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Ferromagnetic instabilities in neutron matter at finite temperature with the Gogny interaction
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The properties of spin-polarized neutron matter are studied both at zero and finite temperature using the D1 and
the D1P parametrizations of the Gogny interaction. The results show two different behaviors: whereas the D1P
force exhibits a ferromagnetic transition at a density of ρc ∼ 1.31 fm−3 whose onset increases with temperature,
no sign of such a transition is found for D1 at any density and temperature, in agreement with recent microscopic
calculations.
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The possible existence of a phase transition of neutron mat-
ter to a ferromagnetic state has motivated many investigations
of the equation of state (EOS) of spin-polarized neutron matter.
In addition to the interest that such a transition could have
in the context of neutron stars [1], this problem has gained
interest in itself and has been addressed in the framework of
very different theoretical approaches [2–11]. Whereas some of
these calculations, like for instance those based on Skyrme-like
interactions, predict a transition at densities in the range
(1 − 4)ρ0 (with ρ0 = 0.16 fm−3 the saturation density of
symmetric nuclear matter), others, like recent Monte Carlo [7]
or Brueckner–Hartree–Fock (BHF) calculations [9,10] using
modern two- and three-body realistic interactions, exclude
such a transition at least up to densities around five times
ρ0. In spite of this discrepancy, it is interesting to study how
temperature influences the ferromagnetic transition [12,13]. In
Ref. [12] an analysis of the temperature effects in the frame-
work of a Hartree-Fock calculation with Skyrme interactions
was performed. In the present Brief Report, we study the
influence of the finite-range terms of the interaction on the
ferromagnetic transition. To this end, we consider the Gogny
interaction. This is an effective nucleon-nucleon force with
both zero- and finite-range terms and a simple spin-isospin
structure. In addition to the original D1 parametrization [14],
several other parametrizations of this force are available. The
D1S force, for instance, was introduced to improve the pairing
properties and surface effects of finite nuclei [15], whereas
more recently the D1P [16] interaction has been introduced
with the aim of reproducing the EOS of pure neutron matter
given by a variational microscopic calculation with realistic
interactions [17].

The properties of nuclear matter deduced from Gogny
interactions have already been treated in the literature [18].
Indeed, several instabilities produced by these forces at zero
temperature have been studied in previous works [19]. The
isospin instability, for instance, is a common feature to all
the existing Gogny parametrizations as well as of most Skyrme
forces. This instability is signaled by the fact that, above
a certain critical density, the energy per particle of nuclear
matter becomes more repulsive than that of neutron matter.
For the D1P force, this instability takes place at ρI ∼ 7ρ0,
whereas for D1 it occurs at ρI ∼ 3ρ0. Furthermore, D1 and
D1S also exhibit a spinodal instability in neutron matter, i.e.,
the energy per particle does not increase monotonically with

density. Instead, it reaches a maximum value at a critical
density (which for D1 and D1S is around ρS ∼ 4ρ0) and then
decreases from that density onward. For the discussion of our
results, we will choose the D1P and D1 parametrizations of
the Gogny NN force, because they represent two qualitatively
different behaviors regarding ferromagnetic instabilities.

In general, any Gogny interaction can be casted in the
following form:

VNN (�r) =
2∑

i=1

e
− r2

µi (Wi + BiPσ − HiPτ − MiPσ Pτ )

+ t0 (1 + x0Pσ )ρα
N δ(�r), (1)

with �r the distance between two nucleons. The spin-isospin
structure of the force is given by the spin (isospin) exchange
operators Pσ (Pτ ). Notice that the usual spin-orbit term of the
Gogny interaction has been omitted, because it does not give
any contribution in infinite matter. The Gogny force includes a
sum of two Gaussian-shaped terms that mimic the finite-range
effects of a realistic interaction in the medium. Usually, it also
contains one density-dependent zero-range term, even though
in the case of the D1P parametrization two of these terms were
used to make the fitting procedure more flexible.

