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In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is
discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out
surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out
discontinuity.[ S0556-28189)01201-7

PACS numbes): 25.75—q, 25.75.Ld, 05.70.Ln

I. INTRODUCTION into the integral over the freeze-out hypersurf&sge obtain
the Cooper-Frye formulgd]
The freeze-out of particle distributions is an essential part

of continuum or fluid dynamical reaction models. From the dN
point of view of observable consequences this is one of the ET:f feo(X,p; T,n,u")p*do,, (1)
most essential parts of the model. On the other hand this step d°p

is not based on fluid dynamical principles and governed by a

large variaty ofad hocassumptions. The freeze-out can bewherefeg(x,p;T,n,u”) is the post FO phase space distribu-

considered as a discontinuity across a hypersurface in spacéen of frozen-out particles which is not known from the fluid

time. dynamical model. Problems usually arise from the bad
The general theory of discontinuities in relativistic flow choice of this distribution. First of all, to evaluate measur-

has not been worked out for a long time, and the 1948 worlables we have to use the correct parameters of the matter

of Taub[1] discussed discontinuities across propagating hyafter the FO discontinuity.

persurfaces only(which have a spacelike normal vector |f we know the pre-freeze-out baryon current and energy-

do*do,=—1). Events happening on a propagatiftgo-  momentum tensoN# and T4” we can calculate locally,

dimensional surface belong to this category. across a surface element of normal vectior* the post-
Another type of change in a continuum is an overall SUl<ee76.0ut quantitied® and T#*, from the relationg1,2]

den change in finite volume. This is represented by a hyper[NMdU#]:O and[T#"do,]=0, where[ A]J=A—Aq. In nu-

z;ﬂfgect‘;\;ﬁ]s% ﬁlm%:)ktﬁ Snoégglii?(g atljn(g‘tir:ellikt\ems]hcr?a(l:ses i merical calculations the local freeze-out surface can be de-
' gy, P Nermined most accurately via self-consistent iterafior9).

the literature. In 1987 Taub’s approach was generalized tq, . . L
both types of surfacef?] making it possible to take into cf‘h|§ fixes the paramyeters of our post FO momentum distri-
é)_utloano(x,p;T,n,u ).

account conservation laws exactly across any surface of di . .
continuity in relativistic flow. This approach also eliminates _ FOr example we can illustrate the effect of conservation
the imaginary particle currents arising from the equation ofaws for a situation where the frozen-out matter is massless
the Rayleigh line. When the equation of staEOS is dif- baryon-free Bose gas. Then, the conservation laws across the
ferent on the two sides of the freeze-out front these conseffeeze-out surface withtimelike normal vectordo* are
vation laws yield changing temperature, density and flonl T#"do,]=0. In the most generdthree-dimensionalcase
velocity across the front. there are four parameters to be determined from the conser-
In fact the freeze-out surface is an idealization of a layewvation laws: The final, post-FO temperatufe and three
of finite thickness where the frozen-out particles are formedgcomponents of the velocity. The energy-momentum tensor
and the interactions in the matter become gradually neglion the pre-freeze-out side, and the normal to the surface are
gible. The dynamics of this layer can be described in differ-given. The post-freeze-out energy-momentum tensor is of
ent kinetic models or four-volume emission modg@s The  the form T#"=(e+ p)u“u”—pg"”, where the energy den-
zero thickness limit of such a layer is the idealized freeze-ousity, pressure, and temperature are connected by the EOS:
(FO) surface. e=o0ggT*=3p, where ogg is the Stefan-Boltzmann con-
The invariant number of conserved particlerld lineg  stant. ThenT#”=(e+ p)u“u”’—pg"”, can be written as a
crossing a surface elemet* is dN=N*do, and the total ~ vector equation:
number of all the particles crossing the FO hypersurfaie

N=fsN*da, . This total numbeN and the total energy and (4uu’do,—do*)=xa*, 2
momentum are of course the same at both sides of the freeze-
out surface. If we insert the kinetic definition bf* where
d°p , 1 -1
NM: FprFo(le;Tlniu ); X= §O'SBT4 y aM=T6Wd0',,
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Taking the normal projection of E§2) and the norm of the
four-velocity u#, the solution for the four quantities we are
looking for will be given by

a“do,+(a*do,)?+3a*a, xat+do*
X= , UbE———
ata, 2yxatdo,+1
(€©))

