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Abstract

Maps are a useful tool to display information. They are used on a daily basis to
locate places, orient ourselves or present different features, such as weather forecasts,
population distributions, etc. However, every map is a representation of the Earth
that actually distorts reality. Depending on the purpose of the map, the interest
may rely on preserving different features. For instance, it might be useful to design
a map for navigation in which the directions represented on the map at a point
concide with the ones the map reader observes at that point. Such map projections
are called conformal.

This dissertation aims to study different conformal representations of the Earth.
The shape of the Earth is modelled by a regular surface. As both the Earth and the
flat piece of paper onto which it is to be mapped are two-dimensional surfaces, the
map projection may be described by the relation between their coordinate systems.
For some mathematical models of the surface of the Earth it is possible to define
a parametrization that verifies the conditions E = G and F = 0, where E, F and
G denote the coefficients of the first fundamental form. In this cases, the mapping
problem is shown to reduce to the study of conformal functions from the complex
plane onto itself. In particular, the Schwarz-Christoffel formula for the mapping of
the upper half-plane on a polygon is applied to cartography.
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1 Introduction

Evidence of maps used to describe our surroundings or to orient ourselves dates back
as far as our knowledge of human civilization. Nowadays we encounter maps on a
daily basis. From street maps to weather maps, they are a powerful tool to display
information. Whatever its purpose, every map is a representation of something that
is larger or more complex. This dissertation is concerned with maps of the Earth.

Before making maps of the world we are called upon to determine its size and
shape. These studies comprise the subject of geodesy. Section 3.1 is meant as a
basic introduction to the physics of the Earth. The geoid, from the greek ”Earth-
shaped”, is defined as the surface of gravitational equipotential, the shape of the
Earth abstracted from topographic features. Althought it is the common definition
of our world’s shape, its complexity makes the mathematical or computational
treatment unfeasible. Thus, simpler mathematical models are required. Among
these we may highlight the sphere and the spheroid. The spherical model of the
Earth is used whenever the region to be mapped is large or the whole Earth and
the size of the map is small. On the other hand, the spheroid is a more accurate
model and therefore used for smaller regions and larger maps. Furthermore, this
section presents the geographic coordinate system, a parametrization of the surface
defined by the latitude and the longitude.

Regardless of the model used, there exist a large amount of different maps, from
the simple and sublime to the complex and confusing. For instance, the same region
over the surface of the Earth might be represented with different appearance, as the
reader can appreciate in Figure 6, on page 33. This results from the fact that the
Earth is a curved object, while the map is not. Therefore, it cannot be flattened
unless compressed, streched or torn apart. In mathematics, this results is known
as Egregium Theorem. It states that a local isometry between two surfaces exists
if and only if both surfaces have the same Gaussian curvature at corresponding
points. Section 3.2 is concerned with this result.

The Egregium theorem is of great importance in cartography, since it implies
that no ideal map of the Earth can be constructed. It is impossible to represent,
even a little portion of the surface of the Earth, with full fidelity. This leads to the
introduction of the concept of distortion, whose undertanding is a crutial issue in
the proper selection of a map projection depending on its purpose. Section 3.3 aims
to familiarize the reader with one the most broadly used measures for distortion
in cartography: the scale factor. It quantifies the distortion, regarding that if the
projection was an isometry, the scale factor would be equal 1 and the greater its
value, the greater the distortion. We shall see that it depends on the point and on
the direction.

Section 3.4 briefly covers the use of auxiliar surfaces that conceptually help the
developement of certain map projections: the cone, the cylinder and the plane. It
also contains a brief discussion about the different aspects of a map projection:
normal, transverse and oblique, and both the tangential and secant cases. This
terminology describes the vocabulary commonly used in cartography and the defi-
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nitions provide with a classification of the map projections.

One of the geometric features that a map projection may preserve are angles.
Such projections are called conformal. The roots of conformal mapping lie in the
early nineteenth century. Gauss considered in the 1820s conformal maps between
surfaces. Since then, a great effort has been made on the development of the math-
ematics for conformal mapping. The aim of this dissertation is to apply conformal
mapping to cartography, i.e., to study conformal representations of the Earth.

Section 2.2 and 2.3 are intended to prove that any conformal map between a
regular surface S and the plane is the composition of the so-called isometric map
φ : S → R2 and a conformal function h : C→ C.

Section 2.2 is concerned with the study of the isometric map. It maps each point
of the regular surface onto a set of rectangular coordinates, denoted by (p, q), such
that the metric over the surface under this rectangular coordinates is ρ(p, q)1, where
ρ is a real-valued non-zero function and 1 denotes the size 2 identity matrix. Such
rectangular coordinates are called isometric coordinates in cartography and the pq-
plane, the isometric plane. This notation and terminology will be used throughout
this dissertation. Example 2.18 computes the isometric coordinates for the sphere
and Proposition 3.5 for the spheroid.

Section 2.3 deals with conformal maps from the complex plane onto intself. In
particular we show that a function h : C → C is conformal if and only if it is
holomorphic and its derivative does not vanish. This section concludes with the
statement of Riemann’s mapping theorem. This theorem was stated in Riemann’s
celebrated doctoral dissertation of 1851 and ensures the existence of a conformal
map between any two simply connected domains of the complex plane, provided that
neither is the entire plane. Thus, if for a given regular surface we are able to compute
its isometric coordinates, we can construct a conformal map projection onto any
simply connected domain of the complex plane. However, Riemann’s theorem does
not give any clue about how this conformal map is or how to construct it.

The Schwarz-Christoffel (SC) formula was discovered independently by Christof-
fel in 1867 and Schwarz in 1869. It provides with a conformal map from the upper
half-plane H onto the interior of a simple polygon P . The main idea relies on the
fact that if the derivative of a function f : H→ P is of the form f ′(z) = (z−z0)α−1,
z0 ∈ R, then f(z) maps the real segment (−∞, z0) onto a straight line that forms
an angle of (α− 1)π with the real axis and the segment (z0,∞) onto a line parallel
to the real axis. Generalizing, it is possible to find a set of prevertices zi ∈ ∂H,
i = 1, . . . , n such that the real axis is mapped to the boundary of the polygon and
H onto its interior. Notice that in the vertices of the polygon conformality is not
preserved. Three of the n prevertices are ours to choose, while the others are de-
termined by the position of the vertices of the polygon. Thus, for a polygon with
more than three vertices the so-called parameter problem needs to be solved before
applying the SC formula. These matters are adressed in Section 2.4.

Moreover, the SC formula can be adapted for the use of the unit disk D as
canonical domain. Thus, whenever a conformal map from D onto a polygon is
found, its composition with any map projection within the unit disk ϕ defines a
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conformal map from the surface of the Earth onto the polygon. The following
diagram represents the idea. Here, S denotes the surface, M the resulting map,
U denotes the geographic coordinates, C the isometric plane, φ the isometric map
and h is a conformal map.

U

φf (1.2)

��

f

(1.1)
// S

ϕ

��
φ

��
C

h

(1.3) // D
SC

(1.4) //M

The isometric map is the well-known Mercator projection. Published by Gerar-
dus Mercator in about 1569 for a spherical model of the Earth, it was the result of
the seek of a map projection showing curves of constant bearing, also called loxo-
dromes, as straight lines. At a time when transoceanic journeys were begining and
the technology to determine a rhumb was based on the compass, this map fulfilled a
basic need for navigation. Section 4.1 explains its normal aspect, the one derived by
Mercator. In the following Section 4.2, spherical trigonometry is used to establish
a relation between the coordinates of a rotated sphere from the transverse to the
normal aspect, and find the formulas for the transverse aspect.

For historical reasons, most of the projections are expressed in geographic coor-
dinates and defined for a spherical model. In Section 3.1.3, we shall see that there
exists a conformal map from the spheroid onto the sphere such that, if a map pro-
jection is defined for the sphere and expressed in isometric coordinates, by replacing
the isometric coordinates of the sphere by those of the spheroid, a conformal map
from the spheroid is obtained. However, the properties and classification might not
be preserved. This also called double-conformal projection was developed by Gauss.

For each of the most used auxiliar surfaces, the cylinder, the cone and the plane
(azimuthal projection), there exists a unique conformal projection, called Mercator,
Lambert conformal conic and stereographic projection respectively. In all of them,
the double-conformal map is used to determine the map projection formulas in the
ellipsoidal case. However, Johann Heinrich Louis Krueger suggested in 1923 a direct
transformation from the spheroid for the transverse Mercator projection using series.
This projection, explained in Section 4.2, is also known under the name of Gauss-
Krueger projection and is the base for the UTM (Universal Transverse Mercator)
coordinate system, broadly used nowadays.

A usual technique for map projection developement in cartography is the gener-
alization of the formulas. We shall see that the Lambert conformal conic is a general
case of Mercator and stereographic projection. Johann Heinrich Lambert contri-
butions to cartography have been declared as a breackthrough. His ideas, based
on the use of the isometric coordinates, were further depeloped by Joseph Louis
Lagrange, which culminated in the Lagrange projection, a projection of the whole
world within a disk. This projection became a fundamental step for the mathemat-
ical development of projections, since the whole world conformally mapped to the
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unit disk is a convenient basis for further transformations.

A map projection, when used to further developements, is usually referred as
parent projection. It is represented by ϕ in the diagram. Within this dissertation
we shall limit ourselves to the use of the stereographic, in its equatorial and polar
aspects, and Lagrange projections as parent projection. However, this restriction is
not necessary. Section 5.1 briefly recalls, under some small modifications (rotations
and reflexions), the formulas for these three map projections.

I would like to remark that there are many different formulas and paths to
describe a map projection. The parent projection itself allows many definitions,
based on the orientation and the flexibility provided by the complex trigonometric
functions. In most of the cases I have tried to justify the prevertices selection and
the reason why some rotation or reflexions are performed, mostly by means of a
verbal description of the position of representative parallels and meridians such as
the equator or the poles. Moreover, the SC formula admits scaling and translation.
I have choosen these parameters in an attempt to provide with the most simple
derivations. However, most of the bibliography is rather concerned with the most
straightforward formulas or suitable equations for computation purposes. Thus, the
reader might find different formulas for the same (other than scaling, translation,
etc.) map projection when consulting different books.

Some of the maps presented in this dissertation were made with the matplotlib
basemap toolkit, a library for plotting 2D data on maps in Python. The grid
transformations on Section 5 were created using the Schwarz-Christoffel Toolbox
for Matlab.

The SC formula is computed for three polygons: the triangle, the square and
the rectangle. For the triangle and the rectangle, we use as canonical domain the
upper half-plane and compose the obtained SC map with an appropriate Moebius
transformation from D onto H. On the other hand, the conformal map onto the
square is computed directly from the unit disk.

The computation of the SC formula for an equilateral triangle leads to the in-
complete beta function. By means of this function, two map projections within
an equilater triangle are discussed. The first, developed by O.S. Adams, projects
one hemisphere of the sphere and the second, described by L.P. Lee, represents the
whole world. These can be found in Section 5.2.

In Section 5.3, we discuss three famous map projections of one hemisphere within
the square: Pierce quincucial, Adams and Guyou projections. The three of them
are different aspects of the same projection, although none of the authors recog-
nized it. Moreover, all of them were developed without using the SC formula, by
means of elliptic coordinates and elliptic functions, which we shall not discuss in
this dissertation. After that, two projections of the whole world within a square
described by Adams are studied.

In Section 5.4, a brief explanation of the parameter problem for the rectangle
(that can also be applied to the square, as a particular case of the rectangle) is
followed by the evaluation of the SC formula, which leads to the incomplete elliptic
integral of first kind. This function is used to describe a map of the whole world
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within a rectangle.

The rectangle R can also be used further to be mapped onto an ellipse. Section
5.5 deals with a map projection of the whole world within an ellipse. This is based
on the function sinw, w ∈ R. With a proper normalization of the coordinates w,
sinw provides with a conformal map onto an ellipse with foci at −1 and 1. The
projection was described by Adams and presents a slit at the two segments over the
real axis that connect the focis with the extreme of the ellipse. Over this segments,
conformality fails.

Littrow’s projection may be found by adapting the SC formula to the exterior
of a polygon, which for this projection is simply a segment that may be placed over
the real axis. This map projection is discussed in Section 5.6. The SC formula is
applied in fact twice. The first projection uses as parent projection the stereographic
projection centered at the north pole, which is represented in the upper half plane
of the map. The second, uses the stereographic projection centered at the south
pole and represented on the lower half plane. However, both projections lead to
the same formula so the projection may be defined by a single equation. Littrow’s
projection is also retroazimuthal, i.e., it preserves directions from any point over
the map to the central point.

The last two projections that this dissertation deals with are Eisenlohr and Au-
gust projections. For their developement we shall not use the SC formula. Eisen-
lohr’s projection is the result of the seek of a minimal distorted map projection. He
argued that a map presents minimal geodetic distortion when the scale factor has
constant value over the boundary of the map. Moreover, since the map projection
is conformal, it is harmonic. This leads to a Laplace equation that may be solved
by means of a Green function. This matters are discussed in Section 5.7.

However, the computations for Eisenlohr’s map projection are complicated. Au-
gust projection’s aspect is similar to Eisenlohr’s and was found as an alternative to
it. It maps the whole world onto the interior of an epycicloid, a curve defined by a
point on a circle rolling without sliding around another fixed circle. The two-cusped
epicycloid with radi 1

2
may be described by the equation f(z) = 1

2
(3z− z3), z = eiθ,

θ ∈ [0, 2π). Since the function f is analytic in the interior of the unit disk, it maps
conformally its interior onto the interior of the simply connected domain bounded
by the epicycloid. Section 5.8 is concerned with this map projection.

Many other conformal map projections have been developed, such as the projec-
tions onto regular polygons or the polyhedral maps, among others. Despite this, I
hope this dissertation gives a general idea about how conformal mapping is applied
to cartography and the important paper of mathematics in the developement of
maps of the Earth.
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2 Preliminaries

This is an introductory chapter intended to review the basic mathematical concepts
that are about to be applied to cartography in the following sections. If the reader is
already familiar with basic concepts on riemannian surfaces and conformal mapping,
she/he may prefer to skip this section and go directly to Section 3, Elements of map
projections.

2.1 Surfaces

The surface of the Earth, that shall be denoted by S, is a Riemannian surface
embeded in the Euclidean space R3. Such a surface is locally 2-dimensional. An
injection f : U ⊂ R2 → R3 whose range is an open subset of R3 is called a chart
when f is differentiable and the Jacobian matrix has rank 2. This requirements
are known as the regularity condition. Such a chart defines on its domain U a
set of coordinate (u, v) ∈ U so that a point of the surface is defined by f(u, v) =
(f 1(u, v), f 2(u, v), f 3(u, v)),

U
f // S.

There may be many different coordinate possibilities for the same surface.

Example 2.1. Let R = {(x, y, z) ∈ R3 s.t. z = 0, |x| < 1, |y| < 2} be a rectangle
in the xy-plane and let f : (−1, 1)× (−2, 2)→ R3 be defined by f(u, v) = (u, v, 0).
Then f is a coordinate chart of the rectangle.

It is generally not possible to construct a suitable chart for a set S whose image
is the whole of S. The best that we can do is to define a collection of charts for S
whose images together cover S. Such a collection A is called an atlas if, when f1

and f2 are any two charts of A whose domains intersect, the change of coordinates
f2 ◦ f−1

1 is a diffeomorphism, this is, an injection such that both the function and
its inverse are C∞ functions.

Example 2.2. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} denote the unit sphere
in R3 and let D = {(u, v) ∈ R2 | u2 + v2 < 1} denote the open unit disk in R2. The
image of the chart f : D→ S2

f(u, v) = (u, v,
√

1− u2 − v2)

covers only the upper hemisphere of S2. The mapping f is differentiable and the
Jacobian is of rank 2, and so the parametrization is regular. The charts fi : D→ S2,
i = 2, . . . , 6

f2(u, v) = (u, v,−
√

1− u2 − v2),

f3(u, v) = (u,
√

1− u2 − v2, v), f4(u, v) = (u,−
√

1− u2 − v2, v)

f5(u, v) = (
√

1− u2 − v2, u, v), f6(u, v) = (−
√

1− u2 − v2, u, v)

7



are all regular parametrizations and cover respectively the lower hemisphere, the
east-west and the back-front of the sphere. The set {fi, i = 1, . . . , 6} is an atlas of
S2 and defines a coordinates system over the sphere.

The sphere is a model of the surface of the Earth broadly used in cartography.

The curves

u 7→ f(u, v0),

v 7→ f(u0, v)

are called the coordinate curves.

A large set of regular surfaces can be found by means of the implicit function
theorem:

Theorem 2.3. If φ : U ⊂ R3 → R is a differentiable function and a ∈ φ(U) is
a regular value, that is rank(Jφ(x)) = 1 for all x ∈ U such that φ(x) = a, then
S := φ−1(a) is a regular surface in R3.

Example 2.4. The ellipsoid

Σ =

{
(x, y, z) ∈ R3 | x

2

a2
+
y2

b2
+
z2

c2
= 1

}
where a, b, c 6= 0, is a regular surface provided that Σ = φ−1(0) where

φ(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1

is differentiable and 0 is a regular value, since φ(x, y, z) = 0 for

(x, y, z) ∈ {(±a, 0, 0), (0,±b, 0), (0, 0,±c)}

and the jacobian matrix

Jφ(x, y, z) =

(
2x

a2

2y

b2

2z

c2

)
has rank 1 for these points.

The ellipsoid is used in cartography to model S, the surface of the Earth.

