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Abstract

In the era of systems biology, multi-target pharmacological strategies hold promise for tack-

ling disease-related networks. In this regard, drug promiscuity may be leveraged to interfere

with multiple receptors: the so-called polypharmacology of drugs can be anticipated by ana-

lyzing the similarity of binding sites across the proteome. Here, we perform a pairwise com-

parison of 90,000 putative binding pockets detected in 3,700 proteins, and find that 23,000

pairs of proteins have at least one similar cavity that could, in principle, accommodate similar

ligands. By inspecting these pairs, we demonstrate how the detection of similar binding sites

expands the space of opportunities for the rational design of drug polypharmacology.

Finally, we illustrate how to leverage these opportunities in protein-protein interaction net-

works related to several therapeutic classes and tumor types, and in a genome-scale meta-

bolic model of leukemia.

Author summary

Traditionally, the fact that most drugs are promiscuous binders has been a major concern

in pharmacology, due to the occurrence of undesired off-target clinical events. In the

recent years, however, the realization that many diseases are the result of complex biologi-

cal processes has encouraged rethinking of drug promiscuity as a promising feature, since

it is sometimes necessary to interfere with multiple receptors in order to overcome the

robustness of disease-related networks. One way to identify groups of proteins that could

be targeted simultaneously is to look for similar binding sites. We have massively done so

for all human proteins with a known high-resolution three-dimensional structure, unveil-

ing a vast space of ‘polypharmacology’ opportunities. Of these, we know, a great majority

is not of therapeutic interest. To pinpoint promising multi-target combinations, we
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advocate for the use of computational tools that are able to rapidly simulate the effect of

drug-target interactions on biological networks.

Introduction

Multi-target strategies are a natural approach to tackling complex diseases. A fine way to

achieve a multi-target effect is through drug polypharmacology, i.e. the simultaneous modula-

tion of several targets by means of one single agent [1, 2], which poses pharmacokinetic advan-

tages over drug combinations [3]. In the light of systems biology, it seems reasonable to first

select a combination of receptors that will modify the biological network as desired, and then

design a ligand that it is able to simultaneously bind them [3]. Unfortunately, in practice, most

target combinations that are identified in the network analysis step will not show cross-phar-

macology, since the discovery of intended promiscuous drugs is still restricted to members of

the same protein family [4]. Besides few remarkable exceptions [5–9], the rational molecular

design of ligands that intentionally bind several unrelated proteins is far too complicated,

yielding ambivalent, non-drug like molecules.

Although challenging to achieve rationally, polypharmacology is a recognized feature of

many approved drugs [10], and even those molecules praised to be highly specific, like ima-

tinib, end up eliciting a quite rich interaction profile [11]. This unavoidable promiscuity

has long been regarded as detrimental due to adverse off-target reactions [12, 13], but at the

same time it paves the way to a reverse drug design strategy, where one would first mas-

sively look for proteins that are likely to bind the same ligand, and only then do network

analysis to identify the small fraction of putative target combinations that are of therapeutic

interest.

A systematic way to detect pairs of proteins that could share a ligand is to compare binding

sites in their 3D structures [14, 15]. Arguably, the design of ligands that dock to similar pockets

is simpler and more suited to the current medicinal chemistry toolbox, and binding site char-

acterization and comparison methods have flourished with this aim [16]. Using these methods,

today it is possible to identify alternative drug targets [17], predict molecular functions [18]

and uncover links between remote proteins [6]. Surprisingly, though, there is a lack of bona

fide systems pharmacology continuations of the binding site comparison approach, and it

remains unclear whether the space of cross-pharmacology uncovered by structural analysis

will ultimately be useful to yield relevant impact on large biological networks.

To address this question, we have applied binding site similarity analysis in several systems

biology scenarios. For this, we have exhaustively compared pockets across a large fraction of

the human proteome, finding connections between close and distant proteins belonging to

families with varied tradition in drug discovery. Then, inside the rich collection of polyphar-

macology opportunities, by applying systems biology techniques, we have pinpointed those

cases that could have an impact on protein-protein interaction networks (PPIs) related to sev-

eral therapeutic areas and tumor-types [19], and to a genome-scale metabolic model (GSMM)

of cancer cell lines [20].

