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Inverse sampling and formal sequential designs may prove useful in redu-
cing the sample size in studies where a small population proportion p is
compared with a hypothesized reference proportion pg. These methods are
applied to the design of a cytogenetic study about chromosomal abnormali-
ties in men with a daughter affected by Turner’s syndrome. First it is shown
how the calculated sample size for a classical design depends on the pa-
rameterization used. Later this sample size is compared with the required
sample size in an inverse sampling design and a triangular sequential de-
sign using four different parameterizations (absolute differences, log-odds
ratio, angular transform and Sprott’s transform). The expected savings in
sample size, when the alternative hypothesis is true, are 20% of the fixed
sample size for the inverse sampling design and 40% for the triangular
sequential design.
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1. INTRODUCTION

The sample size needed in many biological experiments is so large when the characte-
ristic of interest is a rare event that it is appealing to explore different sampling schemes
oriented to reduce the number of observations needed. In this paper it is shown how in-
verse sampling and formal sequential designs may prove useful in reducing the sample
size in some specific situations.

The methods described were motivated by the design of a cytogenetic study where the
aim was to compare the proportion of chromosomal abnormalities observed in an affec-
ted individual with a known reference value for healthy individuals. Similar situations
occur in preclinical studies of toxicity or while monitoring rare adverse events in clini-
cal trials, especially in phase IV studies.

The hypothesis of interest was that the proportion of spermatozoa carrying chromoso-
mal abnormalities in men with a daughter affected by Turner’s syndrome was higher
than that observed in control men (without daughters affected by Turner’s syndrome).
Turner’s syndrome appears when one sexual chromosome is lost and the karyotype
results in 22 pairs of somatic chromosomes but only one sexual chromosome X. The
affected individual is a female with some specific phenotypic characteristics. The ch-
romosomal studies to determine abnormalities involve complex experiments in which
hamster oocytes are fused with human spermatozoa.

The proportion of spermatozoa with the sexual chromosome missing in normal men has
been accurately estimated in several studies to be around 0.003. In the present study, due
to the technical difficulties in determining the abnormalities, it was thought sensible that
the results from a sample of cases (men with a daughter affected by Turner’s syndrome)
could be compared to the already known proportion in control men.

The aim was to determine whether a population proportion p differs from a hypot-
hesized reference proportion po. In our study, doubling the reference proportion was
considered an increase interesting to detect. Thus, the interest was to reject the null
hypothesis that p = pg = 0.003 when p > 0.006 with power 0.80. Only the one sided
alternative that the proportion was higher in men with an affected daughter than controls
was considered and a conservative significance level of 0.025 was adopted.

In the classical fixed sample size design, a sample size should be calculated to satisfy
the power requirements. Data should be collected but not examined and a decision taken
until the complete sample size had been achieved. In our situation, because the propor-
tion of abnormal spermatozoa was very small, the sample size required was large and
further, as will be shown later, the parameterization used to compare the proportions
affected the required sample size in a significant amount.
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Table 1. Formulas for Z and V and sample size according to the parameterization of 0, the diffe-
rence between p and pp.

0 z V n
Log-oddsratio (20 +25)2
0g(p(1—po)/(Po(1~P)  T-np  po(1—po) —og o

g (W) Po(1— po)
Probability difference F—npo 0 (2o +25)2 Po(1— Po)
P Po po(1—po)  Po(1—po) (p—po)?
Anqular transfc?rmation Fnpy (Za+213)2
esin /P —arcein o Zm o 4 (arcsin ,/p —arcsin /pg )

Alternatives to the fixed sample size design may prove interesting in reducing the sam-
ple size needed while preserving the statistical errors at the predefined levels. Two such
alternatives will be revised in this paper. First, inverse sampling, that consists on sam-
pling until the first r occurrences of an event are seen in a sample. Secondly, a formal
sequential analysis based in successive examinations of accumulating data with a pre-
specified stopping rule.

2. SAMPLING PROCEDURES

2.1. Fixed samplesizedesign

Several formulas may be used to calculate the sample size needed to compare a propor-
tion with a reference value. The notation used by Whitehead (1992), that allows deri-
ving a variety of these formulas from a unified theory, will be followed. This notation
will also be used to design and analyze formal sequential tests.