2.1.1 Tangent plane and normal vector to the surface: The Gaussian
curvature.

We shall denote the partial derivatives of a chart f by fu(p) = ∂f
∂u

(p), and fv(p) =
∂f
∂v

(p). Observe that fu and fv are the tangent vectors of the coordinate curves.
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The tangent plane of a surface in p ∈ S, p ∈ f(U) for some chart f of the surface
S, is defined as

Im(dpf) = {w ∈ R3 | ∃x = (u, v) ∈ U, w = dpf(u, v)}.

It is a vector subspace of dimension 2 of R3 that does not depend on the choice of
the coordinate chart f . A base of the tangent plane is formed by fu and fv. We
denote de tangent plane by Tpf . Observe that Tpf contains all the tangent vectors
of a regular curve γ over S, p ∈ γ. Moreover, if v ∈ Tpf , then there exists a curve
over S such that γ(t0) = p and γ′(t0) = v.

A map f : U → S satisfies the regularity condition at (u, v) ∈ U , if and only if
fu × fv 6= 0. Therefore we can define the normal direction fu × fv.

Definition 2.5. The Gauss map N : S → S2 is defined as

N(p) =
fu(p)× fv(p)
‖fu(p)× fv(p)‖

, p ∈ S

Notice that the tangent plane at p is the vector subspace of R3 of vectors normal
to N(p). It can be proved that under a change of coordinates, |N | is preserved,
so that the only variation is the sign of N . This is consistent with the fact that
N is the normal vector to the tangent plane which is invariant under change of
coordinates and ±N defines the same plane.

Definition 2.6. Let f be a chart of the surface S containing the point p ∈ S. The
Gaussian curvature is defined as

K(p) =
det(Nx, Ny, N)

det(fx, fy, N)
. (2.1)

We shall see in the next chapter that the Gaussian curvature is an intrinsic
property of the surface and does not depend on the way the surface is embedded
within the euclidean space, although the definition of the Gaussian curvature of a
surface certainly depends on the way in which the surface is located in space.

Example 2.7. [Surface of revolution]

Let γ : I → R3 be a parametric regular curve such that γ(I) is contained on
a plane, and assume without loss of generality, that the plane is the xz-plane,
x > 0, y = 0, i.e., γ(t) = (a(t), 0, b(t)), a, b : I → R. A surface of revolution is a
surface created by rotating the curve γ around the z-axis and its parametrization
is f : I × R→ R3

f(u, v) = (a(u) cos(v), a(u) sin(v), b(u)).

It is a regular surface, since by a straightforward computation,

‖fu × fv‖ = |a(u)|
√
a′(u)2 + b′(u)2 6= 0 ∀u ∈ I,

where a(u) > 0 for all u since we imposed x > 0.

9



The Gauss map is

N =
(−b′ cos v,−b′ sin v, a′)√

(b′)2 + (a′)2
.

Another computation shows that the Gaussian curvature is

K =
b′(b′′a′ − b′a′′)
a(a′2 + b′2)2

.

Particular examples of surfaces of revolution that are important in cartography are
the sphere and the ellipsoid of revolution.

Sphere: The sphere of radi R, without the meridian π and the poles, is a surface
of revolution generated by the curve

γ(u) = (R cosu, 0, R sinu), u ∈ (
−π
2
,
π

2
).

This curve leads to a parametrization

f(u, v) = (R cosu cos v,R cosu sin v,R sin v), u ∈ (
−π
2
,
π

2
), v ∈ (−π, π).

Its Gaussian curvature is

K =
1

R2
(2.2)

Ellipsoid of revolution: An ellipsoid of revolution or spheroid is a type of ellip-
soid in which two of the three semiaxes are equal. It can be found by rotating
an ellipse with semiaxes a y b:

γ(t) = (a cos t, 0, b sin t), t ∈ (
−π
2
,
π

2
).

The resulting parametrization of the spheroid is then

f(u, v) = (a cosu cos v, a cosu sin v, b sinu), u ∈ (
−π
2
,
π

2
), v ∈ (−π, π),

and the Gaussian curvature is

K =
b2(

a2 sin2 v + b2 cos2 b
)2 . (2.3)

The coordinate system for the sphere and the spheroid derived in Example 2.7
is called in geodesy geocentric coordinate system.

10



2.1.2 The metric

The Riemannian metric or first fundamental form allows the developement of geo-
metric properties of the surface, a non euclidean space. It defines an inner product
within the surface as the induced inner product by the dot product on R3 in which
the surface is embedded.

Definition 2.8. For a point p ∈ S, S a regular surface, the first fundamental form
is the bilinear symmetric form

gp : TpS × TpS → R

defined by gp(w1, w2) = 〈dpf(w1), dpf(w2)〉, where f is a coordinate chart in a
neighbourhood of p. The coefficients of the associate matrix with respect to the
standard basis R2, {e1 = (1, 0), e2 = (0, 1)} are called the coefficients of the first
fundamental form and denoted by E, F and G. Hence

g(w1, w2) = wT1

(
E F
F G

)
w2, w1, w2 ∈ TpS,

where

E = g(e1, e1) = 〈fx, fx〉 , F = g(e1, e2) = 〈fx, fy〉 , G = g(e2, e2) = 〈fy, fy〉

Here 〈·, ·〉 denotes the usual inner product in R3.

Example 2.9. The coefficients of the first fundamental form of the sphere and the
spheroid under the parametrization proposed in Example 2.7 are

ES2 = 〈fu, fu〉 = R2, FS2 = 〈fu, fv〉 = 0, GS2 = 〈fv, fv〉 = R2 cos2 u

EΣ = a2 sin2 u+ b2 cos2 u, FΣ = 0, GΣ = a2 cos2 u

The first fundamental form allows the measurement of lenghts, angles and areas
over the surface analougsly as in the euclidean space.

Definition 2.10. Let γ : I → R3 be a regular curve over a regular surface S with
chart f : U → S at a neighbourhood of p ∈ f(U), p ∈ γ(I) , γ = f ◦ γ̃, γ̃ : I → U .
Let a, b ∈ I within the neighbourhood of p. Then the lenght of γ between a and b is

L(a,b)(γ) =

∫ b

a

||γ̇|| =
∫ b

a

√
g( ˙̃γ, ˙̃γ) (2.4)

Example 2.11. Recalling the geocentric parametrization of the sphere discussed in
Example 2.7 we may use equation (2.4) to compute the longitude of the coordinate
curve v 7→ (u0, v), also called parallels in geodesy, and that we shall denote by pu0 ,
pu0(t) = f ◦ p̃u0(t) = f(u0, t). The tangent to the curve is p̃′u0

(t) = (0, 1)T , and using
the coefficients found in Example 2.9 we obtain

LS2

(−π,π)(pu0) =

∫ π

−π

√(
0 1

)(R2 0
0 R2 cos2 u0

)(
0
1

)
dt = 2πR cosu0 (2.5)
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where u0 ∈
(
−π

2
,
π

2

)
. This is the lenght of a circumference of radi R cosu0, and

regarding that u is the angle between a point over the sphere and the xy-plane, it
is also the radii of the circumference defined by a parallel of latitude u. Thus, by
applying simple trigonometry we obtain the same result.

Definition 2.12. Let γ and δ be regular curves defined over the surface S in a
neighbourhood of p ∈ S that allows a coordinate chart f and let γ(t0) = δ(t1) = p
for some t0, t1 ∈ R. The angle α between the two curves is defined by

cosα =
〈γ̇(t0), δ̇(t1)〉
‖γ̇(t0)‖‖δ̇(t1)‖

=
g( ˙̃γ(t0), ˙̃δ(t1))

g( ˙̃γ(t0), ˙̃γ(t0))g( ˙̃δ(t1), ˙̃δ(t1))
(2.6)

Example 2.13. We may compute the angle between the coordinate curves of the
geocentric coordinates of the sphere defined in Example 2.7, p̃u0 = (u0, t)

T , m̃v0 =
(t, v0)T , using (2.6). The tangent vectors to the coordiante curves are

p̃u0 = (0, 1)T , m̃v0 = (1, 0)T

and therefore

〈p′u0
,m′v0

〉 = (0, 1)

(
R2 0
0 R2 cos2 u0

)(
1
0

)
= 0, ∀(u, v) ∈ U.

Hence,
cosα = 0,

so the geocentric system over the sphere is orthogonal.

Definition 2.14. The area of a region R ⊂ S in a neighbourhood of p ∈ R with
coordinate chart f : U → R is

A(R) =

∫
U

det(fu, fv, N)dudv =

∫
U

‖fu × fv‖dudv.

The area can be computed in terms of the coefficients of the first fundamental
form

A(f) =

∫
U

√
EG− F 2dudv,

regarding that

det(fu, fv, N)2 = det((fu, fv, N)T (fu, fv, N)) =

∣∣∣∣∣∣
E F 0
F G 0
0 0 1

∣∣∣∣∣∣ = EG− F 2.

2.2 Conformal mapping between surfaces

So far, basic geometric properties of a surface S embedded in R3 have been studied.
This section aims to study conformality between surfaces.
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2.2.1 Differentiability and conformality between surfaces

Any map from one surface to another has a representation in coordinate terms.
Let f and f ′ be charts from the surfaces S and S ′ and with domains U and V
respectively, and let φ be a map between the surfaces φ : S → S ′. Then, φf =
f ′−1 ◦ φ ◦ f : U → V is well defined and usually called the representation of φ in
terms of the charts f and f ′.

U

φf
��

f // S

φ
��

V
f ′
// S ′

In particular, the representation in coordinate terms of a map between surfaces
allows the definition of differentiability. A function φ : S → S ′ is said to be
differentiable in p ∈ S if φf is differentiable in f−1(p). A function φ : S → S ′ is
said to be differentiable if it is differentiable at every point of its domain.

As a change of coordinates is a diffeomorphism, the differentiability of φ is inde-
pendent of the coordinate system chosen.

A diffeomorphism between surfaces φ : S → S ′ is an injection such that φ and
its inverse φ−1 are both differentiable. Two surfaces are said to be diffeomorphic if
there exists a global diffeomorphism of S onto S ′.

We are now ready to study the conformal maps between surfaces.

Definition 2.15. Let S and S ′ be regular surfaces and φ : S → S ′ a diffeomorphism.
Then, φ is said to be conformal if φ preserves angles locally, i.e., if for all γ : I → S
and δ : I ′ → S regular curves over S so that they intersect at p ∈ S, p = γ(t0) =
δ(t1) with angle α, then their images by φ, γ′ = φ(γ) and δ′ = φ(δ) intersect at
φ(p) = φ(γ(t0)) = φ(δ(t1)) with angle α.

Proposition 2.16. Let φ : S → S ′ be a diffeomorphism. Then φ is conformal if
and only if there exists a nonzero function ρ : S → R such that for all p ∈ S and
for all w1, w2 ∈ Tp(S),

g(w1, w2) = ρ2(p)g′(dφp(w1), dφp(w2))

Proof. ⇐) Let φ : S → S ′ be a diffeomorfism and assume that there exists a nonzero
function ρ : S → R satisfying the stated equation. Let w1 and w2 be the tangent
vectors of two regular curves on S that intersect forming an angle α and let α′ be

13



the angle between the images of the curves by φ in S ′. Then,

cosα =
g(w1, w2)√

g(w1, w1)g(w2, w2)

=
ρ2(p)g′(dφp(w1), dφp(w2))√

ρ2(p)g′(dφp(w1), dφp(w1))ρ2g′(dφp(w2), dφp(w2))

=
g′(dfp(w1), dfp(w2))√

g′(dφp(w1), dφp(w1))g′(dφp(w2), dφp(w2))
= cosα′

Thus, φ is conformal.

⇒) Let φ : S → S ′ be a conformal mapping. Because φ is a diffeomorphism,
a chart f : U ⊂ R2 → S determines a chart on S ′, namely, f ′ = φ ◦ f : U → S ′.
Thus, we can apply the same coordinates on each surface. Furthermore, the local
expression for a curve on S, γ(t) = f ◦ γ̃ : I → S, γ(t) = f(u(t), v(t)), carries over
to S ′ via the mapping φ as φ ◦ γ(t) = f ′(u(t), v(t)). Thus

dpφ

(
fu
du

dt
+ fv

dv

dt

)
= f ′u

du

dt
+ f ′v

dv

dt

Let w1, w2 ∈ TpS be orthogonal unit vectors. Because φ is conformal, g′(dpφ(w1), dpφ(w2)) =
0. Let ‖dpφ(w1)‖ = c1 and ‖dpφ(w2)‖ = c2. By the linearity of the inner product
we find

1√
2

=
g(w1, w1 + w2)√

g(w1, w1)g(w1 + w2, w1 + w2)

=
g(dpf(w1), dpf(w1) + dpf(w2))√

g(dpf(w1), dpf(w1))g(dpf(w1) + dpf(w2), dpf(w1) + dpf(w2))

=
c2

1

c1

√
c2

1 + c2
2

Thereofore c1 = c2. Define ρ : S → R by ρ(p) = c1. At p ∈ S write fu = aw1 + bw2.
Then dpφ(fu) = adpφ(w1) + bdφ(w2) and the coefficients of the first fundamental
Gaussian form are

E = g(dpφ(fu), dpφ(fu)) = a2dpφ(w1)dpφ(w1) + 2abdpφ(w1)dpφ(w2) + b2dpφ(w2)dpφ(w2)

= ρ(p)(a2 + b2) = ρ2(p)E

Analogously F = ρ2(p)F and G = ρ2(p)G. Varying the orthonormal basis smoothly
in a small neighborhood around p, we obtain this relationship between component
functions for all points near p. �

2.2.2 The isometric plane

We are interested in map projections and therefore we want the surface S ′ to be
contained in a plane Π. The coefficients of the first fundamental form in Π are
given by E = G = 1 and F = 0 for some orthogonal coordinates over the plane,

14



say p, q. By Proposition 2.16, a map φ from the surface of the Earth S to the plane
is conformal if we can define a non zero function ρ : S → Π satisfying gS = ρ2gΠ.
Because gΠ is the unit matrix, we require E = G = ρ2 and F = 0.

Suppose a chart on the surface S with orthogonal coordinates (u, v), this is, the
corresponding coefficient F is 0. If E, G can be written as

E =
ρ2

U
, G =

ρ2

V
,

where U is a function of u alone and V a function of v alone, both non vanishing
in its domain, then we can define φ(u, v) = (p(u), q(v)) such that(

dp

du

)2

=
1

U
,

(
dq

dv

)2

=
1

V

so that the metric in terms of (p, q) over the surface is

E(p, q) =

(
dp

du

)2

E(u, v) = ρ2

F (p, q) = 0

G(p, q) =

(
dq

dv

)2

G(u, v) = ρ2,

and therefore the map φ is a conformal representation from the surface to the plane.

Definition 2.17. The coordinates (p, q) over a surface that verify E = G and F = 0
are called isometric coordinates. Respectively, the pq-plane is called isometric plane.

Example 2.18. Let f :
(
−π

2
, π

2

)
× (−π, π) → R3 be the parametrization of the

sphere considered in Example 2.7

f(u, v) = (R cosu cos v,R cosu sin v,R sinu).

The first fundamental form under this parametrization was computed in Example
2.9:

E = R2, F = 0, G = R2 cos2 u

Define

ρ(u, v) = R cosu. (2.7)

Notice that we can write

E = ρ2 1

cos2 u
, G = ρ2

Let φ : S2 → R2 be defined by (u, v) 7→ (p(u), q(v)), where(
dp

du

)2

=
1

cos2 u
, q = v (2.8)
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Then, in the pq-plane

E(p, q) =

(
dp

du

)2

E = ρ2 F (p, q) =

(
dp

du

)
F = 0, G(p, q) = G = ρ2

Therefore, the map φ(u, v) = (p(u), q(v)) is a conformal map between the sphere
and the plane. We can find p(u) by integrating (2.8):

p =

∫
secu du = ln | tan

(u
2

+
π

4

)
|.

The coordinates (p, q) computed above are the isometric coordinates over the sphere.

The conformal map φ is known in cartography as the Mercator projection, a
map projection that will be studied in Section 4.

Figure 1: The isometric latitude p as a function of u in radians.

We shall call φ as the isometric map to the isometric plane denoted by C.

U

φf
��

f // S

φ��
C

2.3 Holomorphy and conformality: Riemann’s Theorem

Now that we have mapped the surface onto the plane conformally, we shall use
conformal functions from the plane onto the plane (notice that the composition of
conformal maps is also conformal) to create different maps. In this section we shall
study the conditions for a function h : R2 → R2 to be conformal.

In order to do so, we shall use complex notation.

x+ iy = h(p+ iq).
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2.3.1 Holomorphy and conformality

Definition 2.19. Let h be a function defined over an open domain S ⊂ C and let
z0 ∈ S. It is said that h has a derivative h′(z0) in z0 or is holomorphic in z0 if it
exists the limit

lim
z→z0

h(z)− h(z0)

z − z0

= h′(z0).

The values of the complex function f can be written by x(z) + iy(z), where x
and y are real valued functions of a complex variable z = p+ iq. By the canonical
isomorphism C ' R2 given by the relation z = p + iq 7→ (p, q) the function can be
identified as a real function in two variables h = x(p, q) + iy(p, q).

Let x, y ∈ C 1(S). Then, h = x+ iy is holomorphic in z0 = p0 + iq0 if and only if

∂x

∂p
(p0, q0) =

∂y

∂q
(p0, q0),

∂x

∂q
(p0, q0) = −∂y

∂p
(p0, q0)

The former equations are known under the name of Cauchy-Riemman equations.

Equivalently, h is holomorphic in z0 if and only if

∂h

∂z
(z0) = 0.

We shall now derive the condition for conformality in terms of f .

