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Abstract

The goal of this project is to classify the real forms of a closed subgroup of the special linear
complex group of degree two. Previously we have to study several concepts of algebraic
group theory such as galois cohomology. We expose many properties of forms of an algebraic
group over a field k. We present the Kovacic algorithm for solving second order linear
homogeneous differential equation over C(x).



“Groups, as men, will be known by their actions".

-Guillermo Moreno.
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Introduction

Project

The differential Galois theory was born due to Sophus Lie who had the idea to standardize
some classical methods to solve certain differential equations by associating to the equation
a group of transformations leaving it invariant. It arose to study extensions of differential
fields to find which integrals of elementary functions can be expressed with other elementary
functions. It is equivalent to the problem of solutions of polynomial equations by radicals
in algebraic Galois theory. Much of the differential Galois extensions theory is parallel to
algebraic Galois theory. Differential Galois theory was stablished by Ellis Kolchin building
on the algebraic geometry of André Weil. In 1985 Jerald. J Kovacic presented an algorithm
for finding Liouvillian solutions to the differential equation

y′′ + ay′ + by = 0 where a, b ∈ C(x).

There is a classification of algebraic subgroups of the special linear group of degree two with
complex coefficients that is useful because the Galois group of the extension defined by the
differential equation it is a closed subgroup of SL(2, C). In this way, I decided to generalize
this fact assuming that a, b ∈ R(x), so for that reason this thesis is based on the study of
R-forms of the subgroups of SL(2, C).
In this work we present some algebraic geometry results as well as the notion of Galois
cohomology that will be crucial to approach the problem stated above. We will also show
that the real forms of SL(2, C) are SL(2, R) and the group of Hamilton quaternions of norm
1.

Memory structure

To achieve this goal first we have to understand several facts of affine algebraic groups.
In chapter 1 we introduce the affine algebraic variety. As Proposition 1.1.5 shows, the affine
n-dimensional space An has a topology defined by the algebraic varieties, named Zariski
topology.



Given an affine algebraic variety we define its irreducible components, as well as its dimen-
sion. We also introduce the cartesian product of affine varieties viewed as a closed subset in
the Zariski topology.

Chapter 2 contains classical definitions and results about affine algebraic groups. We focus
on group actions because in Chapter 3 we consider Lie algebras of a linear algebraic group.
To conclude the third chapter we replicate the proof of the classification of closed subgroups
of SL(2, C).
The next three sections are based in tensor product (extension of scalars), non-abelian Galois
Cohomology theory and Brauer group theory, that allows us to classify the real forms of a
subgroup of SL(2, C).

To conclude, we will revert to our differential equation problem, describing the first case
of the algorithm that Kovacic proved and its solutions, along with some examples.
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Chapter 1

Affine Algebraic Varieties

1.1 Affine Varieties

In this Chapter we will define an affine variety and show some properties of it. For now k
denotes an arbitrary field of arbitrary characteristic.
Definition 1.1.1. We define an affine variety as the set of common zeros in An

k of a finite
collection of polynomials in k[X1, . . . , Xn]. i.e, let S ⊆ k[X1, . . . , Xn], then

V(S) := {(a1, . . . , an) ∈ An; f (a1, . . . , an) = 0 ∀ f ∈ S}.

To each ideal I in k[X1, . . . , Xn] we associate the set V(I) of its common zeros in An
k . Hilbert’s

basis theorem shows us that k[X1, . . . , Xn] is Noetherian; hence each ideal of it has a finite
set of generators. As a result, V(I) is an affine variety.

To each subset X ⊆ An we define

I(X) := { f ∈ k[X1, . . . , Xn]; f (p) = 0 ∀p ∈ X}.

It is clear that I(X) is an ideal and that we have inclusions X ⊂ V(I(X)) and I ⊂ I(V(I)),
which are not equalities in general.

We recall that for an ideal I of a commutative ring A the radical of I is defined by

rad(I) := {a ∈ A; ar ∈ I for some r ≥ 1}.

Proposition 1.1.2. With the same notation above we have that I(X) is a radical ideal, i.e,
rad(I(X)) = I(X).

Proof. Let f ∈ rad(I(X)), then there exists m ≥ 1 such that f m ∈ I(X).
Therefore f m(p) = ( f (p))m = 0 ∀p ∈ X. Since we are in an integral domain then we
finally have f ∈ I(X).

3



1.1 Affine Varieties 4

It is easy to prove the following proposition from Definition 1.1.1.
Proposition 1.1.3. Let X, Y ⊂ An and I, J ideals of k[X1, . . . , Xn]. We have

1. X ⊂ Y ⇒ I(X) ⊃ I(Y),

2. I ⊂ J ⇒ V(I) ⊃ V(J),

3. I(X) = k[X1, . . . , Xn]⇔ X = ∅,

4. V(I) ⊆ V(J)⇔ rad(I) ⊇ rad(J).

If f (X1, . . . , Xn) fails to vanish at (a1, . . . , an) then f (X1, . . . , Xn)m also fails to vanish at this
point for each m ≥ 0. Then it follows that rad(I) ⊂ I(V(I)). The following theorem shows
us the equality when the field k is algebraically closed.
Theorem 1.1.4 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let
A = k[X1, . . . , Xn]. Then the following hold:

1. There is a bijective correspondence between the maximal ideals of A and the points of An.

2. If I is a proper ideal of A, then V(I) 6= ∅.

3. Any ideal I in A satisfies
rad(I) = I(V(I))

Proof. We must prove 1. and 2., look [1] p.7 for 3.
Let a := (a1, . . . , an) ∈ An, we want to see that
I(a) = (X1 − a1, . . . , Xn − an) is maximal. It is the kernel of the surjective morphism:

eva :A −→ k

f 7−→ f (a)

and by the isomorphism theorem then we can conclude that I(a) is maximal.

Now, if m ∈ Max(A) then F = A/m is a field (and the finite generated k-algebra k[X1, . . . , Xn]

where Xn is the reduction of Xi (mod m)).
Defining Φ as a composition of the immersion ι : k ↪→ A and η : A→ F defined by η( f ) = f
we have that F is a finitely generated k-algebra and a field, hence F|k is a finite field exten-
sion and, since k is algebraically closed, F = k. Let b := (b1, . . . , bn) where bi = Φ−1(Xi) it
satisfies that η(Xi− bi) = 0, then Xi− bi ∈ Ker(η) = m. Therefore (X1− b1, . . . , Xn− bn) ⊆ m

and we already know that (X1 − b1, . . . , Xn − bn) is maximal. This give us the equality that
we wanted to prove statement 1.

Now let I an ideal of A, then there exists a maximal ideal m ∈ Max(A) such that I ⊆ m.
We have proved before that m = I(x1, . . . , xn), then (x1, . . . , xn) = V(m) ⊆ V(I), therefore
V(I) 6= ∅.



1.2 Irreductible components 5

The following results show that the set of affine varieties in An satisfy the axioms of closed
sets in a topology. This topology is called Zariski topology.
Proposition 1.1.5.

1. An = V(0), ∅ = V(k[X1, . . . , Xn]).

2. If {Iα}α is an arbitrary collection of ideals of k[X1, . . . , Xn] then ∩αV(Iα) = V(∑α Iα).

3. If I1, . . . , In is a finite collection of ideals of k[X1, . . . , Xn] then ∪i=n
i=1V(Ii) = V(∩i=n

i=1 Ii).

Since a closed set V(I) is the intersection of the zero sets of the various f ∈ I, a typi-
cal non-empty open set can be written as the union of principal open sets, denoted by
D( f ) := {a ∈ An; f (a) 6= 0}. These form a basis for the topology. We can see D( f ) as a
closed variety of An+1, D( f ) = {(a, t) ∈ An+1; f (a)t− 1 = 0}. For example GL(n, k)(group
of all invertible n× n matrices over k) is the principal open set in An2

defined by the nonva-
nishing of the determinant.

1.2 Irreductible components

Now that we know the Zariski topology we can consider a topological space X. Then X
is said to be irreducible if X cannot be writen as the union of two proper, nonempty, closed
subsets. A subspace Y of X is called irreducible if it is irreducible as a topological space with
the induced topology. Notice that X is irreducible if and only if any two nonempty open
sets in X have nonempty intersection. Evidently an irreducible space is connected, but not
conversely.

As k[X1, . . . , Xn] is Noetherian, then it satisfies the Ascending Chain Condition. Closed
sets of An satisfies the Descending Chain Condition because of the bijective correspondence.
Therefore every affine algebraic variety is a finitely union of irreducible varieties.

For closed subsets in An irreducibility is characterized in terms of the corresponding ideal
by the following proposition.
Proposition 1.2.1. A closed set X in An is irreducible if and only if its ideal I(X) is prime.
In particular, An is irreducible.

Proof. Write I = V(X). Suppose that X is irreducible and let f1, f2 ∈ k[X1, . . . , Xn] such that
f1 f2 ∈ I. Then each point P ∈ X is a zero of f1 or f2. If we denote Ii the ideal generated by
fi, i = 1, 2 then X ⊂ V(I1) ∪ V(I2). Since X is irreducible, it must be contained within one of
these two sets, i.e, f1 ∈ I or f2 ∈ I, this show that I is prime.

In the other direction, suppose I is prime, but X = X1 ∪ X2, where X1, X2 closed in X.
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If neither Xi covers X, we can find fi ∈ I(Xi) but fi /∈ I, i = 1, 2. But f1 f2 vanish on X, so
f1 f2 ∈ I, contradicting that I is prime.

As k[X1, . . . , Xn] is an unique factorization domain, for f ∈ k[X1, . . . , Xn] \ k, the irreducible
components of the hypersurface V( f ) in An are just the hypersurfaces defined as the zero
sets of the irreducible factors of f .
For example, the closed set V(X2 − 1) ⊂ A2, V(X2 − 1) = V(X − 1) ∪ V(X + 1) is the
decomposition as the union of its irreducible components which are points.

1.3 Product of affine varieties

The cartesian product of two (or more) topological spaces can be topologized in a fairly
straightforward way, so as to yield a "product" in the category of topological spaces (where
the morphisms are continuous maps).
It is reasonable to ask that the product of two affine varieties X ⊂ An, Y ⊂ Am, should look
like the cartesian product X × Y ⊂ An+m. Specifically, this obliges us to define An ×Am to
be An+m with the Zariski topology. If X is the zero set of polynomials { fi(X1, . . . , Xn)}i and
Y is the zero set of polynomials {gj(Y1, . . . , Ym)}j, then X × Y is defined by the vanishing of
all figj.
Proposition 1.3.1. Let X ⊂ An, Y ⊂ Am, be irreducible sets. Then X×Y is irreducible in An+m.

Proof. Suppose X × Y is the union of two closed subsets Z1, Z2. We have to prove that
it is included in one of them. If x ∈ X, {x} × Y is closed (is an affine variety) and it
is also irreducible: any decomposition as an union of closed subsets would imply a sim-
ilar decomposition of Y, inasmuch as a closed subset of {x} × Y clearly has to be of the
form {x} × Z for some closed subset Z of Y. Therefore the intersections of {x} × Y with
Z1, Z2 cannot both be proper. So X = X1 ∪ X2, where Xi = {x ∈ X|{x} × Y ⊂ Zi}.
We observe that each Xi is closed in X, because for each y ∈ Y, X × {y} is closed, which
implies in turn that the set X(i)

y = {x|(x, y) ∈ Zi} is closed in X. But Xi =
⋂

y∈Y X(i)
y . From

the irreducibility of X we conclude that either X = X1 or X = X2, i.e, either X × Y = Z1 or
X×Y = Z2.

1.4 Dimension

For a topological space X its dimension, denoted by dim X is the supremum of the lengths,
n, of chains

∅ ( X0 ( X1 ( · · · ( Xn = V

of distinct irreducible closed sets of X.
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1.5 Morphisms of affine varieties

If V is an affine variety in An, we define a polynomial function as a map f : V → k if there
exist a polynomial P ∈ k[X1, . . . , Xn] such that f (q) = P(q), for all q ∈ V.
It is clear that each g ∈ k[X1, . . . , Xn] defines a polynomial function. But other polynomials
may define the same function, for example, f = P + Q where Q ∈ I(V). Concretely we have
a 1-1 correspondence between the distinct polynomial functions on V and the residue class
ring k[X1, . . . , Xn]/I(V). We denote this ring by k[V] and call it the coordinate ring of V.
It is a finitely generated algebra over k and is reduced (i.e. without nonzero nilpotent ele-
ments) because I(V) is a radical ideal. When V is irreducible then k[V] is an integral domain
because I(V) is prime, so we can form its field of fractions k(V) called field of rational func-
tions on V. Elements f ∈ k(V) are called rational functions on V. Any rational function can
be written f = g/h, with g, h ∈ k[V]. In general this representation is not unique. We can
only give f a well-defined value at a point P if there exists a representation f = g/h with
h(P) 6= 0, then we say that f is regular at P.

Example 1.5.1. Consider V := V(Y2 − X3 + X) ⊂ A2 and P = (0, 0) ∈ V, then the function
X/Y is regular at P because it can be written as Y/(X2 − 1) in C(V).

Let V ⊂ An, W ⊂ Am be affine varieties, we define a morphism of affine varieties as a
map ϕ : V → W such that for any x = (x1, . . . , xn) ∈ V there exists ϕi ∈ k[V] such that
ϕ(x1, . . . , xn) = (ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn)).
Remark 1.5.2. The morphism ϕ : V →W is continuous for the Zariski topologies involved.

Proof. Let Z ⊂ W a closed set, that is, the set of zeros of polynomial functions fi on W, then
ϕ−1(Z) is the set of zeros of the polynomial functions fi ◦ ϕ on V, then ϕ−1(Z) is closed in
V.

With a morphism ϕ : V → W is associated its comorphism ϕ∗ : k[W] → k[V] defined by
ϕ∗( f ) := f ◦ ϕ. It is obvious that the image of ϕ∗ does lie in k[V]. If we have ϕ∗ then we obtain
information of ϕ, k[W] is generated (as k-algebra) by the restrictions to W of the coordinate
functions X1, . . . , Xm on Am, call them xi, and ϕ∗(xi) = ϕi (where ϕi is the function used
above to define ϕ). This shows that every k-algebra homomorphism k[W] → k[V] arises as
the comorphism of some morphism V →W.