Idealized freeze-out across propagating discontinuities. . . N
propagating 0post-FO distributionf £o(p,x) is a cut Jttner distribution,

One can go a step further in the study of the freeze-out pr

cess. We usually assume that the pre-freeze-out momentuff
distribution as well as the post-freeze-out distribution ard"
both local thermal equilibrium distributions boosted by the

local collective flow velocity on the actual side of the freeze
out hypersurface, although, the post-freeze-out distributio
need not be a thermal distribution

TRIBUTIONS FROM . .. 389

Here, the matter is characterized BY" andN§ on the pre-
freeze-out side of the front.

The construction of the post-freeze-out distributigg, is
a problem in the case of freeze out fronts with a spacelike
normal. For the cut “dtner distribution the conserved cur-
rents were evaluated in Rdf3]. Thus, if we know the five
parameters of the pre-FO flow and the local freeze-out sur-
face from kinetic considerations, then assuming that the
e can completely determine the parameters of the post-FO
atter from the conservation law@),(5). Although, this
way we would formally satisfy the conservation laws and we
would eliminate the particle current pointing back to the
r;Pre—FO matter, the strange shape of the ctiindu distribu-
tion makes it difficult to accept it as a physical post-FO

The case of freeze-out across a hypersurface with a SpaC@_omentum distribution.

like normal shows this clearly becaugé is timelike and
do* is spacelike, thup“do, can be both positive and nega-
tive, i.e., p# may point now both in the post- and pre-FO
directions. Thus the integrand in the above integtaimay

Il. FREEZE-OUT DISTRIBUTION FROM KINETIC
THEORY

change sign in the integration domain, and this indicates that Following the ideas introduced in Rdf3] we can calcu-

part of the distribution contributes to a current going back
into the front while another part is coming out of the front.
On the pre-freeze-out si¢#" is unrestricted ang“do, may

Jlate the kinetic freeze-out distribution based on four-volume
emission models. The proposed model, on the other hand,
requires extended numerical calculation, so here we intend to

really have both signs, because we may assume that tlsudy some overly simplified models, which might give us

freeze-out front has a certain thickn¢83, and due to inter-
nal rescatterings inside this front a current is fed back to th

some hints about the expected shape of post-freeze-out dis-
éributions.

pre-freeze-out side to maintain the thermal equilibrium there. The freeze-out will turn out to be an exponential process,
On the post-freeze-out side, however, the distributionand after about three mean free paths the amount of interact-

Fo(X,p;da*) must vanish for momentum four-vectops,

ing matter reduces to 5%. Thus, the sharp freeze-out layer

which point back in the pre-FO direction, i.e., do not satisfyturns out to be an overidealization of kinetic freeze-out in

the conditionp*do,>0 [6,7]. Thus, this distribution cannot
be a Jttner or other ideal gas distributidn.

heavy ion reactions, while it is applicable on more macro-
scopic scales such as in astrophysics.

Nevertheless, the above conservation laws have to be sat- Let us first demonstrate the kinetic model for a drastically
isfied even if the post-freeze-out distribution is not a localoversimplified situation of a plane FO surface. Let us assume

thermal distribution. Since the kinetic definitions of the
energy-momentum tensor and conserved cufseate reli-
ably applicable, the conservation laws across a small eleme
of the freeze-out front take the form

3

d
L(fp—ff’éo(x,p:T,n,uV,dH)p“)drfﬁ LNé‘(x)d%,

(4)
d3p
S p

= f T8 (0dar, . (5)

INote that the contravariant normal when it becomes spacelik
do* should point in the pre-FO direction to satisfy the condition
p#do,>0, while the covariant normado,, always points in the
post-FO direction. Thus, the direction of the contravariant normal

an infinitely long tube with its left half X<<0) filled with
nuclear mater and in the right vacuum is maintained. We can
nemove the dividing wall at=0, and then the matter will
expand into the vacuum. By continuously removing particles
at the right end of the tube and supplying particles on the left
end, we can establish a stationary flow in the tube, where the
particles will gradually freeze-out in an exponential rarefac-
tion wave propagating to the left. We can move with this
front, so that we describe it from the reference frame of the
front (RFP).