Proposition 2.20. A function h : S ⊂ C → C is conformal in z0 if and only if h
is holomorphic in z0 and h′(z0) 6= 0. Moreover, the differential dh(z0) represents a
rotation of angle arg(h′(z0)) and a dilation of magnitude |h′(z0)|.

Proof. Let γ1(t) and γ2(t) be two regular curves such that γ1(0) = γ2(0) = z0.
The angle at which both curves intersect in z0 is α = |arg(γ̇1(0)) − arg(γ̇2(0))| =
arg(γ̇1(0)γ̇2(0)). Let γ̃i = h(γi) for i = 1, 2. Then, the tangent vector to γ̃i at h(z0)
is ˜̇γi(0) = (h ◦ γ̃i)′(0) = dh(z0)(γ′i(0)) for i = 1, 2. Therefore, the angle is

arg(dh(z0)(γ′1(0))dh(z0)(γ′2(0)))

Assume h to be holomorphic at z0 and that h′(z0) 6= 0. Then,

dh(z0)(γ′i(0)) = h′(z0)γ′i(0)

and thus,

arg(h′(z0)γ′1(0)h′(z0)γ′2(0)) = arg(|h′(z0)|2γ′1(0)γ′2(0)) = arg(γ′1(0)γ′2(0)).

This is, h is conformal at z0. Note that because h is holomorphic, |dh(z0)(γ′(0))| =
|h′(z0)||γ′(0)|, and therefore h applies a dilatation independent of the direction and
of magnitude |h′(z0)|.
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Assume now that h is conformal at z0. Then,

dh(z0)(w)

w
=
∂h

∂z
(z0) +

∂h

∂z
(z0)

w

w
, w ∈ Cr 0

has constant argument. Let

h′(z0) =
∂h

∂z
(z0) = Reiφ R > 0

Taking w = eiθ with θ ∈ [0, 2π], we obtain that

dh(z0)(eiθ)

eiθ
= Reiφ +

∂h

∂z
(z0)e−2iθ

has constant argument. Thus, dividing by eiφ we obtain that

Re−iφ
dh(z0)(eiθ)

eiθ
= R +

∂h

∂z
(z0)e−i(2θ+φ)

has constant argument while varying θ. This is only possible if
∂h

∂z
(z0) = 0, and

therefore h is holomorphic at z0 and h′(z0) 6= 0. �

Therefore, any conformal map ϕ from a regular surface onto the plane is a
composition of the isometric map φ followed by a conformal function h from the
complex plane onto itself. We represent this by the diagram

U

φf
��

f // S

ϕ
��φ~~

C
h
//M

2.3.2 Riemann’s Theorem

The Riemann mapping theorem was first stated in Riemann’s celebrated doctoral
dissertation of 1851: any simply connected region in the complex plane can be
conformally mapped onto any other, provided that neither is the entire plane.

Theorem 2.21 (Riemann’s Theorem). Let Ω ⊂ C be a simply connected domain
and a ∈ Ω. Then there exist a unique conformal map ϕ : Ω→ D such that ϕ(a) = 0
and ϕ′(a) > 0.

Riemman’s Theorem ensures that any two simply connected domains are confor-
maly equivalent. Despite the importance of this result, it is an existence theorem
and it gives no clue about how this conformal map looks like or how to construct
it.
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2.4 The Schwarz Christoffel Formula

The Schwarz Christoffel (SC) formula was discovered independently be Elwin Bruno
Christoffel between 1868 and 1870 and by Hermann Amandus Schwarz in the late
1860s. The formula provides a method to find explicitely the conformal map be-
tween the upper half plane H = {z ∈ C : Im(z) > 0}, or the unit disk D, and
some simply connected domains such as polygons that Riemann’s Theorem claims
to exist.

2.4.1 Polygons

Definition 2.22. A linear curve is a closed curve formed by a concatenation of
finitely many line segments γk. The point at which two segments meet is a vertex
wk. A simple linear curve, i.e., a linear curve that does not intersect itself, is called
a polygon Γ.

The polygon P separates the complex plane in two regions. We shall denote by
P the interior of the polygon. The numbering of the vertices is taken in counter-
clockwise order. We allow the vertices to be the point at infinity. Their treatment
may not be easy but is feasible.

w4 w3

w2

w1

w7

w6

w5

Definition 2.23. The interior angle αkπ at the vertex wk is the angle created by
sweeping counterclockwise from the outgoing side to the incoming side. Similarly,
the outer angle βkπ is defined as the angle created by extending the incoming side
and sweeping from there towards the outgoing side.

αk

βkwk

Finite vertices have inner angles in the range (0, 2π) given by wk−1−wk
wk+1−wk

, where

wn+1 = w1. On the other hand, vertices at the infinity verify αk ∈ [−2, 0]. The
value α = 2 defines a slit and the outgoing and incoming sides are collinear. The
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map f : H → D is still one-to-one in the interior of the polygon although the
function can no longer be extended one-to-one to the boundary of the polygon.

Notice that
αk + βk = 1, ∀k = 1, . . . , n.

If the polygon has finite vertices, and because it is a closed linear curve, it does
a total turn of 2π, this is

n∑
k=1

βk = 2.

In terms of the interior angles

n∑
k=1

αk = n− 2.

Note that linear curves that are not polygons do not need to abide by this rule.

The interior of the polygon is a simply connected domain. By Riemman’s The-
orem, a conformal map from a simply connected domain to the polygon exists. We
shall refer to the mapped domain as canonical domain. The SC formula was first
developed for the canonical domain H. We shall therefore introduce the formula
using H as the canonical domain. Nevertheless, we will be interested in studying
the conformal functions from D, as we will project the sphere in the unit disk. We
shall use different Moebius transformation from D onto H such as

µ(z) =
z + i

iz + 1

which identifies

µ(1) = 1, µ(i) =∞, µ(−1) = −1, µ(−i) = 0.

Then, is we find a comformal map f from H onto a polygon, the map f ◦ µ will
map conformally the unit disk onto that same polygon.

D µ // H SC // P

2.4.2 The Schwarz Christoffel Idea

The underlying idea of the SC transformation is to consider the derivative of con-
formal transformation f : H→ P with the form f ′(z) = (z − z0)α−1 near z0. Then
f ′(z) can be expressed as

f ′(z) = |(z − z0)|α−1 exp (i(α− 1)arg(z − z0))

The geometrical significance of this formula is that

arg(f ′(z)) = (α− 1)arg(z − z0).
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Whenever a function f : C→ C is multi-valued, the introduction of brach cuts is
needed in order to allow for analyticity. The standard branch cut used in complex
analysis is {x | x < 0} which restricts all complex arguments between −π and π.
However, because the branch {yi|y < 0} is not in the domain of H we shall use this
branch, so that the arguments of the complex numbers shall be restricted between
−π
2

and 3π
2

.

Let us consider z0 ∈ R. The evaluation of the former expression in the interval
z ∈ (−∞, z0) is

arg(f ′(z)) = (α− 1)π

and therefore, the conformal function f(z) maps z ∈ (−∞, z0) to a linear segment
in the complex plane that forms an angle of (α−1) with the real axis. Analogously,
for z ∈ (z0,∞)

arg(f ′(z)) = 0

and f(z) maps z ∈ (z0,∞) to a linear segment that is parallel to the real axis.

Repeating this for all the vertices, let us consider z1, . . . , zn ∈ R and the deriva-
tive

f ′(z) =
n∏
k=0

(z − zk)α−1.

For z ∈ (zk, zk+1)

arg(f ′(z)) =
n∑
i=k

(αi − 1)π.

The function f ′(z) has piecewise constant argument for values with specific jumps.
Therefore, f(z) maps the real axis onto a polygon with n vertices and interior angles
αk.

Furthermore, by multiplying the proposed derivative by a complex number C ∈
C we allow the argument of f ′(z) to be non zero for z ∈ (zn,∞).

arg(f ′(z)) = arg(C) +
n∑
i=k

(αi − 1)π

Notice that C can be interpreted as a rotation and dilation of the polygon provided
by f ′(z) =

∏n
k=0(z − zk)α−1, since

arg(Cf ′(z)) = arg(C) + arg(f ′(z)).

2.4.3 The Schwarz Christoffel Formula

Theorem 2.24. Let P be the interior of a polygon Γ having vertices w1, . . . , wn
and interior angles α1, . . . , αn in counterclockwise order. Let f be any conformal
map from the upper half-plane H to P with f(∞) = wn. Then

f(z) = A+ C

∫ z

0

n−1∏
k=1

(ζ − zk)αk−1dζ
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for some complex constants A and C, and z1 < z1 < · · · < zn−1 are real numbers
satisfying wk = f(zk) for k = 1, . . . , n− 1.

The function f is called Schwarz-Christoffel transformation.

Before proving the theorem some considerations may be useful.

The change of the lower integration limit affects only the value of A, which
allows a translation of the polygon throughout the complex plane. The value of A
is related with the image of zero, also known as the conformal center.

The function f , although defined in H, can be continuosly extended to the real
axis.

In the SC formula we assumed that zn = ∞. This can be done without loss of
generality because, as infinity lies on the real axis, its image by f is in the boundary
of the polygon. Then, in case infinity is not a prevertex, we could introduce its image
as a new vertex f(zn+1) = wn+1 with the interior angle αn+1 = 1.

The map fails to be conformal at the vertices, as f ′(zk) = 0.

Proof. Let z1, . . . , zn be finite prevertices for the SC formula. By the Schwarz
reflection principle, the mapping function f can be analytically continued into the
lower half-plane. The image continues into the reflection of P about one of the sides
of Γ. By reflecting again about a side of the new polygon, we can return analytically
to H. The same can be done for any even number of reflections of P , each time
creating a new branch of f . The image of each branch must be a translated and
rotated copy of P . Now, if A and C are any complex constants, then

(A+ Cf(z))′′

(A+ Cf(z))′
=
f ′′(z)

f ′(z)
.

Therefore, the function f ′′

f ′
can be defined by continuation as a single-valued analytic

function everywhere in the closure of H, except at the prevertices of Γ. Similarly,
considering odd numbers of reflections, we see that f ′′

f ′
is single-valued and analytic

in the lower half-plane as well. At a prevertex zk,

f ′(z) = (z − zk)αk−1φ(z)

for a function φ(z) analytic in a neighborhood of zk and φ(zk) 6= 0. Therefore, f ′′

f ′

has a simple pole at zk with residue αk − 1, and

f ′′(z)

f ′(z)
−

n∑
k=1

αk − 1

z − zk

is an entire function. Because all the prevertices are finite, f is analytic at z =∞,
and a Laurent expansion there implies that f ′′

f ′
→ 0 as z → 0. By Liouville’s

theorem, it follows that the former expresion is identically zero. Expressing f ′′

f ′
as

(log f ′)′ and integrating twice results in the SC formula. �
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It has been shown that the SC formula maps H to some polygon with interior
angles αkπ. However, the length of each side of the polygon is determined by
the choice of the prevertices to compute the formula. Different prevertices provide
different values of the vertices. Usually we are interested in mapping the upper
half-plane to a concrete polygon, this is, we want to fix the vertices wk so that their
positions in the complex plane are some desired ones. This requires the knowledge
of those prevertices that allow this to happen. Determining the correct values of
the prevertices for a given polygon Γ, αk, wk is known as the parameter problem.
In the majority of the cases there is no analytic solution for the prevertices, which
depend nonlinearly on the side lengths of Γ.

Figure 2: The parameter problem: on the left, the desired polygon Γ. On the right,
the image by the function, f(R ∪∞), for arbitrary prevertices.

The correct selection of the prevertices provides a correct side lenght ratio of
the polygon. Then, the complex constants A and C translate and rotate, dilate
respectively the polygon generating any similar polygon to the one computed by
the integral.

On the other hand, the map f(z) has three degrees of freedom that allow the
arbitrary choice of three prevertices. This can be seen by considering the Moebius
transformation that maps conformally any three points on the upper half plane
z1, z2, z3 to any other three points w1, w2, w3. Therefore, for n ≤ 3, no parameter
problem needs to be solved.

In addition, the evaluation of the integral may require numerical computation.

2.4.4 Adaptation of the Formula

The SC formula can be adapted to maps from different canonical domains, to ex-
terior maps, to maps with branch points, to doubly connected regions, to regions
bounded by circular arcs, and even to piecewise analytic boundaries. Particular
interest for this thesis has the adaptation of the formula to the canonical domain
D.

Theorem 2.25. Let P be the interior of a polygon Γ having prevertices w1, . . . , wn
and interior angles α1π, . . . , αnπ in counterclockwise order. Let F be any conformal
map from the unit disk to P . Then,

F (z) = A+ C

∫ z

0

n∏
k=1

(ζ − zk)αk−1 dζ
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for some complex constants A and C, where wk = f(zk) for k = 1, . . . , n.

The appearence of the formula is similar to that for H. However, the prevertices
are defined on the boundary of D and the product runs over all the prevertices,
since none can be infinity. In general, the adaptation of the formula to other simply
connected domains leads to different formulas.

Proof. Let µ(z) = i
z + 1

1− z
, which maps D to H and let f(z) be the SC formula using

as canonical domain H. Observe that µ′(z) =
2i

(z − 1)2
Let F = f ◦ g, then

F ′(z) = µ′(z)f ′(µ(z)) = µ′(z)
n∏
k=1

(µ(z)− µ(zk))
αk−1

=
2i

(z − 1)2

n∏
k=1

(
i
z + i

1− z
− i zk + 1

1− zk + 1

)αk−1

=
2

(z − i)2

n∏
k=1

(
2i(z − zk)

(1− z)(1− zk)

)αk−1

Using that
∑n

k=1(αk − 1) = −2 we see that

F ′(z) = − i
2

n∏
k=1

(1− zk)1−αk
n∏
k=1

(z − zk)αk−1 = C
n∏
k=1

(z − zk)αk−1

�
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3 Elements of map projections

Before we can make maps of the world, we are called upon to determine the size
and the shape of the Earth. These studies comprise the subject of geodesy. In
this section we shall first discuss different models for the surface of the earth: the
sphere, the spheroid and the geoid. Then, we apply the theory developed in Section
2.1 to define the geographic coordinates of the sphere and the spheroid and use
Section 2.2 to derive the isometric coordinates for the spheroid and a conformal
map between the sphere and the spheroid. After that, we shall see by means of the
Egregium Theorem that no ideal map can be constructed and introduce the notion
of distortion. Then, different measures of the distortion are studied. In the last
section we shall introduce some basic elements in map projections and provide a
classification.

3.1 The surface of the Earth

Back at least to the sixth century B.C., the early Greeks’s notion of the Earth shape
ranged from the flat disc to the sphere. The first serious attemp to measure the size
of this sphere was the classic experiment carried out by Eratosthenes in the third
century. Claudius Ptolemy’s work Geography also describes the shape of the Earth
as a sphere along with the Earth’s dimensions.

The gravitation laws ensure that an evenly distributed mass forms a sphere, as it
is the object with minimum energy. But the Earth rotates along an axis binding the
north and south pole and therefore the centrifugal force appears, flattening the earth
towards the poles. Isaac Newton proved in his famous Principia, back in the late
seventeenth century, that a rotating self-gravitating fluid body in equilibrium takes
the form of an oblate ellipsoid of revolution, also called spheroid. The difference
is small, the equatorial diameter is about 12761.47 km, and the pole diameter is
12718.68 km, about 40 km shorter. The amount of polar flattening may be expressed
by

f =
a− b
a

,

where a and b are the lenghts of the major and minor semi-axes of the ellipsoid of
revolution. The value of the flattening is always expressed as a fraction. For the
Earth this value is close to 1

298
. As it is a very small value, usually the reciprocal

flattening 1
f

is used instead.

However, the intern mass of the Earth is unevenly distributed. Moreover, it is
time-dependent. Mass shifts around inside the planet alter the gravitational field.
Thus, the surface of the Earth is not a perfect oblate ellipsoid. A new surface that
encounters the combination of the Earth’s mass attraction, the gravitational force,
and the centrifugal force of the Earth’s rotation is defined: the geoid.

The geoid is defined in geodesy as the exact shape that the Earth’s ocean would
adopt in the absence of land and perturbations. Esentially, the figure of the Earth
abstracted from its topographical features. It is the surface of gravitational equipo-
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tential: an idealized (in the absence of currents, air preassure variation, tides etc.)
equilibrium surface of sea water called the mean sea level surface. It is a surface to
which the force of gravity is everywhere perpendicular.

Figure 3: Three-dimensional visualization of geoid ondulations, using units of grav-
ity.

The primarly interest of the geoid is that modern technology allows precise mea-
surements of its shape. Unfortunally, the amount of irregularities of the geoid is
too big for a feasible mathematical or computational treatment. The most widely
used solution is to find a spheroid to approximate the surface of the geoid, this is,
define the parameters of an oblate ellipsoid that ressemble the shape of the geoid.
Such ellipsoid is called reference ellipsoid.

Different attemps to find the ”best fitting” ellipsoid for measurements have been
developed along centuries. Table 1 gives some examples of some reference ellipsoids
used in different times and places. As a particular spheroid can fit with minimal
errors in a certain region of the geoid but not in another, different so-called local
ellipsoids were used for different regions. Each country or continent used their
own parameters for the spheroid that best fits the specific region for measurements.
This approach has been abandoned, leading to a global reference ellipsoid that has
a shape and size such that it is a best-fit model of the geoid in a least-squares sense,
together with a selected offset.