Results and discussion

The space of structural cross-pharmacology is vast

In order to navigate the space of putative binding sites in human proteins, a fast and auto-

mated protocol is necessary. We used BioGPS [14], which first characterizes cavities using
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molecular interaction fields, and then summarizes them with quadruplet fingerprints. We

found 87,300 cavities (Fig 1A) in 31,900 protein chains from 3,700 unique proteins. Then,

we performed a pairwise pocket comparison. Pairs of cavities with a BioGPS score above

0.6 were classified as ‘similar’. This threshold was tuned while we were developing BioGPS,

five years ago. Thereafter, we’ve tested it in other datasets, proving its validity to capture

polypharmacology [15, 21]. Reassuringly, when analyzing co-crystallized ligands in the

PDB, we observed that pairs of pockets above this cutoff indeed tend to accommodate the

same ligands (S1A–S1C Fig), being cavities able to embed the totality of the ligand (S1D

Fig) while remaining relatively small (S1E Fig) and highly specific for ligand-binding

regions (>40% of the cavities overlap with ligands). In addition, our cavity pairs are able to

account for experimental cross-pharmacology, such as that observed in kinase inhibition

screens (S1H Fig) [22], or in closely related natural products (Figs 1D and S1I). Similarly,

we found that targets of the same drug tend to display similar pockets (odds ratio OR =

4.02, P = 2.9�10−48), proving the pharmacological relevance of the pockets identified and

compared by BioGPS.

In total, we discovered 181,500 pairs of similar cavities, 68.8% of them corresponding to

pockets in different structural instances of the same protein, and the other 31.2% to cavities

in distinct proteins. Corresponding cavities in different structures of the same protein have

remarkably high BioGPS scores, proving the sensitivity of this similarity measure (S1G

Fig). The fact that most of the paired cavities may be matched to another structural

instance of the same protein or fold (S1F Fig) demonstrates that, while sensitive, the simi-

larity measure is robust to small structural fluctuations and variations. Overall, 23,148

pairs of proteins shared at least one putative binding site (see Supporting S1 Data). From

this structural standpoint, the average protein was related to about 7 other proteins, some

of which are structurally and functionally unrelated (Fig 1B and 1C), illustrating the

known degeneracy of protein binding sites [23]. To demonstrate the power of BioGPS, in

Fig 1F we focus on two allosteric cavities that we found in the Epidermal Growth Factor

Receptor (EGFR) and the Mitogen-Activated Protein Kinase 2 (MAPK2). While distant in

the kinase phylogeny, off-target interactions between EGFR and MAPK2 have been previ-

ously detected in high-throughput kinase inhibition screens [24, 25]. The allosteric pockets

that we found, when superimposed, show similar shape and non-bonded hydrophobic and

polar patterns (S1F Fig), hinting towards a structural hypothesis for the MAPK2-EGFR

cross-pharmacology.

Similar cavities can be found among proteins with no apparent

relationship

Due to their functional relevance, binding sites are under higher evolutionary pressure than

the rest of the protein structure [26]. Thus, similar cavities can be found between apparently

unrelated proteins. However, even if strongly conserved, the sites need to confer specificity

within the same family, as it is well known for kinases [27]. These two aspects are apparent

from our results. While, in general, sequence-related proteins tend to share cavities

(P = 2.1�10−74), we could find many examples of far-off proteins whose pockets are alike, and

of close sequences with divergence in the binding site (see the modest odds ratios in Fig 1B).

The same trend could be observed at the fold level (P = 2.4�10−43), detecting analogous pockets

in distinct folds, while sometimes failing to match pockets inside the same structural family.

Together, these results outline an optimal scenario for the multi-targeting idea, suggesting that

more than one function can be perturbed at a time, and also that specificity can be achieved

among functionally related proteins.
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Fig 1. The space of cross-pharmacology. (A) Number of cavities per structure (only structures with at least one cavity are included).

(B) Top-5 families emerging from a ligand- (blue) and structure-centered (red) protein comparison. Darkness of the cells quantifies the

number of protein pairs. (C) Protein-protein similarity based on cavities, fold, sequence and ligands. OR refers to the enrichment odds

ratio of the comparison between two similarity spaces, accompanied with its P-value. Larger ORs correspond to more coincidence of

pairs; for instance, as expected, most pairs that have a similar sequence also have a similar fold. (D) Cross-pharmacology of cavities
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Polypharmacology opportunities remain largely unexplored

Over the years, the functional connection of proteins has introduced biases in the chemical

libraries screened in binding assays [28]. Drug discovery is eminently incremental, and che-

motypes known to bind one receptor are often tested in closely related proteins [29]. Chemo-

genomics databases now collect ligands for about three thousand human proteins [30], and

these ligands can be used to describe targets from a chemical viewpoint [31]. Accordingly, two

proteins are associated if they globally recognize similar ligands, providing valuable guidance

for the eventual molecular design of polypharmacology. This approach has been successful so

far [32], but it inherits some major shortcomings, namely the strong dependence on the

amount and quality of pharmacological data [33], and the aforementioned bias introduced by

incremental library design.