A sequence x1,X2, ..., X, Of independent binary observations with event probability p is
observed and each one is coded 1 if the event appears or 0 otherwise. The null hypothe-
sistotestis Hp : p = po. This is equivalent to testing whether a parameter 8 = g(p, po)
is equal to zero, where g is a function that parameterizes the difference between p and
Po in an appropriate measurement scale.

As a Bernoulli experiment, the likelihood of p based on n observations is
L(p)=p" (1—-p)""
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where r = X1 + X2 + - - - + Xy is the sum of responses. The log-likelihood is

I(p) =rlog(p/(1—p))+nlog(l—p).

Following Whitehead’s notation (Whitehead, 1992), in this log-likelihood p can be
substituted by 6 from g(p, po). The log-likelihood can be approximated by a Taylor’s
series expansion of second order and two statistics derived, namely Z and V.

1(6) = const+0Z — 156%V + O(8%)

From the series expansion we obtain that Z = 14(0) and V = —Igg(0), where I¢(0) and
lgo(0) denote respectively the first and second derivatives of 1(6) with respect to 6,
evaluated at 6 = 0. Z is the efficient score for 6, a cumulative measure of the difference
between p and po, and V is Fisher’s information about 6 contained in Z. The actual
formula for Z and V are different depending on the choice of the function g. Table 1
shows three possible forms, the first is based on log-odds ratio scale, which measures
relative differences, the second is based on absolute differences, and the third uses the
angular transformation, which stabilizes the variance of the proportion. Note that Z,
the cumulative difference, is always a function of r — npg, that is, the observed minus
expected number of responses. Also V, the information, is always proportional to the
sample size, n.

For large sample sizes and small values of 6, the distribution of Z is approximately nor-
mal with mean 6V and variance V. This normal approximation can be used to calculate
the required sample size for a fixed sample design. Z, as an efficient score, may be used
as the test statistic with working significance level o, and power 1 — B. If Z is greater
than some value k = k(o 3), then the null hypothesis is rejected at the level of signifi-
cance o and it is concluded that the proportion in experimental group p is superior to
the hypothesized po. The requirements for the one sided test are

P(Z>k/6=0) = a
P(Z>k/6=6gr) =1-
where Or is the difference which, if present, should be detected. A fixed sample study

will satisfy these requirements if the information V and k are given by

V = {(za+2p) /6r}’

k= (za+2p) 20/0r

where z, denotes the upper 100(1 — ) percentage point of the normal distribution. For-
mulas for V are used to translate a requirement value for V into a required total sample
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Figure 1. Sample size needed for various parameterizations.

size n. The formulas for Z, V and n are shown in table 1 for each parameterization
studied.

The three parameterizations give different values for the sample size n, depending on
the values of p and po. We can see in figure 1 that

If p> po Niogor > Nangular > Nprob. diff.

If P <Ppo Niogor < Nangular < Nprob. diff.

For the final statistical analysis of the difference between p and po the chosen test also
affects the results. An exact test will be used since the proportions compared are small,
though exact tests are more conservative due to the discreteness of the response variable.
An equivalent form to the one sided exact test, will be the calculation of the exact lower
limit of the 100(1 — 20)% confidence interval for the estimated proportion p assuming
a binomial distribution. This limit can be calculated easily using the relation between
the F and the binomial distributions (Jowett, 1963):

Prower(ILt,0) =r/{r+ (t+1)f, (2(t+1),2r)},
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Table 2. Sample size and performance of fixed sample design with different parameterizations
and tests for oo = 0.025 and power = 0.80.

Sample Exact test y2test
Method Size o Power o Power
Log-odds ratio 5415 0.0159 0.8939 0.0280 0.9272
Probability difference 2608 0.0154 0.6010 0.0309 0.7003
Angular transformation 3795 0.0249 0.8157 0.0452 0.8704

where r is the number of cases with the characteristic, t is the number of cases without
itand fy(a,b) is the upper 100(c) percentile of the F distribution with a and b degrees
of freedom. If a bilateral test was used, the upper limit of the confidence interval could
be calculated with the formula:

Pupper (I t,00) =1 o (2r,2t) / {r T (2r,2t) +t}.

In our study, po was 0.003 and the value of p we wished to detect was 0.006. We can see
in table 2 the sample size calculated using the different definitions of 6 with significance
level oo = 0.025 and power 0.80. The parameterization of 6 results in differences in the
sample size needed, especially when the proportion is small. The statistical test used
for the analysis is also important. In table 2 we can see the observed type | error rate
and power after 50000 simulations for the fixed sample size design with a classical
chi-square test without continuity correction, and for the exact test. As expected, for
each parameterization of 0, the exact test gives more conservative results. The most
accurate results, with respect to the predefined error rates, correspond to the angular
transformation, which is in concordance with known results about comparison of two
binomial proportions (Haseman, 1978).