By specifying different offsets for the same reference ellipsoid, the precision in a
given region is adjusted. An ellipsoid of reference with an specified offset is known
under the name of datum. While a spheroid approximates the shape of the earth,
a datum defines the position of the spheroid relative to the center of the earth.
A datum provides a frame of reference for measuring locations on the surface of
the earth. Many different datums have been developed. The WGS84, the North
America datum NAD83 or the European datum ED50 are some examples.
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Reference ellipsoid name Equatorial radius Polar radius Inverse flattening
Airy (1830) 6,377,563.396 6,356,256.909 299.3249646
Clarke (1866) 6,378,206.4 6,356,583.8 294.9786982
Haydorf (1910) 6,378,388 6,356,911.946 297
GRS-67 (1967) 6,378,160 6,356,774.516 298.247167427
GRS-80 (1979) 6,378,137 6,356,752.3141 298.257222101
WGS-84 (1984) 6,378,137 6,356,752.3142 298.257223563

Table 1: Reference ellipsoids

The spherical Earth is still used in geodesy as a rough and first order aproxima-
tion of the surface of the Earth. Its use simplifies the computations, and the errors
assumed are negligible when we map a large region or the whole Earth using a very
small global scale.

The global scale can be understood as a reduction of the measures of the surface
before applying the map projection. It is a constant factor that resizes the surface
and it is usually denoted by 1:1000 meaning that the value of the parameters de-
scribing the surface of the earth are multiplied by a factor of 1/1000. In further
analysis we shall denote the resized parameters that describe the surface by its
non-resized denotation. This should not led to confusion.

The radius of the sphere has a value of

R = 6, 371 km,

encountered by averanging the polar and equatorial radius, 6, 358 km and 6, 378 km
respectively.

Conversely, for very small areas and when the topographic features are more
important than the Earth’s curvature, the surface can be approximated by a plane.
However, for precise maps of small regions, the spheriod is the model to be used.

Another quantity that describes the shape of the spheroid is the eccentricity.

ε2 =
a2 − b2

a2

Henceforth, we shall reserve the letters a, b, f , ε and R to denote the parameters
discussed in this section.

3.1.1 Geographic coordinate system

A primary use of the model choosen is to serve as a basis for a coordinate system.

Definition 3.1. The moment at which the sun reaches its zenith is called local
solar noon. This event occurs simultaneously at all points along a semi-circular
arc, called a Meridian. Where two meridians come together at the poles, they form
an angle that is the basis for determining the longitude. The origin of the longitude
is an arbitrary choice and is called the Prime meridian.
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Although it is an arbitrary choice, we are generally accustomed to the use as the
Prime Meridian the meridian passing through the former site of the Royal Obser-
vatory at Greenwich. The use of the Greenwich Meridian was agred internationally
in 1884, and this remains.

Longitudes are usually denoted by θ and, by definition, taking always the smallest
angle, they range between −π and π.

θ ∈ (−π, π).

Definition 3.2. The latitude of any point over the Earth is equal to the difference
between the angle made by the sun at noon of the same day at the equator, the curve
over the spheroid or sphere that devides the surface into two symmetric parts, the
hemispheres. Paralells are curves over the surface with constant latitude.

We shall denote the latitude by λ. Notice that the maximum variation of the
angle that defines a latitude is equal π

2
. Latitude, therefore, ranges between −π

2

to 0 for points in the south hemisphere, and from 0 to π
2

for points in the north
hemisphere. Thus,

λ ∈
(
−π

2
,
π

2

)

Figure 4: The point P over the sphere has longitude θ and latitude λ.

Observe that latitude and longitude together give a complete system for locating
points on the Earth. They are called geodetic or geographic coordinates. Morover,
parallels and meridians are the coordinate curves for this parametrization. A par-
allel is a curve over the surface with constant latitude.

pλ0(t) = f(λ0, t) (3.1)

The meridians are curves of constant longitude.

mθ0(t) = f(t, θ0) (3.2)
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λ

Q

P

I
N

Figure 5: Cross section of the ellipsoid of revolution. The distance from Q to P is
equal N(λ) and the distance Q, I is equal ε2N(λ).

Proposition 3.3. The longitude and latitude defined above provide a parametriza-
tion of the sphere S2 and the spheroid Σ (both without accounting the poles and the
International Date Line, the meridian placed at 180◦ from the Prime meridian).
These parametrizations are:

fS2(λ, θ) = R(cosλ cos θ, cosλ sin θ, sinλ)

fΣ(λ, θ) = (N(λ) cosλ cos θ,N(λ) cosλ sin θ,N(λ)(1− ε2) sinλ)

λ ∈
(
−π

2
,
π

2

)
, θ ∈ (−π, π)

where

N(λ) =
a√

1− ε2 sin2 λ
.

Proof. Notice that at noon, the sun incides over the surface in the direction of the
normal to the surface.

In the case of the spherical surface, the normal direction N is the radial direction
∀p ∈ S2. Therefore the latitude is the angle measured at the centre of the Earth
between the plane of the equator and the radius drawn to the point. Figure 4 shows
the geographic coordinate system over the sphere. Notice that this parametrization
is the geocentric coordinate system defined in Example 2.7.

In the spheroid, the geodetic latitude is the angle between the major axis of the
spheroid and the normal to the tangent plane at any point on the surface of the
spheroid, measured at the point of intersection of the normal with the equatorial
plane, as shown in Figure 5.

We introduce u(λ) to be the distance PN of a point P from the central axis and
we also set v(λ) for the lenght QP of the normal at P to its intersection with the
symmetry axis. Therefore

u(λ) = v(λ) cosλ =
√
x2 + y2.

The equation of any meridian ellipse is

u2

a2
+
z2

b2
= 1.

29



Differentiating this equation with respect to u gives

dz

du
= −ub

2

za2
.

Since the normal and tangent are perpendicular, the product of their gradients is
−1 and therefore the gradient of the normal is

tanλ = −
(
dz

du

)−1

=
za2

ub2
=

z

u(1− ε2)
.

Cancelling z gives

u2[1 + (1− ε2) tan2 λ] = a2.

Thus,

PN = u(λ) =
a cosλ

(1− ε2 sin2 λ)
1
2

z(λ) =
a(1− ε2) sinλ

(a− ε2 sin2 λ)
1
2

= PI sinλ.

Since v = QP = PN secλ = u secλ we have

QP =
a

(1− ε2 sin2 λ)
1
2

.

�

Remark 3.4. Under this parametrization, the coefficients of the first fundamental
form of the spheroid are

E = M2, F = 0, G = N2 cos2 λ

M =
a(1− ε2)(

1− ε2 sin2 λ
) 3

2

.

3.1.2 Isometric coordinates of the spheroid

The importance of the isometric coordinates of a surface has been shown in Section
2.2. In Example 2.18 we derived the isometric coordinates of the sphere. In this
section we shall use the same argument to derive the isometric coordinates of the
spheroid.

Proposition 3.5. The isometric coordinates of the spheroid are

p = ln

[
tan

(
π

4
+
λ

2

)(
1− ε sinλ

1 + ε sinλ

) ε
2

]
, q = θ.
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Proof. Note that (λ, θ) are orthogonal coordinates, since under this parametrization
F = 0, and that we can write the other two coefficients of the first fundamental
form as

E = N2 cos2 λ

(
M2

N2 cos2 λ

)
, G = N2 cos2 λ.

Defining
ρ = N cosλ, (3.3)

we may write

E = ρ2

(
M2

N2
sec2 λ

)
, G = ρ2.

Using Proposition 2.16, the map φ(λ, θ) = (p(λ), q(θ)) defined by(
dp

dλ

)2

=
M2

N2
sec2 λ, q(θ) = θ

is a conformal map from the spheroid to the plane. By integration we deduce that

p =

∫
M

N
secλ dλ = ln | tan

(
λ

2
+
π

4

)(
1− ε sinλ

1 + ε sinλ

)ε/2
|

�

3.1.3 A conformal map between the sphere and the spheroid

The spheroid can be conformally mapped upon the sphere by means of the function
ϕ = φ−1

S2 ◦ φΣ, where φ denotes the isometric map from the surface onto the plane.
The image by ϕ of a point (λ, θ) ∈ Σ is a point over the sphere whose coordinates
are denoted by (λ, θ) ∈ S2,

(λ, θ) = ϕ(λ, θ) = φ−1
S2 (pΣ(λ), θ)

and therefore θ = θ and

ln | tan

(
π

4
+
λ

2

)
| = ln | tan

(
π

4
+
λ

2

)(
1− ε sinλ

1 + ε sinλ

)ε/2
|

The coordinate λ is called conformal latitude.

Notice that if we have a conformal map projection g = h ◦ φS2 defined over the
sphere, then we have defined too a conformal map projection from the spheroid onto
the plane, gΣ = h ◦ φS2 ◦ ϕ and it is only needed to substitude in h the isometric
latitude of the sphere by the isometric latitude of the spheroid.

Σ

φΣ

��

ϕ // S2

φS2
��

ΠΣ Id
// ΠS2

h
//M
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3.2 Egregium Theorem

In Section 2.2 we have studied the diffeomorphic relation between surfaces and
showed that they preserve the analytic structure of the surface. However, two dif-
feomorphic surfaces can present different geometric properties. When two surfaces
have the same geometric properties they are called isometric surfaces.

As an example, a sphere and an ellipsoid are diffeomorphic by the diffeomorphism
Φ(x, y, z) = (ax, by, cz). But they do not have the same parallel length. In Example
2.11 we computed the lenght of a parallel over the sphere: LS2(pλ0) = 2πR cosλ0.
By applying (2.4) to the spheroid we obtain LΣ(pλ0) = 2πN(λ0) cosλ0 where N is
a function of λ. Therefore, in general, they do not have the same lenght.

We shown in Section 2.1.2 that the geometric properties of a given surface are
described by the first fundamental form. Therefore, in order to have an isometry
between surfaces we need the first fundamental forms to be equivalent. As the first
fundamental form depends on the point, we talk about local isometry whenever the
first fundamental form is equal at corresponding points.

Definition 3.6. Let S and S ′ be two surfaces with metrics g and g′ and let p ∈ S.
A map φ : S → S ′ is a local isometry in p if φ is a local diffeomorphism such that
∀w1, w2 ∈ TpS

g(w1, w2) = g′(dpφ(w1), dp(w2)).

Guass’ Theorema Egregium states in which cases a surface can be bend into
another without streching it. This is, when as isometry or local isometry can be
constructed between surfaces. As an example, we might think of a cone, which can
be developed onto a plane, thus, bended into a plane without crumpling, even when
they are very different-looking surfaces.

Theorem 3.7 (Theorema Egregium). The Gaussian curvature of a surface is in-
variant under local isometries.

Egregium is translated from the latin as remakable, extraordinary. This theo-
rem deserves this adjective because it states that the Gaussian curvature can be
determined entirely by measuring angles, distances and their rates on the surface
itself, although the definition of the Gaussian curvature of a surface depends on
the particular way in which the surface is embedded in the ambient 3-dimensional
Euclidean space. Thus the Gaussian curvature is an intrinsic invariant of a surface.
Another interpretation is that the curvature depends only on the first fundamental
form.

This result is of enormous significance for cartography, since it implies that no
planar map of the Earth can be perfect, even for a portion of the Earth’s surface.

Corollary 3.8. There is no local isometry between the sphere S2 and the plane Π,
or between the spheroid Σ and the plane.
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Proof. We have already computed the curvature for the sphere in (2.2) and for the
spheroid in (2.3). It is easy to see that the curvature of the plane is equal to zero:

KS2 =
1

R2
, KΠ = 0, KΣ =

b2

(a2 sin2 v + b2 cos2 v)2

Therefore, no local isometry between them can be defined. �

An ideal map projection is such that all relevant geometric features are preserved.
Lenghts, angles and areas are carried by an ideal map projection to identical lengths,
angles and areas. This result shows that, independently of the model used of the
Earth, it is impossible to depict rounded objects on flat surfaces with complete
fidelity. Thus, every map presents some kind of distortion and this fact cannot be
avoided. In the next chapter we shall study some distortion properties.

3.3 Study of the distortion

The fact that every map projection shows some kind of distortion leads to the
question ”Which map projection is best?” No particular map projection is best for
everything. The secret lies in choosing an appropriate projection that will allow the
map to retain the most important properties for each particular use. A map can
be seen as a visual tool that is to be used for some particular study: data plotting,
distance from one city to another, etc. Therefore, depending on the purpose of the
map, the interest will rely on the conservation of different properties.

Figure 6: The projection of Africa for different map projections.

Imagine that we are interested in a map to study some features depending on
the size of the countries. Then our ”best map” could be a map that shows all areas
on the surface of the Earth correctly; an equal area map. On the other hand, if we
are interested in a map for navigation, our primarly interest might be to present
rhumb lines or lines of constant bearing as straight lines. This allows the measuring
of the correct angle that will bring you to your destination.

Some of the geometric features that can be measured on the Earth’s surface are

• Area
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• Shape

• Direction

• Distance

So far we have defined what we mean by area, shape (angles) and distances over
surfaces and their projection over the map. The direction of a given curve is usually
refered as the azimuth, the clockwise angle from the tangent to the meridian to the
tangent to the projected curve. On the other hand, the grid azimuth is defined as the
clockwise angle from the ordinate axis to the tangent to the projected curve. Notice
that if the meridians are projected to vertical straight lines these two angles concide.
Another important element in map projections is the meridian convergence, usually
denoted by γ. The meridian convergence is the angle between the ordinate axis of
the xy-plane and the tangent to the projected meridian.

Map projections can be constructed to preserve at least one of these properties,
though only in a limited way. An important part of the cartographic process is
understanding distortion and choosing the best combination of projection, mapped
area and coordinate origin minimizing it for each job.

3.3.1 Scale factor

In geography it is of great importance to understand and control the distortion
produced by a particular map projection. This fact leads to the developement of
different measures of the distortion. One of the most broadly used is the scale
factor. We shall see that it measures at each point and each direction the scale that
is applied. If the projection was an isometry, the scale applied would be 1 at each
point and for all the direction. For this reason, the scale factor can be understood
as a measure of how far is a given map projection from an isometry.

Let S be a surface and p ∈ S with a chart f : U → S. Let w ∈ TpS. Then w is
the tangent vector at p for some regular curve over the surface, γ = f ◦ γ̃, γ(t0) = p.
We can write γ(t) = f((u(t), v(t)), and

w = γ′(t0) =

(
fu
du

dt
, fv

dv

dt

)
,

that in the basis (fu, fv) of the tangent plane in p is

w = γ̃′(t0) =

(
du

dt
,
dv

dt

)
.

The lenght of the curve γ between t0 and t, γ(t) in a neighbourhood of p, is

s(t) =

∫ t

t0

√
g(γ̇(t′), γ̇(t′))dt′

=

∫ t

t0

√
E

(
du

dt′

)2

+ 2F

(
du

dt′

)(
dv

dt′

)
+G

(
dv

dt′

)2

dt′,
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where E, F and G are the coefficients of the first fundamental form.

This expression is usually written

ds2 = Edu2 + 2Fdudv +Gdv2

where ds is called element of lenght of arc or line element. It is invariant under
change of chart.

In the euclidean space R2 the arc lenght element is simply

ds2 = dx2 + dy2.

The expression can be written in terms of the surface coordinates by the map
projection (x, y) = φf (u, v), where(

dx
dy

)
= Jφf

(
du
dv

)
By defining

e =

(
∂x

∂u

)2

+

(
∂y

∂u

)2

f =

(
∂x

∂u

)(
∂y

∂v

)
+

(
∂x

∂v

)(
∂y

∂u

)
g =

(
∂x

∂v

)2

+

(
∂y

∂v

)2

the element of arc lenght in the plane can be written as

ds2 = edu2 + 2fdudv + gdv2

Definition 3.9. The scale factor of the map projection φ at a point p = f(u, v) ∈ S
and direction w = (du, dv) ∈ TpS is defined as

σ2 =
ds2

dS2
=

edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv +Gdv2
.

Notice that the scale factor depends on the point p and on the direction. We
shall use the scale factor as a measure of the distortion of the map projection. If
a map between surfaces had no distortion, this is, if φ was an isometry, the scale
factor would be 1 for all p ∈ S, independent of the direction.

In geodesy, the adjective true or standard usually refers to a projected point or
curve that has a scale factor equal to 1. As an example, we shall see that the center
of the projection, when it is also the point of tangency, is a point of true scale.

Example 3.10. The scale factors along the meridians and parallels are denoted by
k and h respectively. Derivating (3.1) and (3.2) we obtain

m̃′θ0(t) = (1, 0), p̃′λ0
(t) = (0, 1)

and therefore the corresponding scale factors are

k =

√
e√
E
, h =

√
g
√
G
. (3.4)
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As studied in Section 2.2 any conformal map projection from a surface S to R2

can be expressed as the composition of the change of variables to the isometric plane
C and an holomorphic function h. If the isometric coordinates (p, q) are used, the
scale factor is reduced to

σ2 =
edp2 + 2fdpdq + gdq2

ρ2(dp2 + dq2)

Moreover, the projection under the isometric coordinates is an holomorphic function
and therefore it verifies the Cauchy-Riemann equations, which implies that

e =

(
∂x

∂p

)2

+

(
∂y

∂p

)2

=

(
∂x

∂q

)2

+

(
∂y

∂q

)2

= g,

f = 0

and therefore,

σ2 =
e

ρ2
.

In particular this shows that a map projection is conformal if the scale factor does
not depend on the direction.

Notice that

h′(p+ iq)h′(p− iq) =

(
∂x

∂p

)2

+

(
∂y

∂p

)2

=

(
∂x

∂q

)2

+

(
∂y

∂q

)2

and therefore we may write the scale factor as

σ =

√
h′(p+ iq)h′(p− iq)

ρ
.