1.6 Zariski Tangent Space

If f (X1, . . . , Xn) ∈ k[X1, . . . , Xn] and x = (x1, . . . , xn) is a point in An, we define the differential
of f at x as

dx f =
n

∑
i=1

∂ f
∂Xi

(x)(Xi − xi).
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From definition, for f , g ∈ k[X1, . . . , Xn], dx( f + g) = dx f + dxg and dx( f g) = f (x)dxg +

g(x)dx f .
Suppose V ⊂ An is an affine variety, x ∈ V , we define the tangent space to V at the point x
as the linear variety in An

Tan(V)x := {a ∈ An : dx f (a) = 0, for all f ∈ I(V)}.

It is easy to prove that for any finite set of generators of I(V), the corresponding dx f generate
the ideal of Tan(V)x. Notice that the tangent space to a linear variety is just the variety.
Let V ⊂ An be an affine variety, x ∈ V, let Mx = I(x) be the maximal ideal of R = k[V]

vanishing at x. Since k[V]/Mx ' k; then Mx/M2
x is a k-vector space (finite dimensional,

since M is a finitely generated R-module). Now dx f , for arbitrary f ∈ k[X1, . . . , Xn]] can
be viewed as a linear function of An (x being the "origin"), hence as a linear function on
the vector subspace Tan(V)x of An. Since for f ∈ I(V), dx f vanishes on Tan(V)x, dx f is
determined by the image of f in k[V]. We can therefore write dx f for f ∈ k[V]. We obtain
a k-linear map dx from k[V] to the dual space of Tan(V)x. Since k[V] ∼= k⊕Mx as k vector
spaces and dx(k) = 0 we may view dx as a map from Mx to the dual space of Tan(V)x.
Proposition 1.6.1. The map dx defines an isomorphism from Mx/M2

x to the dual space of Tan(V)x.

Proof. [2], page 38.

We can now pass to the local ring (Ox,Mx), since Ox = k[V]Mx and Mx = Mxk[V]Mx , then
there is a canonical isomorphism between the tangent space Tan(V)x and the dual vector
space of Mx/M2

x over k. We can therefore define the tangent space T(V)x of V at x to be
the dual vector space Mx/M2

x over k. This definition makes sense when X is an arbitrary
irreducible variety.
Proposition 1.6.2. Let ϕ : X → Y be an isomorphism of varieties, x ∈ X. Then T(X)x is isomorphic
to T(Y)ϕ(x)

We can determine the dimension of the tangent space. If V ⊂ An is an affine variety and
I(X) is generated by f1, . . . , fN , the tangent space Tan(V)x at a point x of X is defined by
the equations

n

∑
j=1

∂ fi
∂Xj

(x)(Xj − xj) = 0, 1 ≤ i ≤ N.

So the dimension of Tan(V)x is n− r where r = rank((∂ fi/∂Xj))1≤i≤N, 1≤j≤n.
Proposition 1.6.3. Let X be an irreducible algebraic variety, x ∈ X. Then dim Tan(X)x ≥ dim X
and equality holds in a nonempty open subset of X.
Definition 1.6.4. We say that x is a simple point or regular point or nonsingular point if dim Tan(X)x =

dim X. Otherwise we say that x is a singular point.

A variety is called nonsingular or smooth if all its points are simple.



Chapter 2

Affine Algebraic Groups

Now let G be a variety endowed with the structure of a group.
Definition 2.0.1. G is an algebraic group if the two maps µ : G × G → G defined by
µ(x, y) = xy, and ι : G → G where ι(x) = x−1, are morphisms of varieties.

Here the variety G× G is given with the Zariski topology.
Remark 2.0.2. An algebraic group is a non-singular variety. See [1] page 55.

Then, an algebraic group is not a topological group if it has dimension greater than 0. We
will reserve the term "affine algebraic group" for those groups whose underlying varieties
are affine. We proceed to see some examples that will be useful later.
Example 2.0.3. The additive group Ga is the affine line A1 with group law µ(x, y) = x + y
(so ι(x) = −x, e = 0). The multiplicative group Gm is the affine open subset k∗ ⊂ A1 with
group law µ(x, y) = xy (so ι(x) = x−1, e = 1). Each of these groups is irreducible (as a
variety) and 1-dimensional.

Denote by GL(n, k) the set of all n× n invertible matrices with entries in k; this is a group
under matrix multiplication, called the general linear group.. The set M(n, k) of all ma-
trices n × n over k may be identified with An2

, then GL(n, k) is identified with the prin-
cipal open subset defined by the nonvanishing of the determinant, i.e, D(det) = {a ∈
An2

; det(Xij) 6= 0}. Viewed thus as an affine variety, and introducing and extra variable
Y one have that GL(n, k) = {A ∈ An+1; Ydet(Xij) − 1 = 0}, then the coordinate ring is
k[GL(n, k)] = k[Xij, 1/det(Xij)].
The formulas for matrix multiplication and inversion make it clear that it is an algebraic
group. Note that GL(1, C) = Gm.

Taking into account that a closed subgroup of an algebraic group is again an algebraic group,
we can construct further examples.

9
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Let consider subgroups of GL(n, k):

• (special linear group) SL(n, k) := {A ∈ GL(n, k); det(A) = 1} = V(det− 1) ;

• (upper triangular group) T(n, k) := {(aij) ∈ GL(n, k); aij = 0, i > j};

• (upper triangular unipotent group) U(n, k) := {(aij) ∈ GL(n, k); aii = 1, aij = 0, i > j};

• (diagonal group) D(n, k) := {(aij) ∈ GL(n, k); aij = 0, i 6= j}.

A linear algebraic group is a closed subgroup of some GL(n, k).
Example 2.0.4. The direct product of two or more algebraic groups, i.e, the usual direct
product of groups endowed with the algebraic variety structure of the product, is again an
algebraic group. For example D(n, k) (diagonal group) may be viewed as the direct product
of n copies of Gm.

2.1 Connected algebraic groups

Let G be an algebraic group. We assert that only one irreducible component of G contains the
unit element e. To be sure, let X1, . . . , Xm be the different irreducible components containing
e. The image of the irreducible variety X1 × · · · × Xm under the product morphism is an
irreducible subset X1 · · ·Xm of G, which again contains e. So X1 · · ·Xm lies in some Xi. On
the other hand, each of the components X1, . . . , Xm lies in X1 · · ·Xm. We conclude that m = 1.
Denote by G◦ this unique irreducible component of e, and call it the identity component of
G.
Proposition 2.1.1. Let G be an algebraic group.

1. G◦ is a normal subgroup of finite index in G, whose cosets are the connected as well as irre-
ducible components of G.

2. Each closed subgroup of finite index in G contains G◦.

Proof. a) For each x ∈ G◦, x−1G◦ ⊂ G◦, then it is an irreducible component of G, and it is
containing e, so x−1G◦ = G◦. Then G◦ = (G◦)−1, and further G◦G◦ = G◦, i.e, G◦ is a closed
subgroup of G. For any x ∈ G, xG◦x−1 is also an irreducible component of G containing e,
so xG◦x−1 = G◦ and G◦ is normal.
Its cosets are translates of G◦, hence must also be irreducible components of G; there can
only be finitely many of them because G is Noetherian and since they are disjoint, these are
also the connected components of G.

b) If H is a closed subgroup of finite index in G, then each of its finitely many left cosets is
also closed and so is the union of those distinct from H, then H is open. Therefore the left
cosets of H give a partition of G◦ into a finite union of open sets. Since G◦ is connected and
meets H, we get G◦ ⊂ H.
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We shall call an algebraic group G connected when G = G◦.

Most of the groups introduced above are connected, for example, Ga and Gm because they
are irreducible. That GL(n, k) is connected follows from it being a principal open set in an
affine space An2

.

We will use the next result to prove the connectedness of SL(n, k), T(n, k), U(n, k), D(n, k).
Proposition 2.1.2. Let G be an algebraic group, {Yi}i∈I a family of closed connected subgroups of G
which generate G (as an abstract group). Then G is connected.
Corollary 2.1.3. The algebraic groups SL(n, k), T(n, k), U(n, k), D(n, k) are connected.

Proof. It is essentially an exercise in linear algebra to show that SL(n, k) is generated by
subgroups Uij(i 6= j), where Uij consists of all matrices uij(a) = I + aeij where eij is the
matrix with entry 1 in the (i, j) position an 0’s elsewhere, and a ∈ k. Then there is an evident
isomorphism between Ga and Uij.

Then, the proposition above shows that SL(n, k) is connected because it is generated by Uij,
that are connected. The Uij with i < j generate U(n, k), then by the same reason, it is
connected.
The group D(n, k) is the direct product of n copies of Gm. Finally, T(n, k) is generated by
U(n, k) and D(n, k), then it is connected.

2.2 Group actions and semidirect product

2.2.1 Group actions

If G is an algebraic group, X a variety, we say that G acts morphically on X if there is a map
ϕ : G× X → X, denoted for brevity by ϕ(g, x) = gx such that:

(A1) ϕ(g1, ϕ(g2, x)) = ϕ(g1g2, x) for gi ∈ G, x ∈ X;

(A2) ϕ(e, x) = x for all x ∈ X

A group action of a group G on a set X can also be defined as a homomorphism of groups
ρ : G → Sym(X) (where Sym(X) denotes the symmetric group of X, in our case, bijective
maps from X to X).
The first definition implies the second; suppose we have a map ϕ defined as before, for
every g ∈ G, ρg : X → X is defined as the map: x 7→ ϕ(g, x). Clearly ρe = Id (by the
second assumption of ϕ). The fact that ρg is in Sym(X) for every g holds because: ϕ(e, x) =
ϕ(g−1g, x) = ϕ(g−1, ϕ(g, x)) = ρ−1

g (ρg−1 x). Hence, ρg−1 is a left inverse of ρg, and a similar
argument shows that it is a right inverse. Thus ρg is an invertible map from X to X, hence
an element of Sym(X). It is easy to prove that ρ is a homomorphism (it follows from the first
condition of ϕ).
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The second definition implies the first; Given a homomorphism ρ : G → Sym(X), the map ϕ

is given by ϕ(g, x) = ρg(x). Let us check that ϕ satisfies both the specified conditions:

1. ϕ(g1g2, x) = ρg1g2(x) = (ρg1 ρg2)(x) = ρg1(ρg2 x) = ρg1 ϕ(g2, x) = ϕ(g1, ϕ(g2, x))

2. ϕ(e, x) = ρe(x) = x

The latter is because a homomorphism of groups takes the identity element to the identity
element.

2.2.2 Semidirect product

An action of one group on another (as group automorphisms) permits construction of a
larger group. Let G, H be groups and let ϕ : G −→ Aut(H) be an action of G on H. Since G
and H are groups, then H × G becomes a group if we define

(h, g)(h′, g′) = (hϕ(g)(h′), gg′)

This is called a semidirect product and is denoted H oϕ G.
The identity element of this group is eHoϕG = (eH , eG) and, if (h, g) ∈ H oϕ G then
(h, g)−1 = (ϕ(g−1)(h−1), g−1).

H and G are subgroups of H o G via the canonical monomorphisms H → H o G by the
rule h 7→ (h, eG) and G → H o G by the rule g 7→ (eH , g). The following proposition is
proved in [3] p.27.
Proposition 2.2.1.

1. H is a normal subgroup of H o G

2. HG = H o G

3. H ∩ G = {eG}

4. (H o G)/H ' G
Remark 2.2.2. How can we recognise a semidirect product? Given a group G′ with sub-
groups H, G (H being normal in G′), G acts on H by inner automorphisms

ϕ : G −→ Aut(H)

g 7−→ϕ(g) : H −→ H

h 7−→ ϕ(g)(h) = g−1hg

Then we have Hoϕ G → G′ by the rule (h, g)→ hg, which is an isomorphism when G′ = HG
and H ∩ G = {e}.
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2.2.3 Translation of Functions

When an algebraic group G acts on an affine variety V (for example, on itself) we say that V
is a G-variety. We also obtain linear actions of G on the coordinate ring k[V] called translation
of functions by x, and denoted by τx defined by:

τ : G× k[V] −→ k[V]

(x, f ) 7−→ τx( f )= x · f : V −→ k

v 7−→ τx( f )(v) := f (x−1 · v)

For example, when V = G, G acts on itself by left (resp. right) translations we have y 7→ xy
(resp. y 7→ yx−1) and its comorphism λx (resp. ρx) is called left (resp. right) translation of
functions by x:

(λx f )(y) = f (x−1y),

(ρx f )(y) = f (yx)

[1] characterize membership in a closed subgroup with right translations.
Lemma 2.2.3. Let H be a closed subgroup of an algebraic group G, I the ideal of k[G] vanishing on
H. Then

H = {x ∈ G; ρx(I) ⊂ I}.

Proof. Let x ∈ H. If f ∈ I, ∀y ∈ H ρx( f )(y) = f (yx); therefore ρx( f ) ∈ I, i.e. ρx(I) ⊂ I.
Assume now that we have x ∈ G such that ρx(I) ⊂ I. For all f ∈ I, then ρx( f )(e) = 0; hence
f (x) = f (ex) = ρx( f )(e) = 0, so x ∈ V(I(H)) = H (because H is closed under the Zariski
topology)

Lastly, the proof of the following theorem is based on showing the existence of a n-dimensional
k-vector subspace of k[G] on which G acts by left translation. This action induces an injective
morphism G → GL(n, k).
Theorem 2.2.4. Let G be an affine algebraic group. Then G is isomorphic to a closed subgroup of
some GL(n, k).



Chapter 3

Lie Algebras and Classification of
SL(2, C)

In this chapter we want to define Lie Algebra and give some properties, most of them without
proof. Also we will introduce the semisimple and unipotent elements and the main result
asserts that a closed subgroup of GL(n, k) contains these components of each of its elements.
See [4, 2] for details.
Definition 3.0.1. A Lie algebra over a field k is a k-vector space g together with a binary
operation

[·, ·] : g× g→ g

called the Lie Bracket, which satisfies the following axioms:

1. Bilinearity: [ax + by, z] = a[x, z] + b[y, z] and [z, ax + by] = a[z, x] + b[z, y] for all scalars
a, b ∈ k and all elements x, y, z ∈ g;

2. Alternating: [x, x] = 0 for all x ∈ g. This implies anticommutativity, i.e., [x, y] = −[y, x]
for all x, y ∈ g;

3. The Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Let g be a Lie Algebra. A subspace h ⊂ g is a Lie subalgebra (resp. an ideal of g) if
[x, y] ∈ h, ∀x, y ∈ h (resp. for all x ∈ g, y ∈ h). When h is an ideal of g, the quotient
g/h inherits a natural structure of Lie algebra given by [x + h, y + h] = [x, y] + h.
Example 3.0.2. Let us give some examples of Lie algebras. Let A be an associative k-algebra.
Then A has a Lie algebra structure given by: for x, y ∈ A, [x, y] = xy− yx.

