in addition to the traditional processes 1(0) o I(1), processes
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that exhibit intermediary properties. In this sense, on ARFIMA processes with

0<d <¥2 in spite of being stationary, it is to be expected that the shocks have a

much more prolonged effect thanif d =0.
On the other hand, when d 3 1/2 the process is not stationary and the

shocks have an even more prolonged effect. In this case, it is important to
determine in what conditions the effect of the shocks continue to be transitory
and when they are permanent. To be more specific, and in relation to the

coefficient m,, if we assume an ARFIMA mode for the time series with

differences

f(L)@- L) (DX, - m =q(L)e, (6)

With the generic formulation presented in (1) and the previous analyss it
can be deduced that the degree of persistence is directly related to the vaue b(l).
In this case, the polinomio b(L) isequal to (1- L) “q(L)f *(L) and, to evauate
the coefficient b(1), b(L) = F(d*,1,1; L)q(L)f *(L) can be used where F(a,b,c;X)
is the hypergeometric function. In fact in Gradszteyn and Ryshnik (1980, pag
1039-1042) it is demonsrated that F(d*,11) =0 if d*<0 and, therefore,
m, =b(1) =0 if d*< 0. Bearing in mind that the differentiated time series is
fractionaly integrated of the order d*, when the non-differentiated time series is
of the order d=d*+1, it has been shown that integration order inferior to the unit

are associated with purely transitory shocks given that, in thiscase m, =0.

Furthermore, it is aso possible to define the concept of fractiona
integration in a more genera context athough this is less popular in the economic
literature than theARFIMA models. Thus, if X, is a stationary series with a

spectral density f (w), it issaid that X, has order of integration dT (- 0.5,0.5),
e X, ~1(d),if



f (w) ={asn>(w/2)}* £ * (w) 7)

where f *(w) is an even function, positive and continued in theinterval [- p,p]

and bounded.
The generalisation of the said definition to order of integration d >0.5 is
the first thing using the operator (1- L). In particular, note how the ARFIMA

models are no more than a particular case of the model (7) and that the previous
arguments concerning the relationship between the order of fractional) integration

and persistence continue being valid for any process | (d).

In short, whether the effect of the shocks is transitory or permanent
depends on the order of fractional integration on the stationarity or the non-
stationarity of the process. In addition, the striking fact is that for any series with
the order of integration fulfilling 0<d <1, athough the shocks have a much
more lasting effect in the future, the said effect is purely transitory. By way of
summing up, in Table 1 some of the characteristics associated with different

orders of integration (fractiona) are presented.

Table 1. Summary of fractiond integration vaues

Mean Variance Shock duration
d=0 Short-run mean-reversion Finite variance Short time
O0<d <0.5 | Long-runmean-reversion Finite variance Long time
0.5 £ d <1 | Long-run mean-reversion Finite variance Long time
d=1 No mean-reversion Infinitevariance |  Infinite which effects decreases
d>1 No mean-reversion Infinitevariance | Infinite which effectsincreases

3. Estimation of the order of fractional integration using wavelets

The most common method in the analysis of economic variables for the
estimation of the order of fractional integration' proposed by Geweke and
Porter-Hudak (1983) and commonly denominated as a GPH estimator is based



on the spectral representation of stationary stochastic processes. Therefore, the

whole stochastic process X, is associated with afunction f (w) called spectral
dengity that fulfils the following property:

var(X,) = Ci f (w)dw (8)

If we assume that the data available (X,,..., X,) have been obtained from a

stochastic process | (d) its spectral density fulfils
£, (w) ={asn2w/2)}* f,(w) (9)

where f (w) is the spectra density of Y, =(1- L)‘ X, . On taking logarithms in

the previous expression and evaluate it in harmonic frequencies, w, = 20j /T itis

found
. f,(w,)
log f, (w.) =log f, (0) - cd{4sin*(w. /2)}+Iogf—(oj) (10)
which can be written, using the periodogram as
logl(w,) =log f,(0) - d{4sin*(w /2)}+|ogﬂ+|ogM (12)
j ! j f, (w)) f, (0)

Given the assumption that for frequencies close enough to zero frequency,
the last adding up of (11) can be rgected in comparison with the others, the

following approximation is obtained

I (w,))
fx (w;)

log! (w,) ~log f, (0) - d{4sin?(pj/T)}+log (12)