2.2. Inversesampling

The inverse sampling design is an old method (Haldane, 1945; Finney, 1949) to esti-
mate a proportion p. The method consists on sampling until exactly r occurrences of
an event appear in a study and counting the needed sample size n. In a classical fixed
sample design sampling continues until the complete sample size n is attained and the
number of occurrences r are counted. For both designs, the proportion p is estimated
as r/n. The differences appear in the way the variance of this proportion is calculated.
Methods to calculate the confidence interval for p when the inverse sampling design is
used have been described by George and Elston (1993), for the special case when sam-
pling continues until the first occurrence of an event of interest. They use the geometric
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Table 3. Sample size needed with an inverse sampling design to detect p = 0.006 for given r and
o= 0.025.

r Tmax Mean n Observed Expected Observed
(p = 0.006) o power power
10 1591 1426 0.0259 0.4921 0.4967
11 1822 1612 0.0271 0.5402 0.5416
12 2058 1803 0.0256 0.5859 0.5814
13 2297 1985 0.0257 0.6281 0.6263
14 2540 2167 0.0266 0.6677 0.6673
15 2787 2355 0.0228 0.7045 0.7137
16 3036 2533 0.0258 0.7379 0.7384
17 3288 2721 0.0244 0.7685 0.7671
18 3542 2899 0.0264 0.7960 0.8005
19 3798 3084 0.0278 0.8208 0.8142
20 4056 3249 0.0283 0.8431 0.8499
21 4316 3432 0.0282 0.8630 0.8658
22 4578 3595 0.0292 0.8807 0.8858
23 4841 3780 0.0237 0.8963 0.8979
24 5106 3954 0.0253 0.9102 0.9122
25 5372 4112 0.0269 0.9223 0.9265

Tmax: number of cases without the event needed to observe before r events so that the lower 95% confidence
interval around p doesn’t include p = 0.003.

distribution to calculate the confidence interval and demonstrate that the length is shor-
ter than the one calculated by use of direct binomial sampling under certain situations.
This is because of the fact that no occurrences in the firstt = n — 1 trials is more infor-
mative than 1 occurrence in n trials. Nevertheless, the length of the confidence interval
calculated on the basis of the first single case (r = 1) may be too wide for general uti-
lity. Lui (1995a; 1995b) describes the extension of this procedure to accommodate any
finite number of cases (r > 1), and calculates the confidence interval using the exact
method based on the relations between the negative binomial, the binomial and the F
distributions as previously described.

For the comparison between p and po, an r large enough should be chosen so that,
with probability 1 — 3, the lower bound of the lower 100(1 — 20.)% confidence limit
around p will exceed the hypothesized proportion p . Classical inverse sampling should
continue including subjects until r events appear. However, in the one sided design a
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Figure 2. Continuation region for the triangular sequential test.

maximum value of t (tmax) exists so that if the r events have not been observed before
tmax, the confidence interval will always include po. The design can be modified to stop
sampling either when the r cases have been found or when tmax have been reached. We
have checked, through simulations, that this truncation of the inverse sampling design
did not alter the theoretic operating characteristic of test, and calculated the average
sample size needed to finish the study, which was significantly reduced when the null
hypothesis was not true.

Table 3 summarizes the results of simulations done to evaluate the power to detect a
significant difference when p = 0.006 with the inverse sampling design using diffe-
rent values of r. Tmax, the maximum number of cases required for each value of r, can
be calculated searching the quintile of the negative binomial distribution with po. The
power to detect a given difference pr > p — po can be calculated from the negative bi-
nomial distribution function for those r and tyax. In our case, with r = 18, the power
to detect p > po when p = 0.006 is 0.80 and the maximum number on cases without
event needed to monitor, tmax, is 3542. Note that, in this situation the average sample
size is 2899, which corresponds to an 18.8% reduction of the maximum sample size for
this number of cases and a 24% reduction relative to the fixed sample size design using
the angular transform formula. In conclusion, if we were to use the inverse sampling
method, we would continue sampling until either 18 cases had been found or until we
reached 3542 subjects without the event.
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2.3. Sequential methods

Formal sequential methods have proven useful in reducing the sample size needed to
test hypotheses in some situations. For the current problem, among the different types
of sequential methods available, the triangular test as defined by Whitehead (1992) has
been chosen for comparison with inverse sampling. This sequential design is simple to
implement and is attractive for practical situations.