So if V is a k-vector space of dimension n, then EndV endowed with the Lie bracket defined
above is a Lie algebra that we shall denote by gl(V). The following subsets of gl(n, k) = gl(kn)

are clearly Lie subalgebras:

14
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• sl(n, k): the set of matrices in gl(n, k) whose trace is zero.

• t(n, k): the set of upper triangular matrices in gl(n, k).

• d(n, k): the set of diagonal matrices in gl(n, k).

If g, g′ are Lie algebras, a linear map ϕ : g → g′ is a morphism of Lie algebras if
ϕ([x, y]) = [ϕ(x), ϕ(y)], for all x, y ∈ g. A linear map d : g → g is called a derivation of
g if for all x, y ∈ g d([x, y]) = [d(x), y] + [x, d(y)].

We denote by Der(g) the k-vector space of derivations of g. If we endow this space with
the Lie bracket [d, d′] = d ◦ d′ − d′ ◦ d, for all d, d′ ∈ Der(g) then we have a natural structure
of Lie algebra.

An ideal of g is said to be characteristic if it is invariant under all the derivations of g. We
define a decreasing chain of characteristic ideals of g.

D0(g) = g, D1(g) = [g, g], . . . ,Di+1(g) = [Di(g),Di(g)], . . .

We refer to this series as the derived series of g.
Proposition 3.0.3. The following condition are equivalent.

(a) There exists an integer i such that Di(g) = {0}.

(b) There exists a chain g = g0 ⊃ g1 ⊃ . . . ⊃ gn = {0} of ideals of g such that [gi, gi] ⊂ gi+1 for
0 ≤ i ≤ n− 1.

If these conditions are satisfied, we say that g is solvable.

3.1 The Lie Algebra of a linear algebraic group

Let G be an algebraic group, A = k[G], recall that G acts on A via left (resp. right) translation:
(λx f )(y) = f (x−1y) (resp (ρx f )(y) = f (yx) ). We can consider the set of derivations of A,
DerA = {d ∈ Endk(A); d(xy) = d(x)y + xd(y) ∀x, y ∈ A}, it can be checked that the Lie
bracket of two derivations is again a derivation, therefore, DerA is a Lie Algebra.
Definition 3.1.1. The Lie Algebra of a linear algebraic group G is the Lie algebra L(G) of left
invariant derivations of the coordinate ring k[G] of G, defined by:

L(G) = {d ∈ DerA; dλx = λxd, ∀x ∈ G}.

We easily can check that L(G) is a Lie Algebra with the Lie bracket [d, d′] = d ◦ d′ − d′ ◦ d;
Indeed, if d, d′ ∈ L(G) then [d, d′]λx = (d ◦ d′ − d′ ◦ d)λx = (d ◦ d′)λx − (d′ ◦ d)λx = λx(d ◦
d′)− λx(d′ ◦ d) = λx[d, d′], then [d, d′] ∈ L(G).
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Example 3.1.2. We consider the additive group Ga, whose coordinate ring is the polynomial
ring k[Ga] = k[X], since Ga is isomorphic to A1. The Lie algebra L(Ga) is 1-dimensional,
because it is identified with the tangent space Te(Ga). Since the Lie bracket is identically
zero (by definition), this algebra is commutative. Let us see that the derivation δ = d/dX is
left invariant (hence spans L(Ga)). It is sufficient to check it for the polynomial X and left
translation by any x ∈ Ga. We have λxδX = λx1 = 1 and δλxX = δ(X− x) = 1

Consider now the multiplicative group Gm = k∗ = {(a, b) ∈ A2; ab = 1} = V(XY − 1)
whose coordinate ring is the ring k[Gm] = k[X, X−1]. The Lie Algebra is 1-dimensional. The
derivation defined by δX = X extends uniquely to the coordinate ring and is left invariant
because δ(xX) = xδ(X).

We want to compare L(G) with the tangent space T(G)e. T(G)e is identified with T(G◦)e; it
has the structure of a vector space over k, of dimension equal to dim G (since e is a simple
point (Definition 1.6.4)). We shall usually write g for T(G)e.
We first give an equivalent definition of tangent space of a variety V at a point x in terms of
point derivations. Recall that the tangent space of V at x was defined as (Mx/M2

x)
∗.

Definition 3.1.3. A point derivation at a point x of a variety V is a k-linear map δ : Ox → k
such that

δ( f g) = δ( f )g(x) + f (x)δ(g). (*)

Let Dx denote the k-vector space of point derivations at x. We claim that Dx is naturally
isomorphic to T(V)x. Indeed, if f ∈ Ox is constant or belongs to M2

x, then (*) shows that
δ( f ) = 0 for δ ∈ Dx. Therefore δ is completely determined by its effect on Mx, or by its
induced effect on Mx/M2

x. This injects Dx into T(V)x. In the other direction, a k-linear map
Mx/M2

x → k defines by composition with Mx → Mx/M2
x a k-linear map Mx → k, which

can be extended to Ox = k +Mx by sending constants to 0, then (*) is easy to check.

Now, as point derivations of G at e are already determined by their restriction to k[G] we
may pass from L(G) to De by evaluation at e. We define a k-linear map θ : L(G) → g by the
rule (θδ)( f ) = (δ f )(e), for δ ∈ L(G), f ∈ k[G].
Theorem 3.1.4. Let G be an algebraic group, g = T(G)e, and L(G) its Lie algebra. Then θ is a
vector space isomorphism. In case ϕ : G → G′ is a morphism of algebraic groups, dϕe : g → g′ is a
homomorphism of Lie algebras (g, g′ being given the bracket product of L(G), L(G′)).

3.2 Decomposition of algebraic groups

Let x ∈ EndV, V finite dimensional vector space over k. We say that x is nilpotent if
xn = 0 for some n (equivalently, if 0 is the only eigenvalue of x). On the other hand, x
is called semisimple if the minimal polynomial of x has distinct roots (equivalently, if x is
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diagonalizable over k). Evidently, 0 is the only endomorphism of V which is both nilpotent
and semisimple. Indeed, the following additive Jordan decomposition is well known:
Lemma 3.2.1. Let x ∈ EndV

1. There exist unique xs, xn ∈ EndV such that xs is semisimple, xn is nilpotent and x = xs + xn.

2. There exist polynomials P(X), Q(X) ∈ k[X], without constant term such that xs = P(x),
xn = Q(x). Hence xs and xn commute with any endomorphism of V which commutes with x;
in particular, they commute with each other.

3. If A ⊂ B ⊂ V are subspaces, and x maps B into A, then so do xs and xn.

4. Let y ∈ EndV. If xy = yx, then (x + y)s = xs + ys and (x + y)n = xn + yn.

If x ∈ GL(V), then x is invertible. We obtain xs via Jordan decomposition, then xs is also
invertible. So we can define xu = 1 + x−1

s xn and we obtain xs + xn = xs(1 + x−1
s xn) = xsxu.

We call an invertible endomorphism unipotent if it is the sum of the identity and a nilpotent
endomorphism. The Jordan multiplicative decomposition x = xsxu, where xs semisimple
and xu unipotent is unique. The only element in GL(V) such that is both semisimple and
unipotent is the identity.
Lemma 3.2.2. Let x ∈ GL(V)

1. There exist unique xs, xu ∈ GL(V) such that xs is semisimple, xu is unipotent and x = xsxu.

2. xs and xu commute with any endomorphism of V which commutes with x; in particular, they
commute with each other.

3. If A is a subspace of V stable under x, then, A is stable under xs and xn.

4. Let y ∈ EndV. If xy = yx, then (xy)s = xsys and (xy)n = xnyn.

If G is an arbitrary subgroup of GL(n, k), G does not necessarily contain the semisimple and
unipotent part of each of its elements. However, it is so for closed subgroups. Applying the
membership criterion (Lemma 2.2.3), given x ∈ G, we have to see that ρxs (semisimple part)
and ρxu (unipotent part) leave stable the ideal I(G) ⊂ k[GL(n, k)].

The following proposition shows us that we can consider Jordan decomposition for elements
in any affine algebraic group.
Proposition 3.2.3. Let G be an affine algebraic group. If x ∈ G, there exist unique elements s, u ∈ G
such that x = su, s and u commute, ρs is semisimple, ρu is unipotent. Then we call s and u the
semisimple part of x and the unipotent part of x, respectively and denote them xs and xu.

The proposition shows that in any affine algebraic group G, the subsets

Gs = {x ∈ G; x = xs} Gu = {x ∈ G; x = xu}

are intrinsically defined and intersect in e.
Remark 3.2.4. Gu is a closed set.
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Just observe that the set of all unipotent matrices in GL(n, k) is closed, being the zero set of
the polynomials implied by (x − 1)n = 0. Instead, Gs is not in general a closed subset of
G.

3.3 Commuting sets of Endomorphisms

Let us denote by T (n, k) (resp D(n, k)) the ring of all upper triangular (resp. all diagonal)
matrices in M(n, k). A subset M of M(n, k) is said to be triangularizable (resp. diagonaliz-
able) if there exists x ∈ GL(n, k) such that xMx−1 ⊂ T (n, k) (resp. D(n, k)).
Proposition 3.3.1. If M ⊂ M(n, k) is a commuting set of matrices, then M is triangularizable. In
case M consists of semisimple matrices, M is even diagonalizable.

Proof. In [2] p.100.

3.4 Solvable groups

Some properties of solvable groups are needed to classify the algebraic groups of SL(2, k).
This section will be devoted to those results. Look for proofs in [2].

For a group G we denote by (x, y) the commutator xyx−1y−1 for x, y ∈ G. If A, B are
subgroups of G we denote by (A, B) the subgroup:

(A, B) = 〈(x, y)〉x∈A,y∈B

(G, G) is called the derived subgroup of G.
If A and B are normal subgroups in G then (A, B) is also normal, since the following identity
holds

z(x, y)z−1 = z(xyx−1y−1)z−1 = (zxz−1)(zyz−1)(zx−1z−1)(zy−1z−1) = (zxz−1, zyz−1).

Lemma 3.4.1. Let A, B be normal subgroups of G, such that the set S = {(x, y); x ∈ A, y ∈ B} is
finite, then (A, B) is finite.

If A and B are arbitrary closed subgroups of an algebraic group G, the group (A, B) un-
fortunately need not be closed. Nontheless the next proposition give us good properties of
(A, B).
Proposition 3.4.2. Let A, B be closed subgroups of an algebraic group G.

1. If A is connected, then (A,B) is closed and connected.

2. If A and B are normal in G, then (A,B) is closed (and normal in G).

In particular, (G,G) is always closed.
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For an abstract group G, we define the derived series DiG inductively by

D0G = G, Di+1G = (DiG, DiG), i ≥ 0.

We say that G is solvable if its derived series terminates in e.
If G is an algebraic group, D1G = (G, G) is a closed normal subgroup of G, connected
if G is (Proposition 3.4.2). By induction the same holds true for all DiG. It is easy to
prove that an algebraic group G is solvable iff there exists a chain of closed subgroups
G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = e such that Gi / Gi−1 and Gi−1/Gi is abelian for i = 1, . . . , n. The
following group-theoretic facts are well known. See [5].
Lemma 3.4.3.

1. Subgroups and homomorphic images of a solvable group are solvable.

2. If N is a normal solvable subgroup of G for which G/N is solvable, then G is itself solvable.

3. If A,B are normal solvable subgroups of G, so is AB.

We consider the groups T = T(n, k) and U = U(n, k). We know that they are connected. We
will now see that they are solvable. Since the diagonal entries in the product of two upper
triangular matrices are just the respective products of the diagonal entries, then (T, T) ⊂ U.
On the other hand, we have seen that U is generated by the subgroups Uij with i < j (Uij

is generated by matrices uij(a) = I + aeij). If d is the diagonal matrix with ith entry 2 and
all other diagonal entries 1, then a quick calculation shows that duij(a)d−1u−1

ij (a) = uij(a),
therefore (d, uij(a)) = uij(a), then Uij ⊂ (D, Uij) ⊂ (T, T). Finally we have that U is the
derived group of T.

Now we will see that U is solvable, then T will be also solvable. Let us consider an ele-
ment of U, that is of the form Id + A, where A is an upper triangular matrix with zeros in
the diagonal. Let us consider R to be the subalgebra of M(n, k) of upper triangular matrices.
Denote by I the ideal of R such that the diagonal entries are zero. It is clear that the elements
aij of the matrices of Ih are zero if i > j− h. Now consider Uh = Id + Ih. We can conclude
that Uh is a normal subgroup of U. Now, if A ∈ I, then (Id + A)−1 = Id + A′, with A′ ∈ I
such that A + A′ + AA′ = 0. If Id + A ∈ Uh and Id + B ∈ Ul , so a direct computation shows
us [Uh, Ul ] ⊂ Uh+l . As Ih = 0 for a higher value of h, then we conclude that the derived
series of U terminates in {Id}.

As a sort of converse, we have the Lie Kolchin theorem.
Theorem 3.4.4 (Lie-Kolchin Theorem). Let G be a connected solvable group of GL(n, k), n ≥ 1.
Then G is triangularizable.
Proposition 3.4.5.

1. If G is solvable, then g is solvable.

2. Assume that G is connected. If g is solvable, then G is solvable.
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Proposition 3.4.6. Any two-dimensional Lie algebra is solvable.

Proof. Let g be a two-dimensional Lie algebra and consider a basis {x,y}. Then D1g is
spanned by [x, x], [x, y], [y, x], [y, y], and hence by [x, y]. Thus D1g is either 0-dimensional or
1-dimensional according to whether [x, y] = 0 or not. So D1g is abelian, and D2g = {e}.

3.5 Semisimple and Unipotent Radicals

Now we will introduce the key notions of semisimple group and reductive group. The next
theorem is proved in [2] and it will be useful to define the unipotent radical of a group
G.
Theorem 3.5.1. An arbitrary algebraic group G possesses an unique largest normal solvable sub-
group, which is automatically closed.