So that to obtain an estimation of the parameter d the authors propose

specifying the following mode of regression

! See, for example, Diebold and Rudebusch (1989) or Porter-Hudak (1990).
9



logl(w,)=a +bR +e (13)

where j =1...,m, the regressing logl (w,) isthelogarithm of the periodogramin
the frequency w, = 2pj/T with T the number of observations.The congtant a is

the logarithm of the spectrum of zero of (1- L)"X, =u. As regressor
R =log{dsn® (w,/2)} must be used and the perturbation term s

e = log} | (w,)/f, (w, )}-
Naturally, the properties of the estimator of the parameter d depend on the

stochastic characteristics of this last term &. In thisway if the process Y, iswhite

noise, then its spectrum f (w;) is constant. When the ordinates of the

peridogram are independent’, the ordinates of the normalised periodogram

I(w,)/f,(w,) are independent and the pertubations e =log{|(w,)/f, w,)} are
independent too. In this way, it is guaranteed that if Y, is white noise, the OLS

method provides good estimations of the parameter d . In addition, to the extent
that Y, iswhite noise, theterm log{ f, (w, )/ f, (0)f will be constant.

On the other hand, when Y is not white noise, the spectral density does

t

not need to be constant nor the hypothesis of independence among the residues
Is true. To be specific, it is to be expected that the presence of autoregressive
models or moving average can generate distortions in the GPH estimator to the
extent that this method doesn’'t dlow al the parameters of the model to be
estimated smultaneoudly.

In this sense, in Agiaklogou et a (1993) it has been shown, by means of a
simulation exercise, that the GPH estimator can present an important bias when

the model includes autoregressive parameters or moving average of high vaue.

2 Only in harmonic frequencies, who are the usudly used.
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This means that the contrasts that can be attained by using this estimator are
incorrect.

More recently, in Hurvich et a (1998) an analysis of the asymptotic bias of
the GPH estimator shows how, athough a high number of observations are made
use of, the fact that the term log{ f, (w,)/f, (0)} is not constant means that the
bias could be very important.

The most recent aternative to said problems consist in using the theory of
wavelets to obtain an estimation of the said order d integration. In this way,
while the GPH estimator is based on the representation of the dominion of the
frequencies, the dternative proposal by Jensen (1999) is based on the
decomposition of the temporal seriesin different stages.

More specificaly, a wavelet is any function y so that the group of the
dilations and trandations

217y (2 x- K) (14)

for different values j, ki {0,£1,#2..} form a basis in the space of al square-

integrable functions. Using these dilations and trandations, any tempora series
can be broken down into a linear combination of a group of functions with

different scales and different weightings.
Therefore, if we note asu?(2') the variance of the wavelet of scale 2', the

property equivalent to the (8) one, when a wavel ets decomposition is used, is
va(x,) =4 u*(2) (15)

The smplest example of wavelet is based on the Haar function

y (X) =1 [0y2) - I[J,/2,1) (16)

11



Although said function does not have good qualities and in practice the
wavelets defined in Daubechies (1988) are used more frequently.

Asiswdl known, in the spectra analysis, the spectral density is obtained
through Fourier's transform. But its equivaent in the wavel ets decomposition is a

succession of coefficients ¢, associated with each dilation j and trangtion k.

Said coefficients can be interpreted as the volume of the information gained (or

lost) if the series X, is sampled with greater or lesser frequency.
Moreover, the coefficients ¢, , can be caculated from the following inner

product
C, =&y ,fi= X2t - k)t (17)

In fact, when a discreet tempora series is available, these techniques can
be applied on the smple supposition that the discreet values have been obtained
from the sample of a continuous temporal series. In this case, the wavelet
transform only requires a ssmple matrix multiplication.

Once the main concepts of wavelets representation has been introduced in
asynthetic form, it is of specia interest is to know how to take advantage of said
theory for the estimation of the order of fractiona integration.

To do this, it is supposed that x(t) is a continuous stochastic process,

which isfractionaly integrated in the way that
(1- L)*x(t) =e() (18)

wheree(t)~N(0,s?) and - 1/2<d <1/2.

Jensen (1999) demonstrates that, for a process |(d) with |d|<1/2 the
wavelet coefficients ¢, are distributed according to the distribution
N(O,s ?2%). If R(j) is defined as the variance of the wavelet coefficients on

the scae j, that'sto say R(j) =s ?2*, one can take advantage of the fact that

12



this variance is independent of the trandations. Thisis precisely the property that
can be taken advantage of to obtain an estimation of the parameter d.

In the first place, the denominated discrete wavelet transform (DWT) °
alows one to calculate starting from values (X,,..., X, ) the coefficients ¢, using
j=12,..,log,T and k=01...,j-1. To do this, it is enough to apply in a
combined way a low-pass filter and a high-pass filter.*

Once the coefficients ¢, are available, estimations of the variance can be

caculated R(j) using the following expression

I
R(J) =_Ja Cjk (19)
2" =0
for the vaues j=12,..,log,T. Subsequently, taking advantage of the
relationship

logR(j) =logs ? - dlog2?’ (20)

an estimation of the parameter d can be obtained from a smple regression, for
example, by means of aordinary least squares method, an estimator that we call a
wavelet ordinary least squares one (WOLS).