In this frame, we have a stationary supply of equilibrated
matter from the left, and a stationary rarefaction front on the
right, x>0. We can describe the freeze-out kinetics on the
right-hand side of the tube assuming that we have two com-

ponents of our momentum distributiorﬁfree(x,ﬁ) and

f(X,p). However, we assume only thatxat0 fe van-

(ieshes exactly and, is an ideal Jttner distribution(supplied

| ?0On the other hand, if kinetic freeze-out coincides with a rapid

do* in the Cooper-Frye formula goes continuously over from phase transition, as in the case of rapid deconfinement transition of
pointing in the pre-FO direction to pointing in the post-FO direction supercooled quark-gluon plasma, the short freeze-out hypersurface
while the covariant normal of the FO surface stays directed alway#dealization may still be applicable even for heavy ion reactions. It
in the post-FO direction when it goes continuously over from time-is, however, beyond the scope of this work to study the freeze-out
like to spacelike. dynamics and kinetics in this latter case.
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by the inflow of equilibrated mattgr while f,,, gradually
disappears antt... gradually builds up ag tends to infinity.
We do not assuma priori thatfim(x,ﬁ) is an ideal Jtiner
distribution for all x, so we will have different FO results
depending on the assumed FO mechanism.

Let us take first the most simple kinetic model describing

the evolution of such a system. Starting from a fully equili-
brated Jttner distribution the two components of the mo-

mentum distribution develop according to the coupled differ-

ential equations

> COSHp -
Ixfin(X,p)dx==O(p*do,)—— fin(x,p)dX,

R cosd;
IxFred X, p)dX=+ ®(plud0-/1,)

— fm(X,p)dx. (6

Here the interacting componefit; will deviate from the
Jutner shape and the solution will take the form

c0305

fint(xyfs):fJuttne(X:Ovﬁ)exl{_®(pﬂd0',u) X|.

()
This solution is depleted in the forvvaﬁjdirection, particu-

larly along thex axis. Inserting it into the second differential
equation above, leads to the freeze-out solution

fred X, 5) = fJutnekX= 015)

0505

X
A

X

1—exr{—®(p“dcr#)C ] (8

At x— this distribution will tend to the cut dtmer distri-
bution introduced in the previous sectidigee Figs. 1-4.
The remainder of the original tner distribution survives as
fint, €ven ifx—oo. In this model the particle density does
not change withx, barely particles moving faster than the
freeze-out front(i.e., p#do,>0) are transferred gradually
from componentf,,; to componentf;... This is a highly
unrealistic model, indicating that rescattering and rethermal
ization should be taken into accountfip,. This would al-
low particle transfer from the “negative momentum part”
(i.e.,p*do,<0) of fi; to free, Which is not possible other-
wise.

Ill. FREEZE-OUT DISTRIBUTION WITH RESCATTERING

The assumption that the interacting part of the distribution

remains the distortetafter some drainJutner distribution,
is of course highly unrealistic. Rescattering within this com-
ponent will lead to rethermalization and reequilibration of
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FIG. 1. The freeze-out distributiofiy.«X,p), in the rest frame
of the freeze-out frontRFF) calculated from the model presented in
Sec. Il. The momentum is plotted in units pf], and T=m is
assumed. Contour lines are given at values of 0.9, 0.8, 0.7, ...
times the maximum of... Here the center of the rest frame of the
gas(RFQ) is at rest in RFFugec=(1,0,0,0), however, the Eckart
and Landau flow velocities of the frozen out matter do not vanish.
(A), (B), (C) correspond tox=0.02\,3\,%, respectively. At large
distances from the initial point of the freeze-out process,
—=(C), the distribution becomes a cuttther distribution. The
earlier stages of the freeze-out are, however, characterized by asym-
metric distributions, elongated in the freeze-out directiorThis
may lead to a large; enhancement, compared to the usudingr
assumption as freeze-out distribution used in most previous calcu-
lations.

