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Abstract

In this paper we will look at some properties fractals and show the
usefulness of one of them, the fractal dimension, for the study of nat-
ural and artificial phenomena. We will center our attention on fractals
generated by Iterated Function Sets (IFS), which we will define as a sys-
tem of contractive mappings on non-empty compact sets in a complete
metric space.

First, we will present some simple, well known, fractals, and show
how to generate them with a geometrical construction. To compute
these objects, we will use two distinct algorithms based on the iteration
of IFS, a deterministic and a random one.

We will then see an application of the fixed point theorem for IFS,
named the Collage Theorem. We will show that an IFS’s attractor is
unique and independent of the initial set. Moreover, we will show that
both the deterministic and the random algorithms converge to the same
limit: the attractor of the system.

Having studied fractals generated by IFS, we will go on to look at
fractal dimensions. For this purpose we will review the classic concept
of dimensions, and broaden it to include non-integer dimension. We
will see different types of fractal dimensions, some of which are suited
to a specific type of fractals, such as the self-similarity dimension appli-
cable to self-similar shapes, and a more general dimension, applicable
to any fractal, namely, the Hausdorff-Besicovitch Dimension. We will
also see the Box-counting algorithm, which approximates the Hausdorff-
Besicovitch Dimension and is often used in its stead because of the com-
plexity of calculating the dimension.

We will conclude our exploration of fractal dimensions with the pre-
sentation of a small personal contribution to this area – our own version
of a program which implements the box-counting algorithm on images.

In the last chapter we will see some examples of the practical uses of
the fractal dimension in fields of study as diverse as medicine, market
research, image classification and so on. Through these examples we can
appreciate the impact of fractals on our way of modeling or explaining
our world.
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“...What do you consider the largest map that would be really useful?”
”About six inches to the mile.”
””Only six inches!” exclaimed Mein Herr.
”We very soon got to six yards to the mile. Then we tried a hundred yards to the mile. And then came the
grandest idea of all! We actually made a map of the country, on the scale of a mile to the mile!”
”Have you used it much?” I enquired.
”It has never been spread out, yet,” said Mein Herr: ”the farmers objected: they said it would cover the
whole country, and shut out the sunlight! So we now use the country itself, as its own map, and I assure
you it does nearly as well.”

From Sylvie and Bruno Concluded by Lewis Carroll, first published in 1893.

1 Introduction

A pattern in the noise

Around 1958 Benoit Mandelbrot (1924-2010) initiated an investigation of noise
analysis and electric disturbances in the IBM lab. He noticed a behavior pat-
tern in what should have been random noise, which, moreover, repeated on var-
ious scales. Having previously studied the work of Gaston M. Julia (1893-1978)
and Georg Cantor (1845-1918), he tried to apply their discoveries, especially
the Cantor Set, in order to simulate the behavior of the noise fluctuation, and
found they fit.

Irregular measurements do not necessarily effect an overall structure on a
larger scale, but ignoring them results in a simplified model. But what if we
wish to maintain the complexity of a natural object, how do we measure it?
Mandelbrot arrived at a simple question which exemplifies his discovery, which
is:

How long is the coast of Britain?[10]

Figure 1.1: Britain

This question may seem absurd, but is nonetheless a classic example of this
type of application: The Coastline Paradox.

The length of a coastline is not a constant, but a function of scale, that is,
the distance from which you observe. It is not the same to observe the coast
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from a satellite, from an airplane, or from ground level. The measurement, in
each case, would give a different result, since it is easy to demonstrate that
a figure with straight edges is shorter than the same figure with rough edges.
The more finely you measure, the longer the coastline seems to get (Figure
1.2).

Figure 1.2: Britain’s coastline measures

We simplify the world in order to describe it, break it down into components
of lesser complexity. The common figures of classic or Euclidean geometry are
sufficient in most cases in order to approximate reality and achieve working
models of it. Nonetheless, these figures prove inadequate if we wish to generate
accurate models of complex forms like the leaf of a tree or the profile of a
mountain. Their limitation is due to their tendency to lose their structure
when they are amplified. The arch of a circumference turns gradually into a
straight line, the surface of a sphere becomes flatter, etc. Although natural
forms seem to lose structure when scaled, close observation shows that they do
not. For example, the rough surface of a rock maintains practically the same
complexity through several levels of amplification. If we analyze part of the
rock, and within it a smaller part, and a smaller one still, it will not seem to
become smoother.

Now we can ask ourselves, is there another way to describe these entities,
which maintains their properties and characteristics at any scale? Could we
not describe them through objects which take this property of detail to the ex-
treme, forms which, though much more complicated then traditional geometric
figures, may be constructed by a simple procedure?

The answer to these questions is the subject of this paper: fractals.

From monsters to (top) models

In 1975 Mandelbrot coined the term ’fractal’, from the Latin fract o fractus,
meaning “broken” or “uneven”. In his book, The fractal geometry of na-
ture[11], Mandelbrot famously states ¨ clouds are not spheres, mountains are
not cones, coastlines are not circles, and bark is not smooth, nor does lightning
travel in a straight line¨, popularizing the idea of fractals, and gaining acclaim
as the father of the field. Although he may have been the first to see the
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possible applications of these complex shapes in modeling natural objects, the
mathematical studies which enabled his discovery precede him by more the a
century.

As early as 1872, Karl Weierstrass (1815-1897) discovered a function (Fig-
ure 1.3) which is continuous everywhere, but nowhere differentiable. Histori-
cally, the Weierstrass function is important, being the first published example
challenging the notion that every continuous function is differentiable except
on a set of isolated points. This function is relevant to the fractal geometry be-
cause it is the first to exhibit one of the most well known properties of fractals,
which we will later introduce: self-similarity.

Figure 1.3: Weierstrass Function

In 1883, Georg Cantor, famous as one of the creators of the Set Theory,
introduced objects we now see as fractals, in the course of his investigation of
transfinite numbers. His work was so ahead of its time that even renowned
mathematicians, such as Henry Poincaré and Leopold Kronicker, harshly crit-
icized it. Cantor’s objects, and others, such as Koch’s Curve and Sierpinski’s
Triangle, seemed so strange that they were referred to as ’monsters’. Nonethe-
less, their importance is now widely recognized. Later, in Chapter 2, we will
take a closer look at these objects and others, see some of their properties and
how they are constructed.

In 1917 Felix Hausdorff (1868-1942) generalized the idea of length, area and
volume - the Lebesgue outer measures, - with the measure that bears his name.
This measure is the basis for a new definition of dimension, which includes frac-
tional values for objects which defy conventional integer dimensions. Much of
the theoretical work on this dimension was carried out by Abram Besicovitch,
which is why the dimension is named the Hausdorff-Besicovitch dimension.
The applications of this concept are currently the topic of lively investigation
in a wide variety of fields, ranging from Chaos Theory through eminently prac-
tical pattern recognition applications in medicine and biometrics, and image
compression in cinema.

And speaking of cinema (we did promise top models), we cannot conclude
our review of important mathematical contributions to the study of fractals
without mentioning Michael Barnsley (1946), discoverer of the Collage The-
orem [1]. Following Mandelbrot’s identification of fractals in many natural
phenomena, Barnsley aspired to do the contrary – for any given image, find
the appropriate fractal functions which would generate it. In the course of this
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endeavor, he has made important advances in the compression and generation
of fractal images. His work enabled the creation of fractals of artistic value we
now know as fractal art, fractal generated models for cinema, and much more.

The closer you get

When we speak of fractals, what immediately comes to mind is their property
of self-similarity. Mandelbrot originally defined a fractal as a semi-geometrical
object who’s basic, fragmented or irregular, structure, repeats itself on different
scales. He refers to it as semi-geometrical since it is more complex then a
regular geometric object, and the repetition of structure refers to its property
of self-similarity. Mandelbrot considered an object is self-similar if its parts had
the same form or structure as the whole, even though these may be slightly
deformed. This property can be seen clearly if we observe one of the most
famous fractals: Sierpinski triangle or Sierpinski Gasket (Figure 1.4).

Figure 1.4: Sierpinski Gasket

We can see the triangle is formed by three smaller triangles, each one of
those, for example the bottom right one, in the square, is identical up to scale
to the original triangle. Going smaller and smaller in scale, we will discover
triangles which are, in turn, formed by smaller triangles and are identical to
the original triangle. Theoretically, this can go on infinitely as we reduce the
scale.