In Jensen (1999) it is shown how the mean squared error (MSE) of the
WOLS estimator is very inferior to the mean squared error of the GPH estimator
when the data generator process is a fractionally integrated white noise, that isto
say, when (1- L) X, =e, and e is white noise. However the properties of the
WOLS egtimator in more genera conditions have been studied in little detail up

to now.

® For those interested in an introduction to dscrete wavelet transform see, for example, Heil and Walnut
(1989).
* See Press et al. (1992).
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4. The order of integration of the inflation rates in the EU.

One of the economic magnitudes, which are of particular interest as far as
the persistence of the variable is concerned, is the rate of inflation. In addition, as
has been mentioned aready, it is possibly to find in the econometric literature an
Important controversy in relation to the possibility that inflation rates contain a
unit root.

The relevance of the controversy proceeds from the acceptance that the
hypothesis has important implications for economic policy. The presence of a
unit root in the growth of prices implies that, in this case, the shocks that affect
the inflation rate in the present must have a permanent effect on the future rates of
inflation.

In addition, the process of a single currency that the EU countries are
adopting has created greater interest, if that is possble, in the degree of
persistence of inflation rates registered in these countries and their possible
relationship. With the aim of bringing additional empirica evidence to bear on
this question, the inflation of the fifteen countries has been used that the
European Union conforms to at present. They have been calculated from the
Retail Price Index (RPI) and taken from the CD-ROM from the Organisation for
Cooperation and Economic Development (OCDE). The sample period analysed
corresponds to everything included from March 1961 to October 2000, the
widest possible sample given the availability of data at the moment at which this
study commenced.

To prevent the presence of variations of a seasonal nature distorting the
results obtained, the interannua rates of inflation have been used. Therefore,
being |, the indicators of consumer prices n each one of the countries for the
period andysed, the anaysis of the monthly rates of inflation calculated as
X, = (- L)logl, hasbeen taken asthe am of the analysis.

14



In first place, with the aim of examining the degree of integration being the
standard econometric methodology, non-parametric contrasts of unit roots have
been used. These have been proposed by Philips and Perron (1988) (PP) and
generated the specification of a generator of data process, abandoned the
supposed simplification of perturbations identicaly and independently
distributed, underlying the classical tests of Dickey and Fuller (1981) and
Imposing more general conditions of perturbation. In Table 2 the result of
contrast are presented if the series X, presents a unit root through the estimation

of first: a model without a constant or tendency, (statistic Z(t )); secondly a
model with a constant and without tendency (statistic z(t .)); and thirdly a

mode! with a constant and with a tendency (statistic Z(t, )). The statistic in bold

Is that must be used for each one of the countries according to the constant

and/or tendency for each model that is significant.

Table 2. Results on Phillips and Perron (1988) test

Country Z(t) z(t, Z(t,)
AUS Austria -1.29 -190 -3.16
BEL Belgium -1.04 -5.78 222
DEN Denmark -1.29 -5.24 -3.25
FIN Finlandia -1.10 -5.00 -240
FRA France -0.79 -845 -1.70
GER Germany -1.06 -3.89 -2.32
GRE Greece -1.09 -5.74 -157
IRE Ireland -0.98 -11.75 -1.82
ITA Italy -0.92 -11.14 -1.68
LUX Luxembourg -1.06 -390 -2.20
NET The Netherlands -1.20 -2.07 -3.56"
POR Portugal -1.29 -2.19 -2.30
SPA Spain -0.96 -4.87 -2.32
SWE Sweden -1.16 -345 -2.35
UNK United Kingdom -1.19 -10.58 -2.09
Critical values depending on:
5% -1.95 -2.88 -343
1% -2.58 -346 -39

Notes:

a) Thestatisticinboldisthat must be used to test unit root hypothesis.

b) (*) indicates unit root hypothesis is rejected at 5% significance level. In any
case unit root hypothesisisrejected at 1% significance level.

c) Thecritica valuesaretaken from Fuller (1976).
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Only for some of the countries can a constant or a tendency be obtained
(Audtria, Denmark, France, Italy and Netherlands) but only in the case of
Netherlands the presence of a unit root can be rgected. As far as the rest of the
countries are concerned in the sense that neither the constant nor the linear
tendency is significant, in none of the cases the unit root rejected is rejected.

Nonetheless, a the moment of evauating results, what Sowell (1990)
demonstrated must be taken into account. When fractional values of d are
alowed, the results of the contrast proposed by Dickey and Fuller (1981) or
posterior extensions as proposed by Philips and Perron (1998) must be used
with great caution.