In order to evaluate the overlap between the ligand- and structure-centered views of cross-

pharmacology, we have used an in-house version of the similarity ensemble approach (SEA)

developed by Keiser et al. [34], a popular method to relate proteins through the chemistry of

their ligands (S2 Fig). In general, and as a further proof of the relevance of cavity comparisons,

we observed a significant correspondence between ligand- and cavity-based similarities

(P = 3.1�10−5). Even if so, the two cross-pharmacology spaces differed in many aspects. Given

the biases in chemogenomics data, the chemocentric view correlates more strongly with

sequence and fold relatedness (P ~ 0, Fig 1C). As it can be seen in Fig 1B, proteins in the same

family shared similar ligands, being kinases and G-protein coupled receptors (GPCRs) the

most prominent examples due to their pharmaceutical importance. On the contrary, the struc-

tural viewpoint was poorly applicable to GPCRs, for which 3D-crystal data are scarce [35], and

highlighted other receptors and nucleic acid binding proteins instead (Fig 1B). Overall, it

seems that cavity comparisons offer a complementary catalogue of protein pairs with new, less

trivial inter-family opportunities at the expense of certainty in the pharmacology, since ligand

binding assay data are not always available for the candidate receptors.

While the space of cross-pharmacology opens wide when we focus on binding sites, we

observe a drastic decrease in its density: in relative terms, given a protein we found less part-

ners by inspecting cavities than sequences or folds, and far less than from the ligand viewpoint

(Fig 1E). This demonstrates the specificity that can be achieved at the binding pocket level, and

suggests that structure-based polypharmacology could enable a fine-tuned promiscuity, i.e. a

good selectivity in the eventual systems-level chemical-protein interactome.

Structure-based simultaneous putative targets reach distinct regions of

the human interactome

To achieve systems-level interactions, multi-target agents should be able to modulate more

than one molecular function. As suggested above, structural cross-pharmacology facilitates

this feature, which has been classically achieved through drug combinations [36–38]. Despite

containing ubiquitous natural(-like) ligands in the PDB. In the diagram, an edge is drawn between two ligands if a pair of similar cavities

containing each of them is found, being the width of the edge proportional to the pairs of proteins where this happens. Notice, e.g., the

cluster formed by GTP, GDP, GSP and GCP, or by ATP-like or NAD-like molecules. Size of the nodes is proportional to the number of

unique structures where the ligand is bound in a cavity. Only ligands found in at least 5 proteins are shown. (E) Specificity of protein

cross-pharmacology, relative to the promiscuity based on sequence similarity. Please note that these plots are sensitive to the choice of

similarity cutoffs. Rather than represent optimality to capture polypharmacology, these cutoffs were chosen to exemplify commonly

taken thresholds in the scientific literature. (F) Allosteric MAPK2 and EGFR cavities, superposed. Shape, hydrogen bond donor,

acceptor and hydrophobic patterns are shown.

https://doi.org/10.1371/journal.pcbi.1005522.g001
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some major difficulties, the asset of drug combinations is that, in principle, no restrictions

exist to modulate multiple cellular processes.

While largely incomplete, the human binary interactome sketches a map of these cellular

processes, and can be used to unravel their crosstalk [39]. In the context of the human interac-

tome, targets of successful drug combinations are close to each other (Fig 2A). This relative

proximity is in part due to the pathway-based mindset applied to drug combination discovery

[40], and also reflects that, in order to be effective, a multi-target intervention should interplay

within the network. Because of its inherent functional bias, ligand-based similarity offers com-

binations of targets that are even more local than the standards of efficacious drug combina-

tions [41] (Fig 2A). On the contrary, structure-based cross-pharmacology opportunities, while

still closer in the network than the background expectation resulting from an unbiased sam-

pling, are further apart. Likewise, beyond measuring pairwise network influence, modules can

be encircled in the interactome to reveal communities of proteins devoted to a certain biologi-

cal process [42]. We have seen that, in general, targets of drug combinations act in few mod-

ules, and that groups of proteins with structural cross-pharmacology are more disperse (Fig

2B). In turn, the functional diversity achieved by drug combinations and proteins with similar

cavities is comparable, and greater than the diversity obtained from the chemo-centric view-

point (Fig 2B). It appears, thus, that polypharmacology opportunities based on binding site

similarity are widespread enough to provide functional variety, but it is clear that, at least from

the network viewpoint, many multi-target opportunities do not resemble the successful ones

achieved through drug combinations. The space of structural cross-pharmacology is vast: to

detect the small portion of polypharmacology opportunities that will be of therapeutic interest,

automated systems biology setups are necessary [43].

Polypharmacology to enhance existing therapies

In the dawn of systems pharmacology, several approaches have been proposed to identify

those groups of targets that will cooperate to elicit the desired therapeutic effect [44, 45]. Fol-

lowing the module-specificity observed for drug combinations, one possibility is to focus on

those regions of the interactome that are related to a phenotype of interest, and then do net-

work analysis on these specific regions to prioritize multi-target opportunities. To exemplify

this approach, we have collected drug targets in several therapeutic categories and built sub-

networks for each of them [46]. These therapy-specific networks will only be sound if the cor-

responding drug targets are strongly connected, i.e. if the interactome is capturing the underly-

ing biology of the therapy. This was the case for six major therapeutic classes (P< 0.01, Fig 3).