In the following, we consider spin-polarized neutron matter,
characterized by the spin-polarization parameter � = (ρ↑ −
ρ↓)/(ρ↑ + ρ↓), where ρ↑(↓) is the density corresponding to
neutrons having spin up (down) respect to a given direction,
and by the total density, ρ = ρ↑ + ρ↓. The energy per particle
in the Hartree–Fock approximation is given by

e(ρ↑, ρ↓, T ) = 1

ρ

∑
σ,k

h̄2k2

2m
nσ (k, T ) + 1

2ρ

×
∑

σ1,k1;σ2,k2

〈�k1σ1, �k2σ2|VNN |�k1σ1, �k2σ2〉A

× nσ1 (k1, T )nσ2 (k2, T ), (2)

where nσ (k, T ) are the momentum distributions:

nσ (k, T ) = 1

1 + eβ[εσ (k)−µσ ]
(3)

of each spin component σ . At each temperature T and
density ρσ , a self-consistent procedure has to be performed
to compute the chemical potential of each species, µσ , from
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the normalization condition:

ρσ =
∑

k

nσ (k, T ). (4)

Once the momentum distribution is determined, the entropy
per particle of the system is given by:

s(ρ↑, ρ↓, T ) = 1

ρ

∑
σ,k

{nσ (k, T ) ln nσ (k, T )

+ [1 − nσ (k, T )] ln[1 − nσ (k, T )]}. (5)

From the internal energy and the entropy one can read-
ily compute the free energy per particle, f (ρ↑, ρ↓, T ) =
e(ρ↑, ρ↓, T ) − T s(ρ↑, ρ↓, T ), and, from this, the inverse
magnetic susceptibility is given by:

1

χ
= 1

µ2ρ

(
∂2f

∂�2

)
�=0

, (6)

with µ, the magnetic moment of the neutron.
An important quantity for our analysis is the single-particle

(sp) energy:

εσ (k) = δe

δnσ (k)
= h̄2k2

2m
+ Uσ (k), (7)

where Uσ (k) is the sp potential. Note that in contrast to the sp
spectrum εσ (k) appearing in Eq. (3), this sp energy contains
the rearrangement effects. The momentum dependence of the
sp potentials can be characterized by the effective mass m∗

σ (k):

m∗
σ (k)

m
=

[
m

h̄2k′
dεσ

dk′

]−1
∣∣∣∣∣
k′=k

=
[

1 + m

h̄2k′
dUσ

dk′

]−1
∣∣∣∣∣
k′=k

.

(8)

Let us start our analysis with the properties of the sp
potential, U (k). Figure 1 reports the sp potential obtained
from D1P for neutrons with spin up at saturation density in
a nonpolarized system (� = 0) and in a fully polarized one
(� = 1) for T = 0 (left panels) and 40 MeV (right panels).

The splitting due to the different spin polarizations can be
understood in terms of both the dependence of the sp potentials
in phase space and the dependence on spin of the effective NN
interaction [13]. Moreover, the increase of temperature makes
the sp potentials slightly less attractive in both cases due to
the dependence on the transferred momentum of the two-body
matrix element which, at finite temperature, is explored in a
wider range of momenta. In spite of the fact that the effective
mass depends on momentum, for low enough values of k the
sp potential can be casted in a quadratic form:

U (2)
σ (k) = Uσ (0) +

[
1

2k

dUσ (k)

dk

]∣∣∣∣
kσ
F

k2, (9)

in which the derivative dUσ (k)/dk and the k-independent
term Uσ (0) are determined from the full sp spectrum at
the corresponding temperature. Figure 1 indeed illustrates
that, for the density and polarization under study, this
quadratic approximation (dotted lines) is very close to the full
k-dependent Uσ (k) sp potential (full lines), at least for
momenta up to kσ

F . The approximation of Eq. (9) is devised
to reproduce the slope of the spectrum at kF together with its
value at k = 0. The choice of the Fermi momentum kσ

F is re-
lated to the fact that the most relevant changes in the occupation
of the sp states, when changing ρ and T , essentially involve
the neighboring region of the Fermi surface. The quadratic
approximation of Eq. (9) leads to an approximated form for
the sp energies in terms of the effective mass at the Fermi
surface and a k-independent term of U (2)

σ (k):

εσ (k, T ) ≈ h̄2k2

2m∗
σ

(
kσ
F , T

) + Uσ (k = 0, T ) . (10)

Finally, let us note that a similar picture is obtained for the
other Gogny parametrizations.