Therefore, to complete these results, the methodology based on wavelets
has been used. It is presented in the previous section to obtain direct estimations
of the order of integration in a context that allows orders of fractional integration.
In this sense, the use of wavelets has been proposed for the estimation of the
order of fractiona integration. This assumes that this order isfound in the interval
(-0.50.5), i.e, the series analysed is dtationary. For that reason, it has been
decided to apply the theory of wavelets to both inflation data (X, ) and the

differentiated inflation data. In this way, assuming that X, ~1(d),
X, =(@- L)X, ~1(d,) is fulfilled where d, =d,+1. Furthermore, it seems
reasonableto assumethat d. T (-0.505) or d. T (-0.50.5).

Given that we need a number of observations that have a power of 2 for
the wavelets decomposition, a serie with 512 (=2°) observations have been
selected (adding enough zeros). Using these, the coefficients ¢, associated with
the Daubechies wavelets have been calculated of the 20th order (see Daubechies,
1988). The method o estimation presented in the former section has been used

to obtain estimations of the parameters d, and d, .

16



In order to prevent the results obtained being sensitive to some of the
wavelet coefficients used (especidly the first ones), three estimations of each of

the parameters d, have been carried out, using the coefficients c, for

j=mz2,...,log, T withm=12_3.

Table 3. Reaults of estimation from monthly inflation rates on EU countries

d, estimations d, etimations

m=1 m=2 m=3 m=1 m=2 m=3
AUS 0.20 0.33 0.29 -044 -041 -048
BEL 0.16 0.20 0.12 -0.68 -0.63 -0.55
DEN 0.33 0.45 0.37 -0.55 -047 -047
FIN 0.29 0.33 0.23 -0.77 -0.60 -0.56
FRA 0.24 042 0.33 -0.40 -0.53 -052
GER 0.35 042 0.33 -0.49 -049 -0.50
GRE 031 0.57 0.46 -0.40 -0.56 -0.65
IRE 0.32 0.25 0.16 -0.44 -042 -041
ITA 041 0.58 0.49 -0.44 -0.33 -0.32
LUX 044 0.57 0.49 -047 -057 -0.50
NET 0.20 0.39 031 -0.52 -0.42 -0.50
POR 0.24 0.23 0.14 -041 -0.37 -0.28
SPA 0.27 0.33 0.18 -0.35 -0.48 -048
SWE 0.28 043 0.34 -0.40 -042 -0.39
UNK 0.16 0.35 0.27 -0.60 -0.67 -0.56
Standard error  0.150 0.110 0.096 0.150 0.110 0.096

Notes:

a) In all cases unit root hypothesisis rejected at 1% significance level.

b) Standard errors have been obtained over 10000 ARFIMA(0,1,0) series of 512
observations. Results obtained from ARFIMA(1,d1) models with different
autoregressive, moving average parameters are very close to those obtained from
ARFIMA(0,1,0) models.

For al countries we find estimates significantly different from 1 as well as
from 0. So from the results in Table 3, it is deduced that al estimations lead one
to reject the null hypothesis that d, =0, that is, we reject the unit root hypotesis

in inflation rates. Then we conclude the shocks on the inflation rates have only
tempora effects that gradudly diminish.
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5. The order of integration of the interanual inflation rates.

Some of previous work about persistence of inflation are based on
inteannud inflation rates, not in monthly inflation rates. The purpose of this
section is to estimate the orders of integration of interannual inflation rates on EU
countries and to compare with results obtained in previous section about monthly
inflation rates.

We have calculated interannual inflation ratesas Y, = (1- L*)logl,, and we
have used the same method as in previous section to obtain results presented in
Table 4. From these results it is deduced that the immense mgority of
estimations lead one to not reject the null hypothesis that d, =0, that is to say,
the rates of inflation X, are I (1).

Table 4. Results of egtimation from interannud inflation rates on EU countries

d, esimations d, esimations

m=1 m=2 m=3 m=1 m=2 m=3
AUS 0.93 1.00 0.76 -0.17 0.05 012
BEL 0.83 0.88 0.81 0.01 0.01 -011
DEN 1.00 1.03 0.87 -0.12 -0.12 -0.03
FIN 0.87 0.84 081 -0.27 -0.09 0.06
FRA 0.97 0.99 0.76 0.06 0.16 0.22
GER 0.98 0.99 0.91 -0.10 0.07 0.04
GRE 1.09 108 0.81 0.03 0.08 013
IRE 0.91 092 0.90 0.09 0.18 022
ITA 1.05 105 0.96 011 0.18 0.27*
LUX 1.05 108 0.98 -0.08 0.09 -0.05
NET 0.98 1.01 0.73 0.00 -0.03 0.14
POR 0.88 0.88 0.80 -0.22 -0.18 -0.01
SPA 0.86 0.82 0.75 0.04 -0.05 0.04
SWE 1.00 103 0.89 -0.28 -0.18 0.09
UNK 0.98 097 094 -012 0.12 0.21*
Standard error 0150 0.110 0.096 0.150 0.110 0.096