But as we said, self-similarity does not necessarily mean that parts are
copies of the whole. in the following fractal set, the Mandelbrot Set (Figure
1.5), we can see that the pieces do not coincide perfectly on all scales, but the
structural similarity is present in all of them so it is considered self-similar.
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Figure 1.5: Mandelbrot Set [11]

Althogh self-similarity is typical of fractals, using it as a definition seems
insufficient.

Objects to better explain our world

Falconer[4] considers it best to regard a fractal as a set that has properties such
self-similarity, and others, listed below, rather than look for a precise definition
which will almost certainly exclude some interesting cases. He proposes that
when we refer to a set as a fractal, we have the following in mind. (i) it has
a fine structure, i.e. detail on arbitrarily small scales. (ii) it is too irregular
to be described in traditional geometrical language, both locally and globally.
(iii) it has some form of self-similarity, perhaps approximate or statistical. (iv)
its ‘fractal dimension’ is greater than its topological dimension. (v) In most
cases of interest it is defined in a very simple way, perhaps recursively.

In this paper we will look at some of these properties, and show the use-
fulness of one of them, the fractal dimension, for the study of natural and
artificial phenomena. We will center our attention on fractals generated by
Iterated Function Sets (IFS), which we will define as a system of contractive
mappings on non-empty compact sets in a complete metric space.

First, we will present some simple, well known, fractals, and show how to
generate them with a geometrical construction. To compute these objects, we
will use two distinct algorithms based on the iteration of IFS, a deterministic
and a random one.

The deterministic algorithm consists in applying all functions of an IFS
at each iteration of the process. The random algorithm, on the other hand,
applies a random sequence of equivalent functions on a given point, generating
a sequence of points. The selection of these functions may be determined by a
set of probabilities, that is to say, each function will have a certain probability
of being selected.

We will then see an application of the fixed point theorem for IFS, named
the Collage Theorem. We will show that an IFS’s attractor is unique and inde-
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pendent of the initial set. Moreover, we will show that both the deterministic
and the random algorithms converge to the same limit: the attractor of the
system. That is to say, the sequence generated by the random algorithm will
pass through all the points of the attractor of the deterministic algorithm, or
very close to them (in terms of the Hausdorff distance).

Having studied fractals generated by IFS, we will go on to look at fractal
dimensions. For this purpose we will review the classic concept of dimensions,
and broaden it to include non-integer dimension. We will see different types of
fractal dimensions, some of which are suited to a specific type of fractals, such
as the self-similarity dimension applicable to self-similar shapes, and a more
general dimension, applicable to any fractal, namely, the Hausdorff-Besicovitch
Dimension. We will also see the Box-counting algorithm, which approximates
the Hausdorff- Besicovitch Dimension [2] and is often used in its stead because
of the complexity of calculating the dimension.

We will conclude our exploration of fractal dimensions with the presen-
tation of a small personal contribution to this area – our own version of a
program which implements the box-counting algorithm on images.

In the last chapter we will see some examples of the practical uses of the
fractal dimension in fields of study as diverse as medicine, market research,
image classification and so on. Through these examples we can appreciate the
impact of fractals on our way of modeling or explaining our world.
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2 Some simple fractals

In this section we will see the construction of some fractals using an initiator
set and generator set, and an affinity iteration.

2.1 The Sierpinski Gasket

In order to construct this fractal, we start with a black triangle on a white
background (Figure 2.1), then iterate the following process: for each black
triangle, we shall join the middle points of each side and eliminate the resulting
triangle.

Figure 2.1: Sierpinski Gasket. Initiator set

Iterating this process, results, at the limit, in the Sierpinski triangle (Figure
2.2).

Figure 2.2: Iteration’s limit: Sierpinski Triangle

The triangle is self-similar since, as we can see, it is made out of smaller
and smaller copies of itself.

Figure 2.3: Self-similarity of the triangle.
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Figure 2.4: Each color is one of the nine copies of the original shape

That is to say, we can describe the triangle as made out of three copies,
each one half the height and width of the original triangle (Figure 2.3). In
turn, each one of these copies will be made up of three, even smaller copies.
Therefore we may say the triangle has in itself nine copies of a quarter of its
height and width (Figure 2.4). Or twenty seven with an eight of its height and
width, and so on.

2.2 The Koch Curve

Another basic fractal is the Koch Curve. Taking as initiator a segment of a
line with the length of 1, and as generator the form resulting from eliminating
the central third of the line and adding two segments of the same length which
would form an equilateral triangle with the segment previously eliminated, as
we see in the Figure 2.5

Figure 2.5: Initiator and two steps of the Koch Curve generation process

Then, we iterate the process in each one of the 4 resulting segments. Iter-
ating this process, at the limit, we obtain Koch’s Curve (Figure 2.6).
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Figure 2.6: Limit of the iteration: Koch’s curve

This curve has several, apparently counter intuitive properties, for example,
its length is infinite. Like in Mandelbrot’s coastline example! Could we use
the same method to measure it?

Its infinite is easy to demonstrate: each iteration adds a third of the initial
length. So if the segment’s length was 1 to begin with, the resulting figure from
the first iteration would be 4 ∗ 1

3
= 4

3
. Each one of these 4 segments shall be

divided in 4 more, each of a third of its length. This will result in 16 segments
of 1

9
. If we continue iterating, we shall see that after the Nth iteration we will

have 4N segments of 1
3N

. Then, its length is l(N) = 4N

3N
. At the limit,

lim
N→∞

4N

3N
= ∞

Joining three curves, we can make the Koch Snowflake (Figure 2.7).

Figure 2.7: Koch Snowflake

2.3 The middle third’s Cantor Set.

As in the previous example, we shall take as initiator the segment of a line with
the length of 1, and now, as generator, the result of eliminating the middle
third of the line (this time adding nothing). The Cantor Set (Figure 2.8)
results from iterating the following procedure: for each segment of the line,
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we eliminate its middle third, leaving the end points (eliminating the open
interval).

Figure 2.8: Cantor set

Some of the outstanding properties of the Cantor set are that it has no
length (or zero length) and that as a set it has a one to one correspondence
(bijection) with the initial set, and therefore also with the real numbers. In
addition, it is, obviously, self-similar (Figure 2.9).

Figure 2.9: The Cantor Set is self-similarity
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2.4 Fractal Trees

Figure 2.10: Example of a Fractal Tree

In the example in Figure 2.10, we shall look at a tree branching structure. We
can see in this figure the tree has a single root with two branches connected at
its end. Each branch, in turn, has two branches at its end, and those branches
have two branches, and so on. In short, any branch of the tree has the same
structure as the whole, and is, therefore, self-similar (Figure 2.11).

Figure 2.11: Self-similarity of a Fractal Tree

We will now see two examples of fractal trees generated by our own code.
The first uses only one drawing pattern and is completely symmetrical in its
branches.

Figure 2.12: Original Symmetric Fractal Tree
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The following tree uses a random factor for the size of the branches, which
gives it a more realistic appearance.

Figure 2.13: Original Random Fractal Tree
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3 Geometry of Plane Transformations

In this section, will we show how fractals are generated using plane transfor-
mations.

In order to do so, we will first briefly review the features of plane transfor-
mations - scaling, reflections, rotations and translations. Afterwards we will
show how they are encoded in software, and give some examples.

Note: The images in this chapter come from [5].

3.1 Scaling and reflections

A scaling is a transformation on the plane which, given two factors we will
denote r and s, reduces (or augments) the size of the figure to which it is
applied. “r” will be the factor for the x axis, and “s” for the y axis.

� If r = s > 0 the transformation is a similarity.

Figure 3.1: Similarity with r = 0.75 and s = 0.75

� If r 6= s and r, s > 0 the transformation is an affinity

Figure 3.2: Affinity with r = 0.75 and s = 0.5

� If r < 0 and/or s < 0 the transformation is a symmetry.

Figure 3.3: Symmetry on the y axis: r < 0 and s > 0

15



Figure 3.4: Symmetry on the x axis: r > 0 and s < 0

� Finally, a reflection across both the x- and y-axes is equivalent to rotation
by 180° about the origin.

3.2 Rotations

Although it is most common to rotate the entire figure in relation to a certain
angle, a rotation is defined by 2 angles we will denominate ’θ’ and ’ϕ’, which
will indicate the rotation of the horizontal and vertical lines, respectively.

� For example, we may rotate the horizontal lines only, leaving the verticals
untouched.