Example 3.11. Recalling the map ρ from equations (2.7) and (3.3) for the sphere
and spheroid respectively

ρS2 = R cosλ, ρΣ = N cosλ

we may write the scale factor of a map projection h : C→ C expressed in isometric
coordinates as

σS2 =

√
h′(p+ iq)h′(p− iq)

R cosλ
, σΣ =

√
h′(p+ iq)h′(p− iq)

N(λ) cosλ
.

3.3.2 Distortion visualization

Many different techniques for visualyzing the distortion of a map projection have
been developed. We shall study only three of them: the graticule, the isoscale lines
and the Tissot indicatrix.

The resulting network of parallels and meridians, which comprise the system
of geographical coordinates, is known as the graticule, but with reference to the
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Earth’s surface and to the representation of it on a plane surface by means of a
map projection. It is a net of coordinate curves.

The plot of the graticule allows the visualization of the transformed parallels and
meridians and is used as a method to visualize the distortion. A verbal description
of the graticule is also often used in cartography. We have seen that in order to be a
conformal map projection, the scale factor must not depend on the direction at each
point. In particular, because the coordinate curves are orthogonal, the graticule at
the plane must show parallels and meridians intersecting at angles equal π

2
. Figure

7 shows an example of graticule for a non-conformal projection. The parallels and
meridians do not intersect at right angles at all points.

Figure 7: Graticule of the Mollweide projection. The central meridian and the
parallels are straight lines while other meridians are curved.

The use of isolines for the display of map projection distortion is effective for
depicting the magnitude and the distribution of any distortion measurement. Iso-
lines can be used to map any variable that is assumed continuous. In the previous
section we defined the scale factor as a measure of the distortion. The evaluation
and plot of the isocols, this is, lines on the map with constant scale factor, provides
absolute values of distortion.

Similar to the isolines, color methods provide a continuous display of distortion
across a map. Distortion is symbolized by assigning a color frequency to each
distortion value.

The last method we shall see is the Tissot’s indicatrix.

3.3.3 Tissot’s Indicatrix

The main sources of information used in this section are [13] and [18].

In 1881 Nicolas Auguste Tissot published his famous theory of deformation of
map projections. Tissot proved that an infinitesimally small circle on the spherical
or ellipsoidal Earth will be transformed on the projection plane into an infinites-
imally small ellipse. This ellipse is called the Indicatrix and describes the local
characteristics of a map projection at and near the point in question.

Tissot stated his theorem as follows:

Whatever the system of projection there are, at every point on one of the surfaces
and, if angles are not preserved, there are only two of them, such that the directions
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Figure 8: Lagrange conformal projection of the world in a circle, with isocols for p.
20◦ graticule.

which correspond to them on the one surface also intersect one another at right
angles.[15]

The two orthogonal directions are called the principal directions. The projection
of the infinitesimal small circle on the surface is then an infinitely small ellipse
whose semi-axes lie along the two principal directions.

Fix a point p ∈ S and consider the scale factor at p, that depends, in general, on
the direction. Consider an infinitesimally small circle of unit radius on the surface.
In the (planar) local coordinate system formed by the two orthogonal vectors that
are respectively to the parallel and to the meridian on the surface, the equation of
that circle may be written

ds2
λ + ds2

θ = 1.

This may also be written as a quadratic form

(
dsλ dsθ

)(1 0
0 1

)(
dsλ
dsθ

)
= 1

The increments from the ellipsoidal distance elements (dsλ, dsθ) can be written in
terms of the increments in the ellipsoidal curvilinear coordinates (dλ, dθ)(

dsλ
dsθ

)
=

(
N cosλ 0

0 M

)(
dλ
dθ

)
= K

(
dλ
dθ

)
and the former can be expressed in terms of the desired increments on the map
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Figure 9: Unit circle upon the surface of the Earth and the indicatrix. I and II are
the principal directions.

projection plane (dx, dy) in terms of the Jacobian of the transformation.(
dsλ
dsθ

)
= KJ−1

(
dx
dy

)
.

Note that C = KJ−1 is non-singular. Under this change of coordinates, the initial
circular quadratic form transforms into(

dx, dy
)
CT

(
1 0
0 1

)
C

(
dx
dy

)
=
(
dx, dy

)
CTC

(
dx
dy

)
= 1

where CTC = (J−1)TKTKJ−1 is a symmetric positive definite matrix. This is
another quadratic, whose geometry depends on the properties of the matrix CTC.
It can be shown that this matrix has two positive eigenvalues under the prerequisite
that J is a non-singulr matrix. Therefore, the former equation describes an ellipse
on the projection surface.

Then, the principal directions are defined by the eigenvectors of the matrix CTC,
say s1, s2 and the semi-axes of the Indicatrix are related by

a =
1

|s1|
, b =

1

|s2|
.

Now that we know that the image is an ellipse, in order to find the values of a
and b we may consider (

dx
dy

)
= JK−1

(
dsλ
dsθ

)
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so that the semi-axes are the eigenvalues of AAT where A = (aij) = JK−1. Notice
that A = C−1. There are formulas used in algebra for the computation of the
eigenvalues of a matrix AAT :

ab = det(AAT ) = kh sin θ′,

where k2 = a2
11 + a2

21 and h2 = a2
12 + a2

22 and θ′ is the angle between the coordinte
curves. Thus,

a′ =
√
k2 + h2 + 2ab

b′ =
√
k2 + h2 − 2ab

a =
a′ + b′

2
, b =

a′ − b′

2
.

In addition to the principal directions, there exist another pair of diameters
intersecting in right angles in the infinitessimal circle that differ maximally far from
a right angle on the map. This deviation is the maximum angular deformation. If
the map is conformal, this equals zero at every point on the map.

Figure 10: Color map of the maximum angular deformation in the Mollweide pro-
jection.

Tissot developed formulas relating the maximum angular distortion w with the
parameters of the Indicatrix a, b.

sin
w

2
=
a− b
a+ b

.

Example 3.12. [The Indicatrix in a conformal map projection.]

Recall that in order to define a conformal map projection the map from the
surface of the Earth (sphere or spheroid) onto the plane is written as a composition
of the function that maps the chart to the isometric plane and an holomorphic
function, f = h ◦ φ where h holomorphism and φ(u, v) = (p, q), (p, q) the isometric
coordinates.

The inverse of the Jacobian matrix can be written as

J−1 =
1

det(J)


∂y

∂θ
−∂x
∂θ

−∂y
∂λ

∂x

∂λ
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and therefore CTC can be computed as

CTC = (J−1)TKTKJ−1 =

1

det2 J


G

(
∂y

∂θ

)2

+ E

(
∂y

∂λ

)2

−
(
G
∂y

∂θ

∂x

∂θ
+ E

∂y

∂λ

∂x

∂λ

)

−
(
G
∂y

∂θ

∂x

∂θ
+ E

∂y

∂λ

∂x

∂λ

)
G

(
∂x

∂θ

)2

+ E

(
∂x

∂λ

)2


The characteristic polynomial is

p(x) =
1

det2 J

(
x2 − x(Ge+ Eg) + EG

((
∂y

∂θ

)(
∂x

∂λ

)
−
(
∂y

∂λ

)(
∂x

∂θ

))2
)
(3.5)

Note that because h is an holomorphism, h over (p, q) verifies the Cauchy-Riemann
equations, and therefore(

∂x

∂λ

)
=

(
∂y

∂θ

)(
dp

dλ

)
,

(
∂y

∂λ

)
= −

(
∂x

∂θ

)(
dp

dλ

)
Thus, we can rewrite equation (3.5)

p(x) =
1

det2 J

[
x2 − x(Ge+ Eg) + EGg2

(
dp

dλ

)2
]

Moreover,

e(λ, θ) =

(
dp

dλ

)2

g(λ, θ)

and the discriminant of the equation p(x) = 0 is

∆ = g2

(
G

(
dp

dλ

)2

− E

)2

.

Recalling the definition of the derivative of the isometric latitude we obtain(
dp

dλ

)2

=
E

ρ2
=
E

G

and therefore
∆ = 0.

This implies that the semi-axes have the same lenght, i.e., the Indicatrix is a circle.
Moreover, the double eigenvalue is

x =
Ge+ Eg

2 det2 J
=
G

g
=
E

e

and therefore the radius of the indicatrix is

r =
1

|x|
=
g

G
=

e

E
= h2 = k2

The lenght of the differential of arc does not depend on the direction.
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Figure 11: Mollweide Tissot indicatrices.

The indicatrix method for the visualization has been critized because it only
describes the infinitesimal areas near the center of the ellipses of distortion, which
is not the same as the area of the ellipses indicated visually.

3.4 Map Projection Classification

A map projection is usually created with the help of an intermediate surfaces with
null Gaussian curvature, so that there exists an isometry between the map’s support
and the plane. The most spreadly used are the conic and cilindrical surfaces.

1. Azimuthal projection: the map’s support is directly a plane.

2. Cylindrical projection: the cylinder is used as an intermediate surface.

3. Conic projection: the auxiliar surface is a cone.

Example 3.13. A cylinder with height h and radius r allows a parametrization
f(u, v) = (r cosu, r cosu, v), u ∈ (0, 2π), v ∈ (−h, h). To use the cylinder as auxiliar
surface would mean to find φ(λ, θ) = (u, v) and afterwards to cut the cilynder at u0

and develop it onto a plane, x = r(u− (u0 + π)), y = z.

For example, the Sanson-Flamsteed projection defines v = Rλ and u = cos(λ)θ.
The resulting projection is

x = Rθ cosλ, y = Rλ.

The map’s support touches the surface of the Earth in one (the surface is tangent)
or more (the surface is secant) regions. The points or lines of tangency present no
distortion, since the map projection is the identity for these points.

Another key feature is the orientation of the surface with respect to the map’s
support surface.

1. The polar aspect aligns the north-south axis with the projection system’s.
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Figure 12: Sanson-Flamsteed projection.

2. The equatorial aspect map projection is centered on the Equator, which is set
across one of the map’s major axes.

3. The oblique aspect map has neither the polar axis nor the equatorial plane
aligned with the projection system.

Also, the normal aspect refers to the conventional, direct or regular aspect. It
demands the simplest calculations and produces the most straightforward graticule.
The normal aspect for an azimuthal projection is the polar aspect, as for the conic
projections, while the equatorial aspect is the normal aspect for cylindrical projec-
tions. On the other hand, the transverse aspect is created by rotating the normal
axis by π

2
. Therefore, for azimuthal and conic projections is the equatorial aspect

while for the cylindre is the polar aspect.

The projection from the surface of the Earth to the auxiliar surface is very often
originated by light rays originated at a point in the space called focus. Each beam
intersect the surface of the Earth at a unique point P and the auxiliar surface
at P ′. Then P ′ is the projection of the point P . This kind of projections are
called perspective projections. On the other hand, many map projections have a
purely mathematic description. Some of them are the Azimuthal non-perspective
projections, the pseudocylindrical and pseudoconical projections. Example 3.13 is
a pseudocylindrical projection.

Another classification of map projections is due to the geometrical properties
that they preserve.

1. Equidistant: map projections for which a non-trivial set of well defined stan-
dard lines is defined.

Example 3.14. The azimuthal equidistant projection preserve distances along
all segments that undergo the center of the projection. The azimuthal equidis-
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Figure 13: Normal, transverse and oblique aspects for the azimuthal, cylindrical
and conic projections, all of them secant to the sphere.

tant polar projection is defined by the following equations:

x =
(π

2
+ λ
)
R cos θ

y =
(π

2
+ λ
)
R sin θ.

In this case, parallels define a set of true lines: all points of constant latitude
are at the same distance of the central point.

2. Equal-Area: map projections that preserve areas.

It can be proved that a map projection is equal area if and only if

EG− F 2 = eg − f 2.

Both Mollweide projection and Sanson-Flansteed projections are equal area.

Example 3.15. The Gall-Peters projections is an equal-area rectangular map
projection

x = Rθ

y = 2R sinλ.

It is a cylindrical secant projection in equatorial aspect with standard parallels
of latitude λ0 = 45◦ and λ1 = −45◦.
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Figure 14: Azimuthal equidistant projection polar aspect. All the points in blue
are are the same distant from the central point.

Figure 15: Gall-Peters equal area projection.

3. Conformal: map projections that preserves angles locally.

The aim of this dissertation is to study this kind of map projections. In the
following sections we shall study some of the best-known conformal map projec-
tions, how to derive them and their properties. In Section 4 the classic conformal
projections shall be discussed. After that, in Section 5 the SC formula is applied in
order to derivate some conformal maps.
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4 Classic conformal map projections

For each of the three major projection groups, azimuthal, cylindrical and conic
projections there is a single conformal design: the stereographic projection, the
Mercator projection and the Lambert conic projection. In this chapter we shall
derive this three projections and show that Lambert’s conic is a general case of the
other two.

4.1 The normal Mercator Projection

The Mercator conformal projection was published by Gerardus Mercator, whose
original name was Gerhard Kremer, in about 1550 in ”Nova et Aucta Orbis Terrae
Descriptio ad Usum Navigatium Emendate Accommodata” (A new and enlarged
description of the Earth with corrections for use in navigation). Mercator arrived
at his map projection formulas empirically in attempting to map the rhumb lines
on the globe into straight lines in the map. Edward Wright gave the mathematical
formulation about 40 years later.

A rhumb line or loxodrome is a curve over the surface with constant bearing.
A compass measures the bearing of the direction in relation to the true north, the
pole north. A route over a loxodrome would show constant rhumb in the compass.
This was of great interest in navigation because in order to plan a trip between two
points using a map that shows loxodromes as straight lines it would be suficient to
draw a straight line betweeen both points on the map, compute the bearing and
follow the same rhumb. This route is, in general, longer than the shortest path
between the points and equal only if it lies over the Equator.

We shall derive first the equations assuming a spherical surface. Afterwards the
evaluation of the formula for the spheroid will be discussed.

In order to construct Mercator’s rectangular map, notice that if we project the
meridians as vertical equispaced straight lines x = cθ, c ∈ R, then a straight
line intersects all the meridians forming the same angle. Moreover, the parallels are
wanted to be straight horizontal lines whose spacing y = g(λ) we want to determine
so that the antiimage of this straight lines are indeed the loxodromes. In order to
preserve all of these angles, we clearly want to construct a conformal map. We
have already seen that, in particular, the scale factor along meridians k, and along
paralels h, have to be equal. Moreover, the scale factor along a parallel of latitude
λ is

h =

√
g

G
=

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

R cosλ
=
c secλ

R

For the condition of conformality we need k = R−1 secλ. If we depict this parallel
as a horizontal line segment at height y = g(λ), then, the scale factor along the
meridian at any point of the parallel will be h = R−1g′(λ). So the function g(λ)
must satisfy g′(λ) = c secλ. We also want to have g(0) = 0 so that the equator is
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mapped to a segment of the x-axis. Together, these conditions imply that

g(λ) = c

∫ λ

0

sec(t)dt = c ln | secλ+ tanλ| = c ln tan

(
π

4
+
λ

2

)
.

This is the isometric latitude found in Example 2.18 multiplied by a factor c.

Moreover, we assume the equator to be a line of true scale. This implies that
distances along the image of the equator are to be preserved. In particular, the
lenght of the Equator has to be equal in the sphere, computed in (2.5), L(0,2π)(p0) =
2πR and in the map L, L = 2πc. Thus, c = R and the equations found are then{

x = Rθ

y = R ln | secλ+ tanλ|.
(4.1)

These equations are the definition of the isometric coordinates of the sphere multi-
plied by a factor R. They can be also expressed as

x+ iy = R(q + ip),

where (p, q) are the isometric coordinates.

Figure 16: The Mercator projection.

By replacing q = θ− θ0, the map can be centered at another arbitrary meridian
θ0, instead of the Greenwhich meridian.

The inverse formulas for the sphere are as follows

λ =
π

2
− 2 arctan(e

y
R ) = arctan[sinh

( y
R

)
]

θ =
x

R
+ θ0.

The scale factor is
σ = secλ.
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Notice that it does not depend on the direction. Along the equator there is no
distortion, σ = 1, and the scale factor increases fast towards the poles, which are
at infinite distance fro the equator. Therefore, the poles cannot be shown on the
map. Greenland appears larger than South America, although it is only 1

8
the size

of South America.

Figure 17: Tissot’s indicatrices over the Mercator’s map projection.

The normal aspect of Mercator’s projection for the spheroid can be found by sub-
stituting the isometric latitude of the sphere by the isometric latitude of the spheroid
and the lenght of the equator over the surface by L(−π,π)(p0) = 2πN(0) cos(0) = 2πa,
where a is the semi-major axis of the ellipsoid. Thus, the map projection equations
from the spheroid are,

x = aθ

y = a ln tan

(
π

4
+
λ

2

)(
1− ε sinλ

1 + ε sinλ

)ε/2
.

w

The inverse formulas for the spheroid are as follows

λ =
π

2
− 2 arctan

(
e
y
a

(
1− ε sinλ

1 + ε sinλ

) ε
2

)
θ =

x

R
+ θ0.

A computation shows that

σ =
a

N cosλ
.

We want to show that the image of the loxodromes are straight lines under the
formulas found for the map projection.
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Figure 18: The loxodrome with bearing 80◦ over the sphere.

At each point p ∈ S we can define the unitary vectors in the tangent plane that
track the parallel and the meridian in p:

λ̂ =
fθ
‖fθ‖

=
fθ√
G

θ̂ =
fλ
‖fθ‖

=
fλ√
E
,

where E and G are the first and third coefficients of the first fundamental form.
The curve that forms an angle β with the meridian has unit tangent vector β̂ equal

β̂ = sin βλ̂+ cos βθ̂.