Notes:

a) (*) indicates unit root hypothesis is rejected at 5% significance level. In any
case that hypothesisisrejected at 1% significance level.

b) Standard errors have been obtained over 10000 ARFIMA(0,1,0) series of 512
observations. Results obtained from ARFIMA(1,d1) models with different
autoregressive, moving average parameters are very close to those obtained from
ARFIMA(0,1,0) models.
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Only in the case of Irdand, Italy and the United Kingdom and only using
m=3, are estimations obtained that suggest that said rates of inflation can be
integrated in an order dightly superior to the unit. Nevertheless, the fact that with
m=1andwith m=2, X ~1(1) can be regjected.

These seems a hard contradiction with previous results, but we think not.
To understand that, it’s important to note that

Y, =(1- *)logl, =(L+L+L2+...+ L)X, =S(L)X,
so interannua inflation rates can be shown as a filtered output of inflation rates,
Y =S(L)X,, where S(L)=(+L+L*+..L"). Note the S(L) filter have gain
function

elz'W| 11- cost2w) "
e" | % 1- cosfw) [V;,

G(w) =|S(e")| =

with zeros a Fourier frequencies w, = ?ZJ where s=1,..,6 (see Graph 1). Then

S(L) isanorrinvertiblefilter.

Graph 1. Ganfunctionof S(L) filter.

14

124

10

0.00 031 0.63 0.94 126 157 188 220 251 283 314
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It's well known that time domain unit root tests mustn’t be applied to non-
invertible series because this tests are hardly biased®. So it’s important to analyse
what isthe effect of S(L) filter in estimators of fractional integration parameter.

To explore the behavior of WOLS estimator of fractional difference

parameter when series are obtained using S(L) filter, we generated series of 100
observations from an ARFIMA(1,d,0) modd, (1- L)‘1-fL)X =e, and we
used the WOLS method to calculate estimations of d based on both X, and
Y, = S(L)X,.

All the results presented in Annex 1 show we can’'t use WOLS estimator
with noninvertible series because it's hardly biased. In other smulation results we
have seen this problems are snared with other fractiona integration parameter
estimators as the Geweke and Porter-Hudak (1983) one. The most important

conclussion of this results is persstence in inflation rates mustn’'t be analysed

using interannud inflation rates data.

6. Conclusions

As has been commented in the introduction, in spite of its importance not
only for macroeconomic theory as for taking decisions for the political economy,
there exists considerable controversy concerning the level of persistence of the
rates of inflation. We understand by the term persistence to what extent future
inflation is affected by the shocks that could have occurred in the former
evolution of said variable.

In this paper the level of persstence of the rates of inflation in the EU has
been analysed by using an extremely genera and flexible modd that alows the

existence of fractiona integration. Starting with said model, and through the use

® See Ghysels and Perron (1993).
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of the theory of wavelets to obtain estimations of the order of integration, it has
been confirmed that the empirical evidence alows reect the hypothesis that the
rates of inflation in the EU countries have a unit root. Therefore, the shocks that
can affect sad rates of inflation for the present can't be transmitted in a
permanent way to future vaues of said inflation. Moreover, it's shown that
interannual inflatio rates data musn't be used to analyse persistence due to the

effect of non-invertible filters on inference about fractional integration parameter.
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Annex 1. Monte Carlo results.

To explore the behavior of the WOLS estimator of fractional difference
parameter when filter S(L) is applied, we generated series of 100 observations

from an ARFIMA(1,d,0) moddl, (1- L)*(2- f L)X, =e,, and we used the WOLS
method to calculate estimations of d on X, and Y, = S(L)X,. The data are

generated according to Hoskink (1984) and we have computed mean, dandard
deviation and mean squared error of WOLS estimations for different values of

dand f. Simulations are reported for two sample sizes, the first containing 256

observations and the second 512. Most important results are presented in

following tables.

Table Al. Mean of estimations of fractiond integration parameter when f = 0 and T=256.
Egtimation from X, Estimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 -046 -0.40 -0.36 0.13 0.30 0.44
-0.35 -041 -0.34 -0.29 0.23 0.38 0.52
-0.25 -0.33 -0.27 -0.22 0.30 047 0.61
-0.15 -0.23 -0.20 -0.16 038 054 0.68
-0.05 -0.13 -0.10 -0.08 046 0.62 0.76
0.05 -0.02 0.01 0.03 053 0.70 0.83
0.15 0.09 012 0.13 061 0.76 0.90
0.25 019 022 0.24 0.67 084 0.97
0.35 0.30 0.32 0.33 0.76  0.90 1.03
0.45 042 043 0.44 0.83 0.97 1.10
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Table A2. Mean of estimations of fractiona integration parameter when f =0 and T=512.