Figure 3.5: Horizontal rotation with θ = 0º.

� Or, we can maintain the horizontals and rotate the verticals.

Figure 3.6: Vertical rotation with ϕ = 30º.

� Finally, if both angles are the same, we rotate in relation to a point,
which is the zero of the axes.

16



Figure 3.7: Rotation in relation to a point with θ = ϕ = 30º.

3.3 Translations

Translations move the entire figure in the plane. We use the variables ’e’ and
’f’ to refer to the movement realizes on the axes. ’e’ for the horizontal axis,
and ’f’ for the vertical.

� Thus, ’e’ moves on the x axis

Figure 3.8: Translation on the x axis with e=0.5

� And the same vertically, ’f’ moves the figure on the y axis

Figure 3.9: Translation on the y axis with f=0.5

3.4 The deterministic algorithm. The matrix formula-
tion

The process of iterating the plane transformations we have previously seen
constitutes a deterministic algorithm for the generation of fractals. In the
next chapter we will see the general requirements for a set of applications that
comprise a deterministic algorithm.

We will now see the matrix formulation of these transformations.
This is the matrix formulation for the transformation that involves scaling

by ’r’ in the x-direction, by ’s’ in the y-direction, rotations by ’θ’ and ’ϕ’, and
translations by ’e’ and ’f’.

17



Figure 3.10: The matrix formulation

The order of these transformation is important. For example, reflecting
then translating can give a different result from translating then reflecting, as
in this next example:

Figure 3.11: Starting picture

Reflection, then translation gives

Figure 3.12: Reflection (r = −1) and translation (e = 1/2).

Translation, then reflection gives

Figure 3.13: Translation (e = 1/2) then reflection (r = −1).

We adopt this convention: scalings first, reflections second, rotations third,
and translations last. This order is imposed by the matrix formulation.

18



Emphasizing this order, the components of a transformation are encoded
in tables of this form.

Figure 3.14: Encoded table

With this encoding of transformations on the plane, we can make fractals
using the method called Iterated Function Systems (IFS). We will see it in
Chapter 4.

Example 3.1. For the Sierpinski Triangle fractal, the deterministic algorithm
consists in three plane transformations which can be seen in Figure 3.15: a
scaling (in blue), a scaling and a translation to the right (in red), and a scaling
with a upward translation (in green). The corresponding values for the plane
transformation variables we have just seen appear in the matrix.

Figure 3.15: The matrix encoding for the Sierpinski Triangle

Example 3.2. Here is another fractal, in this case, with a rotation of 90º in
the transformation to the right.

19



Figure 3.16: A example with rotation (Original generation code).

Example 3.3. Another classic example of fractal construction with plane
transformations, the Sierpinski Carpet. In this case, there are 8 transforma-
tions based on a scaling of 1/3 and the corresponding translations.

Figure 3.17: Sierpinski Carpet (Original generation code)
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4 The Collage Theorem

In this chapter we will present and prove one of the most important theorems
in the study of fractals and the theory around them, The Collage Theorem.

It was given by Michael F. Barnsley, with the intention of demonstrating
that it is possible to reconstruct images using a set of functions. A digital
image can be very big (referring to the amount of memory space it takes up),
and a video, with thousands of images, even more so. On the other hand,
saving a set of functions may offer a solution to this possible “space¨ problem.
This was even more so a few years ago when computers had much less memory
capacity then they do now, and made this an important advance in the field.

The Collage Theorem states that we can approximate an image using a
IFS (Iterated Function System) with a specific attractor. This will give the
desired image regardless of the initial image. To demonstrate this we will use
a particular case of the Contraction Mapping Theorem.

4.1 Complete Metric Space

Definition 4.1. A metric space is a set X with a global distance function
(the metric m) that, for every two points x, y ∈ X, gives the distance between
them, d(x, y) as a non-negative real number. For all x, y, z ∈ X, a metric space
must also satisfy:

1. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y

2. Symmetry: d(x, y) = d(y, x)

3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

Example 4.1. If we let d(x, y) = |x=y|, (R, d) is a metric space. The first
two conditions are obviously satisfied, and the third follows from the ordinary
triangle inequality for real numbers:

d(x, y) = |x=y| = |(x=z) + (z=y)|≤|x=z|+ |z=y| = d(x, z) + d(z, y)

Example 4.2. Assume that we want to move from one point x = (x1, x2)
in the plane to another y = (y1, y2), but that we are only allowed to move
horizontally and vertically. If we first move horizontally from (x1, x2) to (y1, x2)
and then vertically from (y1, x2) to (y1, y2), the total distance is d(x, y) =
|y1 − x1| + |y2 − x2|. This gives us a metric on R2 which is different from
the usual metric. It is often referred to as the Manhattan Metric (or the taxi
cab metric). Also in this case the first two conditions of a metric space are
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obviously satisfied. To prove the triangle inequality, observe that for any third
point z = (z1, z2), we have

d(x, y) = |y1=x1|+ |y2=x1|
= |(y1=z1) + (z1=x1)|+ |(y2=z2) + (z2=x2)|
≤|y1=z1|+ |z1=x1|+ |y2=z2|+ |z2=x2|
= |z1=x1|+ |z2=x2|+ |y1=z1|+ |y2=z2|
= d(x, z) + d(z, y)

where we have used the ordinary triangle inequality for real numbers to get
from the second to the third line.

Definition 4.2. A sequence {an}n is a Cauchy Sequence if the metric
d(am, an) satisfies

lim
min(m,n)→∞

d(am, an) = 0.

See Figure 4.1 for a visual example of a Cauchy and non-Cauchy sequence

Figure 4.1: Cauchy and non-Cauchy Sequences

Definition 4.3. A sequence Sn converges to the limit S, limn→∞ Sn = S, if,
for any ε > 0, there exists an N such that |Sn − S| < ε, ∀n > N . If Sn does
not converge, it is said to diverge.

Definition 4.4. Ametric space,X, is complete (or aComplete Metric Space)
if every Cauchy sequence is convergent.
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4.2 The Contraction Mapping Theorem

Definition 4.5. A transformation T : X → X on a metric space (X, d)
is called contractive or a contraction mapping (Figure 4.2) if there is a
constant 0 ≤ s < 1 such that ∀x, y ∈ X

d(T (x), T (y)) ≤ s · d(x, y)

Any such number s is called a contractivity factor for T .

Figure 4.2: Contraction mapping T

Proposition 4.1. Let ω : X → X be a contraction mapping on the metric
space (X, d). Then ω is continuous.

Proof. Let ε > 0 be given. Let s > 0 be a contraction factor for ω. Then
∀x, y ∈ X

d(ω(x), ω(y))≤s·d(x, y) < ε

whenever d(x, y) < δ, where δ = ε/s.

Definition 4.6. Let T : X → X be a transformation on a metric space (X, d).
Then, the point x ∈ X such that T (x) = x is called a fixed point.

With these definitions, we can now give the Contraction Mapping Theorem.

Theorem 4.1. (The contraction Mapping Theorem). Let f : X → X
be a contraction mapping on a complete metric space (X, d). Then f possesses
exactly one fixed point xf ∈ X and moreover for any point x ∈ X, the sequence
{fn(x) : n = 0, 1, 2, ...} converges to xf . That is,

lim
n→∞

fn(x) = xf , ∀x ∈ X.

Proof. Let x ∈ X. Let 0 ≤ s < 1 be a contractivity factor for f . Then

d(fn(x), fm(x)) ≤ smin(m,n)d(x, f |n−m|(x))
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Let k = |m− n|. Then,

d(x, fk(x)) ≤ d(x, f(x)) + d(f(x), f 2(x)) + ...+ d(f (k−1)(x), fk(x))

≤ d(x, f(x)) + s·d(x, f(x)) + ....+ s(k−1)
·d(x, f(x))

≤ (1 + s+ s2 + ...+ s(k−1))d(x, f(x))

≤ (1− s)−1d(x, f(x)),

so substituting into the first equation, we obtain

d(fn(x), fm(x)) ≤ smin(m,n)(1− s)−1d(x, f(x))

from which it immediately follows that {fn(x)}∞n=0 is a Cauchy sequence. Since
X is complete this Cauchy Sequence possesses a limit xf ∈ X, and we have

lim
n→∞

fn(x) = xf

Now we shall show that xf is a fixed point of f , and moreover, that it is
unique. By Proposition 4.1 since f is contractive it is continuous, then

f(xf ) = f( lim
n→∞

f(x)) = lim
n→∞

f (n+1)(x) = xf

Finally, let xf and yf be two fixed points of f . Then xf = f(xf ), yf = f(yf ),
and

d(xf , yf ) = d(f(xf ), f(yf )) ≤ sd(xf , yf )

=⇒ (1− s)d(xf , yf ) ≤ 0

=⇒ d(xf , yf ) = 0

And hence, xf = yf . This complete the proof.