Consider this subgroup. Its identity component is then the largest connected normal solvable
subgroup of G; call it the radical of G, denoted R(G). The subgroup of R(G) consisting of
all its unipotent elements is normal in G and we call it the unipotent radical of G, denoted
Ru(G). It may be characterized as the largest connected normal unipotent subgroup of
G.
Definition 3.5.2. G is semisimple when R(G) is trivial and G 6= e is connected.
Example 3.5.3. G := SL(n, k) is semisimple: Since it is connected (Corollary 2.1.3) we only
have to show that its radical is trivial. It can be proved that the center of G is the group of
n-th roots of unity. It is also a normal subgroup of G, then consider the projective special linear
group i.e.,

PSL(n, k) := G/Z(G).

The claim is to prove that PSL(n, k) is a simple group (the unique normal subgroups are
the trivial one and itself). A simple proof of this fact using linear algebra can be found in
[6], Theorem 1.13. This shows that there are no nontrivial connected normal subgroups of
SL(n, k).
Definition 3.5.4. G is reductive when Ru(G) is trivial and G 6= e is connected.
Example 3.5.5. G := GL(n, k) is reductive: The radical of GL(n, k) is the diagonal subgroup
D(n, k) and the unique unipotent element of this subgroup is the identity.
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3.6 Subgroups of SL(2,C)

In this section, we give the classification of the subgroups of the special linear group SL(2, C).
The following theorem is proved in [1].
Theorem 3.6.1. Let G be an algebraic subgroup of SL(2, C). Then one of the following four cases
can occur.

1. G is triangularizable.

2. G is conjugate to a subgroup of

D+ =

{[
c 0
0 c−1

]
: c ∈ C∗

}
∪
{[

0 c
−c−1 0

]
: c ∈ C∗

}
and case 1 does not hold.

3. G is finite and cases 1 and 2 do not hold.

4. G = SL(2, C).

Proof. Let G◦ be the identity component of G. Recall that dim SL(2, C)=3. We proved
in Proposition 3.4 that any two-dimensional Lie algebra is solvable and applying Propo-
sition 3.4.6 we obtain that either dim G = 3, in which case G = SL(2, C), or else G◦ is
solvable. In the last case, G◦ is triangularizable by the Lie-Kolchin Theorem 3.4.4.
For now assume that G◦ is triangular. If G◦ is not diagonalizable, then G◦ contains a matrix

A =

[
1 a
0 1

]
with a 6= 0, because an algebraic group contains the unipotent and semisimple

parts of all its elements (Proposition 3.2.3). Since G◦ is normal in G (Proposition 2.1.1), then
any matrix B ∈ G conjugate A into a triangular matrix. A direct multiplication of matrices
shows that only triangular matrices have this property. Then G itself is triangular. This is
case 1.

Assume next that G◦ is diagonal, so G◦ contains a non-scalar diagonal matrix B =

[
a 0
0 a−1

]
.

As G◦ is normal in G, any element of G conjugates B into a diagonal matrix. A direct compu-
tation shows that any matrix with this property must be contained in D+. Therefore either
G is diagonal, this being case 1, or else G is contained in D+, this being case 2.

Proposition 3.6.2. A finite subgroup of SL(2, C) is conjugate to one of the following.

1. A cyclic group of order n generated by the matrix

Aω =

(
w 0
0 w−1

)
,

for ω a primitive nth root of the unity.
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2. The quaternion group generated by the matrices

B =

(
i 0
0 −i

)
, C =

(
0 1
−1 0

)
.

3. The dihedral group of order 2n generated by the matrices Aω and C.

4. A double cover of a regular polyhedron rotation group, which is isomorphic to

(a) the tetrahedral group 2A4 generated by the matrices B and

D =
1
2

(
−1 + i −1 + i
1 + i −1− i

)
.

(b) the octahedral group 2S4 generated by the matrices D and

E =
1√
2

(
1 + i 0

0 1− i

)
.

(c) the icosahedral group 2A5 generated by B, D and

F =
1
4

(
2i β− iγ

−β− iγ −2i

)
,

where β = 1−
√

5 and γ = 1 +
√

5.

Proof. Search [1] p.112.

Note that we have an injective homomorphism ϕ between the group of quaternions of re-
duced norm 1 H1 = {a + bi + cj + dk : a2 + b2 + c2 + d2 = 1, i2 = j2 = k2 = ijk =

−1 and a, b, c, d ∈ R} and SL(2, C) defined as

a + bi + cj + dk 7→
(

a + bi −c + di
c + di a− bi

)
.

Then H1 ' Im ϕ, so we can see the finite subgroups of the previous proposition as subgroups
of H1.



Chapter 4

Algebraic tori and Tensor
product

In this section, G will be a k-group and K an extension field of k. See [7] for more de-
tails.

4.1 Diagonalizable Groups and Tori

Lemma 4.1.1. Let H be an abstract group, and let X denote the set of homomorphisms H → K∗.
Then X is linearly independent in the K-vector space of functions from H to K.

Let now G be an affine algebraic group defined over k. A character of G is a morphism from
G to the multiplicative group. Let A = K[G]. The character group X(G) is a subset of A. We
call G diagonalizable over K if X(G) spans A as K-module. If X(G)k spans Ak = k[G], then
we shall say G is split over k.

The diagonal group D(n, k) is a closed subgroup of GL(n, k) which is evidently isomorphic,
over the prime field, to GL(1, k)n = Gn

m. An algebraic group T isomorphic to D(n, K) over
some field extension K of k is called an n-dimensional torus.
Theorem 4.1.2. For a connected linear algebraic group G the following conditions are equivalent:

1. G is an n-dimensional torus;

2. G consists only of semisimple elements;

3. G, considered as matrix group, is diagonalizable.

Property 3. means that there always exists a basis of An such that G is represented by diagonal
matrices with respect to that basis.

23
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Theorem 4.1.3. Let T be a torus defined over k. The following conditions are equivalent:

1. All characters of T are defined over k.

2. T has diagonal realization over k.

3. For every representation ρ : T → GL(n, k), the group ρ(T) is diagonalizable over k.
Definition 4.1.4. If T satisfies these three equivalent conditions, T is called a split k-torus,
and is said to split over k.

If T splits over k, so does every subtorus and quotient of T.
A maximal torus of a linear algebraic group G is an algebraic subgroup of G which is an
algebraic torus and which is not contained in any larger subgroup of that type.
Definition 4.1.5. A torus T is called anisotropic over k if it has no subtori isomorphic to Gm
over k.
Example 4.1.6. We will prove in Theorem 6.0.8 that an 1-dimensional algebraic group G over
R is isomorphic to Gm, Ga or SO(2, R). It follows that SO(2, R) is an anisotropic torus.
Proposition 4.1.7. Let G be diagonalizable and split over k. Then G is a direct product G = G◦ × F,
where F is a finite group, and G◦ is a torus defined and split over k.

4.2 Tensor Product and extension of scalars

Let A a commutative ring, let M,N,P be three A-modules. A mapping f : M×N → P is said
to be A-bilinear if for each x ∈ M the mapping y 7→ f (x, y) of N into P is A-linear, and each
y ∈ N the mapping x 7→ f (x, y) of M into P is A-linear. We shall construct an A-module T,
called the tensor product of M and N. The following proposition is proved in [8].
Proposition 4.2.1. Let M, N be A-modules. Then there exists an unique pair (T, g) consisting of an
A-module T and an A-bilinear mapping g : M× N → T, with the following property:
Given any A-module P and any A-bilinear mapping f : M×N → P, there exists an unique A-linear
mapping f ′ : T → P such that f = f ′ ◦ g
Definition 4.2.2. The module T constructed above is called the tensor product of M and N,
and is denoted by M⊗A N. If (xi)i∈I , (yj)j∈J are families of generators of M, N respectively,
then the elements xi ⊗ yj generate M⊗ N. In particular, if M and N are finitely generated,
so is M⊗ N

Now let A and B be rings, and P a two-sided A − B-module; that is, for a ∈ A, b ∈ B
and x ∈ P the products ax and xb are defined, and in addition to the usual conditions
for A-modules and B-modules we assume that (ax)b = a(xb). Then multiplication by an
element b ∈ B induces an A-linear map of P to itself, which we continue to denote by b.
For any A-module M this determines a map 1⊗ b : M ⊗A P → M ⊗A P and by definition
we set

(
∑ yi ⊗ xi

)
b = ∑ yi ⊗ xib for yi ∈ M and xi ∈ P. If N is a B-module, then for

ϕ ∈ HomB(P, N) and a ∈ A we define the product ϕa by (ϕa)(x) := ϕ(ax) for x ∈ P. Then,
we have ϕa ∈ HomB(P, N) making HomB(P, N) into an A-module.
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It is easy to prove the following results
Corollary 4.2.3.

1. HomA(M, HomB(P, N)) ∼= HomB(M⊗A P, N),

2. (M⊗A P)⊗B N ∼= M⊗A (P⊗B N).

Now, given a ring homomorphism λ : A → B, we can think of B as a two-sided A − B-
module by setting ab := λ(a)b. Then for any A-module M we define the extension of scalars
in M from A to B as the B-module M(B) = M⊗A B.

As A=k and B=K where K is a field extension of k we will work with vector spaces over a
field instead of modules. For example, if we consider the Galois extension C|R and we have
a real vector space, we can enlarge it to complex vector space doing extension of scalars,
named complexification. This will be useful to solve equations. If we want to prove theorems
about real solutions then we would try to use our knowledge of the complex solution space
to solve the real case. Suppose now that k = R and K = C, we will do an equivalence of
constructions of the complexification.

4.2.1 Complexification

We want to describe a procedure for enlarging real vector spaces to complex vector spaces in
a natural way. In [9] there are two descriptions of the complexification process, first in terms
of a two-fold direct sum, and another in terms of tensor products. We will study a little bit
of the first process and emphasize about the second one.

Complexifying with direct sums

Let V be a real vector space. The complexification of V is defined to be VC := V ⊕ V,
with multiplication law (a + bi)(v1, v2) = (av1 − bv2, bv1 + av2), where a, b ∈ R. This rule
of multiplication is reasonable if you think about a pair (v1, v2) in VC as a formal sum
v1 + iv2.
Theorem 4.2.4. If V=0 then VC=0. If V 6= 0 and {ej} is an R-basis of V then {(ej, 0)} is a C-basis
of VC. In particular, dimC(VC) = dimR(V) for all V.

A real m× n matrix, as an R-linear transformation Rn → Rm, can be viewed in a natural way
as a function Cn → Cm and it becomes a C-linear transformation. The next two theorems
show how this process looks like from the viewpoint of complexifications.
Theorem 4.2.5. Every R-linear transformation ϕ : V → V′ of real vector spaces extends in an
unique way to a C-linear transformation of the complexifications: there is an unique C-linear map
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ϕC : VC → V′C making commutative the following diagram

V
ϕ //

��

V′

��
VC ϕC

// V′C

where the vertical maps are the standard embeddings of real vector spaces into their complexifications.
Proposition 4.2.6. If ϕ : V → V′ is R-linear, its complexification ϕC : VC → V′C has kernel and
image

Ker(ϕC) = (Ker ϕ)C, Im(ϕC) = (Im ϕ)C.

Complexifying with tensor products

The idea is that VC behaves like C⊗R V and the complexification ϕC : VC → V′C of an R-
linear map ϕ : V → V′ behaves like the C-linear map 1⊗ ϕ : C⊗R V → C⊗R V′. Here are
some similarities between VC and C⊗R V:

1. There are standard embeddings V → VC by v 7→ (v, 0) and V → C⊗R V by v 7→ 1⊗ v,
and with these embeddings we have VC = V + iV and C⊗R V = V + iV.

2. For a nonzero real vector space V, any R-basis {ej} of V gives us a C-basis {1⊗ ej} of
C⊗R V, so the C-dimension of C⊗R V equals the R-dimension of V.

3. Proposition 4.2.6 is similar to the formulas

Ker(1⊗ ϕ) = C⊗R Ker ϕ, Im(1⊗ ϕ) = C⊗R Im ϕ.

The next theorem is proved in [9]
Theorem 4.2.7. For every real vector space V, there is an unique isomorphism fV : VC → C⊗R V
of C-vector spaces which makes the diagram

V

�� $$
VC

fV // C⊗R V

commute, where the two arrows out of V are its standard embeddings. Such an f is defined by
fV(v1, v2) = 1⊗ v1 + i⊗ v2. Moreover, if ϕ : V → V′ is any R-linear map of real vector spaces, the
diagram of C-linear maps is commutative.

VC

ϕC //

fV

��

V′C

fV′
��

C⊗R V
1⊗ϕ
// C⊗R V′.



Chapter 5

Group Cohomology

5.1 G-Modules

Let G be a group. The group ring Z[G] of a group G consists of the set of finite formal sums
of group elements with coefficients in Z, i.e.{

∑
g∈G

agg| ag ∈ Z ∀g ∈ G, almost all ag = 0
}

.

with addition given by addition of coefficients and multiplication induced by the group law
on G and Z-linearity.
We may replace Z by any ring R, resulting in the R-group ring R[G] of G.
Definition 5.1.1. The augmentation map is the homomorphism ε : Z[G]→ Z given by

ε
(

∑
g∈G

agg
)
= ∑

g∈G

ag.

Now we will define group cohomology via cochains and via projective resolution. It can be
proved that this two definitions are equivalent.

5.2 Group cohomology via cochains

Definition 5.2.1. A G-module is an abelian group A together with a G-action on A that is
compatible with the structure of A as an abelian group, i.e., a map G× A → A by the rule
(g, a) 7→ g · a satisfying the following properties :

(i) e · a = a, ∀a ∈ A,

27
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(ii) g1 · (g2 · a) = (g1g2) · a, ∀a ∈ A, g1, g2 ∈ G,

(iii) g · (a1 + a2) = g · a1 + g · a2, ∀a1, a2 ∈ A, g ∈ G.
Remark 5.2.2. We can extend a G-module A to a Z[G]-module considering the map Z[G]×
A→ A defined by (∑g∈G agg, a) 7→ ∑g∈G ag(g · a).
Definition 5.2.3. If A and B are G-modules, then a G-homomorphism f : A → B is just a
homomorphism of abelian groups that satisfies f (ga) = g f (a) for all a ∈ A and g ∈ G. The
G-homomorphisms form a group denoted HomZ[G](A, B).

Recall the definition of cochain complex.
Definition 5.2.4. A cochain complex (C?, d?) is a sequence of abelian groups Ci and mor-
phisms di such that

. . .→ Cn dn
−→ Cn+1 dn+1

−−→ Cn+2 → . . .

satisfies that di+1 ◦ di = 0 for all i.
Definition 5.2.5. Let A be a G-module, and let i ≥ 0. We define the group of i-cochains of G
with coefficients in A as the set of functions from Gi to A, i.e., Ci(G, A) = { f : Gi → A}.