The resulting networks grown around approved drug targets included a median of 60.5 pro-

teins (Fig 3A), and were thus appropriate for sensitive network modulation analysis [47, 48]

(see Methods and S3 and S4 Figs for further details on the construction of these networks).

Since therapy-specific networks are seeded with known therapeutic effectors, a reasonable

assumption is that node ablations are bound to a beneficial response. With this premise, a way

to prioritize protein combinations is to measure their global impact on the network, i.e. to

evaluate the effect of each node on the rest of the proteins. In the context of disease mutations,

this feature has been successfully modeled by heat flow analysis [49]. Analogously, in each net-

work, we simultaneously perturbed (assigned heat to) protein sets with structural cross-phar-

macology (i.e. sets of proteins that all of them have cavities similar to one or more of the

proteins in the group, and where at least one cavity is similar to cavities in all of the other pro-

teins) (Fig 3A). Those target combinations that best spread the heat were prioritized. While

many combinations had no major advantage over single targets, in two of the six networks it

was possible to find a multi-target case with a marked systems level clout (Fig 3D). In the
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therapeutic network related to antithrombotic agents (ATC: B01), for instance, the simulta-

neous inhibition of the known target FGFR2 and KLK6 was predicted to exert an effect on the

network twice as great as the best individual target, requiring half of the heat, i.e. less inhibition

strength, in each of the nodes.

Multi-target modulations have broad impact on tumor-specific

interactomes

While intimately related to a therapeutic response, the therapy-specific networks above cannot

go beyond current medicinal knowledge, since they are based on the available drug repertoire.

Fig 2. Distribution of multi-target opportunities in the binary interactome. (A) Network-based influence

between proteins with similar cavities (red) and ligands (blue), compared to the background influence of

random proteins in the interactome (gray). The relative influence between targets in drug combinations is

plotted in purple. The distributions include groups with up to five comparisons, and the maximum influence

among all of the pairs in the group was taken as the representative; in other words, closest pairs were picked

in those drug combinations that involved more than one target per drug, and in cavity and ligand comparisons

that brought together more than two proteins. To correct for the group size, we defined a Z-score by sampling

10,000 random groups in the size range. The orange shape spans the area between the quartiles of drug

combinations and the unbiased sampling of nodes. (B) Characteristics of protein pairs that could be targeted

simultaneously (polypharmacology opportunities) or that are used in successful drug combinations. In the

upper plot, proportion of pairs of protein belonging to the same topological module in the network (as defined

by the overlapping cluster generator [42]); in the middle plot, pairs of proteins with the same biological process

(BP) broad (‘slim’) term [70]; similarly, in the bottom plot, pairs of proteins with the same molecular function

(MF). For simplicity, in the case of drug combinations, only those with one target per drug are included here.

https://doi.org/10.1371/journal.pcbi.1005522.g002
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More commonly, systems pharmacology departs from a disease-specific network [50], and tar-

get combinations are mined therein. Yet, in the context of PPIs the connection between

changes in a disease-specific network and the eventual therapeutic effect is poorly understood.

Perhaps an exception is cancer, where the desired outcome is cell death, which can be roughly

modeled as a global impact on the network; arguably, this impact is captured by the heat distri-

bution method applied above [49]. To confirm the therapeutic relevance of the measure, we

computed the heat released by known targeted therapies on the corresponding tumor types,

and observed a significantly high heat circulation (S3D Fig, P< 10−4).

Of the 34 tumor types considered [19], 22 had significantly connected driver genes

(P< 0.01), and we focused on these tumors to build the tumor-specific networks (median size

of 264 proteins). Following the assumption that good candidate therapies will prominently dis-

tribute heat in the tumor network, we screened our polypharmacology opportunities and

observed that, for most (20) tumor types it was possible to detect at least one combination that

was able to distribute heat at least 25% better than any of the corresponding individual seed

(on average, 2.7-fold advantages could be achieved) (Fig 3D). In some tumor types, like stom-

ach adenocarcinoma (STAD), skin cutaneous melanoma (SKCM) and heat and neck squa-

mous cell carcinoma (HNSC), the advantage of the combination reached the 5-fold. In Fig 3

we display the network of ovarian cancer, which is representative in terms of size and sensitiv-

ity to multiple targets. Here, the simultaneous interference with CDK2, PPARG and ATRX