On the other hand, a curve γ(t) = f(λ(t), θ(t)) over the surface has a tangent vector
equal

γ′(t) =

(
fλ
dλ

dt
, fθ

dθ

dt

)
= θ̂
√
E
dλ

dt
+ λ̂
√
G
dθ

dt

Because β̂ = γ′ we obtain

dλ

dt
=

cos β√
E
,

dθ

dt
=

sin β√
G

In order to integrate we can write

dθ

dλ
= tan β

√
E√
G

In Example 2.18 and Proposition 3.5 we have shown that in the geographic coor-
dinate system for both the sphere and the spheroid, we could write E = ρ2

U
and
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G = ρ2

V
where U and V were respectively functions of λ and θ alone. Therefore we

can rewrite the expresion above by

1√
V
dθ = tan β

1√
U
dλ

Moreover, the integral of the right hand side is the isometric latitude and the
integral of the left hand side, the isometric longitude. Therefore we have derived
the equations for the loxodrome

q(θ) = p(λ) tan β.

Now it is obvious to see that by the transformation f(q + ip) = a(q + ip) the
loxodrome transforms to a straight line with an angle with the vertical equal to β,

f(γ(t)) = f(p tan β + ip) = a(p tan β + ip)

and therefore y = tan βx.

Figure 19: Mercator’s map projection and the plot of the loxodrome (blue) and the
great circle (red) from Barcelona to Singapore.

4.1.1 The Mercator projection with two standard parallels

In the former section we derived the equations for the Mercator projection assuming
the Equator to be a standard parallel. However, it is also possible to choose another
parallel as standard, another parallel with true scale. If λ1 is the parallel made
standard, then the opposite parallel of latitude −λ1 is also standard. This is the
secant Mercator projection, where the surface is projected to a cylinder which cuts
the sphere at two parallels with latitude ±λ1.
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In this case, the lenght of the rectangular map L is the lenght of the parallel λ1,
L(−π,π)(pλ1) = 2πK cosλ1, where K = R for the sphere and K = N(λ1) if we are
considering the ellipsoidal case. The equations for the sphere are

x = R cosλ1θ

y = R cosλ1 ln | tan

(
π

4
+
λ

2

)
|,

and for the ellipsoid of revolution

x = N(λ1) cosλ1θ

y = N(λ1) cosλ1 ln | tan

(
π

4
+
λ

2

)(
1− ε sinλ

1 + ε sinλ

)ε/2
|.

The scale factors are respectively

σS2 = secλ cosλ1

σΣ =
N(λ1) cosλ1

N(λ) cosλ
.

The map will look exactly the same, but the scale will be slightly different, equal
to one at the parallels λ1 and −λ1, increasing towards the poles and decreasing
towards the equator from the standard parallels.

4.2 The Transverse Mercator Projection

The Transverse Mercator projection, which has become of great importance in mod-
ern cartography and is widely used, was invented in its spherical form by Johann
Heinrich Lambert in 1772. In 1822 Gauss gave an analytical derivation of the pro-
jection for the ellipsoidal case, showing that it was a special case of a conformal
mapping of one surface onto another. Then, in 1912, Krueger completed the devel-
opment of the Transverse Mercator projection by developing the formulas further
in order that they would be suitable for numerical calculations.

The requirements for the transverse Mercator projection are

1. The scale shall be true along the central meridian θ0.

2. The origin of ordinate y is at the equator

3. The origin of the abscissa x is at the central meridian

In the spherical case of a cylindrical projection we can relate the transverse
graticule with the normal aspect graticule by means of a rotation. Let the position
of a point p be defined by the geographic coordinates (λ, θ) and by the corresponding
coordinates λ′ and θ′ on the rotated system, see Figure 21.
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Figure 20: Transverse Mercator Projection with central meridian at 90◦ and −90◦.
15◦ graticule.

Then, using spherical geometry and from the spherical triangle NEP and PEM ,

cosλ′ cos θ′ = cosλ cos θ, cosλ′ sin θ′ = sinλ.

Hence,
tan θ′ = tanλ sec θ, sinλ′ = cosλ sin θ.

Using the coordinates λ′ and θ′ we can apply the normal Mercator map projection
with latitude λ′ and longitude −θ′.{

x′ = −Rθ′

y′ = R ln | secλ′ + tanλ′|.

Notice that

secλ′ + tanλ′ = tan

(
π

4
+
λ′

2

)
=

√
1 + sinλ′

1− sinλ′
, (4.2)

and by substituting the values of λ′ and θ′ and restoring x = y′ and y = −x′ in
order to satisfy the second and third requirements, we finally obtainx =

R

2
ln

(
1 + cosλ sin θ

1− cosλ sin θ

)
y = R arctan (tanλ sec θ) .

(4.3)
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Figure 21: Transverse Mercator spherical geometry.

The equation for x might also be written as

x = R arctanh(cosλ sin θ).

It can be seen after some computations that Equation (4.3) can be expressed as

y + ix = 2Rarccot(ep+iq). (4.4)

It is clear from Figure 20 that paths of constant compass bearing are no longer
straight lines.

The inverse transformation gives{
λ(x, y) = arcsin

(
sech x

R
sin y

R

)
θ(x, y) = arctan

(
sinh x

R
sec y

R

)
.

The scale factor is computed by evaluating the partial derivatives of x and y in θ
and results in:

σ =
1√

1− cos2 λ sin2 θ
.

Notice that for the central meridian, θ0 = 0, σ = 1. Hence, it is a standard line and
the requirement 1 in page ?? is fullfiled. The scale factor might also be written in
terms of the cartesian coordinates:

σ(x, y) = cosh
( x
R

)
.

This showns that the scale factor depends only on the distance from the central
meridian.

The ellipsoidal case is more tricky. Gauss proposed a double conformal projec-
tion, using the conformal map between the spheroid and the sphere explained in
Section 3.1.3. Then, the map (4.4), where now p denotes the isometric latitude
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of the spheroid, maps conformally the spheroid onto the plane verifying the three
requirements.

On the other hand, Krueger proposed a direct map from the ellipsoid onto the
map. Since we want the map projection, say f , to remain conformal, f can be
written as

y + ix = f(p+ iq)

where p is the isometric latitude and q = θ − θ0, θ0 the longitude of the central
meridian.

The third requirement implies that when θ = θ0, or analogously q = 0, we must
have x = 0 and therefore, y = f(p).

Moreover, the first requirement is only satisfied if for q = 0,

f(p(λ)) = Lλ =

∫ λ

0

√
E(λ′)dλ′

In the spheroidal case, where
√
E = M , this integral cannot be computed exactly.

Moreover, so far we have only obtained the values of f at the y-axis. For a point
z = p + iq and assuming q to be small, we can expand f in a Taylor series around
the point z0 = p, in which the value of the function is known:

y + ix = f(z) = f(z0 + ∆z) =
∞∑
n=0

f (n)(p)

n!
(iq)n (4.5)

Since i4k = i, i4k+2 = −1, i4k+3 = −i and i4k+4 = 1, k ∈ N, let us separate the
real and the imaginary parts of (4.5):

x = f ′(p)q − 1

3!
f ′′′(p)q3 +

1

5!
f (v)(p)q5 − 1

7!
f (vii)(p)q7 + . . .

y = f(q)− 1

2!
f ′′(p)q2 +

1

4!
f (iv)(p)q4 − 1

6!
f (vi)(p)q6 + . . .

The remaining problem is the evaluation of the derivatives of f(p) = Lλ. In
order to do so, recall that

dλ

dp
=

ρ

M
, ρ = N cosλ,

dρ

dλ
= −M sinλ

and therefore

f ′(p) =
dLλ
dp

=
dLλ
dλ

dλ

dp
= ρ

f ′′(p) =
d

dλ

(
dLλ
dp

)
dλ

dp
= − sinλρ

f ′′′(p) =
d

dλ

(
d2Lλ
d2p

)
dλ

dp
= −N cos3 λ(1− tan2 λ+ e2 cos2 λ).
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In the same way, the higher derivatives can be computed. Substituting on the
equation yields,

x

N
= θ cosλ+

θ3 cos3 λ

6
(1− t2 + ν2)

+
θ5 cos5 λ

120
(5− 18t2 + t4 + 14ν2 − 58t2ν2 + 13ν4 + 4ν6 − 64ν4t2 − 24ν6t2)

+
θ7 cos7 λ

5040
(61− 479t2 + 179t4 − t6) + . . .

y

N
=
L(m0)

N
+
θ2

2
sinλ cosλ+

θ4

24
sinλ cos3 λ(5− t2 + 9ν2 + 4ν4)

+
θ6

720
sinλ cos5 λ(61− 58t2 + t4 + 270ν2 − 330t2ν2 + 445ν4 + 324ν6

− 680ν4t2 + 88ν8 − 600ν6t2 − 192ν8t2) + . . .

where L(m0) =
∫ λ

0
Mdλ, t = tanλ, ν2 = e′2 cos2 λ and e′2 =

a2 − b2

b2
. The above

mapping equations yield x and y values accurate to 0.001 meters for θ = 3◦. They
define only a map projection within a neighbourhood of the central meridian. How-
ever, by repeating the process for consecutive meridians placed at certain angular
distance from each other, we might obtain a map of the whole world.

4.2.1 Universal Transverse Mercator (UTM)

The UTM projection is the family of Transverse Mercator projection with 6◦ merid-
ian zones. Each zone has 3◦ on the left side of each central meridian and 3◦ on the
right side. The total number of zones is 60.

This map projection was adopted by the US Army Map Service in 1947 for their
use in worldwide mapping.

A factor k = 0.9996 is applied. Hence, the projection formulas are

xUTM = kx, yUTM = ky

where x and y are the rectangular coordinates of the transverse Mercator projection
defined in (4.3). This scale factor reduces the overall scale factor,

σUTM = kσ,

where σ is the scale factor of the transverse mercator projection. This situation is
analogous to that in which the cylinder is secant to the surface instead of tangent.

4.3 Stereographic Projection

The stereographic projection is probably the most used azimuthal projection. His
polar aspect was already known by Hipparchus (about 150 B.C).
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Figure 22: Scale Factor on the UTM.

It is an azimuthal perspective projection that maps the sphere from a focal
point placed over the surface F = (λF , θF ) to a plane tangent to the surface at
the antipodal point C. Let P ∈ S be a point over the surface. Then the line FP
intersects the plane of projection at a unique point P ′. Then, P ′ is the projection
of the point P .

We shall derive the formula for the north polar aspect. Fix the perspective point
at F = (0, 0,−1), the south pole, and the point of tangency at N = (0, 0, 1), the
north pole. A cross section is shown in Figure 23. Notice that in order to find P ′,
we only need to compute its distance r = NP ′ from the north pole as a function
of the geographic latitude λ, since the distance is constant for all θ and it does not
depend on the geographic longitude.

λ

F

N

P

P’

T

Figure 23: Cross section of the ellipsoid of revolution. The distance from Q to P is
equal N(λ) and the distance Q, I is equal e2N(λ).

The triangles ∆FPT and ∆FP ′N are similar and therefore, since OT = R sinλ,
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PT = R cosλ and the radius of the sphere is R,

r

2R
=

cosλ

sinλ+ 1
=

1

tanλ+ secλ

and therefore

r =
2R

secλ+ tanλ
.

We want to write down the projection in cartesian coordinates x, y. In order to do
this we choose the Greenwich meridian θ = 0 to project on the negative vertical
axis y < 0. Moreover, we measure the longitude θ from it in the counterclockwise
direction. Hence, the stereographic projection is given by

x = r sin θ =
2R sin θ

tanλ+ secλ

y = −r cos θ = − 2R cos θ

tanλ+ secλ
.

(4.6)

Figure 24: Polar stereographic projection, north pole.

The former equations can be written in terms of the isometric coordinates of the
sphere. Notice that r = 2Re−p and using Euler’s identity

y + ix = −2Re−(p+iq) = f(p+ iq)

In terms of ζ = p+ iq, f(ζ) = −2Re−ζ . The projection is conformal, since

∂f

∂ζ
= −2R(eζ − eζ) = 0

for all ζ.

The scale factor can be easily computed by derivating Equation (4.6),

σ =

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

ρ
=
r

ρ
=

2e−p

cosλ
=

2

1 + sinλ
.
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Figure 25: Tissot indicatrices in the polar stereographic projection.

Other aspects of the stereographic projection in its spherical form may be found
by rotating the sphere from the point of tangency (λ0, θ0) to the north pole and
then applying the equations of the polar stereographic projection. Assuming that
the point p is placed in the north hemisphere, λ0 ≥ 0, such a rotation is given by
the matrix

T =

cos θ0 sinλ0 sin θ0 sinλ0 − cosλ0

− sin θ0 cos θ0 0
cos θ0 cosλ0 sin θ0 cosλ0 sinλ0

 .

Let (x′, y′, z′) be the cartesian coordinates of a rotated point p with geographic
coordinates (λ, θ). Hence, (x′, y′, z′) = Tf(λ, θ) and the new coordinates of p, say
(λ′, θ′) of the rotated sphere are

λ′ = arcsin z′, θ′ = arctan

(
y′

x′

)
.

This is, in particular, true for any azimuthal projection from the sphere onto the
plane.

In order to find the equatorial aspect of the stereographic projection, we have to
rotate the point (0, θ0) to the north pole. We can assume without loss of generality
that θ0 = 0. Substituting in T we find

T =

0 0 −1
0 1 0
1 0 0

 .

Now the rotated coordinates of a point (λ, θ) verify

sinλ′ = cosλ cos θ, cos θ′ =
− sinλ√

1− cos2 λ cos2 θ
, sin θ′ =

cosλ sin θ√
1− cos2 λ cos2 θ

.
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Using the same argument as in Section 4.2, Equation (4.2) holds, and therefore,

e−p
′
=

(
1 + cosλ cos θ

1− cosλ cos θ

)− 1
2

Applying the stereographic projection described by equation (4.6) to the relative
coordinates λ′ and θ′,

x

2R
=

cosλ sin θ

1 + cosλ cos θ
=

sin θ

cos θ + secλ
y

2R
=

sinλ

1 + cosλ cos θ
=

tanλ

cos θ + secλ
.

We want to express the equations in terms of the isometric latitude p. The hyper-
bolic trigonometric functions will help us. We have:

cosh p =
ep + e−p

2
=

1

2

(
1 + sinλ

cosλ
+

cosλ

1 + sinλ

)
=

1

cosλ

sinh p =

√
cosh2 p− 1 =

√(
1

cosλ

)2

− 1 = tanλ.

Finally, 
x = 2R

sin θ

cos θ + cosh p

y = 2R
sinh p

cos θ + cosh p
.

In particular this can be written as follow

x+ iy = 2R tan

(
θ + ip

2

)
. (4.7)

The scale factor is

σ =

√(
∂x

∂p

)2

+

(
∂y

∂p

)2

ρ
=

2

cosλ(cos θ + cosh p)
=

2

1 + cosλ cos θ
.

In the ellipsoidal form, only the polar aspect is truly azimutal, but it is not
perspective, in order to retain conformality. The oblique and equatorial aspects are
neither azimuthal nor perspective. The formulas result from replacing the isometric
latitude of the sphere in the spherical equations with the isometric latitude of the
spheroid, as explained in Section 3.1.3.

4.4 Lambert Conformal Conic Projection

First developed by Lambert in his ”Beitraege zum Gebrauche der Mathematik”,
Berlin, 1772, the projection is used worldwide. The principal source of information
used in this section is [5].

The requirements of this projection are:
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Figure 26: Equatorial aspect of the stereographic projection. Point of tangency
(0, 0).

1. Parallels are to be part of concentric circles.

2. Meridians are to be radii of concentric circles.

We want to find the conformal function f(q+ip) = x+iy satisfying the requirements
above. For convenience, we shall use the polar coordinates (ρ, ϕ) in order to derive
the map formulas.

The first requirement implies that ρ is a function of λ alone, or analogously,
ρ = ρ(p). On the other hand, the second requirement implies ϕ = ϕ(θ). Finally,
assume that the cone has an opening angle 2πt, t ∈ (0, 1). Notice that all the
meridians are equidistantly spaced between the angle −πt and πt. Therefore we
obtain

ϕ(θ) = tθ.

The cartesian coordinates assuming that the image of the vertex of the cone is
place at (0, ρ0), ρ0 = ρ(p0) for an arbitrary p0 are{

x(q, p) = ρ(p) sin(tq)

y(q, p) = ρ0 − ρ(p) cos(tq).

The partial derivatives are

∂x

∂q
= ρt cos(tq),

∂x

∂p
=
dρ

dp
sin(tq)

∂y

∂q
= ρt sin(tq),

∂y

∂p
= −dρ

dp
cos(tq).

The Cauchy Riemann equations imply that

dρ

dp
= −ρt,
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and by integrating we obtain

ρ(p) = ρ0e
−t(p−p0). (4.8)

The formulas can be written as follows{
x(q, p) = ρ0e

−t(p−p0) sin(tq)

y(q, p) = ρ0 − ρ0e
−t(p−p0) cos(tq).

(4.9)

Figure 27: Lambert Conic Projection with one standard parallel λ0 = 20◦.

Up to this point, both t and ρ0 are parameters whose value can be arbitrary
chosen. They can be related with a geometric feature for the projection.

We shall fix t so that the parallel of latitude λ0 is a standard parallel. This
implies

Lλ0 := L(−π,π)(pλ0) = 2πρ0t,

which implies

t =
Lλ0

2πρ0

.

Notice that because of the constraint t ∈ (0, 1), 2πρ0 > Lλ0 .