The i-th differential morphism di = di
A : Ci(G, A)→ Ci+1(G, A) is the map

di( f )(g0, g1, . . . , gi) =

g0 f (g1, . . . , gi) +
i

∑
j=1

(−1)j f (g0, . . . , gj−2, gj−1gj, gj+1, . . . , gi) + (−1)i+1 f (g0, . . . , gi−1)

We remark that C0(G, A) is taken simply to be A.
It is easy to prove that (C?(G, A), d?A) is a cochain complex. We consider the cohomology
groups of C?(G, A).
Definition 5.2.6. Let i ≥ 0.
We set Zi(G, A) = Ker di, the group of i-cocycles of G with coefficients in A.
We set B0(G, A) = 0 and Bi(G, A) = Im di−1 for i ≥ 1, the grup of i-coboundaries of G with
coefficients in A.

We remark that, since di ◦ di−1 = 0 for all i ≥ 1, we have Bi(G, A) ⊆ Zi(G, A) for all i ≥ 0.
Hence, we define the ith cohomology group of G with coefficients in A to be

Hi(G, A) = Zi(G, A)/Bi(G, A).

The cohomology groups measure how far the cochain complex C?(G, A) is from being ex-
act.
Lemma 5.2.7.

(a) The group H0(G, A) = AG, where AG is the submodule consisting of the elements fixed by G.
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(b) We have Z1(G, A) = { f : G → A : f (gh) = g f (h) + f (g) for all g, h ∈ G} and B1(G, A)

is the subgroup of f : G → A for which there exists a ∈ A such that f (g) = ga− a

5.3 Group cohomology via projective resolutions

For i ≥ 0, let Gi+1 denote the direct product of i + 1 copies of G. We view Z[Gi+1] as a
G-module via the left action g · (g0, g1, . . . , gi) = (gg0, gg1, . . . , ggi).
Definition 5.3.1. The (augmented) standard resolution of Z by G-modules is the sequence
of G-module homomorphisms

· · ·Z[Gi+1]
di−→ Z[Gi]→ · · · → Z[G]

ε−→ Z,

where di(g0, . . . , gi) = ∑i
j=0(−1)j(g0, . . . , gj−1, gj+1, . . . , gi) for each i ≥ 1, and ε is the aug-

mentation map.

By direct calculation we can prove that this resolution is exact.

For a G-module A, we consider the following cochain complex

0→ HomZ[G](Z[G], A)→ · · · → HomZ[G](Z[Gi+1], A)
Di
−→ HomZ[G](Z[Gi+2], A)→ · · · .

Here, we define Di = Di
A by Di(ϕ) = ϕ ◦ di+1.

Theorem 5.3.2. The maps

ψi : HomZ[G](Z[Gi+1], A)→ Ci(G, A)

defined by
ψi(ϕ)(g1, . . . , gi) = ϕ(1, g1, g1g2, . . . , g1g2 · · · gi)

are isomorphisms for all i ≥ 0

5.4 Non-abelian cohomology

Let G be a group and A a group on which G acts on the left. Until now we have only
considered the case where A is abelian. Now we will abandon this hypothesis here and
show that we can still define H0(G, A) and H1(G, A).

Write A multiplicatively. H0(G, A) is defined again as the group AG of elements of A fixed
by G (i.e. s(a) = a, for all s ∈ G, where s(a) means s · a). We will use this notation, introduced
by Serre in [10].
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Definition 5.4.1. A 1-cocycle (or simply cocycle) of G in A is a map s 7→ as of G to A such
that

ast = ass(at) where s, t ∈ G

We say that a and b are cohomologous if there exists c ∈ A such that bs = c−1 · as · s(c) for
all s ∈ G. This defines an equivalence relation for the set of cocycles, and the quotient set,
provided with the structure of a distinguished element equal to the class of the unit cocycle
as = 1 (structure of "pointed set"), will be called the cohomology set of G with values in A, and
denoted H1(G, A).

5.5 Galois Cohomology

Consider now a finite Galois extension K|k with Galois group G. Let Ga and Gm be the
additive and multiplicative group respectively defined by the relation Ga(K) = K and
Gm(K) = K∗.
Proposition 5.5.1.

1. H1(G, K∗) = 0,

2. H1(G, GL(n, K)) = {1},

3. H1(G, SL(n, K)) = {1}

Proof. (a): Let s 7→ as be a 1-cocycle. If c ∈ K, form the following series (usually named
Poincare series)

b := ∑
t∈G

att(c).

It can be proved (using the linear independence of automorphisms) that c can be chosen so
that b 6= 0. On the other hand,

s(b) = ∑ s(at) · st(c) = ∑ a−1
s ast · st(c) = a−1

s b

which shows that as is a coboundary.

(b): The proof is analogous to the case (a). Let as be a 1-cocycle, c ∈ m(n, k) any matrix.
Again form the Poincaré series

b = ∑
s∈G

ass(c)

, then we have s(b) = a−1
s b; this formula shows that as is a coboundary, provided that c can

be chosen so that b is an invertible matrix. If k is infinite, the existence of such c results
simply from the algebraic independence of automorphisms.
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5.5.1 Example of "Descent"

Let V be a vector space over k, provided with a fixed tensor x of type (p, q), i.e.,
x ∈ ⊗p V ⊗⊗q V∗, where V∗ is the dual of V.
Definition 5.5.2. Two pairs (V, x) and (V′, x′) are called k-isomorphic if there is a k-linear
isomorphism f : V → V′ such that f (x) = x′.

Now let K|k be a finite Galois extension with galois group G. Let V(K) = V ⊗k K be the
vector space over K obtained by extending scalars; the tensor x defines a tensor xK of type
(p, q), and we will often denote it simply as x.

We say that (V, x) and (V′, x′) are K-isomorphic if their scalar extensions are isomorphic.
Then we denote by EV,x(K|k) the set of k-isomorphism classes of pairs (V’,x’) that are K-isomorphic
to (V,x). We want to prove that EV,x(K|k) is in bijective correspondence to H1(G, Aut(VK)).

To do this, G acts on Aut(VK) as follows: first of all, G acts on VK by the rule (s, x ⊗ λ) 7→
x ⊗ s(λ); then, if f : VK → VK is a K-automorphism, then G acts on the group of K-
automorphisms of (VK, xK) by the rule (s, f ) 7→ s( f ) = s ◦ f ◦ s−1.
To simplify, write E(K|k) instead of EV,x(K|k).
Theorem 5.5.3. The map

θ : E(K|k) −→ H1(G, Aut(VK))

(V′, x′) 7−→ p : G −→ Aut(VK)

s 7−→ ps = f−1 ◦ s( f ) = f−1 ◦ s ◦ f ◦ s−1.

is bijective, where f is a K-isomorphism f : VK → V′K.

Proof. Firstly, it is evident that ps ∈ Aut(VK); furthermore, s 7→ ps is a 1-cocycle, i.e., it
satisfies pst = ps ◦ s(pt) due to a simple computation using ps = f−1 ◦ s ◦ f ◦ s−1 and
s(pt) = s ◦ pt ◦ s−1. Changing f has the effect of replacing ps with an equivalent cocycle.
Thus the class of ps in H1(G, Aut(VK)) is well-determined.

θ is injective: Let (V′1, x′1) and (V′2, x′2) ∈ E(K|k) correspond to the same cocycle ps, and let
fi : V → V′i be the corresponding K-isomorphisms. Then f−1

1 ◦ s( f1) = f−1
2 ◦ s( f2) whence

s( f2 f−1
1 ) = f2 f−1

1 . The map f = f2 f−1
1 : V′1 → V′2 is a k-isomorphism such that f (x′1) = f (x′2).

θ is surjective: Let ps be a 1-cocycle of G with values in Aut(VK); as Aut(VK) ⊂ GL(VK)

by Proposition 5.5.1 then ps is trivial in GL(n, K), then there exists an automorphism f of VK
such that ps = f−1 ◦ s( f ) for all s ∈ G. We need to extend f to the tensor algebra of VK, then
put x′ = f (x). The element x′ belongs to the tensor algebra of V over k: indeed,

s(x′) = s( f )(s(x)) = s( f )(x) = f ◦ ps(x) = f (x) = x′.



5.5 Galois Cohomology 32

Therefore, (V, x′) belongs to E(K|k) and its image by θ is equal to the class of ps.

Remark 5.5.4. The k-algebra V’ (it is a k-vector space with tensor of type (1,2)) corresponding
to a cohomology class [p] ∈ H1(Gal(K|k), Aut(VK) is the isomorphism class of

V′ = {a ∈ VK|ps(s(a)) = a for all s ∈ Gal(K|k)},

where the k-algebra structure is given by restriction of the algebra structure of VK. See more
details in [11].

5.5.2 Brauer Group

In this section we will study algebras which are isomporphic to matrix algebras. Suppose
now that char(k) 6= 2, and let a, b ∈ k∗. We define the generalized quaternion algebra (a, b)k as
the unique 4-dimensional k-algebra with basis {1, i, j, ij} as a vector space and multiplication
defined by the relations ii = a, jj = b, ij = −ji.
Example 5.5.5. If we let k = R and set a = b = 1, then (1, 1)R

∼= M(2, R), via the isomor-
phism which sends

1 7→
(

1 0
0 1

)
, i 7→

(
1 0
0 −1

)
, j 7→

(
0 1
1 0

)
, ij 7→

(
0 1
−1 0

)
If in the other hand we let k = R and set a = b = −1, we get Hamilton’s original quaternions,
H. H is a division algebra (i.e. for any f ∈ H and any non-zero element g ∈ H there exists
precisely one x ∈ H such that f = gx and precisely one element y ∈ H such that f = yg) ,
but H is not commutative.

Frobenius theorem characterizes the finite-dimensional associative division algebras over R,
it states that every such algebra is isomorphic to either R, C or H. The main ingredients for
the proof are the Cayley-Hamilton theorem and the fundamental theorem of algebra.

Corollary 5.5.6. The algebra H is not isomorphic to M(2, R).

Proof. Note that H is 4-dimensional as a vector space and a division algebra, whereas any
matrix algebra of dimension greater than 1 is not a division algebra.

However, consider the complexification of H, which is an algebra over the complex numbers.
Then H⊗R C ∼= M(2, C) via the isomorphism which sends

1⊗ 1 7→
(

1 0
0 1

)
, i⊗ 1 7→

(
0

√
−1√

−1 0

)
, j⊗ 1 7→

(
0 −1
1 0

)
, ij⊗ 1 7→

(√
−1 0
0 −

√
−1

)

This result hold for all generalized quaternion algebras. It is proved in [12].
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Proposition 5.5.7. If k is a field of characteristic not 2, then (a, b)k ⊗ k(
√

a) ∼= M(2, k(
√

a)).

Let now us define the Brauer Group.
Proposition 5.5.8. Let k be a field and A a finite dimensional k-algebra. The following conditions are
equivalent:

(a) A has no non-trivial two-sided ideal, and its center is k.

(b) If K is the algebraic closure of k, then A⊗k K is isomorphic to a matrix algebra over K.

(c) There exists a finite Galois extension K|k such that A⊗k K is isomorphic to a matrix algebra
over K.

(d) A is isomorphic to a matrix algebra over a division algebra with center k.

Here the meaning of "center" consists of all those elements x ∈ A such that xa = ax for all
a ∈ A.
Definition 5.5.9. An algebra A over a field k satisfying anyone of the above conditions is
called a Central Simple Algebra.

Two such algebras are said to be equivalent if their division algebras associated by c) are k-
isomorphic. The tensor product over k of two central simple k-algebras is a central simple
k-algebra. Let Ak be the set of classes of central simple algebras (for the equivalence relation
just defined); the tensor product defines by passage to the quotient a structure of group on
Ak. This group is known classically as the Brauer group.

If K is an extension of k, then extension of scalars from k to K defines a homomorphism
Ak → AK. Denote

A(K|k) = Ker(Ak → AK).

Proposition 5.5.8 implies that Ak is the union of the A(K|k) as K runs through the set of finite
Galois extensions of k.

Let A(n, K|k) be the set of classes of k-algebras A such that A ⊗k K is isomorphic to the
matrix algebra M(n, K). The group A(K|k) is the union of the subsets A(n, K|k) for all n > 0.
What we did in 5.5.1 applies to A(n, K|k): an element of A(n, K|k) can be considered as a pair
(V, x), where V is a vector space of dimension n2 and where x is a tensor of type (1,2) (the
law composition), this pair being K-isomorphic to the standard pair defined by the matrix
algebra M(n, K). Denote by G the Galois group of K|k, we conclude that the map

θ : A(n, K|k)→ H1(G, Aut(M(n, K)))

defined in 5.5.1 is a bijection. It can be proved that all automorphisms of M(n, K) are conju-
gation by an element in GL(n, K). Hence we have the exact sequence

{1} → K∗ → GL(n, K)→ Aut(M(n, K))→ {1}.

This sequence allows us to identify the automorphism group of the matrix algebra with the
projective group PGL(n, K). Summarizing:
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Theorem 5.5.10. There is a canonical bijection

θ : A(n, K|k)→ H1(G, PGL(n, K)).

We will finish this section with an important example that we will use in the next chapter to
see which are the real forms of the special linear group of dimension two over C.
Lemma 5.5.11. Let k be a field. Then each Brauer equivalence class contains exactly one division
algebra (up to isomorphism).
Example 5.5.12. A(2, C|R) is isomorphic to Z/2Z and is generated by the equivalence class
of (−1,−1)R.

We will use the Frobenius’ Theorem: that if A is a division algebra over R, then A is iso-
morphic either to R, C, or H. This theorem, and its proof, can be found in [13] [8, Thm
6.4]. Note that C is not central, and R as an algebra over itself corresponds to the trivial ele-
ment of A(2, C|R), so the only Brauer division algebra over R which might correspond to a
non-trivial element of the Brauer group is (−1,−1)R. This, together with the Lemma 5.5.11,
quicky proves the theorem since (−1,−1)R is a division algebra, it cannot lie in the same
Brauer equivalence class as R, so the equivalence class of (−1,−1)R is non-trivial, there-
fore since R and (−1,−1)R are the only central simple R-division algebras, there are only
two equivalence classes of central simple R-algebras. Thus, A(2, C|R) has precisely two
elements, which means that it is isomorphic to Z/2Z with (−1,−1)R as generator.