Fig 3. Global influence of structural polypharmacology on therapy- and tumor-specific networks. (A) Size of the networks. (B) Number of

multi-target simulations performed in each network; the shade depicts the proportion of these that have an advantage >25% over the best

individual seed interference. (C) Heat distribution, relative to the mild, ideal distribution of heat across nodes. (D) Advantage of the combination,

compared to the best single seed (gene in bold in the list). The B01 and OV networks are laid out. Perturbed nodes are highlighted with a thick line,

and heat is proportional to the size of the nodes (log scale). See [19] for tumor-type abbreviations. The ATC codes displayed refer to endocrine

therapies (L02), antineoplastic agents (L01), sex hormones and modulators of the genital system (G03), anti-acne preparations (D10),

antipsoriatics (D05) and antithrombotic agents (B01).

https://doi.org/10.1371/journal.pcbi.1005522.g003
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yields a global heat distribution of the 32%, and a 2.1-fold advantage over the ATRX driver

gene modulation.

A metabolism-related combination to selectively reduce proliferation of

cancer cell lines

As exemplified above, PPI networks are widely applicable, yet mostly descriptive. A less

generic, but more predictive, systems biology tool is genome-scale metabolic modeling

(GSMM) [51]. These models unprecedentedly link the properties of the network to phenotypic

traits [52], yielding very informative simulations compared to the tentative measures of net-

work impact that can be obtained from protein interactomes. Interference with single meta-

bolic genes or reactions are routinely quantified in GSMMs, and have been shown to mimic

drug inhibition [20]. However, the brute-force simulation of multi-target effects is impractical,

especially beyond double inhibitions, due to combinatorial explosion. In this sense, the con-

strained space of cross-pharmacology drastically reduces the number of combined inhibitions

to simulate, offering a viable corpus with enriched properties for drug design.

We illustrate this advantage by considering a GSMM of leukemia cell lines and one of

healthy leukocytes [20]. Both models are based on the same reconstruction of the human

metabolism and only differ in the flux bounds of the reactions. We could collect structures for

567 of the 1,878 (30.2%) metabolic proteins, and find cavities in a large proportion of them

(70.2%), as expected given their interplay with endogenous small molecules. Moreover, we

detected a marked cross-pharmacology between proximal metabolic proteins (OR = 4.43,

P< 10−4), where the product metabolite of the first yields the substrate of the second.

To identify promising polypharmacology, we simulated the concurrent inhibition of pro-

teins with similar cavities, and measured the impact on biomass production and metabolic

cancer hallmarks, like high lactate secretion or anoxia [53]. Biomass production correlates well

with proliferation rates [20]. Thus, a multiple inhibition causing larger reduction of biomass in

the cancer GSMM than in the healthy one is both effective and selective. If, in addition, the

decrease in biomass production cannot be achieved by silencing the individual genes, then the

multiple inhibition corresponds to genuine polypharmacology.

Due to the limited structural coverage of the metabolic network, and to obtain a sufficiently

long list of protein combinations to screen, we applied milder constraints on the inter-similarity

of cavities (see Methods). In Fig 4A, we present five proteins (GPI, DLD, PGD, SORD, and

RPE) whose simultaneous inhibition could produce a selective decrease of proliferation rates in

leukemia cell lines Fig 4C. Additionally, we observed in the simulation that metabolic cancer

hallmarks were reversed upon the multiple inhibition. Glucose uptake, lactate secretion, and

production of reactive oxygen species (ROS) were reduced, while oxygen consumption was

increased (Fig 4D). None of the single inhibitions was able to produce such a widespread effect.

It is out of the scope of this work to further explore the feasibility of simultaneously target-

ing these five proteins, which are mostly involved in the metabolism of carbohydrates and

share chemotypes in their metabolites, like the fructose and ribulose scaffolds (Fig 4B) [54]. In

order to discover more combinations, ideally with yet stronger cavity similarity, and to ensure

the inhibitory effect of the binding event, deeper structural annotation of metabolic recon-

structions will be necessary. This claim has also been raised for other types of biological net-

works [12], highlighting the importance of keeping structural details in the systems era.

Concluding remarks

The emergence of systems biology in the last decade has brought about new therapeutic oppor-

tunities. Among them, the idea of exploiting drug promiscuity to exert systems-level effects is
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Fig 4. A selective target combination. (A) Structures of GPI (PDB ID: 1iri, chain C), DLD (PDB ID: 1zmc, chain C), PGD (PDB ID: 2jkv, chain

D), SORD (PDB ID: 1pl8, chain C) and RPE (PDB ID: 3ovp, chain C) are displayed, together with cavity residues. Please note that these cavities

are representative, as several structures exist for each of the proteins. For a deeper exploration, please refer to Supporting S1 Data. (B) Best

similarity between cavities in GPI, DLD, PGD, SORD and RPE. Highest similarities represent, in principle, easier cases of polypharmacology

design. In the upper triangle, the main metabolic chemotypes related to the enzymes are also displayed. (C) Reduction of biomass production

upon the simultaneous inhibition in cancer (red) and normal (blue) cell lines. The effect of individual inhibitions in also showed. (D) Influence of

each inhibition on metabolic cancer hallmarks. O2 stands for oxygen consumption, Lac for lactate secretion, Glu for glucose uptake, and ROS for

reactive oxygen species production. The assignment of ‘strong’ and ‘mild’ reversals was based on visual inspection of the maximal flux of the

corresponding reactions. When the maximal flux approached (>50% of the difference) the healthy cell line, it was classified as ‘strong reversal’