4.3 The space K(X) . The Hausdorff distance

Definition 4.7. Let (X, d) be a metric space and let K(X) denote the corre-
sponding space of non-empty compact subsets of X.

We need to define a metric for this space.

Definition 4.8. (The Hausdorff distance). Let X,Y be elements of the
space K of non-empty compact subsets of the metric space (X, d). We define

� The distance between x ∈ X and the compact Y by

d(x, Y ) := min
y∈Y

|x− y|
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� The distance from the compact X to the compact Y by

d(X,Y ) := max
x∈X

{d(x, Y )}

Note that this set distance is not symmetric. It has the following properties

1. B ⊂ C =⇒ d(A,C) ≤ d(A,B)

2. d(A ∪B,C) = max{d(A,C), d(B,C)}

� The Hausdorff Distance dH between two compacts X,Y ∈ K by

dH(X,Y ) := max{d(X,Y ), d(Y,X)}

Remark. In figure 4.3 we can see the Hausdorff distance between two objects
in two different positions, which is the radius of the circles.

Hausdorff distance gives a measure of their mutual proximity, by indicating
the maximal distance between any point of one polygon to the other polygon,
as opposed to the shortest distance (euclidean), which applied only to one
point of each polygon, irrespective of all other points of the polygons. As we
can see, the Hausdorff distance in both cases is equal to the distance (from one
compact to another, as defined above) from the blue triangle to the red one,
but bigger than the distance from the red triangle to the blue. We can see that
in both figures the euclidean distance is similar and does not consider at all
the disposition of the polygons. The Hausdorff distance, however, is sensitive
to position, and therefore different in each case.

Figure 4.3: Hausdorff distance

Theorem 4.2. Let (X, d) be a metric space. Then, (K(X), dH) denotes a
metric space.
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Proof. It is necessary to prove that dH is a metric in our space K(X) in order
to see that (K(X), dH) is a metric space.

Let A,B,C ∈ K(X). By definition A,B,C are compact. It is clear that

h(A,A) = max{d(A,A), d(A,A)}
= d(A,A)

= max{d(x,A)|x ∈ A}
= 0

Let x ∈ A, x /∈ B. Then d(x,B = infy∈B{d(x, y)} > 0. Similarly, for
x ∈ B, x /∈ A. Then d(x,A = infy∈A{d(x, y)} > 0. This implies dh(A,B) > 0,
satisfying part (i) of the Definition 4.1.

To show the Triangle Inequality, dH(A,B) ≤ dH(A,C)+dH(C,B), we first
show it is true for d(A,B) ≤ d(A,C) + d(C,B).

For any x ∈ A,

d(x,B) = min
y∈B

{d(x, y)}

≤ min
y∈B

{d(x, z) + d(z, y)}∀z ∈ C}

= d(x, z) + min
y∈B

{d(z, y)}∀z ∈ C, so

d(x,B) ≤ min
x∈C

d(x, z) + max
z∈B

{min
y∈B

{d(z, y)}}

= d(A,B) + d(C,B), so

d(A,B) ≤ d(A,C) + d(C,B)

Similarly,
d(B,A) ≤ d(B,C) + d(C,A)

Finally,

h(A,B) = sup{d(A,B), d(B,A)}
≤ sup{d(B,C), d(C,B)}+ sup{d(A,C), d(C,A)}
= dH(B,C) + dH(A,C)

That shows the second and third points, thus dH is a metric.

Theorem 4.3. (The Completeness of the Space of Fractals) Let (X, d)
be a metric space. Then, (K(X), dH) is a complete metric space.

The proof of this theorem exceeds the scope of this paper, Barnsley´s
demonstration of it can be found in pg. 36-37 of his his book Fractals Everywhere[1].
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4.4 Iterated Function Systems. The Collage Theorem

Lemma 4.1. Let ω : X → X be a continuous mapping on the metric space
(X, d). Then ω maps K into itself.

Proof. Let S be a non-empty compact subset of X. Then clearly ω(S) =
{ω(x) : x ∈ S} is non-empty. We want to show that ω(S) is compact. Let
{yn = ω(xn)} be an infinite sequence of points in S. Then {xn} is an infinite
sequence of points in S. Since S is compact there is a subsequence {xNn}
that converges to a point x̂ ∈ S. But then the continuity of ω implies that
{yNn} = f(xNn) is a subsequence of yNn that converges to ŷ = f(x̂) ∈ ω(S).
And this complete the proof.

Lemma 4.2. Let ω : X → X be a contraction mapping on the metric space
(X, d) with contractivity factor s. Then ω : K(X) → K(X) defined by

ω(B) = {ω(x) : x ∈ B} ∀B ∈ K(X)

is a contraction mapping on (K(X), dH) with contractivity factor s.

Proof. From Proposition 4.1 it follows that ω : X → X is continuous. Hence
by Lemma 4.1 ω maps K(X) into itself. Now let B,C ∈ K(X). Then

d(ω(B), ω(C)) = maxmin d(ω(x, y), ω(y)) : y ∈ C : x ∈ B

≤ maxmin s·d(x, y) : y ∈ C : x ∈ B = s·d(B,C).

Similarly, d(ω(C), ω(B)) ≤ s·d(C,B). Hence

dH(ω(B), ω(C)) = max d(ω(B), ω(C)), d(ω(C), ω(B))

≤ s·max{d(B,C), d(C,B)

≤ s·d(B,C)

Lemma 4.3. For all A,B,C, and D, in K(X)

dH(A ∪B,C ∪D) ≤ max(dH(A,C), dH(B,D)),

where as usual dH is the Hausdorff metric.

Proof. Remember that

dH(A ∪B,C ∪D) = max{d(A ∪B,C ∪D), d(C ∪D,A ∪B)}

Then, we will prove that both are the same.

d(A ∪B,C ∪D) = max{d(A,C ∪D), d(B,C ∪D)}
≤ max{d(A,C), d(B,D)}
≤ max{max{d(A,C), d(C,A)},max{d(B,D), d{D,B}}
= max{dH(A,C), dH(B,D)
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The same argument yields

d(C ∪D,A ∪B) ≤ max{d(C,A), d(D,B)}
= max{d(A,C), d(B,D)}
≤ max{dH(A,C), dH(B,D)

Definition 4.9. An iterated function system consists of a complete metric
space (X, d) together with a finite set of contraction mappings ωn : X → X,
with respective contractivity factors sn, for n = 1, 2, ..., N . The notation for
the IFS just announced is {X;ωn, n = 1, 2, ..., N} and its contractivity factor
is s = max{sn : n = 1, 2, ..., N}.

What an IFS does is scales, translates, and rotates a set using a finite
set of functions, which is now possible having demonstrated the Contraction
Mapping Theorem.

Example 4.3. Recall our previous example of the Cantor Set (Figure 4.4),
and consider the set of functions that generates it. We need two functions, one
that scales down by a factor of three, and one that scales and translates by
two-thirds the original length. So, we get our IFS f1, f− where f1 = 1

3
x and

f2 =
1
3
x + 2

3
. As we continue to iterate this function system, we will reach a

point where we will not have any intervals, but there will be infinitely many
points around a single point, which is the defining property of a Cantor Set.

Figure 4.4: Cantor Set

Using notation with IFS,

I1 = f1(I0) ∪ f2(I0)

I2 = f1(I1) ∪ f2(I1)
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...

In = f1(In−1) ∪ f2(In−1)

thus,

C = f1(C) ∪ f2(C)

where I0 is the initial interval [0, 1] and C the fixed point of the IFS.

Now we have to show that this fixed point C exists and is unique.

Theorem 4.4. Let {X;ωn, n = 1, 2, ..., N} be a iterated function system with
contractivity factor s. Then the transformation W : K(X) → K(X) defined by

W (B) = ∪N
n=1ωn(B)

for all B ∈ K(X), is a contraction mapping on the complete metric space
(K(X), dH) with contractivity factor s. That is

dH(W (B),W (C)) ≤ s·dH(B,C)

for all B,C ∈ K(X).