Egtimation from X, Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 -0.46 -0.39 -0.35 0.08 0.22 0.35
-0.35 -0.39 -0.33 -0.29 015 0.29 0.43
-0.25 -0.32 -0.27 -0.23 0.23 0.37 0.51
-0.15 -0.24 -0.18 -0.15 0.30 045 0.58
-0.05 -0.14 -0.10 -0.08 0.37 051 0.66
0.05 -0.06 -0.01 0.01 046 0.60 0.74
0.15 0.04 0.10 0.12 054 0.67 0.81
0.25 014 021 0.23 0.62 0.75 0.87
0.35 024 031 034 070 0.82 0.94
0.45 035 042 044 077 0.89 1.00

Table A3. Mean of estimations of fractiond integration parameter when f = 0.5 and T=256.

Egtimation from X, Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 -0.27 -0.17 -0.09 031 051 0.71
-0.35 -0.20 -0.10 -0.01 0.37 057 0.77
-0.25 -0.12 -0.02 0.07 045 064 093
-0.15 -0.06  0.05 014 052 0.72 0.89
-0.05 0.03 0.13 0.22 0.57 0.78 0.96
0.05 011 o021 0.30 0.64 0.83 1.01
0.15 019 0.30 0.38 0.71 0.88 1.05
0.25 030 0.39 0.47 0.75 0.93 1.10
0.35 0.38 047 054 083 0.99 1.14
0.45 049 057 0.63 0.89 104 1.19

Table A4. Mean of esimations of fractiona integration parameter when f =05 and T=512.

Egtimation from X, Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 -0.29 -0.20 -0.13 0.20 0.38 0.55
-0.35 -0.22 -0.13 -0.06 0.28 0.45 0.62
-0.25 -0.14 -0.06 0.02 034 051 0.69
-0.15 -0.06  0.02 0.10 041 058 0.75
-0.05 0.02 011 0.17 048 064 081
0.05 011 0.19 0.25 055 071 0.87
0.15 020 0.27 0.34| 062 0.76 0.92
0.25 0.30 0.37 0.43 0.69 0.83 0.98
0.35 039 045 0.51 0.75 0.89 1.03
0.45 050 056 0.60 0.82 095 1.07
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Table A5. Mean of esimations of fractiona integration parameter when f = 0.9 and T=256.
Egtimation from X, Estimation from Y,

d m=1 m=2 m=3| m=1 m=2 m=3
-0.45 014 0.26 0.33 0.64 0.87 1.05
-0.35 022 034 04 0.71 092 1.10
-0.25 030 042 0.50 0.73 095 1.13
-0.15 0.37 049 0.57 0.79 1.00 1.18
-0.05 045 058 0.66 0.83 103 1.20
0.05 053 0.66 0.74| 088 1.07 1.22
0.15 0.60 0.73 0.81 091 111 1.26
0.25 0.70 081 0.91 094 113 1.28
0.35 0.76  0.89 0.98 1.01 117 1.30
0.45 0.84 096 1.05 1.06 1.19 1.32

Table A6. Mean of esimations of fractiona integration parameter when f = 0.9 and T=512.
Egtimation from X, Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.08 0.20 0.30 051 071 0.90
-0.35 016 0.28 0.37 056 0.76 0.94
-0.25 025 037 0.46 0.62 081 1.00
-0.15 032 045 054 066 0.86 1.03
-0.05 041 052 0.62 0.72 091 1.07
0.05 049 0.60 0.70 0.78 0.95 111
0.15 0.57 068 0.78 0.83 0.99 1.14
0.25 0.67 0.77 0.86 0.89 103 1.18
0.35 073 084 094 093 108 1.21
0.45 0.83 093 1.01 099 112 1.24

Table A7. Standard deviationwhen f = 0 and T=256.