Chapter 6

Real forms of complex algebraic
groups

Now we are prepared to classify the "real forms" of the special linear group of degree 2 over
the complex numbers. Classification of the algebraic subgroups of SL(2, C) proved in 3.6.1
will be important to determine the "R-forms" of itself. But first we define precisely what we
mean by "real form".
Definition 6.0.1. A form of an algebraic group G defined over a field k is an algebraic group
G′ defined over k and isomorphic to G over some galois extension K of k. In this case G′ is
called a K|k-form of G. If K = k we say that G′ is a k-form of G.
Two K|k-forms of a group are said to be equivalent if they are isomorphic over k
Example 6.0.2. Let k = R and K = C. We define the linear algebraic groups

G′ =
{ [ x y
−y x

]
: x2 + y2 = 1

}
, G =

{ [x 0
0 y

]
: xy = 1

}
.

Then G and G′ are two subgroups of GL(2, k) and G′ is a k-form of G over K we have the

isomorphism ϕ : G′ → G by the rule
[

x y
−y x

]
7→
[

x + iy 0
0 x− iy

]
We have to introduce the concept of real closed field for the next Theorem.
Definition 6.0.3. An ordered field is a field endowed with an ordering compatible with the
field operations. A field K is called a real field if it can be ordered or equivalently if doesn’t
exists ai ∈ K for i = 1, . . . , n such that ∑n

i=1 ai = −1. A real field K which has no nontrivial
real algebraic extensions is called a real closed field. An algebraic extension L of an ordered
field K is called a real closure of K if L is real closed and the inclusion K ↪→ L preserves the
ordering of K.
Proposition 6.0.4. K is real closed field if and only if K(

√
−1) 6= K and K(

√
−1) is algebraically

closed.
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The following theorem and lemma are proved in [14].
Theorem 6.0.5. Let k be an algebraically closed field and G be a connected affine algebraic group of
dimension 1. Then G is isomorphic either to the multiplicative group Gm or to the additive group Ga.
Lemma 6.0.6. Let G be a connected linear algebraic group of dimension 1 over a real closed field k,
then the following hold.

1. G is commutative.

2. G(k̄) = G⊗k k̄ is isomorphic to either Gm or Ga.

The following theorem shows the R-forms of the special linear group of degree 2 over
C.
Theorem 6.0.7. The R-forms of SL(2, C) are precisely SL(2, R) and H1,the group of elements of the
quaternion algebra with reduced norm 1.

By Theorem 5.5.10 we have that H1(G, PGL(2, C)) ∼= A(2, C|R), where G denote the Galois
group of the extension C|R and A(2, C|R) is the set of R-forms of M(2, C).
Since PGL(2, C) ∼= Aut(SL(2, C)) then by Theorem 5.5.3 we have that the R-forms of SL(2, C)

are in bijective correspondence with the R-forms of M(2, C).

• Let D1 = M(2, R) = (1, 1)R be an R-form of M(2, C). Let Gm/D1 be the algebraic R-
group such that Gm/D1(k

′) = (k′ ⊗R D1)
∗ for every extension k′ of R; this is a R-form

of the group GL(2, C). In particular, we have that Gm/D1 = Gm/D1(k) = D∗1 . Consider
now the reduced norm map

Nrd : Gm/D1 → Gm

defined by Nrd(a) = det(ϕ(a⊗ 1)) where ϕ an the isomorphism between D1 ⊗R C →
M(2, C). Let SLD1 be the kernel of Nrd,

SLD1 = Ker Nrd = {A ∈ D∗1 : det A = 1} = SL(2, C).

It is a clearly R-form of the group SL(2, C).

• Let D2 = H be the last R-form of M(2, C). Doing the same steps as above we obtain
that SLD2 = H1 (quaternion group with norm 1), is a R-form of SL(2, C).

Theorem 6.0.8. Let G be a 1-dimensional connected linear algebraic group over a real closed field k.
Then G is isomorphic either to Gm, Ga or SO(2, k) = {A ∈ GL(2, k) : AAt = At A = Id, det A =

1}

Proof. Let k be an algebraic closure of k. By the lemma, we obtain that G is commutative and
G(k) is isomorphic to either Gm or Ga. We may distinguish three cases.

Case 1. If G(k) ∼= Gm and all matrices in G diagonalize then, as G is commutative, it is
isomorphic to some diagonal group. As G has dimension 1, we have G ∼= Gm(k).
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Case 2. If G(k) ∼= Gm and not all matrices in G diagonalize, then there exists a non-
diagonalizable matrix M in G,then M diagonalizes over k in the form

M =

[
a + bi 0

0 a− bi

]
,

with a, b ∈ k, b 6= 0. By conjugating with the matrix A =

[
1 1
−i i

]
we obtain that

B := AMA−1 =

[
a −b
b a

]
.

We may assume that B is in G. We consider now the morphism of algebraic groups
over k det : G → Gm(k). As G is connected, its image is either Gm(k) or {1}. In the
first case, as G(k) ∼= Gm(k), det would be an isomorphism; this is Case 1. We have
then det(G) = {1}, hence

G =
{ [a −b

b a

]
: a2 + b2 = 1

}
.

Case 3. If G(k) ∼= Ga then we have clearly that G ∼= Ga(k), since Aut(Ga) ∼= Gm and
H1(Gal(C|R), Aut(Ga)) = H1(Gal(k̄|k), Gm(k̄)) = 0.

Proposition 6.0.9. Let B =
{ [λ a

0 λ−1

]
; λ, a ∈ R∗

}
be the upper triangular subgroup of SL(2, R),

then B is the unique R-form of itself (so it is the only R-descent of B(C)).

Proof. It is evident that B(C) its equal to the upper triangular subgroup of SL(2, C). Con-
sider an arbitrary R-form B′ of B (i.e, B(C) = B′(C)). If we do the geometric unipotent
radical of B′ then we have Ru(B′) = U and since R is perfect, then U is split. Therefore
the two-dimensional group B′ contains a 1-dimensional smooth connected unipotent normal
R-subgroup U R-isomorphic to Ga.

Since U is commutative, the conjugation action of B′ on U = Ga

ρ : B′ −→ Aut(U)

g 7−→ρ(g) : U −→ U

h 7−→ ρ(g)(h) = g−1hg

factors though an action f such that the following diagram is commutative.

B′
ρ //

π
��

Aut(U)

B′
U

f

<<
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where B′
U is an one-dimensional R-torus because B′

U (C) is an one-dimensional semisimple
group, then B′

U (C) ∼= GL(1, C).

A maximal R-torus T maps isomorphically onto B′
U because the composition

π ◦ ι : T ↪→ B′ → B′
U is injective since T ∩U = {e} and they are one-dimensional algebraic

groups. So by Remark 2.2.2 B′ = U o T for some action of T on Ga

Let us see that T = GL(1, R). There is an evident GL(1, R)-action on U = Ga given by

ϕ : GL(1, R) −→ Aut(Ga)

λ 7−→ϕ(λ) : Ga −→ Ga

a 7−→ ϕ(λ)(a) = λna

If T is not GL(1, R), then, by Theorem 6.0.8, it is SO(2, R), hence it is R-anisotropic. Then
the only possible ϕ is the trivial one and the semidirect product would rest on a trivial
action, hence it is a direct product. Then B′ would be commutative, a contradiction since
B′(C) = B(C) is not commutative. Then, B′ = Ga oϕ Gm where ϕ denotes the action defined
above.

If we use B(C) ∼= f B′(C) where f is the isomorphism defined by
[

λ a
0 λ−1

]
7→ (λa, λ) forces

to be n = 2: Since f
([

λ a
0 λ−1

])
· f
([

µ b
0 µ−1

])
= f

([
λµ λb + aµ−1

0 (λµ)−1

])
then (λa, λ) ·

(µb, µ) = (λµ(λb + aµ−1), λµ). The product in the left side is equal to (λa + λnµb, λµ), the
we conclude that n = 2 to have the equality. So the Gm-action on Ga is given by squaring,
this is exactly the R-group B.

Proposition 6.0.10. There are exactly three R-forms of the C-group

D+ =

{[
λ 0
0 λ−1

]
: λ ∈ C∗

}
∪
{[

0 λ

−λ−1 0

]
: λ ∈ C∗

}
Proof. Let us first consider the semi-direct product Gm oϕ Z/2Z, where ϕ : Z/2Z →
Aut(Gm) maps 0 7→ (z 7→ z) and 1 7→ (z 7→ z−1). It is clear that Gm o Z/2Z ∼= GL(1, C)o
Z/2Z.
We have an isomorphism f from D+ to GL(1, C)o Z/2Z f defined as

f

([
λ 0
0 λ−1

])
= (λ, 0) f

([
0 λ

−λ−1 0

])
= (−iλ, 1)

Let us consider D0 = GL(1, R)oϕ Z/2Z.
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let τ = (1, 1) ∈ D0. Let us note that τ has order 2 and define the conjugation cτ by τ,

cτ : D0 −→ D0

(x, y) 7→ (x−1, y)

then cτ is an automorphism that acts on the identity component GL(1, R) via inversion,
which is the unique non-trivial automorphism of GL(1, R).
Therefore to describe Aut(D0) we can use composition against cτ to focus attention on auto-
morphisms that are trivial on the identity component GL(1, R)

These automorphisms f are determined by f (τ) = (x, 1), and (x, 1)(x, 1) = (1, 0)
∀x ∈ GL(1, R), hence there is no constraint on x. Denote f (τ) = (x, 1) = fx and con-
sider the GL(1, R)-action on D0 by the rule x 7→ fx.

Then we have an action of GL(1, R) o Z/2Z on D0 such that (x, 0) 7→ fx and (x, 1) 7→
fx ◦ cτ . Abstractly we have Aut(D+) = { fx} ∪ { fx ◦ cτ} = { fx} · 〈cτ〉 ' D+, this computes
Aut(D+) compatibly with the action of G = Gal(C|R) = {Id, c}where c denotes the complex
conjugation, i.e., c( fx) = fc(x).

By Theorem 5.5.3 then H1(G, Aut(D+)) = H1(G, D+) is in bijection with E(C|R), the set of
R-forms of D+.

Let us first determine C1(G, D+). Consider p : G → D+ such that Id 7→ pId = (1, 0)
and c 7→ pc = (λ, a). p is a 1-cocycle if and only if pst = pss(pt) for s, t ∈ G. In our case, p
has to satisfy pc2 = pcc(pc), remember that c2 = Id i.e., pId = (λ, a)(λ̄, a), then

(1, 0) = (λ, a)(λ̄, a)⇒
{

(1, 0) = (λλ̄, 0)⇒ λλ̄ = 1 i f a = 0,
(1, 0) = (λλ̄−1, 1)⇒ λ = λ̄ i f a = 1.

Then if a = 0, λ is a complex number such that |λ| = 1, and if a = 1 then λ ∈ R∗. Now we
will prove that H1(G, D+) = {[(1, 0)], [(1, 1)], [(−1, 1)]}. Recall that two 1-cocycles p, q are
cohomologous iff there exists r ∈ D+ such that qs = r−1 pss(r) for all s ∈ G.

Case a = 0:
If ps = (λ, 0) and qs = (λ′, 0) such that |λ| = |λ′| = 1, then p ∼ q ⇔ there exists an r =

(µ, b) ∈ D+ such that
(λ′, 0) = (µ−1, b)(λ, 0)(µ̄, b)

. Suppose that b = 0, then we want to prove that there exists µ such that the above equation
holds. A direct calculation show us that we can always find µ ∈ C∗ such that λ′ = µ−1λµ̄.
Then (λ, 0) ∼ (λ′, 0) ∼ (1, 0).

Case a = 1:
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If ps = (λ, 1) and pt = (λ′, 1) such that λ, λ′ ∈ R∗ then p ∼ q⇔ there exists r = (µ, b) ∈ D+

such that
(λ′, 1) = (µ−1, b)(λ, 1)(µ̄, b).

As we did before, suppose that b = 0, then a direct calculation give us that the equality holds
for r = (µ, 0) if |µ|2 = λ/λ′ Then it follows that it will exists r := (µ, 0) ∈ D+ such that the
two 1-cocycles are cohomologous iff λ and λ′ have the same sign.

Now we have at most three classes in H1(G, D+) = {[(1, 0)], [(1, 1)], [(−1, 1)]}. We will
see that these three classes are different.
• (1, 0) ∼ (1, 1)⇔ there exists an element (λ, a) ∈ D+ such that

(1, 1) = (λ, a)−1(1, 0)(λ̄, a)⇒
{

(1, 1) = (λ, 0)−1(1, 0)(λ̄, 0) = (λ−1λ̄, 0) i f a = 0,
(1, 1) = (λ, 1)−1(1, 0)(λ̄, 1) = (λλ̄−1, 0) i f a = 1.

In both cases we have a contradiction, then (1, 0) 6∼ (1, 1).
• Similarly the 1-cocycles (1, 0) and (−1, 1) are not equivalent.

• (1, 1) ∼ (−1, 1)⇔ there exists an element (λ, a) ∈ D+ such that

(1, 1) = (λ, a)−1(−1, 1)(λ̄, a)⇒
{

(1, 1) = (λ, 0)−1(−1, 1)(λ̄, 0) = (−(λλ̄)−1, 1) i f a = 0,
(1, 1) = (λ, 1)−1(−1, 1)(λ̄, 1) = (−λλ̄, 1) i f a = 1.

In both cases we have |λ|2 = λλ̄ = −1 that is a contradiction since |λ|2 > 0, then (−1, 1) 6∼
(1, 1).

We got that H1 has three classes. Now we want to describe the R-forms of D0. To do that
consider the isomorphism defined above between D+ and Aut(D+). So (1, 0) 7→ f1 such that
f1(τ) = τ, (1, 1) 7→ f1 ◦ cτ = cτ and finally (−1, 1) 7→ f−1 ◦ cτ .
ByRemark 5.5.4 we can consider the three R-forms:

F(1,0) = {(λ, a) ∈ D+ :( f1 ◦ c)((λ, a)) = (λ, a)} = {(λ, a) ∈ D+ : (λ̄, a) = (λ, a)} =
= {(λ, a) ∈ D+ : λ ∈ R∗} = D0.

F(1,1) = {(λ, a) ∈ D+ :( f1 ◦ cτ ◦ c)((λ, a)) = (λ, a)} = {(λ, a) ∈ D+ : (λ̄−1, a) = (λ, a)} =
= {(λ, a) ∈ D+ : λλ̄ = 1} ∼= SO(2, R)o Z/2Z.