(’strong worsening’ if it otherwise diverged); ‘mild’ effects were assigned to effects of less than 50%; ‘no effect’ was assigned when one could

observe essentially no change.

https://doi.org/10.1371/journal.pcbi.1005522.g004
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particularly compelling, but its feasibility remains unclear. The few examples of intended poly-

pharmacology are usually within protein families [4], and, traditionally, the discovery of alter-

native targets has been applied to drug repositioning instead of holistic therapies [55]. The

reason for this is that most target combinations are not of therapeutic value, making it very

unlikely to hit interesting target profiles if only a few closely related proteins are inspected.

To overcome this issue, structural biology offers a systematic means to explore the space of

protein cross-pharmacology by detecting and comparing putative binding sites [16]. We have

seen that proteins with similar binding pockets are scattered all over biological networks, hold-

ing promise for enabling systems pharmacology. Our analysis has uncovered a large amount

of multi-target opportunities to be screened against cellular networks, and the exploratory sim-

ulations in different systems biology scenarios are very encouraging. However, there is a long

agenda for drug polypharmacology. We lack full structural coverage in most biological systems

[56, 57], sometimes missing relevant drug targets, or having only partial structures (S5 Fig).

Even if this gap can be diminished with homology models [58], it is not clear whether the cor-

responding binding sites will be accurate enough, making it critical to develop integrative

methods that are able to account for homologs from other species. Further, although structural

cross-pharmacology offers a priori a good drug design scenario, it is not yet clear if the rational

design of polypharmaceuticals is feasible at large: detecting similarity of cavities is only the first

step of an artisanal discovery process to identify molecules that are suitable as drugs [59, 60],

keep the right balance of potency across targets [61] and do not compromise their off-target

selectivity. In this work, we have focused on protein structures, and only slightly explored the

ligand side. In the light of our results, we envision that methods that combine structural and

ligand information will help alleviate the intrinsic limitations of the structural viewpoint [62,

63].

Equally critical is the dearth of methods to prioritize target combinations among the enor-

mous pool of possibilities. Thus far, no blueprint exists to use protein interaction networks for

predictive means, and more quantitative systems biology frameworks, like metabolic models,

are only applicable to certain diseases. Nowadays, active research is addressing these problems.

In our opinion, the discovery of multi-target therapies can be empowered by the constrained

sampling of combined effectors, and it is our belief that efforts put on fast and automated pro-

tocols will be key to finally shift pharmacology to the systems level.

Materials and methods

Cavity search, description and comparison

We collected experimental protein structures from the human interactome available in Inter-

actome3D [58], considering each chain separately. Then, we used BioGPS to perform the

structural analysis of putative binding pockets. BioGPS has three steps: (1) cavity search using

FLAPsite, (2) cavity description using GRID [64] molecular interaction field potentials, and

(3) cavity comparison [14]. We performed an all-vs-all comparison of all detected cavities, and

considered those cavities with a BioGPS score above 0.6 as ‘similar’. This score is recom-

mended by the BioGPS developers, and we have confirmed its validity by analyzing the enrich-

ment of cavity pairs containing the same ligand (S1A and S1B Fig), and the best compromise

between precision and recall (S1C Fig).

Ligand-based similarity of proteins

To calculate the ligand-based similarity of proteins, we did an in-house implementation of

SEA using molecules in ChEMBL (v19) with affinity below 10 uM [34]. After analyzing back-

ground data, we found that a Tanimoto cutoff of 0.55 optimally fitted an extreme-value
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distribution instead of a Gaussian curve (FP2 fingerprints). S2A–S2C Fig shows the back-

ground adjustments; E-values of ligand set similarities were calculated therefrom. We chose

10−4 as an E-value cutoff. This cutoff was used in a study to detect off-targets [32], and we have

seen that, indeed, it captures pairs of proteins containing the same ligand (OR = 18.7, P ~ 0).

In order to confirm that SEA is a good representative of ligand-based similarity, we performed

in parallel a Naïve Bayes (NB) multi-target virtual screening, this time with Morgan finger-

prints. This approach is, in nature, very different to SEA. Reassuringly, NB and SEA trends

were strongly correlated, as it can be seen in S2D–S2F Fig.