Proof. For any B,C ∈ K(X) ,

dH(W (B),W (C)) = dH(
N⋃

n=1

ωn(B),
N⋃

n=1

ωn(C))

≤lema 8 N
max
n=1

{dH(ωn(B), ωn(C)}

=def N
max
n=1

{max{d(ωn(B), ωn(C)), d(ωn(B), ωn(C))}}

≤ max{s·d(B,C), s·d(C,B)}
= s·dH(B,C)

Definition 4.10. The transformationW used in the previous theorem is called
the Hutchinson Operator.

Definition 4.11. An attractor is the unique fixed point, A ∈ K(X), obeys

A = W (A) = ∪n
n=1ωn(A)

and is given by
A = lim

n→∞
W n(B)

for any B ∈ K(X).

29



Corollary 4.1. Given an Iterated Function System, there exists only one at-
tractor.

Now that we have a solid background of information about contraction
mapping and attractors, we can finally discuss the Collage Theorem, an appli-
cation of the Banach Fixed-point Theorem.

Theorem 4.5. (Collage Theorem for IFS). If B ∈ K(x) obeys

dH(B,W (B)) ≤ ε > 0

then
dH(B,A) ≤ ε

(1− s)

where A denotes the attractor of the IFS.

Proof. By the contraction mapping theorem

dH(B,A) = dH(B, lim
n→∞

W n(B)) = lim
n→∞

dH(B,W nB))

We will use the induction:
First step: dH(B,W (B)) ≤ ε < ε

(1−s)

Now, suppose that dH(B,W n(B)) ≤ ε
(1−s)

.

Then we want to show that dH(B,W n+1(B)) ≤ ε
(1−s)

dH(B,W n+1(B)) ≤
n+1∑
m=1

dH(W
m−1(B),Wm(B))

=
n+1∑
m=1

dH(W
m−1(B),Wm−1(W (B)))

≤
n+1∑
m=1

sm−1dH(B,W (B))

≤ 1− sn+1

(1− s)
·ε

≤ ε

(1− s)

And this complete the proof.
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5 The Random Algorithm. The Chaos Game

In the previous chapter we saw the Deterministic Algorithm for fractal genera-
tion. Applying some given affine transformations repeatedly to any (compact)
initial image, we obtain, at the limit, a fixed point for these transformations.
The fixed point will be a fixed image, simultaneously invariable to all the
transformations.

In this section we will show another algorithm which serves to represent a
fractal, the Chaos Game algorithm. This is one of the best known algorithms
that generate a set of points which approximate the attractor sets we have
seen in previous sections.

5.1 The algorithm

Let w1, . . . , wN be some norms or applications on a complete metric space X,
and p1, . . . pN some nonzero probabilities associated to each one respectively,
so that,

∑N
i=1 pi = 1. These norms are actually contractive function on a

complete metric space and therefore constitute an IFS.

The algorithm consists in iterating the following steps:

1. Chose a point x0 ∈ X.

2. Randomly choose one of the applications wi according to the probability
pi.

3. Compute the point xn+1 = wi(xn).

4. Return to step 2 and repeat the process changing xn for xn+1.

5.2 Example: the Sierpinski Triangle

Let us see, for example, the construction of the Sierpinski Triangle with this
algorithm.

Given three points, A, B and C, placed so they are the vertices of an
equilateral triangle, we will randomly choose a point x0 on the plane (even
outside the triangle). We will then draw the sequence x0, x1, x2, . . . created by
the following procedure:

� Randomly choose one of the three vertices.

� Draw the middle point between the previous point and the chosen vertex,
this will be the next point in the series.

� Repeat the process with the new point.
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Let us identify more formally the elements we need in order apply the
Chaos Game in the case we have defined:

� The initial point will be a any point (x0, y0) in the plane. Supposing we
want a triangle with a length of 1 and vertices : A = (0, 0), B = (1, 0),
C = (1/2,

√
3/2).

� The norms shall be :

– w1(x, y) = (x/2, y/2) = ((x, y) + A)/2

– w2(x, y) = (x/2 + 1
2
, y/2) = ((x, y) + C)/2

– w3(x, y) = (x/2 + 1
4
, y/2 + (3)/4 = ((x, y)C)/2

In the Figure 5.1 we can see different moments of the process.

Figure 5.1: The Chaos Game for the Sierpinski Gasket at 100,1.000,10.000 and
100.000.

5.3 Equivalence to the Deterministic Algorithm

As we can see, we have generated the Sierpinski triangle. Or so it seems.
But can we really be sure it is the one and same? Can it just be a very
similar looking set? And what about the random order in which we applied
the functions? Would another order produce a different result? And the initial
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point? Does it matter if it is part of the attractor set or would just any point
in the plane do? The following theorem will clear all doubts.

Let us quickly remind ourselves of some concepts we discussed earlier:

� An Iterated Function System on a complete metric space (X, d) is a
finite collection {w1, ..., wN}, N > 1, of contractions wi : X → X (see
Definition 4.9).

� Denote by K(X) the collection of the non-empty compact subsets of a
complete metric space (X, d) and dH the Hausdorff metric induced by
the metric d. (K(X), dH) is a metric space (see Section 4.3).

� Given an IFS, we can define the Hutchinson operator W as a trans-
formation on the metric space (K(X), dH):

W (E) =
N⋃
i=1

wi(E) , E ∈ K(X), (5.1)

� On the basis of the Collage Theorem (see Theorem 4.5) there is a set
A ∈ K(X) that is the unique fixed point of W , called the attractor of
the IFS. Hence,

A = W (A) (5.2)

� Let wi be a contractive mapping (see Definition 4.5), therefore, we have

d(wi(x), wi(y)) ≤ si.d(x, y) , for any x, y ∈ X

where si denotes the contractivity factor of wi.

Definition 5.1. The diameter of a subset E ⊂ X shall be

diam(E) = sup
x,y∈E

{d(x, y)} (5.3)

for any x, y ∈ E.

Theorem 5.1. Let {w1, ..., wN} be an IFS on a complete metric space (X, d).
Let A be the attractor of the IFS. Let {xn}∞n=0 be a set of points generated by
the Chaos Game, where x0 is any point of X. Then, with probability 1, for
any ε > 0, there is a number M ∈ N such that dH(A, {xn}∞n=M) ≤ ε. That is,
the closure of the set {xn}∞n=M approximates A with an error no greater than
ε with respect to the Hausdorff metric, dH .

Proof. The proof consists of two parts. In the first, we assume that the initial
point x0 belongs to the attractor A and show that the set {xn}∞n=M is dense
in A for any M ∈ N - thus {xn}∞n=M = A. Then, in the second part, we use
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that fact to show the correctness of the Chaos Game in the more general case
in which x0 is any point of X.

Let x0 ∈ A. By (5.1) the IFS mappings transform the attractor into itself,
so {xn}∞n=0 ⊂ A. Let a be any point of A. In order to prove that {xn}∞n=M

is dense in A for any M ∈ N, we need to show that for any ε > 0 and any
M ∈ N, the subset {xn}∞n=M includes, with probability 1, a point x ∈ A such
that d(x, a) ≤ ε.

On the basis of (5.2) we have

A = W ok(A) =
⋃

i1,...,ik∈{1,...,N}

wi1 , ..., wik , for any k ∈ N.