In Fig. 2 we report the ratio χFree/χ (where χFree is
the magnetic susceptibility of the free Fermi sea at the
corresponding temperature) as a function of density. Results
for the D1P (D1) forces are shown on the left (right) panels
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FIG. 1. Single-particle potential U (k) for
up neutrons in nonpolarized (top panels) and
totally polarized (bottom panels) neutron matter
at ρ = 0.16 fm−3 for T = 0 (left panels) and
T = 40 MeV (right panels) within the D1P
parametrization. U (k) and its quadratic approx-
imation U (2) are displayed in full and dashed
lines, respectively. The arrows denote the value
of k

↑
F .
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FIG. 2. Ratio between the inverse magnetic susceptibility of
interacting neutron matter and that of the corresponding free Fermi
sea as a function of density for several temperatures.

of the figure at several temperatures. A different qualitative
behavior for the two parametrizations is clearly observed. On
the one hand, the D1P parametrization leads, similarly to what
was found in the case of the Skyrme interaction [12], to a
ferromagnetic phase transition, signaled by a vanishing ratio
χFree/χ . The critical density of this transition at T = 0 MeV
is ρc = 1.31 fm−3, a much larger value than the ones obtained
with Skyrme interactions, all of which were systematically
below 1 fm−3 (see Table II of Ref. [12]). Moreover, and
even though it is difficult to distinguish this in the figure,
the critical density slightly increases with temperature. This
is in agreement with the intuitive idea that thermal disorder
increases the onset density of ferromagnetism, but it is opposite
to what was found with Skyrme forces. On the other hand,
no trace of a ferromagnetic transition is seen for D1 at any
density or temperature. This behavior is very similar to what
was found in a BHF calculation with realistic interactions
[13]. In addition, the temperature dependence (the higher the
temperature, the lower the ratio becomes) is also in agreement
with such microscopic calculations.

In this context, it is interesting to study the behavior of
the entropy. To this end, plots of the entropy per particle as
a function of spin polarization at a fixed value of density
(ρ = ρ0) and several temperatures are shown in Fig. 3. We
consider the entropy given by Eq. (5) computed with both (i)
the full momentum-dependent spectrum εσ (k) (symbols) and
(ii) the quadratic approximation to εσ (k) of Eq. (9) (lines). In
the two cases the exact chemical potential determined from
the normalization of the momentum distribution, Eq. (4), are
used. The agreement between the values of the entropy coming
from the exact and the approximated sp energies is rather
satisfactory, the most significant discrepancies not being larger
than a 3%. Both the D1 and the D1P parametrizations give
rise to similar results: the entropy per particle is symmetric
with respect to the nonpolarized state and shows a maximum
at zero polarization. In addition, the values of the entropy
increase with temperature, which is again an indication that
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FIG. 3. Entropy per particle as a function of the spin polarization
at ρ = 0.16 fm−3 and several temperatures. The exact Hartree-Fock
values are depicted with circles, diamonds, and triangles, whereas the
lines illustrate the results obtained from a quadratic approximation of
the single-particle spectrum [Eq. (10)].

the entropy per particle behaves as naively expected. This
so-considered “natural” behavior was also found in the BHF
analysis of Ref. [13]. In contrast, for Skyrme forces the
entropy per particle of the polarized phase is seen to be higher
than the nonpolarized one above a certain density [12]. This
defines a kind of “critical” density, which is smaller than
ρ0 for most Skyrme parametrizations. Such a nonintuitive
behavior of the entropy as a function of the polarization can
be related to the dependence of the entropy on the effective
mass, and a condition for the effective masses can then be
derived:

m∗(ρ,� = 1)

m∗(ρ,� = 0)
< 22/3, (11)

if the quantity s(ρ,� = 1) − s(ρ,� = 0) has to be always
negative. Most of the Skyrme forces analyzed in Ref. [12] vio-
late this criterion and thus lead to an “anomalous” temperature
dependence for the onset density of ferromagnetism.