In a sequential method the sample size needed is a random variable. The implemen-
tation of the method has two phases, the design and the analysis. In the design phase
the sequential rule is defined given the following values: the difference of interest to
be detected (6Rr), the test characteristics in terms of power (1 — ) and significance le-
vel (o) and the shape of the boundaries chosen for the sequential rule. In the analysis
phase, as data accumulates, repeated evaluations of the sequential rule are made. The
values of Z, the cumulative difference between p and pg, and V, the information that
depends on n, are calculated at each inspection. These two values are plotted against ea-
ch other, that is, Z against V, in a graph where the sequential rule has been drawn. For
the triangular sequential test used here, the sequential rule consists on two straight line
boundaries making the shape of a triangle as it is illustrated in Figure 2. The area inside
these boundaries is called the continuation region. As data accumulates, the path from
(Z,V) is drawn and sampling continues while the path is whithin the continuation re-
gion. Whenever this path crosses one of the boundaries, a decision is taken. If the upper
boundary is crossed, the null hypothesis is rejected. Otherwise, if the lower boundary is
crossed, the null hypothesis is accepted. The position of the boundaries are computed
to assure a given power and significance level. Approximate p-values can be calculated
depending on the position of the point where the boundaries were crossed in the last
inspection. The computer program PEST (Brunier & Whitehead, 1993) performs all
necessary calculations for the design and analysis of this sequential method.

As with the fixed sample design, the parameterization used for 6 is important in our
study because the proportions compared are small and then the normal approximation
used is not as good as desired. We have compared the results of inverse sampling with
all three parameterizations described in the fixed sample size paragraph and a new one,
proposed by Sprott (1973) which was also explored by Whitehead (1981). The Sprott’s
method has the property that the expected value of the third derivative of the likeli-
hood function is zero and gives a very good normal approximation even for extreme
situations. For this parameterization,

8= {n(p) —n(po)} {po(1—po)} /3,

where

P dt
n(p):A {t(l—t)}2/3
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Table4. Theoretic and simulated sample sizes for the situation pp = 0.003, p = 0.006, o = 0.025
and power = 0.80.

Theoretic values Simulated values
Method E(n)  Median (n)  Max (n) o Power  Mean (n)
Log-odds ratio 3608 3470 8365 0.0354  0.9127 2553
Probability difference 1738 1672 4029 0.0406  0.6758 1477
Angular transformation 2530 2433 5890 0.0376  0.8122 2018
Sprott’s transformation 2147 1977 3795 0.0244  0.7905 2301
Inverse Sampling r = 18 3559 0.0264  0.8005 2899

All sample sizes calculated when p = 0.006, equivalent fixed sample size n = 3795.

This integral can be calculated numerically. The comparison of sequential methods and
inverse sampling is shown in table 4. Although the sequential trials were designed with
a type I error equal to 0.025 and a power of 0.80, simulations show that the triangular
sequential test results in a type | error slightly greater than the specified for all the pa-
rameterizations studied, except for the Sprott’s transformation. This parameterization
adjusts very finely to the design characteristics; the angular transformation maintains
the desired power of 0.8, while the log-odds ratio parameterization results in an excess
power reaching 0.9 and the probability difference only 0.7. The average final sample si-
ze parallels the results of the attained power. The log-odds ratio parameterization needs
more patients than the angular transformation and the lower number is seen for the pro-
bability difference, though with this parameterization the desired power is not attained.
The Sprott’s transformation needs a sample size intermediate between the log-odds ratio
and the angular transformation. Note that, even for the log-odds ratio parameterization,
the average sample size is smaller than the inverse sampling design. The Sprott’s trans-
formation, that gives best results in power and type I error, needs on average about 20%
less sample size than the equivalent inverse sampling design and about 40% less sample
size than the equivalent fixed sample design.

3. OTHER ALTERNATIVES

Alternative hypothesis different from p = 0.006 have been explored. We have chosen
smaller values for the difference of interest (p = 0.0035, that corresponds to a 17% rela-
tive increase, p = 0.004 that corresponds to a 25% relative increase) and greater values
(p = 0.009 that corresponds to a three-fold relative increase). Table 5 shows the sum-
mary results for the simulations using these alternatives. When the difference of interest
is very small (p = 0.0035 or p = 0.004), the test characteristics are preserved better for
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Table5. Sample size and performance for triangular sequential tests with different parameteriza-
tions and inverse sampling for other alternative hypothesis p (oc = 0.025 and power = 0.80).