We can choose ρ0 so that λ0 is the unique standard parallel, this is, the cone as
an auxiliar mapping surface is tangent to the surface at λ0, or in order to obtain
another standard parallel, namely λ1, so that the cone is secant to the surface,
intersecting with it at λ0 and λ1.

4.4.1 Tangent cone

A cone that is tangent at latitude λ0 has an opening angle equal to the value of the
latitude for both the sphere and the spheroid. Hence,

ρ0 sinλ0 = N cosλ,
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where N = R is the cone is tangent to a sphere. Therefore,

ρ = N cotλ0 =
Lλ0

2π sinλ0

The parameter t can be written as

t = sinλ0.

Substituting

x = N cotλ0e
− sinλ0(p−p0) sin(sinλ0q)

y = N cotλ0(1− e− sinλ0(p−p0) cos(sinλ0q)),

or in terms of the geogrephic latitude

x =
N

tanλ0

(
tanλ0 + secλ0

tanλ+ secλ

)sinλ0

sin(sinλ0θ)

y =
N

tanλ0

− N

tanλ0

(
tanλ0 + secλ0

tanλ+ secλ

)sinλ0

cos(sinλ0θ)

Both the Mercator and the stereographic projections are limit cases of the Lam-
bert conical projection. The formula of the stereographic projection is recovered
when the latitude of the standard parallel λ0 → π

2
. The parameter t tends to 1 and

the auxiliary cone transforms into a plane. Analogously, for λ0 → 0, the standard
parallel tends to the equator and the cone to a cylinder, t → 0. Therefore, this
limit case defines the Mercator Projection.

Figure 28: Lambert conic with standard parallel at latitude 20◦

4.4.2 Secant cone

As mentioned before, it is possible to choose ρ0 such that another parallel λ1 6= λ0

is standard. If λ1 is standard, then

Lλ1 =
t

ρ(λ1)
,
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and as t =
Lλ0

ρ0

we obtain

ρ0 =
Lλ0

Lλ1

ρ(λ1) =
N0 cosλ0

N1 cosλ1

ρ(λ1).

By substituting ρ0 in (4.8)

ρ(λ1) = ρ0

(
tanλ0 + secλ0

tanλ1 + secλ1

)N0 cosλ0

ρ0

= ρ(λ1)
N0 cosλ0

N1 cosλ1

(
tanλ0 + secλ0

tanλ1 + secλ1

)N0 cosλ0

ρ0 ,

which implies

1 =
N0 cosλ0

N1 cosλ1

(
tanλ0 + secλ0

tanλ1 + secλ1

)N0 cosλ0

ρ0 .

Applying in both sides the logarithm

0 = ln

(
N0 cosλ0

N1 cosλ1

)
+
N0 cosλ0

ρ0

ln

(
tanλ0 + secλ0

tanλ1 + secλ1

)
Isolating ρ0 from the former equation

ρ0 = ρ(λ0) = −N0 cosλ0

ln

(
tanλ0 + secλ0

tanλ1 + secλ1

)
ln

(
N0 cosλ0

N1 cosλ1

)
= −N0 cosλ0

p0 − p1

ln

(
N0 cosλ0

N1 cosλ1

) ,
and therefore

t =

ln

(
N0 cosλ0

N1 cosλ1

)
p0 − p1

.

Substituting the found value of ρ0 and t in equation (4.9), the formulas for the conic
Lambert’s projection with two standard parallels are finally obtained.

4.5 Lagrange Projection

This projection is named after Joseph Louis Lagrange, who generalized Lambert’s
concept developing its ellipsoidal case and thoroughly studied its properties in 1779.
Lambert conceptually introduce a set of conformal map projections based on three
simple steps:
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1. On the sphere, compress or expand every meridian by multiplying its longitude
by a constant factor.

2. Still on the sphere, move the parallels along to restore conformality.

3. Apply an azimuthal stereographic projection in the equatorial aspect.

Figure 29: Lagrange projection for k = 0.5.

Lambert introduces the idea of using the isometric coordinates to project the
surface. Step one multiplies the longitude by a factor k

θ 7→ θ̃ = kθ = kq.

The second step computes the isometric latitude

λ 7→ λ̃ = kp.

Recalling equation (4.7), the third step is

x+ iy = tan
k(q + ip)

2
.

By separating the real and imaginary part
x =

sin(kq)

cos(kq) + cosh(kp)

y =
sinh(kp)

cos(kq) + cosh(kp)

The scale factor is

σ =
k

ρ(cos kq + cosh kp)
,
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Figure 30: Tissot indicatrices in the polar stereographic projection.

where N = R in the spherical case. The scale factor is large near the poles, which
are nonconformal, since the derivative of the map projection function equal zero for
λ = ±π. The isocols are ovals extended along parallels as shown in Figure 8.

For k = 1
2
, the whole world is conformally mapped to a unit disk. This is the case

usually refered as Lagrange’s projection. It was of great importance in cartography,
as it is a convenient basis for further transformations.
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5 Conformal map based on SC transformation

The SC formula allows us to explicitely find a conformal map between the unit
disk and some simply connected domains such as polygons. In Section 4 we studied
different projections of the surface of the Earth within the unit disk: Lagrange’s
projection and the stereographic projection. In this section we shall first review
this map projections and afterwards, apply the SC formula in order to find some
well-known map projections. Finally, two projections that are not constructed by
means of the SC formula are discussed: Eisenlohr and August map projections.

5.1 Parent projection

This section briefly recalls the map projections found in Section 4 that confor-
mally map the Earth onto the unit disk and that are about to be used in further
sections. The formulas might be slightly different. Although, the only changes de-
scribe rotations and reflexions in order to obtain a more convenient orientation of
the projection.

5.1.1 One hemisphere

Let p be the isometric latitude and q = θ − θ0, and let ζ = p+ iq.

The stereographic projection allows us to project half the sphere into the unit
disk. Recall the equations:

1. Polar Aspect. North pole:

x+ iy = exp (−ζ), λ ∈
(

0,
π

2

)
, q ∈ (−π, π). (5.1)

The central meridian q = 0 has its image in the positive x axis (x > 0, y = 0)
and the meridians grow counterclockwise.

2. Polar Aspect. South pole:

x+ iy = exp ζ, λ ∈ (−π
2
, 0), q ∈ (−π, π). (5.2)

where the central meridian q = 0 has its image in the positive x axis (x > 0,
y = 0) and the meridians grow counterclockwise.

3. Equatorial Aspect: with central meridian θ0 and poles in the imaginary axis,
and the equator represented on the real axis:

x+ iy = i tanh

(
ζ

2

)
, λ ∈ (−π

2
,
π

2
), q ∈ (−π

2
,
π

2
). (5.3)

Notice that the stereographic projection presents no singularities.
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Figure 31: Polar stereographic projection graticule for meridians of longitude indi-
cated in degrees.

5.1.2 Whole World

It has been shown that the Lagrange projection maps the whole world within a
disc. Let ζ = p+ iq. Recall the equations derived in Section 4.5:

x+ iy = i tanh

(
ζ

4

)
. (5.4)

The Equator is mapped onto the real axis and the north and south pole are repre-
sented respectively at z = i and z = −i. This projection has two singular points,
λ = π

2
and λ = −π

2
.

Figure 32: On the left, equatorial stereographic 15◦ graticule described by Equation
(5.3). On the right, Lagrange graticule 30◦ graticule described by Equation (5.4).

5.2 Triangle

Triangles are polygons with n = 3 vertices, so no parameter problem needs to be
solved. Thus, the prevertices can be choosen arbitrarely. Assume we want to map
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the upper half plane onto a triangle with finite vertices and inner angles πα1, πα2

and πα3,
∑3

i=1 αi = 1. Let the prevertices be z1 = 0, z2 = 1 and z3 = ∞. Then,
the SC formula provides a map F from the H onto the triangle of the form

F (z) = A+ C

∫ z

0

ζα1−1(ζ − 1)α2−1dζ, A, C ∈ C.

The integral above is a particular case of the incomplete beta function

B(z; a, b) =

∫ z

0

ζa−1(ζ − 1)b−1dζ.

Thus,

F (z) = A+ CB(z;
1

3
,
1

3
). (5.5)

5.2.1 Adams one hemisphere in an equilateral triangle

The value of A and C in Equation 5.5 can be determined by choosing the vertices
of the equilateral triangle. Let

w1 = 0, w2 = 1, w3 =
1

2
+

√
3

4
i.

This selection of vertices respects the condition of equiangles. Now, F (0) = 0 and
therefore A = 0. Morever, F (1) = 1. Thus,

1 = CB

(
1

3
,
1

3

)
,

where B(a, b) is the complete beta function

B(a, b) =

∫ 1

0

ζa−1(ζ − 1)b−1dζ =
Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0.

Thus,

F (z) =

B

(
z;

1

3
,
1

3

)
B

(
1

3
,
1

3

) = Iz

(
1

3
,
1

3

)
(5.6)

where Iz(a, b) is the regularized beta function

Iz(a, b) =
B(z; a, b)

B(a, b)
.

Since we want to project one hemisphere we chose as parent projection the stere-
ographic north polar projection, see (5.1). The boundary of the triangle corresponds
to the eEquator and the meridians −150◦, −30◦ and 90◦ are straight lines that meet
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at the conformal center, the north pole. Figure 31 shows that these meridians in
the stereographic projection intersect the boundary at the points

z1 = ei
7π
6 , z2 = e−i

π
6 , z3 = i.

To find the projection, we use a Moebius transformation µ from D onto H such
that

µ(−
√

3

2
− i

2
) = 0, µ(

√
3

2
− 1

2
) = 1, µ(i) =∞,

which is

µ(z) =
(1− i

√
3) + (

√
3− i)z

2
√

3(z − i)
.

and therefore,
G(z) = F (µ(z))

maps conformally the unit disk to the triangle with the equator as boundary and
meridians −150◦, −30◦ and 90◦ respectively joining the center of the triangle with
the vertices w1, w2 and w3.

Figure 33: Grid transformation of Adam’s equilateral triangle conformal map

The stereographic projection in polar aspect is used as parent projection. Re-
calling equations (5.1)

z = e−ζ , ζ = p+ iq

we obtain

F (ζ) = I

(
(1− i

√
3) + (

√
3− i)e−ζ

2
√

3(e−ζ − i)
;
1

3
,
1

3

)
(5.7)

5.2.2 Lee whole world in an equilateral triangle

By choosing the same prevertices as in the former section, the argument holds and
the function that maps H onto an equilateral triangle is

F (z) = Iz

(
1

3
,
1

3

)
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Figure 34: Adams comformal map of one hemisphere in an equilateral triangle.

Since we want to plot the whole world, we select as parent projection Lagrange
projection, see (5.4). This projection represent the north pole in i and the south pole
in −i. The equator is represented in the x-axis. Moreover, Lee’s projection within
an equilateral triangle represents one pole at one of the vertices of the triangle and
the other at the middle of the opposite side to the vertex.

The Moebius transformation

µ(z) =

(
1− i

2

)
z + 1

z − i

maps D onto H satisfying

µ(−1) = 0, µ(1) = 1, µ(i) =∞.

Thus, the map

G(z) = F (µ(z)) = I

(
1− i

2

z + 1

z − i
;
1

3
,
1

3

)
maps the unit disk onto an equilateral triangle with the north pole at w3 and the
south pole represented at the middle point of the side defined by the vertices w1,
w2.

Recalling (5.4) and by substituting we find

G(z) = I

((
1− i

2

)(
tanh ζ

4
+ 1

tanh ζ
4
− i

)
;
1

3
,
1

3

)
.

Figure 36 shows the graticule of Lee’s projection of the whole world within an
equilateral triangle and Figure 37 the resulting map.
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Figure 35: Grid transformation of the conformal map between the disk and the
equilateral triangle proposed by Lee.

Figure 36: Resulting grid of Lee’s map projection of the whole world in an equilat-
eral triangle.

5.3 Square

For polygons with n = 4 vertices, the parameter problem needs to be solved first.
We shall discuss the problem for n = 4 in the next section. For now, let’s assume
that the prevertices z1 = i, z2 = −1, z3 = −i,z4 = 1, z1, z2, z3, z4 ∈ D, are a suitable
option for the use of the SC formula to the square.

Mapping from D to the square using prevertices

z1 = i, z2 = −1, z3 = −i, z4 = 1

and inner angles παj = π
2

for all j = 1, 2, 3, 4, the SC formula is

f(z) = A+ C

∫ z

0

4∏
k=1

(ζ − zk)αk−1dζ = A+ C

∫ z

0

dζ√
1− ζ4

.
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Figure 37: Lee comformal map: the whole world in an equilateral triangle.

For simplicity we shall assume A = 0 and C = 1. Then, f(z) can be writen as

f(z) =

∫ z

0

dζ√
(1− ζ2)(1 + ζ2)

The integral above is the incomplete elliptic integral of first kind with modulus
k = i. An elliptic integral of first kind with modulus k is usually denoted by F (ϕ|k)
and its general expression is

F (ϕ|k) =

∫ sinϕ

0

dζ√
(1− k2ζ2)(1− ζ2)

.

Thus,

f(z) = F (arcsin z|i) =

∫ z

0

dζ√
(1− ζ2)(1 + ζ2)

.

Another usual notation is F (ϕ,m), where m = k2 is called the parameter of the
elliptic function. In our case, m = −1.

The image of the prevertices by the map f are

f(1) = K(−1), f(i) = K(−1)i, f(−1) = −K(−1), f(−i) = −K(−1)i

where K(m) is the complete elliptic integral of first kind,

K(m) =

∫ 1

0

dζ√
(1−mζ2)(1− ζ2)

.

In the case m = −1,

K(−1) =

Γ

(
1

4

)2

4
√

2π
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Figure 38: The square as a polygon.

Notice that by applying a factor C = K(−1)−1 to the map f(z), we obtain
g(z) = 1

K(−1)
F (arcsin z,−1), that maps the unit disk onto the rectangle with vertices

at 1, i, −1 and −i as shown in Figure 38.

Let w = f(z); then we may write

w = F (arcsin z,−1).

The use of elliptic functions allows us to write the inverse transformation. Since
F−1(w) := am(w,−1) = arcsin z, where am denotes the Jacobi amplitude function,
then, using the Jacobi sinus sn we obtain

sin(am(w,−1)) := sn(w,−1) = z.

Figure 39: Grid transformation by the conformal map between the disk and the
square.

Using the addition formulas of the Jacobi elliptic functions, a negative parameter
sinus may be written in terms of the Jacobi elliptic function sd = sn

dn
with a positive
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parameter. The result is

sn(w,−1) =
1√
2

sd(
√

2w,
1

2
).

Thus,

sd(
√

2w| 1√
2

) =
√

2z (5.8)

allows the computation of the new coordinates w in the square in terms of z ∈ D.

The origin of coordinates is at the center of the square and the axes are the
diagonals of the square. The length of the diagonal of the square is

d =

Γ

(
1

4

)2

2
√

2π
,

and the side of the square has length s =
√

2K(−1).

All the projections that are to be studied in the following sections, this is,
Pierce’s, Adam’s and Guyou’s projections, are computed by means of (5.8) us-
ing different aspects of the stereographic projection. However, none of them used
Equation (5.8) directly to derive their projections and they did not recognize that
all three are merely different aspects of the same projection. Despite interest due
to their mathematical development, the conformal map projections onto squares of
Pierce, Guyou and Adams have seldom been used.

5.3.1 Pierce quincuncial projection

Pierce published his ”quincuncial projection” in 1877. This projection is formed by
transforming the stereographic projection in polar aspect by means of the Jacobi
cosine elliptic function cn = cos am

cos am(x+ iy)(angle of mod. =
π

4
) = tan

λ′

2
(cos q + i sin q),

where λ′ denotes the complementary latitude, λ′ =
π

2
− λ, and therefore

tan
λ′

2
= tan

(
π

4
− λ

2

)
= ep.

This conformal map is equivalent to the conformal map derived in (5.8).

Pierce projected with the polar stereographic projection twice. The north hemi-
sphere and the south hemisphere are mapped onto two different squares by means
of (5.8). Both squares represent the respective pole at the center of the square.
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Recalling the equations for the north and south polar stereographic, see (5.1) and
(5.2) we obtain

sd(
√

2w,
1√
2

) =
√

2e−ζ

sd(
√

2w,
1√
2

) =
√

2eζ .

The values at the boundary of the square are achieved when p = 0, which
implies z = eiq for both hemispheres for both projections, the north and the south
pole. Therefore, for corresponding sides, the two projections present the same
values at the boundary. Because of this, Pierce arranged the south hemisphere in
four pieces, corresponding respectively to the four simmetric parts of the square
defined by the meridians θ ∈ (0, π

2
), θ ∈ (π

2
, π), θ ∈ (−π,−π

2
) and θ ∈ (−π

2
, 0)

respectively. This arrangement can be described as a reflection along the lines
y = x, w = x + iy 7→ y + ix, followed by a translation, w = x + iy 7→ y + ix + T ,
where T = 1+i for the first of the four pieces, T = −1+i for the second, T = −1−i
and T = 1 − i, for the third and fourth pieces. By doing so, the whole world is
mapped within a larger square, as shown in Figure 40.

The projection is arranged in five pieces and for this reason named quincuncial
projection.

Figure 40: Pierce quincuncial projection within a square.

5.3.2 Adams

Adams projection of an hemisphere within a square (1925) uses the stereographic
projection in equatorial aspect and applies the SC transformation (5.8). The equa-
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torial stereographic map projection described by the formulas (5.3) represents the
equator in the real axis and the north and south pole at i and −i respectively.
Therefore, Equation (5.8) maps the poles onto opposite vertices of the square and
the equator remains in the real axis. Figure 41 shows the grid transformation of
the equatorial stereographic and the obtained grid on the square.