1

develop according to the coupled differential equations

> COSHp >
IxFind(X,p)dx=— ®(p'ud0',u)Tfim(X-p)dX

- -1
FfedX,p)— fmt(X,D)];dx,

- cost; -
Ixfied X, P)dx=+0O(p*do,)——fin(x,p)dx.  (9)

| NS
D)
N = —

this component. Thus the reequilibration and the drain terms FIG. 2. The same as Fig. 1, except here the center of the rest
are in competition and they mutually determine the evolutiony, o o the gas is not at rest in RAFc=(7,0.5,0,0). At large

of the component;,;.
To include the collision terms explicitly into the transport

distances from the initial point of the freeze-out procesgs,
—=(C), the distribution becomes a cuttther distribution, but less

equations(6) leads to a combined set of integrodifferential than half of the distribution is cut off. Note that the boostétinkr
equations. We can, however, take advantage of the relaxatiafistribution became Lorentz elongated and asymmésée Fig.
time approximation to simplify the description of the dynam-2.10 of Ref[5].) The earlier stages of the freeze-out, are character-

ICS.

ized by asymmetric distributions, elongated in the freeze-out direc-

Then the two components of the momentum distributiontion x.
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FIG. 3. The same as Fig. 1, except here the center of the rest FIG. 4. The same as Fig. 1, except here the center of the rest

frame of the gas is not at rest in RAgc=(y,—0.5,0,0). At large
distances from the initial point of the freeze-out process,
—o(C), the distribution becomes a cuttther distribution, but

frame of the gas is not at rest in RRkkc=(7,0.5,0.5,0). At large
distances from the initial point of the freeze-out procesgs,
—oo(C), the distribution becomes a cuitther distribution, which

more than half of the distribution is cut off. The earlier stages of theis not centralized irp, and less than half of the distribution is cut
freeze-out, here also are characterized by asymmetric distributionsff. The earlier stages of the freeze-out are characterized by distri-
but these are not elongated in the freeze-out direction butions asymmetric both in the directiopg andp,, and these are
also elongated in the direction of the freeze-out flow veloafy.
Here, the interacting component of the momentum distribu-
tion shows the tendency to approach an equilibratethéu Immediate rethermalization limitAs a first approxima-
type, distribution with a relaxation length coefficient  tion to the solution of EqH9) let us assume that' —0, i.e.,
~\. Of course due to the energy, momentum, and conserve@e have immediate rethermalization after every stbp
particle drain, the distributiofi,{X,p) is not the same as the Thus the drain is always happening from a component of
initial Juttner distribution, but its parameteng{(x), Teq(X), shapefeq(x,ﬁ), with parametersi(x), T(x), andufeo(X),
andug{(x), change as required by the conservation laws. and we can assume thi,= f,is of spherical Jtner form
Conservation lawslin this case the change of the con- at any x including both positive and negative momentum
served quantities caused by the particle transfer from comparts. Above and henceforth the notation is similar to the one
ponent int to component free can be obtained in terms of thg, Ret. [3]: N=8#T3e¥T(27h)3, a=miT, so that

distribution functions as n(u,T)=na?K,(a)/2 is the invariant scalar density of the

dx [ d®p . symmetric massless “timer gas, b=a/\J1-v? v
dNf=——| —p*O(p*do,)cosbfi(x,p) =doy/do,, A=(2+2b+b?e P, and

N J Po
and 2"(n)!

anv" dx(xz_zz)nfllzefx,
o dX dp . w
dTi"== ] 5, PP O(p"do,)costfin(x,p).
o _ . i.e., Kn(z,2)=Kn(2).
If we do not have collision or relaxation terms in our trans-  |n this case the change of conserved quantities due to
port equation then the conservation laws are trivially satisparticle drain or transfer can be evaluated for an infinitesimal
fied. If, however, collision or relaxation terms are presenidx. We assume that the three-flow is normal to the freeze-
these contribute, to the change ®f" and N*, and this  out surface, and for simplicity we assume-0. In this case
should be considered in the modified distribution functionthe change of the conserved particle currents in the RFF is
fint(X,P). given by

0 dx _n 2 2 2p2 3.3 -b
dN; :_TW{bKl(bH—b(gv — 1)y [2K.(a)—Kq(a,b) ]+ yvb[2Ky(a) — Ko(a,b)]+2v°y*(b+1)e "},

dx n
an= - X

N 4U373{U2(3U2_1)'ysb[zKl(a)_’Cl(a1b)]+(2+U4')’2b2)[2K0(a)_’Co(a-b)]_ZKO(b)