And, based on (5.3), for any E ⊂ X

diam(wi(E)) = sup
x,y∈E

d(wi(x), wi(y)) ≤ sup
x,y∈E

{si.d(x, y)}

The attractor A can be regarded as a finite union of Nk subsets wi1 ◦
... ◦ wik(A). The diameter of each subset will depend on k. Let us bind this
diameter by an arbitrary ε.

diam(wi1 ◦ ... ◦ wik(A)) ≤ ( max
i=1,...,N

si)
k.diam(A) ≤ ε

=⇒ log(( max
i=1,...,N

si)
k.diam(A)) ≤ log ε

=⇒ log(( max
i=1,...,N

si)
k + log(diam(A))) ≤ log ε

=⇒ k · log( max
i=1,...,N

si) + log(diam(A))) ≤ log ε

=⇒ k. log( max
i=1,...,N

si) ≤ log ε− log(diam(A))

So given ε > 0 and as 0 < si < 1, taking

k ≥ log ε− log(diam(A))

log(maxi=1,...,N si)

we have

diam(wi1 ◦ ... ◦ wik(A)) ≤ ε

Hence, the point a belongs to at least one of the sets of the attractor
decomposition, say a ∈ wi1 ◦ ... ◦ wik(A). Thus, if, starting from any mth
iteration of the Chaos Game, the sequence wik , ..., wi1 of the IFS mappings gets
chosen in the k successive iterations of the algorithm, then the point xm+k−1 ∈
{xn}∞n=0 will belong to the set wi1 ◦ ... ◦ wik(A) and, hence, d(xm+k−1, a) ≤ ε.
Now we will show that, with probability 1, the sequence will occur infinitely
many times as the Chaos Game proceeds.
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Let Bm denote the event that the mappings wik , ..., wi1 get chosen succes-
sively in the mth,(m + 1)th,...,(m + k − 1)th iteration of the Chaos Game
respectively. Since, in successive iterations of the algorithm the IFS mappings
are chosen independently, the probability for the event Bm to occur is

P (Bm) =
k∏

j=1

pij > 0 (5.4)

Obviously the events Bm, m = 1, 2, ..., are not independent. Nevertheless,
the events Bkm, m = 1, 2, ..., are independent and, thus, the occurrence of the
events from the subsequence {Bkm}∞m=1 can be regarded in terms of infinite
Bernoulli trials with probabilities p for success specified by (5.4). On the basis
of Borel’s law of large numbers [3] we have that with probability 1,

lim
m→∞

Sm

m
= p

where Sm denotes the number of successes in the first m trials. Hence, with
probability 1, Sm → ∞ as m → ∞. Therefore, during the infinite iteration
of the Chaos Game, infinitely any events from the subsequence {Bkm}∞m=1 will
occur, and all the more so from the sequence {Bm}∞m=1.

On the basis of the above, for any M ∈ N, during the infinite iteration
of the Chaos Game, infinitely many events from {Bm}∞m=M will occur with
probability 1 as well. The point a has been specified as any point of the
attractor A. Therefore, assuming that the initial point x0 ∈ A, it follows that,
with probability 1, the set {Bm}∞m=M is dense in A.

Now we go to the second part of the proof in which we will take the initial
point x0 to be any point of the space X. Let {xn}∞n=0 and {yn}∞n=0 be the
sets of points which are generated concurrently by the same realization of the
Chaos Game for the initial points x0 ∈ X and y0 ∈ A, respectively. In other
words, xn+1 = wi(xn) and yn+1 = wi(yn), where wi is the IFS mapping chosen
in the mth iteration of the algorithm. Since the IFS mappings are contractive,
we obtain that the distance between the points xn and yn in the mth iteration
satisfies

d(xm, ym) = d(wim ◦ ... ◦ wi1(x0), wim ◦ ... ◦ wi1(y0))

≤
m∏
j=1

sijd(x0, y0)

and, moreover, for any n > m,

d(xn, yn) ≤ sn−md(xm, ym),

where s = maxi=1,...,N si < 1. It follows that for any ε > 0, there is an
M ∈ N such that the distance d(xn, yn) ≤ ε for every n ≥ M . Hence, the
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Hausdorff distance between the closures of the subsets {xn}∞n=M and {yn}∞n=M

satisfies
dH({xn}∞n=M , {yn}∞n=M) ≤ ε.

But y0 ∈ A. So on the basis of the first part of the proof, {yn}∞n=M = A with
probability 1. This completes the proof.

We can now assert that the Chaos Game generates a sequence of points
which, at its closure is the attractor of the IFS or, in the case of an initial point
which is not in the attractor, a sequence of points which comes infinitely close
to the attractor, and its closure arbitrarily close to it. Furthermore, we have
seen that neither the order in which we select the functions, nor the initial
point chosen, effect the result (in the same way the initial compact does not
effect the resulting attractor in the deterministic algorithm).

Thus, we finalize this chapter with the conclusion that the random algo-
rithm and the deterministic one are equivalent to each other.
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6 Fractal dimensions

In previous chapters we have presented the idea of fractals, and seen some
examples. We have also explained some concepts necessary for their generation
and were able to enunciate formally the two basic and equivalent algorithms
that generate them – the deterministic and the random one.

We will now go on to study an important property of fractals - the Fractal
Dimension. This property is so important that it is often used to define a
fractal, as a set who´s fractal dimension is greater the the topological one.
Falconer considers [4] this definition unsatisfactory in that it excludes a number
of sets that ought to be regarded as fractals. Nonetheless this property has
many practical applications for the study of natural phenomena which will see
in the last chapter of this paper.

6.1 The topological dimension

The common notion of dimension is that which is called the topological di-
mension, and it is always a natural number.

All the fractals we have seen can be represented on a plane, so their dimen-
sion should be no greater than 2. Let us take as an example Koch’s Curve,
which we have seen earlier (Figure 2.6).

At a glance, we can say the dimension is 1. And why not? It is obviously
more then 0 since it is not a totally disconnected set of isolated points. On
the other hand, it does not have an area, so its dimension must be less than
2. So the topological dimension of the curve is 1.

But this seems insufficient, since the curve is very dense. Its length is
infinite within a closed space.

Figure 6.1: Curves of different densities.

Could we find a way to quantify the density of each fractal in figure 6.1.
Could we distinguish by this density a piece of coastline of two different coun-
tries without seeing the entire country? Or, could we tell apart a healthy heart
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from a sick one by just looking at an image of a small part of it. How about the
other way around, generating an image of a forest knowing only the structure
of one tree.

In order to do so, and much more, we would require a new dimension that
will enable us to compare fractals.

This dimension represents an idea of how densely a fractal occupies the
metric space in which it is found, and enable us to make comparisons between
different fractals.

As we will see, various definitions of fractal dimension exist. Lets us see
the most general case, which is the Hausdorff Dimension, and some particular
cases of it, which are specific dimensions for simpler fractals.

6.2 The Hausdorff measure and dimension

The Hausdorff measure

Definition 6.1. Let E be a non-empty subset of n-dimensional Euclidean
space, Rn. A δ-cover of the subset E is a countable (or finite) collection of sets,
which each have a diameter of at most δ, and which cover E, i.e. E ⊂

⋃∞
i=1 Ui

with 0 ≤ diam(Ui) ≤ δ for each i.

Definition 6.2. Let E be a non-empty subset of Rn,{Ui} a δ-cover of E, and
s a non-negative number. For any δ > 0 we define

Hs
δ(E) :=inf

{
∞∑
i

diam(Ui)
s

}

Thus we look at all covers of E by sets of diameter at most δ and seek to
minimize the sum of the sth powers of the diameters. As δ decreases, the class
of permissible covers of E is reduced. Therefore, the infimum Hs

δ(E) increases,
and so approaches a limit as δ → 0.

Definition 6.3. Let E be a non-empty subset of Rn. We define the s-dimensional
Hausdorff measure of E as

Hs(E) = lim
δ→∞

Hs
δ(E)

Observe that this limit exists for any subset E, thought the limiting value can
be (and usually is) 0 or ∞.
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with a certain amount of effort, Hs(E) may be shown to be a measure,
and (Rn,Hs(E)) a metric space. The in-depth exploration of measurements
is beyond the scope of this paper, these demonstrations can be found in the
book Fractal geometry [4].

The Hausdorff-Besicovitch dimension

Based on the Definition 6.2 it is clear that for any given set E ⊂ Rn and
δ < 1, Hs

δ(E) is non-increasing with s, so, by Definition 6.3, Hs(E) is also
non-increasing. In fact, rather more is true: if t > s and {Ui} is a δ-cover of
E we have∑

i

diam(Ui)
t ≤

∑
i

diam(Ui)
t−sdiam(Ui)

s ≤ δt−s
∑
i

diam(Ui)
s

so, taking infima, Ht
δ(E) ≤ δt−sHs

δ(E). Letting δ → 0 we see that if Hs(E) <
∞ then Ht(E) = 0 for t > s. Thus a graph of Hs(E) against s shows that
there is a critical value of s at which Hs(E) ’jumps’ from ∞ to 0 (see Figure
6.2). This critical value is called the Hausdorff dimension of E; it is defined
for any set E ⊂ Rn. Formally

Figure 6.2: Graph of Hs(E) against s

Definition 6.4. Let E be a non-empty subset of Rn. Let Hs(E) be the
s-dimensional Hausdorff measure of E. The Hausdorff dimension of E is

dimHF = inf{s ≥ 0 : Hs(E) = 0} = sup{s : Hs(E) = ∞}.

so that

Hs(E) =

{
∞ if 0 ≤ s < dimHE

0 if s > dimHE

Hausdorff measures generalize the familiar ideas of length, area, volume,
etc. It may be shown that, for subsets of Rn, n-dimensional Hausdorff measure
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is, with a constant multiple, just n-dimensional Lebesgue measure, i.e. the
usual n-dimensional volume. More precisely, if E is a Borel subset of Rn, then

Hn(E) = c−1
n voln(E)

where cn is the volume of an n-dimensional ball of diameter 1, so that cn =
πn/2/2n(n/2)! if n is even and cn = π(n−1)/2((n − 1)/2)!/n! if n is odd. Sim-
ilarly, for ’nice’ lower-dimensional subsets of Rn, we have that H0(E) is the
number of points in E; H1(E) gives the length of a smooth curve E; H2(E) =
(4/π) · Area(E) if E is a smooth surface; H3(E) = (6/π) · vol(E); and
Hm(E) = c−1

m volm(E) is a smooth m-dimensional submanifold of Rn (i.e. an
m-dimensional surface in the classical sense).