F(−1,1) = {(λ, a) ∈ D+ : ( f−1 ◦ cτ ◦ c)((λ, a)) = (λ, a)} =

= {(λ, 0) ∈ D+ : (λ̄−1, 0) = (λ, 0)} ∪ {(λ, 1) ∈ D+ : (−λ̄−1, 1) = (λ, 1)} =
= {(λ, 0) ∈ D+ : λλ̄ = 1} ∪ {(λ, 1) ∈ D+ : λλ̄ = −1} =: E.
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In conclusion, there are exactly three R-forms of D+. The first one is

D0 =

{[
λ 0
0 λ−1

]
: λ ∈ R∗

}
∪
{[

0 λ

−λ−1 0

]
: λ ∈ R∗

}
.

Secondly, the R-form SO(2, R)o Z/2Z it can be described as the set{[
a + bi 0

0 a− bi

]
: a2 + b2 = 1

}
∪
{[

0 −c + di
c + di 0

]
: c2 + d2 = 1

}
.

Finally, the last R-form E is the union of two subsets of D+, but the second one is the empty
set because the norm can not be negative. So

E = {(λ, 0) ∈ D+ : λλ̄ = 1} =
{[

a + bi 0
0 a− bi

]
: a2 + b2 = 1

}
.

Summarizing, in this chapter we obtained the following classification:
Theorem 6.0.11. Let G be an algebraic subgroup of SL(2, C) and let R be an R-form of G. Then one
of the following four cases can occur.

Case 1. R is isomorphic to T1(2, R) =
{ [λ a

0 λ−1

]
; λ, a ∈ R∗

}
.

Case 2. R is isomorphic to

either D0 =

{[
λ 0
0 λ−1

]
: λ ∈ R∗

}
∪
{[

0 λ

−λ−1 0

]
: λ ∈ R∗

}
,

or
{[

a + bi 0
0 a− bi

]
: a2 + b2 = 1

}
∪
{[

0 −c + di
c + di 0

]
: c2 + d2 = 1

}
,

or E =

{[
a + bi 0

0 a− bi

]
: a2 + b2 = 1

}
.

and case 1 does not hold.

Case 3. R is finite and cases 1 and 2 do not hold.

Case 4. R is either isomorphic to SL(2, R) or H1.

In Theorem 6.0.7 we proved that there are exactly two R-forms of SL(2, C). In addition, in
Proposition 3.6.2 we saw that finite subgroups of SL(2, C) are classified and each of them
can be seen as a subgroup of H1, so the following finite subgroups are clearly R-forms of an
algebraic subgroup of SL(2, C).
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Proposition 6.0.12. If G is a finite algebraic subgroup of SL(2, C) and let R be an R-form of G such
that Case 1 and 2 of the previous theorem do not hold, then R is isomorphic to

either the tetrahedral group 2A4 generated by the matrices B and

D =
1
2

(
−1 + i −1 + i
1 + i −1− i

)
,

or the octahedral group 2S4 generated by the matrices D and

E =
1√
2

(
1 + i 0

0 1− i

)
,

or the icosahedral group 2A5 generated by B, D and

F =
1
4

(
2i β− iγ

−β− iγ −2i

)
,

where β = 1−
√

5 and γ = 1 +
√

5.



Chapter 7

Differential Galois Theory.
Applications

In this chapter we will see an application of the classification of the subgroups of SL(2, C)

given in Theorem 3.6.1. We present a brief introduction to the Picard-Vessiot theory, i.e.,
galois theory of linear differential equations. See [1], [15] and [16] for further informa-
tion.

7.1 Differential Galois Theory

Definition 7.1.1. A derivation of a ring A is a map d : A→ A such that d(a+ b) = d(a)+ d(b)
and d(ab) = d(a)b + ad(b).

We write as usual a′ = d(a)
Proposition 7.1.2. If A is an integral domain, a derivation d extends to the fraction field K(A) in
an unique way.
Definition 7.1.3. A differential ring is a commutative ring with identity endowed with a
derivation. A differential field is a differential ring which is a field.

If A0 is a subring of the ring A and it is stable under d, then the restriction of d to A0 becomes
a derivation of A0. We say in this case that A0 is a differential subring of A, and that A is a
differential overring of A0.
Example 7.1.4.

• Every commutative ring A with identity can be made into a differential ring with the
trivial derivation defined by d(a) = 0 for all a ∈ A.

43
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• Let A be a differential ring and let A[X] be the polinomial ring in one indeterminate
over A. A derivation in A[X] extending that of A should satisfy(
∑ aiXi)′ = ∑(a′iX

i + aiiXi−1X′). Assigning to X′ an arbitrary value in A[X] we ex-
tend the derivation of A to A[X].

• We can define a derivation in the ring M(n, A) by defining the derivative of a matrix as
the matrix obtained by applying the derivation of A to all its entries. Then for n ≥ 2,
M(n, A) is a noncommutative ring with derivation.

In any differential ring A, the elements with derivative 0 form a subring called the ring of
constants and denoted by CA. If A is a field, so is CA.
Definition 7.1.5. Let I be an ideal of a differential ring A. We say that I is a differential ideal
if d(I) ⊂ I.

Then we can define a derivation in the quotient ring A/I by d(a) = d(a). It does not depend
on the choice of the representative in the coset.

Let A and B differential rings. A differential morphism is a map f : A → B satisfying
the morphism conditions and

f (a)′ = f (a′), ∀ a ∈ A

. This definition carries with it, of course, corresponding definitions of isomorphisms, auto-
morphisms, etc. If A and A′ are differential overrings of a common differential ring A0, f
is called a homomorphism over A0, or an A0-homomorphism, provided f (a) = a for every
a ∈ A0.

If A, B are differential rings, A a subring of B, we say that A ⊂ B is an extension of dif-
ferential rings if the derivation of B restricts to the derivation of A. If S is a subset of B, we
denote by A{S} the differential A-subalgebra of B generated by S over A, that is, the smallest
subring of B containing A, the elements of S and their derivatives. If K ⊂ L is an extension of
differential fields, S a subset of L, we denote by K〈S〉 the differential subfield of L generated
by S over K. If S is a finite set, we say that the extension K ⊂ K〈S〉 is differentially finitely
generated.

In [1] is proved that given a differential field K and a field L such that L|K is a separa-
ble algebraic field extension, the derivation of K extends uniquely to L. Moreover, every
K-automorphism of L is a differential one.
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7.1.1 Differential operators

Let K be a differential field with a nontrivial derivation. A linear differential operator L with
coefficients in K is a polynomial in the variable D,

L = anDn + an−1Dn−1 + · · · a1D + a0, ai ∈ K.

We say that L has degree n if an 6= 0. If an = 1 we say that L is monic.
Definition 7.1.6. The ring of linear differential operators with coefficients in K is the non-
commutative ring K[D] of polynomials in the variable D with coefficients in K where D
safisfies Da = a′ + aD for a ∈ K.

The elements of this ring satisfy deg(L1L2) = deg(L1) + deg(L2), then the only left or right
invertible elements of K[D] are the elements of K∗.

We have a division algorithm on both left and right.
Lemma 7.1.7. For L1,L2 ∈ K[D] with L2 6= 0, there exist unique differential operators Ql ,Rl
(resp. Qr,Rr) in K[D] such that

L1 = QlL2 +Rl with degRl < degL2

(resp. L1 = L2Qr +Rr with degRr < degL2).

The proof follows the same steps as in the polynomial case.
To the differential operator L as above, we associate the linear differential equation of order
n

L(Y) = anY(n) + an−1Y(n−1) + · · · a1Y′ + a0Y = 0.

Consider homogeneous linear differential equations over a differential field K, with field of
constants C: L(Y) = 0 with an = 1. If K ⊂ L is a differential extension, the set of solutions
of L(Y) = 0 in L is a CL-vector space. Let us see that its dimension is at most equal to the
order n of L.

Let y1, . . . , yn be elements in a differential field K. We define the wrońskian of y1, . . . yn
as the determinant:

W = W(y1, . . . , yn) :=

∣∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...

y(n−1)
1 y(n−1)

2 . . . y(n−1)
n

∣∣∣∣∣∣∣∣∣∣
Proposition 7.1.8. Let K be a differential field with field of constants C, and let y1, . . . , yn ∈ K.

y1, . . . , yn are linearly independent over C ⇔ W(y1, . . . , yn) 6= 0.
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Proof. ⇐: Assume that yi are linearly dependent over C and let ∑n
i=1 ciyi = 0 with ci ∈ C

not all zero. Derivating n − 1 times this equality, we obtain ∑n
i=1 ciy

(k)
i = 0 for k =

0, . . . , n− 1. So the columns of W are linearly dependent; then W(y1, . . . , yn) = 0.

⇒: Assume that W = 0. We then have n equalities ∑n
i=1 ciy

(k)
i = 0, k = 0, . . . , n− 1, with

ci ∈ K not all zero. Suppose that c1 = 1 and W(y2, . . . , yn) 6= 0. By differentiating
equality k, we obtain

n

∑
i=1

ciy
(k+1)
i +

n

∑
i=2

c′iy
(k)
i = 0,

subtracting equality (k + 1) we obtain ∑n
i=2 c′iy

(k)
i = 0, k = 0, . . . , n− 2, that is a homo-

geneous linear equation in c′2, . . . , c′n with wrońskian W(y2, . . . , yn) 6= 0, so c′2 = . . . =
c′n = 0. Then ci are constants.

Let L(Y) = 0 be a homogeneous linear differential equation of order n over a differential
field K. If y1, . . . , yn+1 are solutions of L(Y) = 0 in a differential extension L of K, then
its wrońskian is equal to zero. This occurs because the last row in the determinant of W is
(y(n)1 , . . . , y(n)n+1), which is a linear combination of the preceding ones.
We conclude then, that a homogeneous linear differential equation of order n L(Y) = 0 has
at most n solutions in L linearly independent over the field of constants. Given y1, . . . , yn
linearly independent we say that {y1, . . . , yn} is a fundamental set of solutions of L(Y) = 0 in
L.
Definition 7.1.9. Given a homogeneous linear differential equation L(Y) = 0 of order n over
a differential field K, a differential extension L|K is a Picard-Vessiot extension for L if

(a) L = K〈y1, . . . , yn〉, where y1, . . . , yn is a fundamental set of solutions of L(Y) = 0 in L.

(b) Every constant of L lies in K, i.e. CL = CK.

In [1] is proved that given a homogeneous linear differential equation defined over a differ-
ential field with an algebraically closed field of constants then there exists a Picard-Vessiot
extension for it and it is unique up to a differential K-isomorphism.
For a homogeneous linear differential equation defined over a real differential field with a
real closed field of constants the existence of a Picard-Vessiot extension has been recently
proved in [17].
Definition 7.1.10. If K ⊂ L is a differential field extension, we define the differential Galois
group of the extension K ⊂ L as the group G(L|K) of differential K-automorphisms of L. If
L|K is a Picard-Vessiot extension for the differential equation L(Y) = 0, the group G(L|K) of
differential K-automorphisms of L is also refered to as the Galois group of L(Y) = 0 and it
will be denoted by GalK(L).

There are a lot of analogous properties between Picard-Vessiot extensions and Galois exten-
sions in classical Galois theory. For example, let K be a differential field with algebraically
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closed field of constants. If K ⊂ L is a Picard-Vessiot extension with differential Galois group
G(L|K), then the subfield of L which is fixed by the action of G(L|K) is equal to K.

Now we see that the differential Galois group of a Picard-Vessiot extension is a linear al-
gebraic group. We first see that Galois group of a homogeneous linear differential equa-
tion of order n defined over the differential field K is isomorphic to a subgroup of the
general linear group GL(n, CK). Indeed, if y1, . . . , yn is a fundamental set of solution of
L(Y) = 0, for each σ ∈ Gal(L) and for each j ∈ {1, . . . , n}, σ(yj) is again a solution of
L(Y) = 0, and so σ(yj) = ∑n

i=1 cijyi, for some cij ∈ CK. Thus we can associate to each
σ ∈ Gal(L) the matrix (cij) ∈ GL(n, CK). Furthermore, as L = K〈y1, . . . , yn〉, a differential
K-automorphism of L is determinet by the images of the yj. Hence, we obtain an injective
morphism Gal(L) → GL(n, CK) given by σ 7→ (cij). We can then identify Gal(L) with a
subgroup of GL(n, CK), which is determined up to conjugation. Indeed, if we choose a dif-
ferential set of solutions of L(Y) = 0, the matrix associated to σ ∈ Gal(L) differs from (cij)

by conjugation by the basis change matrix.

From now on, we assume that the constant field C = CK of K is algebraically closed. The
following proposition gives that G(L|K) is a closed (in the Zariski topology) subgroup of
GL(n, C) and then a linear algebraic group.
Proposition 7.1.11. Let K be a differential field with field of constants C, L = k〈y1, . . . , yn〉 a PV
extension of K. There exists a set S of polynomials F(Xij), 1 ≤ i, j ≤ n, with coefficients in C such
that

(a) If σ is a differential K-automorphism of L and σ(yj) = ∑n
i=1 cijyi, then F(cij) = 0, for all

F ∈ S.

(b) Given a matrix (cij) ∈ GL(n, C) with F(cij) = 0, for all f ∈ S, there exists a differential
K-automorphism σ of L such that σ(yj) = ∑n

i=1 cijyi.

Now we will establish the fundamental theorem of Picard-Vessiot theory, which is analogous
to the one in classical Galois theory.

If K ⊂ L is a PV extension and F and intermediate differential field, it is clear that F ⊂ L is
a PV extension for the same diff. equation as K ⊂ L, defined over F with differential Galois
group G(L|F) = {σ ∈ G(L|K) : σ|F = IdF}. Given a subgroup H of G(L|K), we denote by
LH the set LH = {x ∈ L : σ(x) = x, ∀σ ∈ H}. This subfield is stable under the derivation of
L.
Theorem 7.1.12 (Fundamental Theorem). Let K ⊂ L be a Picard-Vessiot xtension, G(L|K) its
differential Galois group.

1. The correspondences
H 7→ LH , F 7→ G(L|F)

define inclusion inverting mutually inverse bijective maps between the set of Zariski closed
subgroups H of G(L|K) and the set of differential fields F with K ⊂ F ⊂ L.
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2. The field F is a Picard-Vessiot extension of K if and only if the subgroup H = G(L|F) is normal
in G(L|K). In this case, the morphism

Res : G(L|K) 7→ G(F|K)
σ 7→ σ|F

induces an isomorphism G(L|K)/G(L|F) ' G(F|K).