Egtimation from X, Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.180 0.151 0.130| 0.201 0.147 0.132
-0.35 0.191 0.148 0.125| 0.191 0.142 0.123
-0.25 0.194 0.153 0.126| 0.185 0.139 0.124
-0.15 0.190 0.153 0.126| 0.186 0.143 0.126
-0.05 0.189 0.153 0.129| 0.178 0.149 0.119
0.05 0.186 0.159 0.128| 0.185 0.143 0.130
0.15 0.197 0.147 0.128| 0.183 0.142 0.124
0.25 0.182 0.143 0.129| 0.194 0.140 0.122
0.35 0.188 0.146 0.124| 0.184 0.146 0.125
0.45 0.180 0.141 0.123| 0.187 0.138 0.116
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Table A8. Standard deviationwhen f =0 and T=512.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.154 0.115 0.090| 0.141 0.109 0.093
-0.35 0.153 0.112 0.088| 0.143 0.111 0.091
-0.25 0.152 0.111 0.090| 0.145 0.112 0.090
-0.15 0.151 0.112 0.092| 0.152 0.108 0.089
-0.05 0.147 0.115 0.093| 0.151 0.115 0.092
0.05 0.146 0.110 0.090| 0.149 0.111 0.092
0.15 0.145 0.110 0.091| 0.152 0.105 0.091
0.25 0.144 0.109 0.093| 0.147 0.111 0.087
0.35 0.142 0.109 0.096| 0.156 0.110 0.089
0.45 0.140 0.106 0.090| 0.154 0.114 0.090

Table A9. Standard deviation when f = 05 and T=256.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.190 0.141 0.126| 0.193 0.145 0.117
-0.35 0.180 0.143 0.124| 0.192 0.147 0.117
-0.25 0.182 0.147 0.123| 0.183 0.140 0.121
-0.15 0.194 0.156 0.125| 0.188 0.133 0.119
-0.05 0.195 0.154 0.126| 0.187 0.134 0.114
0.05 0.190 0.151 0.126| 0.183 0.138 0.112
0.15 0.188 0.144 0.128| 0.192 0.145 0.109
0.25 0.179 0.142 0.127| 0.199 0.146 0.110
0.35 0.186 0.143 0.124| 0.181 0.135 0.112
0.45 0.183 0.140 0.123| 0.186 0.138 0.105

Table A10. Standard deviaion when f =05 and T=512.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.155 0.111 0.093| 0.154 0.110 0.096
-0.35 0.152 0.109 0.088| 0.147 0.112 0.087
-0.25 0.154 0.115 0.087| 0.149 0.110 0.087
-0.15 0.147 0.112 0.090| 0.148 0.113 0.089
-0.05 0.154 0.111 0.092| 0.139 0.109 0.091
0.05 0.150 0.111 0.092| 0.153 0.111 0.086
0.15 0.144 0.110 0.092| 0.152 0.113 0.087
0.25 0.151 0.109 0.089| 0.150 0.110 0.088
0.35 0.144 0.114 0.094| 0.150 0.115 0.091
0.45 0.145 0.109 0.091| 0.159 0.118 0.092
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Table All. Standard deviation when f = 0.9 and T=256.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.126 0.138 0.124| 0.186 0.135 0.111
-0.35 0.124 0.140 0.126| 0.179 0.145 0.110
-0.25 0.123 0.143 0.129| 0.189 0.130 0.112
-0.15 0.125 0.146 0.132| 0.180 0.134 0.101
-0.05 0.126 0.148 0.127| 0.185 0.142 0.108
0.05 0.124 0.143 0.129| 0.182 0.133 0.105
0.15 0.128 0.146 0.133| 0.199 0.135 0.106
0.25 0.130 0.141 0.123| 0.195 0.137 0.102
0.35 0.120 0.142 0.123| 0.179 0.128 0.109
0.45 0.128 0.144 0.123| 0.177 0.133 0.102

Table A12. Standard deviation when f = 0.9 and T=512.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.145 0.109 0.093| 0.151 0.108 0.086
-0.35 0.144 0.118 0.089| 0.146 0.109 0.087
-0.25 0.144 0.109 0.086| 0.150 0.111 0.089
-0.15 0.144 0.105 0.093| 0.151 0.112 0.083
-0.05 0.142 0.111 0.089| 0.147 0.106 0.085
0.05 0.153 0.107 0.092| 0.151 0.106 0.081
0.15 0.141 0.110 0.095| 0.149 0.110 0.082
0.25 0.146 0.107 0.090| 0.142 0.110 0.084
0.35 0.152 0.110 0.094| 0.148 0.107 0.086
0.45 0.144 0.111 0.092| 0.144 0.108 0.082

Table A13. Mean squared error when f =0 and T=256.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.032 0.025 0.025| 0.377 0.581 0.808
-0.35 0.040 0.022 0.019| 0.375 0.557 0.777
-0.25 0.044 0.024 0.016| 0.340 0541 0.750
-0.15 0.043 0.026 0.016| 0.312 0.500 0.700
-0.05 0.042 0.026 0.018| 0.291 0.466 0.675
0.05 0.040 0.027 0.017| 0.266 0.438 0.620
0.15 0.043 0.022 0.017| 0.247 0.391 0.584
0.25 0.037 0.021 0.017| 0.211 0.364 0.532
0.35 0.038 0.022 0.016| 0.200 0.326 0.473
0.45 0.033 0.021 0.015| 0.182 0.288 0.432
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Table A14. Mean squared error when f =0 and T=512.