Sequence and fold similarity of proteins

To calculate sequence similarity of proteins, we applied JackHMMER with default parameters

[65], E-value < 10−4. As for the fold annotation of structures, we used the classification of

ECOD (January 2015) at level 4 of the hierarchy [66].

Drug combinations and global network analysis

For the analysis of drug combinations, we considered those classified as ‘approved’ or ‘clinical’

in DCDB (v2) [41], excluding ‘non-efficacious’ cases. Targets from DCDB were also extracted

and used for the interactome-based analysis of the combinations. Influence between pairs of

proteins was determined using a pre-computed influence matrix, obtained with a PageRank-

like algorithm with a default β of 0.5. When more than one protein was to be compared, we

parsimoniously took the pair with the highest influence as representative. Normalization for

group size was achieved with 10,000 random groups at each size, and the mean and standard

deviation of these background sets were calculated to derive a Z-influence score so that the

background had a mean of 0 and a standard deviation of 1.

To analyze topological clusters, the human interactome was submitted to the overlapping

cluster generator (OCG) [42]. Slim BP and MF annotations were obtained from GO (January

2015).

Therapy- and tumor-specific interactomes

In the therapy-specific networks, seeds were obtained from DrugBank (v3) targets [67]; and in

the tumor-specific networks drivers were fetched from IntoGen [19]. To select only those

cases with a significant interconnectivity, we used the method based on percolation theory

described by Menche et al. [68], applying a significance cutoff of P< 0.01 on the size of the

largest connected components.

For cases with significant seed connectivity, we built specific networks by sequentially

including non-seed (candidate) proteins and extracting the corresponding subgraphs from the

interactome. Nodes were included following the DIAMOnD score [46], which is again based

on percolation theory. To automatically determine the number of nodes to include, we per-

formed a 10-fold cross-validation on the seeds, i.e. we removed seeds from the seed set and

checked (1) whether they were up-ranked (recalled) by DIAMOnD, and (2) whether their

inclusion was helping in building a big connected component that gathered a large number of

seeds (Fig 3C and 3D). We cut at the mean point of flattening of the two recall curves.

Measurements of network heat

We used Hotnet (v2) to measure heat propagation on the networks [49]. In a first step, Hotnet

calculates an influence matrix from the network. We did so for each of the therapy- and

tumor-specific networks. For each network, we optimized the β parameter of Hotnet as
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recommended by the authors, i.e. by maximizing the average influence at the inflection point

of the cumulative distribution of level-one neighbors of nodes of random and topologically

varied nodes. In most networks, β ranged from 0.4 to 0.6.

In each modulation, 1,000 heat units (h.u) were arbitrarily assigned. Therefore, in a single

modulation, the target protein contained all of the initial heat, e.g. while in a three-node inter-

ference, 333 h.u. were given to each node. Qualitatively, this means that in a three-node inter-

vention simulated inhibitions are considerably milder. The area under the cumulative heat

distribution, after running Hotnet, was used to measure the global heat. This area was normal-

ized by the ideal heat distribution, obtained by gently (1,000/n h.u.) heating the n nodes of the

network. The advantage of a combination over single interference was measured by dividing

the global heat of the combination by the best global heat of the individual components.

Details are given in S4 Fig.

Genome-scale metabolic models of cancer

To model the effect of multiple inhibitions on leukemia metabolism, we used the PRIME meta-

bolic models, which are based on the NCI-60 (cancer) and HapMap (healthy) cell line panels

[20]. In the PRIME collection, we arbitrarily took the first leukemia cell line of the NCI-60 and

the first cell line of the HapMap panels. We modeled inhibitions at the gene level by reducing

to the 1% the Vmax of the corresponding reactions, with the OptKnock method[69]. Reaction

rules (AND and OR) of the PRIME models were appropriately taken into account to translate

gene inhibitions to the reaction level.

In the OptKnock flux variability analysis, we focused on the biomass reaction, and also on

other reactions that are representatives for metabolic cancer hallmarks, e.g. oxygen consump-

tion or reactive oxygen species production. In the flux variability analysis of these reactions,

we put as a constraint the maintenance of 80% of the wild-type biomass production.

Supporting information

S1 Data. Pairs of proteins with similar cavities, together with cavity specifications, are

available at the file SuppData1.xlsx.

(XLSX)

S1 Fig. Analysis of the BioGPS cutoff. (A) and (B) display the odds ratio and the P-value of a

right-tailed Fisher’s exact test where the contingency table counts pairs of similar (above cut-

off) and different cavities containing and not containing the same ligand. Correspondingly, in

(C) the G-score (harmonic mean between precision and recall) is shown. (D) Proportion of

ligand volume overlapped by cavities. (E) Percentage of surface residues that are part of a cav-

ity. (F) Distribution of all-vs-all BioGPS scores. In the pie chart, proportion of cavities for

which a similar cavity is found in another structure of the same protein, in another structure

of the same fold (3 ECOD levels, from specific, in dark, to more general, in light), or elsewhere.