Liouvillian extensions

Let K be a differential field and consider L(Y) = 0 a homogeneous differential equation of
order n.
Definition 7.1.13. Let η be a solution of L(Y) = 0.

1. η is algebraic over K if η satisfies a polYnomial equation with coefficients in K.

2. η is primitive over K if η′ ∈ K, i.e., η =
∫

f for some f ∈ K.

3. η is exponential over K if η′/η ∈ K, i.e. η =
∫

e f for some f ∈ K.

A differential field extension K ⊂ L is called Liouvillian if there is a tower of differential
fields

K = F0 ⊆ F1 ⊆ · · · ⊆ Fn = L

such that for each i = 1, . . . , n Fi = Fi−1(ηi) with ηi either algebraic, primitive, or exponential
over Fi−1.
A solution to a linear differential equation defined over K is called Liouvillian if it is con-
tained in some Liouvillian extension L of K.

7.2 Applications

From now consider K = C(x). We will study the homogeneous differential equation (DE)
z′′ + az′ + bz = 0, where a, b ∈ C(x).
Proposition 7.2.1. If z′′ + az′ + bz = 0 has one Liouvillian solution, then every solution is Liouvil-
lian.

Proof. If z1 is a Liouvillian solution, then z2 = z1
∫ e−

∫
a

z2
1

is a solution because

z′2 = z′1
∫ e−

∫
a

z2
1

+ z1
e−
∫

a

z2
1

& z′′2 = z′′1
∫ e−

∫
a

z2
1

+ z′1
e−
∫

a

z2
1

+
−az1e−

∫
a − e−

∫
az′1

z2
1

.

It satisfies that z′′2 + az′2 + bz2 = 0. So if z1 is Liouvillian, then z2 is Liouvillian and they are
linearly independent. Therefore all solutions of DE are Liouvillian.
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We can do a reduction of the DE setting y = e
1
2
∫

az, then y′ = e
1
2
∫

a( 1
2 az + z′).

So y′′ = e
1
2
∫

a 1
2

(
1
2 az + z′

)
+ e

1
2
∫

a
(

1
2 a′z + 1

2 az′ + z′′
)

= . . . =
(

1
4 a2 + 1

2 a′ − b
)

e
1
2
∫

az then
we conclude that

y′′ =
(

1
4

a2 +
1
2

a′ − b
)

y.

In the following, we consider a linear homogeneous differential equation of the form

y′′ = ry r ∈ C(x),

which we call the LDE. We assume that r 6∈ C.

Suppose that η, ζ is a fundamental system of solutions of the differential equation. Let L =

C(x)〈η, ζ〉 = C(x)(η, η′, ζ, ζ ′). As we defined before, we denote by G(L|K) the differential
Galois group of the extension L|K. There is an isomorphism of Gal(L|K) with a subgroup of
GL(2, C), by Proposition 7.1.11. Let σ ∈ G(L|K), then

(σ(η))′′ = σ(η′′) = σ(rη) = rσ(η).

So σ(η) is also a solution to the DE, it is a linear combination σ(η) = aση + cσζ with aσ, cσ ∈
C. Similiarly, for some bσ, dσ ∈ C we have σ(ζ) = bση + dσζ. We have the morphism c

between G(L|K) and GL(2, C) defined by c(σ) =
(

aσ bσ

cσ dσ

)
. It is clear that it is an injective

group homomorphism. This representation of the Galois group depend on the choice of
the fundamental system η, ζ. If η1, ζ1 is another fundamental system, then there is a matrix
A ∈ GL(2, C) such that (η1, ζ1) = (η, ζ)A. Therefore L = C(x)〈η, ζ〉 = C(x)〈η1, ζ1〉 and
c1(σ) = A−1c(σ)A. So this morphism is determined by the DE only up to conjugation. If a
fundamental system η, ζ is fixed, then we refer to c(G(L|K)) ⊂ GL(2, C) as the Galois group
of the DE relative to η, ζ).
Theorem 7.2.2. For our LDE (y′′ = ry), the image of G(L|K) is in SL(2, C).

Proof. Fix a fundamental system η, ζ of the LDE. Let

W = W(η, ζ) =

∣∣∣∣ η ζ

η′ ζ ′

∣∣∣∣ = ηζ ′ − η′ζ

be the wrońskian of η, ζ. It satisfies that W ′ = 0, so W is a non-zero constant, then it is left
fixed by any element of G(L|K). Let σ ∈ G(L|K), then, using the notation above,

W = σ(W) = (aση − cσζ)(bση′ + dσζ ′)− (aση − cσζ)(bση′ + dσζ ′) = det(c(σ))W.

Recall the algebraic subgroup theorem of SL(2, C).
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Theorem 7.2.3. Let G be an algebraic subgroup of SL(2, C). Then one of the following four cases
can occur.

1. G is triangularizable.

2. G is conjugate to a subgroup of

D+ =

{[
c 0
0 c−1

]
: c ∈ C∗

}
∪
{[

0 c
−c−1 0

]
: c ∈ C∗

}
and case 1 does not hold.

3. G is finite and cases 1 and 2 do not hold.

4. G = SL(2, C)

Corollary 7.2.4. There are precisely four cases that can occur.

Case 1. The LDE has a solution of the form e
∫

ω where ω ∈ C(x).

Case 2. The LDE has a solution of the form e
∫

ω where ω is algebraic over C(x) of degree 2, and
case 1 does not hold.

Case 3. All solutions of the LDE are algebraic over C(x) and cases 1 and 2 do not hold.

Case 4. The LDE has no Liouvillian solution.

Proof. Let η, ζ be a fundamental system of solutions of the LDE and let G be the Galois group
relative to η, ζ. L = C(x)〈η, ζ〉 and K = C(x).
Case 1. G is triangularizable. We may assume that G is triangular. Then for every σ ∈
Gal(L|K), σ(η) = cση, where cσ ∈ C \ 0. Therefore σ(ω) = ω, where ω = η′/η, which
implies that ω ∈ C(x).
Case 2. G is conjugate to be a subgroup of D+. We may assume that G is a subgroup of
D+. If ω = η′/η and φ = ζ ′/ζ, then, for every σ ∈ Gal(L|K), either σ(ω) = ω, σ(φ) = φ or
σ(ω) = φ, σ(phi) = ω. Thus ω is quadratic over C(x).
Case 3. G is finite. In this case L has only a finite number of differential automorphisms
σ1, . . . , σn. Since the elementary symmetric function of σ1(η), . . . , σn(η) are invariant under
Gal(L|K), η is algebraic over C(x). Similarly, η is algebraic over C(x). Because every solution
of the LDE is contained in L, every solution of the LDE is algebraic.
Case 4. G = SL(2, C). Suppose that the DE had a Liouvillian solution, then as we proved
in Proposition 7.2.1, every solution of the LDE is Liouvillian. Thus L is contained in a
Liouvillian field. It follows that G◦ is solvable [16] p.415. Since G◦ = SL(2, C) is not solvable
(by Lie-Kolchin Theorem), the LDE can have no Liouvillian solution.

7.2.1 Necessary conditions

Since r is a rational function, we may speak of the poles of r, by which we shall always mean
the poles in the finite comples plane C. If r = s/t, with s, t ∈ C[x], relative prime, then the
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poles of r hare the zeros of t and the order of the pole is the multiplicity of the zero of t. By
the order of r at ∞ we shall mean the order of ∞ as a zero of r, thus the order of r at ∞ is
deg t− deg s.

Next theorem is proved in [15] and it will be useful to find the algorithm in each case.
Theorem 7.2.5. The following conditions are necessary for the respective cases to hold.

Case 1. Every pole of r must have even order or else have order 1. The order of r at ∞ must be even
or else be greater that 2.

Case 2. r must have at least one pole that either has odd order greater than 2 or else has order 2.

Case 3. The order of a pole of r cannot exceed 2 and the order of r at ∞ must be at least 2. If the
partial fraction expansion of r is

r = ∑
i

αi
(x− ci)2 + ∑

j

β j

x− dj
,

then
√

1 + 4αi ∈ Q, for each i, ∑j β j = 0, and if

γ = ∑
i

αi + ∑
j

β jdj,

then
√

1 + 4γ ∈ Q.

To conclude this section we replicate the idea fo the algorithm for case 1. The goal of this al-
gorithm is to find a solution of the LDE of the form η = Pe

∫
ω, where P ∈ C[x] and ω ∈ C(x).

Since η can be written as η = e
∫
(P′/P+ω), this is of the form described in Corollary 7.2.4. We

assume that the necessary condition of the previous theorem for case 1 holds, i.e., every pole
of r have even order or else have order 1. The order of r at ∞ must be even or els be greater
that 2.

Algorithm (Case 1). Denote by Γ the set of poles of r.
Step 1 For each c ∈ Γ ∪ {∞} we define a rational function [

√
r]c and two complex numbers α+c , α−c

as described below.

(c1) If c ∈ Γ has order 1, then
[
√

r]c = 0, α+c = α−c = 1.

(c2) If c ∈ Γ has order 2, then
[
√

r]c = 0.

Let b be the coefficient of 1/(x − c)2 in the partial fraction expansion of r. Then
α±c = 1

2 ±
1
2

√
1 + 4b.
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(c3) If c ∈ Γ has order 2ν ≥ 4 , then

[
√

r]c =
a

(x− c)ν
+ . . . +

d
(x− c)2 .

is the indicated part of the Laurent series expansion of
√

r at c. There are two possivilities
differing by a sign; either one may be chosen. In practice, one would not determine the Laurent
series for

√
r but rather would determine [

√
r]c by using undetermined coefficients.

Let b be the coefficient of 1
(x−c)ν+1 in r− [

√
r]2c . Then

α±c =
1
2

(
± b

a
+ ν

)
.

(∞1) If the order of r at ∞ is greater than 2, then

[
√

r]∞ = 0, α+∞ = 0, α−∞ = 1.

(∞2) If the order of r at ∞ is 2, then
[
√

r]∞ = 0

Let b be the coefficient of 1/x2 in the Laurent series expansion of r at ∞. Then

α±∞ =
1
2
± 1

2

√
1 + 4b.

(∞3) If the order of r at ∞ is −2ν ≤ 0, then

[
√

r]∞ = axν + . . . + d

is the indicated part of the Laurent series expansion of
√

r at ∞. Either one of the two possibili-
ties may be chosen. Let b be the coefficient of xν−1 in r− [

√
r]2∞. Then

α±∞ =
1
2

(
± b

a
− v
)

.

Step 2 For each family s = (s(c)c∈Γ, s(∞)), where s(c) and s(∞) are either + or −, let

d = α
s(∞)
∞ − ∑

c∈Γ
α

s(c)
c .

If d is a non-negative integer, then

ω = ∑
c∈Γ

(
s(c)[
√

r]c +
αs(c)

x− c

)
+ s(∞)[

√
r]∞

is a candidate for ω. If d is not a non-negative integer, then the family s should be discarded. If no
families remain this case cannot hold.
Step 3 For each family from step 2, search for a monic polynomial P of degree d with

P′′ + 2ωP′ + (ω′ + ω2 − r)P = 0.

If success is achieved then Pe
∫

ω is a solution of the differential equation. If not, then case 1 cannot
hold.
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Example 7.2.6. Consider the LDE y′′ = ry where

r = x2 − 2x + 3 +
1
x
+

7
4x2 −

5
x3 +

1
x4 .

Since r has a single pole at 0 and the order there is 4, the necessary conditions for case 2 do
not hold. Evidently the necessary conditions for case 3 also do not hold (0 is a pole of order
greater than 2), so we apply the algorithm.

Since the order of r at the pole 0 is 2ν = 4, therefore

[
√

r]0 = a/x2, and a2 = 1.

No matter what you choose, for us a = 1, so [
√

r]0 = 1/x2, b = −5− 0 = −5 and

α±0 =
1
2

(
±−5

1
+ 2
)

gives α+0 = −3/2 and α−0 = 7/2.
The order of r at ∞ is ν = 1, then [

√
r]∞ = ax + d. If we compare r with [

√
r∞]2 = a2x2 +

2adx + d2 we see that a2 = 1 and 2ad = −2. Again either one may be chosen, so a = 1,
d = −1. Thus [

√
r]∞ = x− 1, b = 3− 1 = 2, and α+∞ = 1/2 and α0∞− = −3/2.

There are four families to consider of (s(0), s(∞)).

1. (+,+) 99K d = 2.

2. (+,−) 99K d = 0.

3. (−,+) 99K d = −3.

4. (−,−) 99K d = −5.

We only consider the non-negative d integers. We shall treat the second family first, since

d = 0 in that case. The candidate for ω = [
√

r]0 +
α+0
x + [

√
r]∞ = 1

x2 − 3
2x − x + 1.

We now search for a polynomial P of degree 0 such that

P′′ + 2ωP′ + (ω2 + ω′ − r)P = 0.

Since P = 1, the existence of P is a question of whether or not ω2 + ω′ − r = 0. A direct
calculation shows us that no such P can exist. The only remaining family is the first family
(d = 2). The candidate for ω = 1

x2 − 3
2x + x − 1. We now search for a monic polynomial

of degree 2 P(x) = x2 + ax + b and we easily determine that a = 0, b = −1 provides the
solution.
In short, a solution of the LDE is given by

η = Pe
∫

ω = x−3/2(x2 − 1)e−1/x+x2/2−x.

Note that the equation has coefficients in R(x) and according to Theorem 6.0.11, the differ-
ential Galois group of the equation over R(x) is T1(2, R).



Conclusion

This project was born to give an equivalent of the Kovacic algorithm. Now that we know
the real forms classification of SL(2, C) we are prepared to inmerse in analytical approach to
find the different ways for solving second linear homogeneous differential equation over the
field of rational functions with real coefficients.

From my point of view, the thesis has been useful to analyze the different applications
of the affine algebraic geometry and differential equation theory jointly with the renewed
differential Galois theory. I will continue studying how to point the algorithm out over R(x).

Furthermore, this work has helped me to understand how the mathematical branches are
related. Using complex analysis to search Liouvillian solutions of a differential equation that
has different steps depending on the Galois group structure that the differential equation has.

To conclude, I want to say that the project has been focused on the real forms of the spe-
cial linear group of degree 2 with complex coefficients, but it is challenging to study what
happens with higher degree linear algebraic groups and their structure.
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