Notice, however, that for Skyrme forces the effective mass
is momentum and temperature independent. This is actually
not the case of neutron matter described by means of Gogny
forces: the effective masses do depend on both momentum and
temperature. Nevertheless, as it has been previously discussed,
the sp spectrum and the entropy per particle are correctly
described by a quadratical momentum dependence, with an
effective mass calculated at k = kσ

F for each temperature.
Within this approximation, one can prove that the criterion of
Eq. (11) is still valid at each temperature. We have checked that
both the D1 and the D1P forces fulfill the criterion of Eq. (11)
in a vast region of the (T , ρ) parameter space, which includes
both the classical and degenerate limits. Thus, as it has been
previously observed, we do not expect that the ferromagnetic
transition (only present for D1P) has an anomalous thermal
behavior.

One of the questions that needs for a closer insight is why
neutron matter described with Gogny forces does not present
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a ferromagnetic instability or why it is present only at very
high densities. Intuitively, one expects that the instability will
be related to the zero-range term. This can be understood
just by taking into account that the pure zero-range term
involves only S-wave contributions and, therefore, due to Pauli
principle, it is not possible to have a couple of neutrons with
the same spin interacting through the contact term. Therefore
there is no contribution to the total energy per particle
of fully polarized matter from a zero-range term, whereas
for nonpolarized neutron matter this term is both strongly
density dependent and repulsive, thus contributing to the spin
instability. In contrast, the behavior of finite-range terms,
both direct and exchange, has the opposite dependence with
polarization: for a given density, the higher the polarization,
the higher these contributions become. In other words, if only
finite-range terms were considered, the nonpolarized system
would be energetically favored. In addition, the density
dependence of these contributions is softer than that of the
zero-range term. Therefore, the competition between zero and
finite-range effects is resolved in favor of the first one at
high values of the density. From this, it is also obvious to
understand why no transition is found for the D1 and the D1S
parametrizations. In these two cases, the fitting parameters
are such that the zero-range term does not contribute for
any polarization, because x0 = 1. The zero-range term is

therefore not active in neutron matter, whereas the direct and
exchange parts of the finite-range terms behave as mentioned,
energetically favoring the nonpolarized case at all densities. In
contrast, for the D1P force x0 
= 1, and the zero-range term is
active. As a consequence, the instability arises once we come
across a high enough critical density.

In this work, we have studied the properties of polarized
neutron matter with neutrons interacting through Gogny
forces, both at zero and finite temperature. The results show
two different qualitative behaviors for the two parametrizations
under study. On the one hand, the D1P exhibits a ferromagnetic
transition at what can be considered a very high density,
ρc ∼ 1.31 fm−3. On the other hand, no sign of a ferromagnetic
transition is found for the D1 parametrization at any density
or temperature. The cause of these two different behaviors
is related to the zero-range term, which contributes for D1P
but not for D1. Finally, we have checked that the temperature
dependence of the ferromagnetic transition with D1P is the
one expected by intuition, in agreement with the fact that the
criterion of Eq. (11) for the effective masses is respected in a
wide range of densities and temperatures.
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M. Girod, J. Phys. G 25, 863 (1999).
[17] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38, 1010

(1988).
[18] Y.-J. Zhang, R.-K. Su, H. Song, and F.-M. Lin, Phys. Rev. C 54,

1137 (1996).
[19] A. A. Isayev and J. Yang, Phys. Rev. C 70, 064310 (2004).

068801-4