Only cavities with at least one similar cavity are counted. (G) BioGPS sensitivity, measured in

cavities of different structures of the same protein. For each cavity in each structure, we looked

for its partner in the second structure, and measured the BioGPS similarity of the cavity pair

(only pairs of structures having almost-full protein coverage (>80%) were considered). As it

can be seen in the red line, corresponding cavities in different structural instances of the same

protein tend to have high BioGPS scores. Roughly, two-thirds of the cavity pairs have scores

above 0.6 (dashed line). (H) Correlation between kinase inhibition profiles and cavity similar-

ity among kinases. We downloaded a kinase-inhibitor panel from Davis et al. 2011, and

exhaustively compared the ligand profile of each pair of kinases (Jaccard index of shared
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inhibitors). As it can be seen in red, when two kinases have similar cavities, they tend to share

more ligands. (I) Top-occurring ligands in the PDB. The word-cloud displays ligands that are

detected inside a cavity in at least 5 distinct proteins. These ubiquitous ligands are usually crys-

tallographic artifacts/solvents or nature(-derived) ligands.

(TIF)

S2 Fig. Background adjustments of SEA on ChEMBL. A raw score to measure the coinci-

dence between two sets of ligands is calculated after a pairwise ligand comparison by summing

up the Tanimoto coefficient (Tc) of those pairs of ligands with a Tc> 0.55. In (A) we show the

background mean of the raw score at different set × set sizes, and in (B) the standard deviation

(SD). In (C) we display the corresponding background Z-score distribution, fitted to an

extreme-value distribution (EVD). (D) Scheme of an alternative method to SEA, involving a

Naïve Bayes (NB) multi-target classification, trained on ChEMBL data, followed by a protein-

protein comparison based on predicted ligand profiles (Jaccard index). (E) The enrichment of

this Jaccard when we look at SEA-, fold-, sequence- and cavity-based protein pairs, compared

to the background. SEA is most similar to NB, and NB shows comparable enrichments to

those seen from SEA in Fig 1C in the main text (fold ~ sequence >> cavity). (F) NB-score of

fold, sequence and cavity pairs, relative to SEA pairs. They are always below 1, confirming that

NB and SEA are best correlated.

(TIF)

S3 Fig. Therapy- and tumor-specific networks. (A) The therapeutic network of antithrombo-

tic agents (B01), where seed nodes are highlighted in red. (B) The network of esophageal carci-

noma (ESCA). In (C) and (D) we display, respectively, B01 and ESCA recall curves in a 10-fold

cross-validation of the inclusion of nodes, based on the DIAMOnD algorithm. The dark line

represents the recall of seed nodes, while the light line displays the proportion of seed nodes in

the major component of the network.

(TIF)

S4 Fig. Heat distribution analysis. (A) and (B) show the adjustments of the β parameter.

When β = 1, no heat is transferred from one node to another, and at β = 0 all of the heat is

released. Kidney renal cell carcinoma (KIRC) and sex hormones and modulators of the genital

system (G03) networks are taken as examples to show the selection of the optimal β for each

network. In (A), the network-based influence distribution on distance-one neighbors of ran-

domly selected nodes rapidly decays at different influence inflection points, for a given β. In

(B), the average inflection point at each β is displayed, and at the optimal β this inflection point

is maximized. Once β is selected, to model a multi-target modulation 1,000 h.u. are distributed

to the corresponding nodes and Hotnet is run. In (C) we show the distribution of heat across

all nodes of the G03 and KIRC networks after a 2-node and a 3-node interference, respectively

(see networks in (E)). The area under these curves is normalized by the ideal multi-target inter-

vention, where we do a uniform assignment of heat to each of the nodes. In (D) we show that

on average for all networks it is more efficient, in terms of heat distribution, to intervene with

multiple targets. Finally, in (F) we demonstrate that successful targets of targeted therapies, on

the corresponding tumors, do indeed distribute heat better than a random interference. To

embed all networks in the same distribution, we defined a Z-score by calculating the mean and

standard deviation of the heat distributed by individual random nodes. The Z-score is mostly

positive, meaning that for most networks the targets of approved drugs have prominent heat-

distribution properties.

(TIF)
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S5 Fig. Structural coverage of therapy- and tumor-specific networks. (A) Number of pro-

teins with structural information in the different networks that we studied. For comparison,

the coverage of the background proteome and known drug targets is also displayed. The struc-

tural coverage of our PPI networks is relatively high, probably due to the intrinsic bias of the

Y2H PPI detection technique, which does not work well with membrane proteins. Membrane

proteins are, in turn, underrepresented in the PDB. (B) Sequence coverage of the structures.

Our networks contain a considerable proportion of partial structures. Data are obtained from

Interactome3D.

(TIF)
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