+2vy%e "[v2y?%(b+1)+v?b—1]},

and for the change of the energy-momentum tensor in the RFF we obtain that
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dx nT

00_ _
dTi = N 2022

[v272b2(3+v2)[2Kz(a)—/Cz(a,b)]+(vzb2—vz—1)7b[2K1(a)—/Cl(a,b)]—bz[ZKo(a)—/Co(a,b)]

2
(1+302)y2A(b) — (2+v2b2) (b+ 1)+ v 1+ %) 72b3H,

a
+;Kl(b)+a2K0(b)+vy2e_b

dx nT(1+3v? 1+ 302
dTP= — = | T b 2K,(a)~Kp(a,b) ] +vab?[ 2K, (a)— Ky(@,b) |+ | 0?y%b| —a%+ = |o2)—b2
2T
+(v%+3)y?A(b) eb]—ﬁdN?,
XX dx ¥°nT 20 2 3.3 v Nh3 .y A2/ 4
A=~~~ T v(3+0?)a% 2Ko(a) ~ Ka(a,b)]+v%a 2Ky (2) ~ Ki(a,b) 1 +| 5 (3+v2)b%+ a%(v*b—1)
3T
+(3v%+1)A(b) eb]—WdNiX,
R L (024 1)a[2K(8)— Ky(a,b)]— v2ad[ 2Kq(a) — Ko(a,b) ]+ —Ky(b)—20(b+1)e~" 3TN
I )\ 802’)/2 1 1 ! 0 0 ? ,y 1 Zv'y (B

and dT?’=dT)Y. Notg that in RFF the f_Iow velocity |ocities are the sameyl'e red(X) = U#L re(X) = UFred(X).
of the rethermalized component is Ufge(X)  Thus we can evaluate the flow velocitygeo(X+dx)

= 5,(X) (1v(x),0,0)|gee, Wherey,=1/J1—v?2.
The new parameters of distributidn,,, after moving to

the right bydx can be obtained frordN/ anddT{”. The Ul Red X+ dX) =NE(X+dx)/NEN; L,
conserved particle density of the rethermalized spherical '
Jutner distribution after a stegx is which leads to the following covariant expression:
N =n n:(x) = /N# . dN; ,(x
n(x+dx) = n(x) +dn(x) = YNE(x+dX)N; L, (x+dXx), AU el )= A (X) ﬁlkx() ), 1D
i

where the expressions are invariant scalars. After straightfor-
ward calculation the differential equation describing thewhere A#"(x)=g*"—ul'red(X)U{ red(X), iS @ projector to
change of the proper particle density is the plane orthogonal ta/“ge((x). This equation is valid in
any reference frame, nevertheless we know the four-vectors
on the right-hand side in the RFF explicitly. Then the new
dn;(X) = Ulred X)dN, L(X). (100  flow velocity of the matter evaluated according to Eckart’s
' ' definition isu’e rrg(X+dX) = Uf'grd(X) T dUfe Rra(X).
To get the temperature and the change of Landau’s flow
velocity, we have to analyze the change of the energy mo-
mentum tensor. Before the particle drain the energy-

Although this covariant equation is valid in any frame, we

can calculate it in the RFF, where the valuesddf‘s were

given above. Note again that the particle drain frip(x), . o »

described bylN/ is constrained to the “positive part” in the momentum tensor ak in the RFG IS d|agonaI,TiZV(x)

momentum space, but after rethermalization we attribute this diag(e; P, P; 'PL)lRFG(X)’ Wh'lf in-the RFF TF(x)

to the change in the complete sphericaitder distribution = L(&i+ Pi)Uf'recUl rec(X) — Pig*"llrergg - Adding  the

f.(x+dx). Thus, in order to conserve momentum, we havedrain termsd T/"(x) to this arising from the freeze-out while

to obtain a decreased Eckart flow velocity after the infinitesi-we move to the right bylx, yields T{*"(x+dx) which will

mal particle drain. not be diagonal in the RF() and the pressure part will not
For the rethermalized interacting component Eckart'sPe isotropic. We can Lorentz transform this to another frame

flow velocity is the velocity of the RFG, which changes with which diagonalize3{**(x+ dx). This means to find the Lan-