Example. For a very simple example, let E be a flat disc of unit radius in R3.
From familiar properties of length, area and volume, H1(E) = length(E) = ∞,
0 < H2(E) = (4/π) · area(E) = 4 < ∞ and H3(E) = (6/π) · vol(F ) = 0. Thus
dimHE = 2, with

Hs(E) =

{
∞ if s < 2

0 if s > 2

The Hausdorff dimension, in general, is complicated to compute. But for
particular cases, such as self-similar fractals this complication can be signifi-
cantly reduced. In the next section we will see how to easily calculate their
dimension.

The Self-similarity Dimension

Most of the objects we have seen in this paper, and the simplest in terms of
fractal geometry, are those generated by affinities with the same contraction
factor. That is to say, strictly self-similar objects, made by scaled down, exact
copies of themselves.

The scaling properties of length, area and volume are well known. On
magnification by a factor λ, the length of a curve is multiplied by λ, the area
of a plane region is multiplied by λ2 and the volume of a 3-dimensional object
is multiplied by λ3. As might be anticipated, s-dimensional Hausdorff measure
scales with a factor λs (see Figure 6.3).
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Figure 6.3: Scaling sets by a factor λ increases length by a factor λ, area by a
factorλ2, and s-dimensional Hausdorff measure by a factorλs.

Proposition 6.1. (Scaling property). Let S be a similarity transformation
of scale factor λ > 0. If E ⊂ Rn, then

Hs(S(E)) = λsHs(E).

Proof. If {Ui} is a δ-cover of E then {S(Ui)} is a λδ-cover of S(E), so∑
diam(S(Ui))

s = λs
∑

diam(Ui)
s

so
Hs

λδ(S(E)) ≤ λSHs
δ(E)

on taking the infimum. Letting δ → 0 gives that Hs(S(E)) ≤ λSHs(E).
Replacing S by S−1, and so λ by 1/λ, and E by S(E) gives the opposite
inequality required. This complete the proof.

We will see how to calculate the Hausdorff Dimension of a Self-similarity
fractal with the Middle third’s Cantor Set example.

Example. Let E be the Middle Third Cantor Set (Figure 2.8). If s =
log(2)/ log(3), then dimHE=s and 1/2 ≤ Hs(E) ≤ 1.

Heuristic calculation. The Cantor Set E splits a left part EL = E ∩ [0, 1
3
]

and a right part ER = E ∩ [2
3
, 1]. Clearly both parts are geometrically similar

to E but scaled by a ratio 1
3
, and E = EL ∪ER with this union disjoint. Thus

for any s

Hs(E) = Hs(EL) +Hs(ER) = (
1

3
)sHs(E) + (

1

3
)sHs(E) = 2(

1

3
)sHs(E)
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by the scaling property (Proposition 6.1) of Hausdorff measures. Assuming
that at the critical value s = dimHE we have 0 < Hs(E) < ∞ (a big assump-
tion, but one that can be justified) we may divide by Hs(E) to get 1 = 2(1

3
)s

or s = log(2)/ log(3).

Rigorous calculation. We call the intervals that make up the sets Ek in
the construction of E level-k intervals. Thus Ek consists of 2k level-k intervals
each of length 3−k.

Taking the intervals of Ek as a 3−k cover of E gives that Hs
3−k(E) ≤

2k3−ks = 1 if s = log(2)/ log(3). Letting k → ∞ gives Hs(E) ≤ 1.
To prove that Hs(E) ≥ 1

2
we show that∑
diam(Ui)

s ≥ 1

2
= 3−s (6.1)

for any cover {Ui} of E. Clearly, it is enough to assume that the {Ui} are
intervals, and by expanding them slightly and using the compactness of E, we
need only verify (6.1) if {Ui} is a finite collection of closed subintervals of [0, 1].
For each Ui, let k be the integer such that

3−(k+1) ≤ diam(Ui) < 3−k. (6.2)

Then Ui can intersect at most one level-k interval since the separation
of these level-k intervals is at least 3−k. If j ≥ k then, by construction, Ui

intersects at most 2j−k = 2j3−sk ≤ 2j3sdiam(Ui)
s level-j intervals of Ej, using

(6.2) if we choose j large enough so that 3−(j+1) ≤ diam(Ui) for all Ui, then
since the {Ui} intersect all 2j basic intervals of length 3−j, counting intervals
gives 2j ≤

∑
i 2

j3sdiam(Ui)
s, which reduces to (6.1).

With extra effort, the calculation can be adapted to show that Hs(E) = 1.
That is to say the s-dimensional Hausdorff measure is 1, with s = log(2)/ log(3).

6.3 The Box-counting dimension

Box-counting dimension is one of the most widely used dimensions. Its pop-
ularity is largely due to its relative ease of mathematical calculation and em-
pirical estimation.

Definition 6.5. Let E be any non-empty bounded subset of Rn and let Nδ(E)
be the smallest number of sets of diameter at most δ which can cover E. The
lower and upper box-counting dimension of E respectively are defined
as

dimBE = limδ→0

logNδ(E)

− log δ

dimBE = limδ→0
logNδ(E)

− log δ
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If these are equal we refer to the common value as the box-counting dimension
of E

dimBE = lim
δ→0

logNδ(E)

− log δ

we can see that considering subset E as non-empty and bounded, we avoid
problems with log 0 y log∞.

There are several equivalent definitions of box-counting dimension that are
sometimes more convenient to use. We shall explain one of those. Consider
the collection of cubes in the δ-coordinate mesh of Rn, i.e. cubes of the form

[m1δ, (m1 + 1)δ]× · · · × [mnδ, (mn + 1)δ]

where m1, ...,mn are integers. Let N
′

δ(E) be the number of δ-mesh cubes that
intersect E. They obviously provide a collection of N

′

δ(E) sets of diameter
δ
√
n that cover E, so

Nδ
√
n(E) ≤ N

′

δ(E).

If δ
√
n < 1 then

logNδ
√
n(E)

− log δ
√
n

≤ logN
′

δ(E).

− log
√
n− log δ

so taking limits as δ → 0

dimBE ≤ limδ→0

logN
′

δ(E)

− log δ

dimBE ≤ limδ→0
logN

′

δ(E)

− log δ

On the other hand, any set of diameter at most δ is contained in 3n mesh cubes
of side δ. Thus

N
′

δ(E) ≤ 3nNδ(E)

and taking logarithms and limits as δ → 0 leads to the opposite inequalities.
Hence to find the box-counting dimensions we can equally well take Nδ(E) to
be the number of mesh cubes of side δ that intersect E.

This version of the definitions is widely used empirically. To find the box
dimension of a plane set E we draw a mesh of squares or boxes of side δ. The
dimension is the logarithmic rate at which Nδ(E) increases as δ → 0, and
may be estimated by the gradient of the graph of logNδ(E) against − log δ =
log(1/δ).

6.4 Box-counting calculating program

We will now present an original program, written in Python, which calcu-
lates the box-counting dimension for any image, using the equivalent version
we have just described.