Egtimation from X,

Egtimation from Y,

d m=1l m=2 m=3] m=1 m=2 m=3
-045 | 0.024 0.017 0.018| 0.296 0.462 0.646
-0.35 | 0.025 0.013 0.011| 0269 0423 0611
-0.25 | 0.028 0.013 0.008| 0.247 0.393 0.580
-0.15 | 0.031 0.014 0.008| 0.225 0.372 0542
-0.05 | 0031 0.016 0.009| 0.19 0.328 0.507
0.05 0.032 0.016 0.010| 0.194 0.319 0479
0.15 0.033 0.015 0.009| 0.176 0.285 0.437
0.25 0.032 0.013 0.009| 0.162 0.262 0.397
0.35 0.033 0.014 0.009| 0.143 0.238 0.356
0.45 0.029 0.012 0.008| 0.129 0.204 0.311

Table A15. Mean squared error when f =05 and T=256.
Egtimation from X, Egtimation from Y,

d m=1l m=2 m=3] m=1 m=2 m=3
-045 | 0.069 0.100 0.148| 0.611 0.950 1.361
-0.35 | 0.055 0.082 0.134| 0553 0.867 1271
-0.25 | 0.051 0.075 0.118| 0528 0.818 1.189
-0.15 | 0.046 0.063 0.101| 0486 0.773 1.102
-0.05 | 0.044 0.057 0.090| 0425 0.700 1.025
0.05 0.040 0.050 0.080| 0.385 0.625 0.933
0.15 0.037 0.043 0.067| 0346 0.552 0.828
0.25 0.035 0.039 0.063| 0285 0484 0.730
0.35 0.036 0.036 0.052| 0.261 0.432 0.638
0.45 0.035 0.033 0.047| 0229 0.365 0.552

Table A16. Mean squared error when f =05 and T=512.

Egtimation from X,

Egtimation from Y,

d m=1 m=2 m=3 m=1 m=2 m=3
-0.45 0.048 0.074 0.112| 0.450 0.706 1.012
-0.35 0.039 0.061 0.094| 0.419 0.647 0.949
-0.25 0.036 0.050 0.080| 0.376 0.597 0.897
-0.15 0.029 0.043 0.071| 0.338 0.547 0.825
-0.05 0.029 0.036 0.057| 0.298 0.489 0.742
0.05 0.027 0.032 0.049| 0.277 0.446 0.679
0.15 0.023 0.028 0.046| 0.243 0.389 0.597
0.25 0.026 0.025 0.040| 0.218 0.351 0.533
0.35 0.022 0.024 0.035| 0.185 0.309 0.466
0.45 0.023 0.024 0.031| 0.163 0.260 0.392
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Table A17. Mean squared error when f = 0.9 and T=256.

Egtimation from X,

Egtimation from Y,

d m=1l m=2 m=3] m=1 m=2 m=3
-045 | 0368 0528 0.617| 1.233 1749 2260
-0.35 | 0344 0494 0595| 1148 1626 2102
-0.25 | 0319 0468 0.580( 1.004 1466 1.930
-0.15 | 0288 0436 0.539| 0913 1339 1.766
-0.05 | 0269 0416 0.520| 0.802 1189 1.569
0.05 0249 0391 0491| 0729 1.052 1.385
0.15 0220 0.361 0459| 0622 0.937 1.238
0.25 0216 0.339 0.448| 0520 0.785 1.072
0.35 0.182 0.312 0411 0472 0.685 0.910
0.45 0.167 0284 0.381]| 0404 0572 0.761

Table A18. Mean squared error when f = 0.9 and T=512.
Egtimation from X, Egtimation from Y,

d m=1l m=2 m=3] m=1 m=2 m=3
-045 | 0307 0438 0564 0940 1356 1.818
-0.35 | 0279 0411 0532 0.857 1248 1.684
-0.25 | 0267 0.390 0.511| 0.773 1144 1.562
-0.15 | 0241 0366 0.488| 0.683 1.028 1.409
-0.05 | 0232 0341 0455| 0.614 0926 1.268
0.05 0216 0.319 0430| 0553 0.818 1.126
0.15 0197 0.295 0.406| 0482 0.716 0.987
0.25 0195 0.279 0.380| 0430 0.627 0.872
0.35 0.170 0.256 0.353| 0.360 0.539 0.740
0.45 0.163 0.243 0.323| 0310 0.463 0.629
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