Figure 41: Adams projection grid transformation.

Recalling the equation of the stereographic projection in equatorial aspect we
may write Adam’s projection as follows

sd(
√

2w,
1√
2

) =
√

2i tanh
ζ

2
, ζ = p+ iq.

If the central meridian is choosen to be the Greenwich meridian q0 = 0 we obtain
the map shown in Figure 42.

Notice that Adam’s projection in a square may be described as the transverse
aspect of Pierce’s quincucial projection.

5.3.3 Guyou

In 1887 Guyou presented his projection of an hemisphere within a square. The
projection is obtained using the equatorial stereographic projection turned −π

4
so

that the poles are no longer prevertices of the SC transformation, but parallels with
latitude π

4
and −π

4
respectively and the bounding meridian. After applying the SC

formula for the rotated stereographic projection, the square is usually rotated again
a total angle of π

4
in order to show the poles aligned in the imaginary axis. The

rotations can be easily computed by multiplying the coordinates by 1−i
2

and 1+i
2

respectively.

Guyou produced twice this projection, one centered at the meridian −π
2

and the
other at π

2
, and placed them side by side obtaining thus a map of the whole world

in a rectangle 2× 1.

It has been shown that the Lagrange projection maps the whole world within a
disk. This projection has two singular points in its boundary that shall map into
two singularities in the boundary of the square. If the singular points are mapped
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Figure 42: Adams hemisphere in a square. 15◦ graticule.

Figure 43: Grid transformation in Guyou’s map projection.

to the vertex of the square, the resulting map has four non conformal points at each
vertex. If not, new singularity points have to be taken into account, changing the
characteristics of the map.

Although many different projections of this kind have been developed, the essence
of this projections lies in the application of the SC formula (5.8) to different aspects
of the Lagrange projection with different rotations and singularities. Two of the
best well-known whole world projections within a square have been selected and
developed below.
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Figure 44: Guyou hemisphere in a square.

5.3.4 Adams 1929

In this projection, the poles are placed at oposite vertices of the square. Therefore,
the parent projection is the Lagrange projection described by Equation (5.4) and
the resulting projection is

sd(
√

2w| 1√
2

) =
√

2i tanh
ζ

4

Figure 45 shows the resulting map projection.

5.3.5 Adams 1936

As in the Guyou projection, here, the Lagrange projection is first rotated through
π
4
. Then the SC formula is applied and the resulting square is again rotated −π

4
.

Therefore, the poles are placed at the midpoints of opposite sides of the square.

5.4 Rectangle

The rectangle is a special case of a quadrilateral n = 4, for which, αk = 1
4
, k =

1, 2, 3, 4. Opposite sides have the same lenght. Let 2K denote the lenght of one
pair of sides and K ′ the lenght of the other pair.

The first problem encountered in order to find the SC transformation is the
parameter problem. Only three of the four prevertices are ours to choose. However,
because of the symmetry of the rectangle, the prevertices can be chosen to be

z1 = eiθ, z2 = −e−iθ, z3 = −eiθ, z4 = e−iθ ∈ D

t1 = −1, t2 = 1, t3 =
1

k
, t4 = −1

k
, ∈ H,
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Figure 45: Adams projection of the whole world within a square, 1929.

Figure 46: Adams projection of the whole world within a square, 1936.

where θ ∈ (0, π
2
), k ∈ (0, 1) express respectively the degree of freedom in the choice

of the prevertices. These values are related by the equation

k =
1− sin θ

1 + sin θ
.
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The Moebius transformation

µ(z) = −i z − i√
k(z + i)

(5.9)

maps conformally D onto H such that µ(zi) = ti.

The degree of freedom is related to the aspect ratio, known under the name
of conformal modulus. We want to relate the aspect ratio with the parameters k
and θ so that for a given aspect ratio we can find apropiate prevertices in order to
solve the parameter problem. Then, the complex constants A and C will allow the
construction of any similar rectangle.

Considering the SC formula usign as canonical domain H and prevertices − 1
k
,

−1, 1 and 1
k

we obtain

f(t) = A+ C

∫ t

0

dζ√
(ζ2 − 1

k2
)(ζ2 − 1)

= A+ Ck

∫ t

0

dζ√
(1− k2ζ2)(1− ζ2)

.

Assuming, without loss of generality, A = 0 and C = 1
k
, f(t) is the incomplete

elliptic integral of first kind with modulus k. Using the same notation as in Section
5.3,

f(t) = F (arcsin t|k). (5.10)

The inverse transformation might be written in terms of elliptic functions. Let
w = f(z), then

sn(w|k) = t. (5.11)

Equation (5.10) maps conformally H onto a rectangle so that

t1 7→ w1 = −K, t2 7→ w2 = K, t3 7→ w3 = K + iK ′, t4 7→ w4 = −K + iK ′

where K(k) is the complete elliptic integral of first kind

K =

∫ 1

0

dt√
(1− t2)(1− k2t2)

and

K ′ =

∫ 1
k

1

dt√
(t2 − 1)(1− k2t2)

=

∫ 1

0

dt√
(1− t2)(1− k′2t2)

= K(k′)

where k′ =
√

1− k2 is the complementary modulus. Notice that the aspect ratio is
equal to K(k′)

2K(k)
.

Using the Moebius transformation (5.9) we obtain a map from D onto the rect-
angle of the same aspect ratio

w = F (arcsin

(
−i z − i√

k(z + i)

)
|k). (5.12)

The inverse transformation is

sn(w, k) = −i z − i√
k(z + i)

. (5.13)
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5.4.1 Projection within a rectangle with a meridian as boundary (Adams
1925)

Adams conformally projected the sphere within a rectangle with an aspect ratio
equal to 1

2
, this is, whose width is twice the height. By imposing this, we obtain

K(k) = K(k′), that implies that

k = k′ =
1

2
.

Since we want to map the whole sphere, we use as parent projection Lagrange
projection. Adams located the poles at the midpoints of the upper and lower sides
of the rectangle and in the boundary represented the meridians θ = ±π. Thus, the
Lagrange projection needs to represent the north pole at i, the south pole at −i and
the meridians growing in clockwise order. The equation of such parent projection
is

z = i tanh
ζ

4

and therefore the conformal map from the sphere to the rectangle may be written
as

w = F (arcsin

−i tanh
ζ

4
− 1

√
k(tanh

ζ

4
+ 1)

 |k)

Figure 47: Adams whole world whitin a rectangle, k = sin 45◦.

5.5 Ellipse

This section mainly follows the articles [11] and [14].
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The function f(w) = sinw maps conformally the rectangle within an ellipse,
since

sinw = sin(x+ iy) = sinx cosh y + i cosx sinh y

and therefore, for a fixed y,(
Re(f(w))

cosh y

)2

+

(
Im(f(w))

sinh y

)2

= 1

The semi-major axis of each ellipse is cosh y and the semi-minor axis sinh y. More-

over, the foci are located at ±
√

cosh2 y + sinh2 y = ±1.

Figure 48: The function sin z.

In the former section we found that the elliptic integral of first kind

F (arcsin t|k)

maps conformally the upper-half-plane onto a rectangle with vertices at −K(k),
K(k), K(k) + iK(k′) and −K(k) + iK(k′).

Since
F (

z

k|z|
|k) = F (z|k) + iK(k′)

holds, the function

F (
z√
k
|k)

maps the upper half of the unit disk to the rectangle with vertices at −K(k), K(k),

K(k) + iK(k′)
2

and −K(k) + iK(k′)
2

. We can apply the normalization π
2K(k)

, so that

f(z) =
π

2K(k)
F (

z√
k
, k)

maps the upper half of D onto a rectangle with vertices at −π
2
, π

2
, π

2
+ iπ

4
K(k′)
K(k)

and

−π
2

+ iπ
4
K(k′)
K(k)

.

The function

f(z) = sin

(
π

2K(k)
F (

z√
k
, k)

)
(5.14)

maps therefore the upper half of the unit disk onto the upper half of an ellipse with
semi-major axis cosh π

4
K(k′)
K(k)

and semi-minor axis sinh π
4
K(k′)
K(k)

.

83



Figure 49: Boundary identifications between the upper half of the unit disk, the
rectangle and the ellipse, for k = sin(65◦)

By the Schwarz reflection principle, which states that an analytic function with
canonical domain H can be analitically extended by means of f(t) = f(t) if f(t) ∈ R
for t ∈ R, and since F (t|k) maps the interval [−1, 1] onto [−K(k), K(k)], the
function F (t|k) can be continued analytically to the slit domain C \ ((−∞,−1] ∪
([1,∞)). Thus, the map (5.14) present two slits, both at the segment over the real
axis that joins the focus to the boundary of the ellipse, drawed in blue in Figure
49, where the map is non-conformal.

Figure 50: A 1◦ graticule in the region near the extremity of the major axis in the
Adams projection of the world within an ellipse.

Adams suggested a map within an ellipse for which the semi-major axis was
about twice the lenght of the semi-minor axis. Thus,

cosh
π

4

K(k′)

K(k)
= 2 sinh

π

4

K(k′)

K(k)

which implies
π

4

K(k′)

K(k)
=

ln 3

2
,

and therefore the intermediant rectangle has an aspect ratio of log(3)
π

. Adams used
a value k = sin(65◦), obtaining an approximation of the desired aspect ratio.
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Figure 51: Projection within a rectangle k = sin(65◦) for the projection of the whole
world within an ellipse.

The parent projection is Lagrange projection presenting the north pole at i and
the south pole at −i. Thus,

f(ζ) = sin

 π

2K(sin(65◦))
F

i tanh
ζ

4√
sin(65◦)

| sin(65◦)




Figure 52: Conformal map of the whole world within an ellipse.
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5.6 Littrow

Joseph Johann von Littrow developed his map projection in 1833. It is the only
conformal projection that is also retroazimuthal. A retroazimuthal projection shows
the directions or azimuths correctly from any point of the map to the center of the
map.

The equations for the sphere are as followsx = R
sin(θ − θ0)

cosλ
y = R cos(θ − θ0) tanλ,

(5.15)

where θ0 is the central meridian. We shall assume θ0 = 0 and derive the equations
of this projections using the SC formula for an exterior map.

The SC formula adapted to the exterior of the polygon using as canonical domain
D is

f(z) = A+ C

∫ z

0

ζ−2

n∏
k=1

(zk − ζ)1−αk dζ.

The Littrow map uses the polygon with two vertices n = 2 and angles α1 = 0 and
α2 = 0. Note that no parameter problem needs to be solved. Therefore arbitrary
prevertices can be used in the SC formula. Let z1 = −i and z2 = i. The evaluation
of the corresponding SC integral is

∫ z

0

ζ−2(1− iζ)(1 + iζ)dζ =

∫ z

0

1 + ζ2

ζ2
dζ = z − z−1.

By imposing w1 = −1 and w2 = 1 and integrating along the boundary of the
unit disk we get:

2 = C

∫ i

−i

dζ

1 + ζ2
= C(2i− 2

i
) = 4Ci.

Thus,

C = −1

2
i

and the function is

w = f(z) = − i
2

(z − z−1)

The map f identifies i 7→ 1 and −i 7→ −1. Moreover, the center of the unit disk
in mapped to infinity.

Let z be the stereographic polar projection from the north pole, i.e.,

z = e−ζ , ζ = p+ iq, λ ∈ (0, π/2), θ ∈ (−π/2, π/2).
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Notice that we have allowed θ to vary between −π/2 and π/2. This means that we
have taken just half the stereographic projection, Re(z) > 0, which is mapped onto
Im(w) > 0.

Thus,

w = f(ζ) = − i
2

(e−ζ − eζ)

and since e−p = −ep, we may rewrite the expression above as

w = f(ζ) =
i

2
(eζ − e−ζ).

In order to complete the map we shall consider the stereographic projection south

pole for Re(z) > 0 and plot it in Im(w) < 0. Thus, C =
1

2
i and the function is

w = f(z) =
i

2
(z − z−1),

where now z is the stereographic polar projection from the south pole:

z = eζ , ζ = p+ iq, λ ∈ (−π/2, 0), θ ∈ (−π/2, π/2)

Finally, we can write our map as

w =
i

2

(
eζ − e−ζ

)
, ζ = p+ iq, λ ∈ (−π/2, π/2), θ ∈ (−π/2, π/2). (5.16)

Figure 53: Littrow retroazimuthal projection.
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By separating the imaginary and real part of w = x+ iy assuming a sphere, we
obtain

−2iw = ep+iq − e−p−iq

= (tanλ+ secλ)(cos q + i sin q)− (secλ− tanλ)(cos q − i sin q)

= 2 tanλ cos q − 2i secλ sin q,

and therefore

w = secλ sin q + i tanλ cos q.

The former equation is analogous to the expression (5.15).

5.7 Eisenlohr

Mercator Projection does not represent the poles, the stereographic projection does
not map the focal point over the sphere and Lambert conic projection is noncon-
formal at the vertex of the cone. Also Lagrange projection has two singular points
at the poles. Friedrich Eisenlohr published in 1870 a projection that represents
the whole world without any singular point. Regardless, Eisenlohr developed his
projection as a result of the search of conformal map bounded by two meridians
and presenting minimal distortion. The source of information for this section are
[8] and [3].

Figure 54: Eisenlohr projection.

Recalling the isometric coordinates p and q and a conformal map projection
z = x + iy = f(q + ip), so that the distortion is σ = ρ−1(λ)f ′(q + ip). Taking the
logarithm

log σ + log ρ−1 = Re(log f ′).
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In the case of the sphere, ρ = cosh p and by assuming z = log f ′ we may writte

z = log
σ

cosh p
(5.17)

Moreover, the distortion can be related with the Gaussian curvature K of the
surface at each point,

K = ρ2∆ log ρ.

Thus, g = log σ satisfies

∆g = ρ−2K > 0

and is a subharmonic function. Therefore, it satisfies the strong maximum principle,
which states that subharmonic functions cannot assume an interior maximum unless
they are constant. Thus, the minimal geodetic distortion is attained when g has
the same value at the boundary. Therefore,

z = − log sinh p (5.18)

at the boundary.

Also is z harmonic, so is ∆z = 0 for all the interior points.

Finding z such that z is harmonic and z attains a certain value at the boundary
is called the Dirichlet problem. By fixing as boundary the equator, p = 0, the
solution of the problem leads to the stereographic projection; the map projection
with minimal geodetic distortion with the equator as boundary curve.

Eisenlohr solved this problem for the case in which the boundary curves are two
meridians. Taking p and q as rectangular coordinates, (the Mercator projection),
then the problem is simplified to finding the value of z at each point contained
between two parallel lines, where its value at the boundary is equal to 0 and at all
interior points z is a continuous functions of p and q. This problem is known as
Green’s potential problem.

The Green function of this problem is the real part of

G(p, q) = log

(
e(P−p+i(q−Q)) 1

4 − e−(P−p+i(q−Q)) 1
4

e(P−p+i(q+Q−2π)) 1
4 − e−(P−p+i(q−Q−2π) 1

4

)

where P and Q are the coordinates of the point with respect to the middle of the
strip. Then,

z′ = − 1

2π

∫
z0
∂G

∂n

where n is the normal to the boundary at each point and z0 the value of z at the
boundary, (5.18). Explicitly:

z′ =
1

2π

∫ ∞
−∞

log (cosh(p)) dp

cosh

(
P − p+ iQ

2

) .
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By integrating we obtain

x+ iy =

∫
z′dζ =

2

i
(v + ui) +

√
2(sinh(v − ui)),

where

tanu =
sin λ

2

cos λ
2

+ cos q
2

√
2 cosλ

v =
1

2
log

cos λ
2

+
√

cosλ cos

(
π − 2q

4

)
cos λ

2
+
√

cosλ cos

(
π − 2q

4

)


5.8 August

Freidrich August published his projection in 1874 as an alternative to Eisenlohr’s
design. In this projection, a world map is bounded by an epicycloid, a curve defined
by a point on a circle rolling without sliding around another fixed circle. The two-
cusped epicycloid with radi 1

2
may be described by the following equations{

x(ϕ) = 1
2
(3 cosϕ− cos(3ϕ))

y(ϕ) = 1
2
(3 sinϕ− sin(2ϕ))

, ϕ ∈ [0, 2π] (5.19)

The map

f(z) =
1

2
(3z − z3) (5.20)

maps the boundary of the unit disk, eiϕ, ϕ ∈ [0, 2π) onto

f(eiϕ) =
1

2
(3eiϕ + e3iϕ) =

1

2
((3 cosϕ− cos(3ϕ) + i(3 sinϕ− sin(3ϕ)))

i.e., the epycicloid.

Moreover, the map (5.20) is analytic in the interior of the unit disk and therefore,
it maps conformally the interior of the disk onto the interior of the simply connected
domain bounded by the epicycloid.

As we want to map the whole world, we select as parent projection Lagrange’s
projection. The map projection formula

z = tanh
ζ

4

maps the north pole to z = 1 and the south pole to z = −1. Moreover, notice that
Equation (5.19) maps the intersections of the two cusps at (1, 0) and (−1, 0). Thus,
the map

f(z) =
1

2
(3 tanh(ζ)− tanh(ζ)3)
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Figure 55: August projection.

represents the unit disk onto the interior of an epycicloid where the north and south
pole are represented at the intersection of the cusps.

However, we would like the to be at (0, 1) and (0,−1). In order to do so we shall
just rotate f(z) a total angle of π

2
. Such rotation can be performed by multiplying by

i. The resulting map projection is August projection and is described by equation

w =
i

2
(3 tanh(ζ)− tanh(ζ)3)

where ζ = p+ iq.
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