———————–
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from PIL import Image
import math

im = Image . open ( ’ f r a c t a l . jpg ’)#open any image

s i z e x = im . s i z e [ 0 ]
s i z e y = im . s i z e [ 1 ]

m1 = 32 #s i z e o f f i r s t mesh cube
m2 = 64 #s i z e o f f i r s t mesh cube

#Compute MCD and mcm
A = max(m1, m2)
B = min(m1, m2)
whi l e B:

mcd = B
B = A % B
A = mcd

mcm = (m1 * m2) // mcd

p e r f e c t S i z e = 0
whi l e p e r f e c t S i z e<s i z e x :

p e r f e c t S i z e += mcm

#th i s func t i on conver t s the c o l o r in fo rmat ion in binary
de f negre (m,mx,my, x , y ) :

f o r i in range (m*x ,m*x+mx) :
f o r j in range (m*y ,m*y+my) :

i f im . g e t p i x e l ( ( i , s i z ex−1−j ) ) [ 0 ] < 230 :
re turn 1

re turn 0

#th i s func t i on counts how many o f the mesh cube r e g i on s i n t e r s e c t with the image
de f calCount (m) :

dimx = pe r f e c t S i z e /m
dimy = pe r f e c t S i z e /m
count = 0
i = 0
whi l e ( i +1)*m < s i z e x :

j = 0
whi l e ( j +1)*m < s i z e y :

i f negre (m,m,m, i , j ) == 1 :
count = count +1

j += 1
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i f negre (m,m, s i z ey−j *m, i , j ) :
count = count +1

i = i+1
j = 0
pr in t ” ult ima columna”
whi l e ( j +1)*m < s i z e y :

i f negre (m, s i z ex−i *m,m, i , j ) :
count = count + 1

j += 1
pr in t ” ult im quadrat da l t dreta ”
i f negre (m, s i z ex−i *m, s i z ey−j *m, i , j ) :

count = count + 1
return count

boxDimNum = (math . l og ( calCount (m1))−math . l og ( calCount (m2) ) )
boxDimDen = (math . l og ( f l o a t (1)/m1)−math . l og ( f l o a t (1)/m2) )
boxDime = boxDimNum / boxDimDen #the box−count ing dimension

———————–
Although theoretically sound, the program meets with some practical lim-

itations. Any image can be analyzed, but some give a significant error. This
is due to the limitation of images constructed of pixels, which must be either
“full” or “empty”, where the fractal form should actually continue. Best re-
sults are achieved with self-similar fractals, due to their simplicity. Here are
some examples.
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7 Applications

So, having studied fractals, their construction, properties and dimensions, can
we now answer Mandelbrot´s question – “how long is the coast of Britain?”.
Actually, we can´t. It´s a paradox. The length of the coastline depends on
scale, the closer we get, the longer it measures. The coast of Spain, for example,
is 4.964 km according to The World Factbook; 7.268 km according to the WRI;
and 7.879 km according to IGN (there is no international agreement on the
scale of measurement).

We can see that the property of length, which is clear cut in perfect ge-
ometric objects, is not so for a coastline. If we had an infinitely fine ruler,
atomically fine, the coastline of any country would be very long indeed. The
question of length in natural, rough, objects becomes senseless. Like a 1:1 map
of the world proposed by Lewis Carroll, it affords no useful information and
only blocks the sunlight.

We can, on the other hand, know some useful numbers about coastlines,
or any other fractal-like object: there is a stable ratio between the change in
scale and the change in detail, which is the fractal dimension. This dimension
gives us information about the world and, as we have said, has many practical
applications. Let us see some examples:

7.1 Coronary dysfunctions

Many studies have been made about the use of fractal dimensions in the service
of medicine. Arterial and venous trees and the branching of certain cardiac
muscle bundles and a number of complex anatomic structures display fractal-
like geometry. These self-similar structures subserve at least one fundamental
physiologic function: rapid and efficient transport over complex, spatially dis-
tributed networks. It seems there is a gradual loss of complexity in these
structures due to age or disease. The difference between a healthy and a sick
heart may become evident with fractal analysis. The study described in the
article “Fractal diagnosis of severe cardiac dysfunction. Fractal dynamic of the
left coronary branching” [12] shows that a healthy heart exhibits a non-zero
fractal dimension with a wide range of variability, whereas a heart presenting
an arterial obstruction displayed a lower and less variable fractal dimension.

7.2 Age group classification

Human face analysis provides much information and is the topic of many in-
vestigations. In a study carried out in King Saud University [14], a novel
method for human age group classification based on the Correlation Fractal
Dimension of facial edges is described. With age there are changes in internal
bone structure, a loss of elasticity of the skin and a loss of sub cutaneous fat.
These factors constitute age-invariant signatures of faces. The above changes
manifest in the form of facial wrinkles and facial edges. Previously, no study
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has attempted to classify the facial image of humans into four categories based
on the Fractal Dimension value. In the study the images were cut and con-
verted to grayscale (see Figure 7.2) and the facial edge was extracted using
the canny edge operator, and finally, the correlation between the Fractal Di-
mension of various parameters was calculated, thus classifying the age group
of each image with a very high degree of accuracy (see Figure ).

Figure 7.1: Grayscale faces.

Figure 7.2: Classification graph of age group classification based on the pro-
posed method.

7.3 Meteorological quantities

This next project, carried out in the Czech Republic [7], attempted to ascer-
tain the relation between the fractal dimension of micro-meteorologic char-
acteristics and thermodynamics of the atmosphere, and the development of
biodiversity and the violation of the Small Water Cycle (SWC). The research
data from 15 measuring centers in the Trebon region was collected into the
database, placed in a time series, and its fractal dimension was calculated us-
ing the box counting method. Each of the centers measured 13 meteorological
variables like a temperature in 2 meters and 30 centimeters above surface, hu-
midity (in the same altitude), solar radiation and the radiation reflected from
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earth surface, rainfall, wind speed and direction and temperature and humid-
ity of the earth in different depth. The data from these measuring centers was
saved into the database with a 5 minute period. The measuring points were
categorized into group according to their surface (meadow, tideland, pond,
field, concrete surface etc.).

The experimental results showed that the fractal dimension of micro-meteorological
quantities has a relation to the environmental factors. E.g., fractal dimension
of the earth temperature under the concrete surface (where the violation of the
SWC is expected) was found to be significantly lower than a fractal dimension
from pasture and above the earth surface vice versa.

7.4 Stock Market

The article “Computing the fractal dimension of stock market indices”[9].
shows that the stock market can be analyzed as a fractal and assigned a fractal
dimension. The fractal structure of the stock market comes in contrast with
the Efficient Market Hypothesis, which assumes that markets follow a random
walk, making the impact of any new information essentially unpredictable.
Rescaled range (R/S) analysis shows that the stock market, like many other
systems, is not completely random, but has a long term memory that links
patterns in its behavior over time, giving it a fractal structure. To analyze the
stock market’s fractal structure, we have to view it as a time series, or a series
of points spaced out evenly in time, each having a value that corresponds to
the behavior of the stock market at that point in time.

The article concludes that chaos theory can be applied to assign order and
detect patterns even in seemingly random systems, such as the stock market
and that analysis of the fractal dimension of the stock market as a whole may
eventually lead the way to prediction of the market’s behavior.

7.5 Shopping Paths

The usage of fractal dimensions extends over many and diverse fields, reaching
even the most daily activities such as shopping. A study published in the
journal Procedia Computer Science[8] intends to demonstrate the influence
of shopping paths in a supermarket on purchase behavior. It uses fractal
dimension to quantify the complexity of customer shopping paths, then relating
it to mean volume of purchase and stay time in store.

1000 customers in a supermarket in Japan were analyzed and divided into
two groups, according to the fractal dimension of the path (high and low).
Focusing on the sales amount analysis results, it seems that more products were
purchased when there was strong complexity and randomness of the customer
in-store movements (high fractal dimension). Specifically, the stay time in
store resulted in a difference of more than double; people in the high fractal
dimension customer group tended to have a longer shopping time.
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Islands in the sea of complexity

To appreciate the nature of fractals, recall Galileo’s splendid manifesto that
”Philosophy is written in the language of mathematics and its characters are
triangles, circles and other geometric figures, without which one wanders about
in a dark labyrinth.” Observe that circles, ellipses, and parabolas are very
smooth shapes and that a triangle has a small number of points of irregularity.
Galileo was absolutely right to assert that in science those shapes are necessary.
But they have turned out not to be sufficient, ”merely” because most of the
world is of infinitely great roughness and complexity. However, the infinite
sea of complexity includes two islands: one of Euclidean simplicity, and also a
second of relative simplicity in which roughness is present, but is the same at
all scales.

From the interview A theory of roughness with B. Mandelbrot [12.19.04]
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