Average sample

Method p o Power size (n)
Log-odds ratio 0.0035 0.0271 0.8364 67587
0.004 0.0290 0.8545 18136
0.009 0.0403 0.9524 853
Probability difference 0.0035 0.0280 0.7744 60274
0.004 0.0300 0.7513 14553
0.009 0.0600 0.6743 394
Angular transformation 0.0035 0.0266 0.8044 63984
0.004 0.0307 0.8067 16287
0.009 0.0451 0.8079 581
Sprott’s transformation 0.0035 0.0239 0.7992 65992
0.004 0.0250 0.7961 17316
0.009 0.0219 0.7728 718
Inverse sampling

r tmax
337 100339 0.0035 0.0217 0.7819 95619
99 26731 0.004 0.0223 0.7883 24432
8 1146 0.009 0.0242 0.8076 846

Fixed sample size for angular transform formula:
p=0.0035 101542
p = 0.004 27232
p = 0.009 1213

all parameterizations. The triangular sequential test using the Sprott’s parameterization
needs, on average, a 35% smaller sample than the fixed size design. However, the sam-
ple sizes needed to detect these small differences are prohibitive for practical purposes.
For alternatives of greater magnitude (p = 0.009), the sample size is reduced but with
low performance of the tests characteristics.

Inverse sampling design keeps the test characteristics in all cases, but average sample
size needed is greater than sequential tests.
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4. DISCUSSION

We have explored alternative designs to reduce the sample size needed when the interest
is to compare a small proportion with a reference value. Inverse sampling design, which
stops sampling when a predefined number of events have been observed is an easy
procedure to implement, and in our study could save 24% of the fixed sample size
design in optimal situations, when the real proportion doubled the reference value of
0.003. The maximum sample size needed with this design is always inferior (6%) to
the equivalent with fixed sample.

Formal sequential designs, based on continuous boundaries as the triangular sequential
test, can reduce even more the sample size needed in optimal situations, up to 40%.
However this method also has some limitations. As Whitehead (1992) stresses and we
have checked for the design of our experiment, it is important to choose an adequate
parameterization for the difference to be tested. The transformation proposed by Sprott
performs well with respect to error rates, but other parameterizations explored have
type | error rates greater than the specified and should be used with caution in situations
similar to our case, where the reference proportion is small. Exact sequential methods
have been developed for special designs, including this one (Stallard & Todd, 2000),
but are not easy to implement.

The boundaries of these sequential methods impose the risk of needing more obser-
vations than the fixed sample case in some situations. For the triangular test, the ma-
ximum sample size in our experiment would be up to 30% more in the extreme case,
which might occur if the real proportion is about half the difference between the re-
ference proportion and the population proportion po. Though the situation where the
true proportion is not as high as expected might not be so rare in practice, the median
sample size of the triangular test is always smaller than the equivalent fixed design. For
example, in our study the reference proportion pr was 0.006 and the population propor-
tion po was 0.003. In the case that the real proportion was about 0.0045, the expected
sample size would be 2147 and the 90™ percentile 3340, still 12% less than the 3795
needed with a fixed design as calculated by the angular transform formula.

The observed gain in sample size for the triangular test can be compared with the ex-
pected ones shown in table 4, derived from sequential theory (Whitehead, 1992). These
theoretical sample sizes show some disagreement with the simulated values that para-
llel the observed and expected type | error rate. For the log-odds ratio, probability dif-
ference and angular transformation parameterizations, the observed mean sample size
is smaller than the expected. These parameterizations show a lower type | error cove-
rage than expected. For the Sprott’s parameterization the observed mean sample size is
slightly greater than the expected and type | error coverage is correct.
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In conclusion, to compare a small proportion with a reference value, the inverse sam-
pling design and formal sequential methods like the triangular test may prove useful
to save sample size. The use of the triangular sequential method, that is based on ap-
proximations to the likelihood function should be cautious since the type I error rate is
slightly increased and power varies unless the Sprott’s parameterization is used. With
these sequential methods the researcher must accept a small risk of needing to exceed
the sample size that would be used with a classical design.
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