X, S0 we can actually denote this frame as RE)G(For the  dau flow velocity of the new system{’| gr(x+dXx) in the

spherical Jttner distribution the Landau and Eckart flow ve- original RFGK). After a straightforward diagonalization,
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somewhat tricky algebra, and neglecting second and highehis ansatz the pressure asymmetry and pressure balance can-

order terms we arrive at the covariant expression not be realized, thus our model will be only a rather approxi-
ARAT. U mate description of t.he. freeze-out process. Nevertheless, we
AU, pedX) = s iwui,RFG(X). 12 can draw some preliminary conclusions about the develop-
hLRF e+P; ment of the kinetic distribution during freeze-out.

Although, for the spherical Jmer distribution the Landau
and Eckart flow velocities are the same, the change of this

flow velocity when calculated from the baryon current and IV. CONCLUSIONS

from the energy current are different: We turned to the problem of estimating the freeze-out
du du distribution. Obviously the real freeze-out distribution
Ure.RecX) # AU Rra(X)- depends strongly on the details of the freeze{autd had-

This is a clear consequence of the asymmetry caused by tfi@nization dynamics. In heavy ion reactions, the curvature
freeze-out process as we pointed out already at the discu8! the freeze-out surface and the conditions varying in time
sion of the properties of the cut tiuer distribution. Unfor- do affect the freeze-out dlstrlbuuon,.never_theless, as a first
tunately, this also illustrates the weakness of our assumptioft€P, We assumed that the process is stationary and the cur-
on the complete rethermalization to a sphericatnr dis-  Vature of the front is negligible. These approximations are
tribution, because we cannot choose the correct velocitgXtreme, but still enable us to draw some preliminary con-
change: If we chooséuf as the new velocity of théspheri- ~ clusions.
cal Jittner distribution f,(x+dx), then we violate the mo- Following the lines and ideas presented in R&f, the
mentum conservation in our model, on the other hand if wédirst simple kinetic freeze-out model reproduces the citt Ju
choosedut*, then we violate the baryon current conserva-ner distribution as the limiting distributiofi.. after com-
tion. Thus a sphericdbr even ellipti¢ distribution cannot be  plete freeze-out at large distances. However, the model at the
fitted to the freeze-out drain, and we would have to use alsame time leads to unrealistic consequences, namely, that the
ansatz which hagin addition an asymmetry in the direc-  interacting part of the distributiofy,; also survives fully, as
tion (i.e., an egg shapgefor the distributionf,,;. the other part of the “Itmer distribution. Thus having both
Being aware of this weakness of the model, we nevertheeomponents at the end in this model, the physical freeze-out
less, maintain the assumption of sphericatrler shape for is actually not realized. This turns out to be a consequence of
fin for the sake of simplicity. We can choose the flow veloc-the fact that the effect of rescattering and thermalization in
ity change then according to the physical problem. For exthe interacting part of the distribution was ignored.
ample for the freeze-out of baryon free plasma this problem |n an improved but still rather approximate kinetic freeze-
does not occur, and we have to choosg’. out model which takes rescatterings into account, the inter-
The last item is to determine the change of the temperagcting component is assumed to be instantly rethermalized
ture parameter ofi,. From the relatione=u,T*"u, we  taking a spherical dtner shape at each time step with chang-
readily obtain the expression for the change of energy denng parameters. The model leads to a set of coupled differ-
sity ential equationg10)—(13). Equations(11) and (12) can be
v used in some combined form, or one of them can be selected
€00 = Uy Ree) AT U Rl X), (13 which fits the physical situation the best. Then the three pa-

and from the relation between the energy density and thgameters of the interacting componég can be obtained in
temperaturésee Chap. 3 in Ref5]), we can obtain the new €ach time step analyticallfgonsideringCy(x,y) an analytic
temperature ak+dx. Fixing these parameters we fully de- function].

termined the spherical ttner approximation forf . With Now the density of the interacting component will gradu-
ally decrease and disappear according to @4q), the flow

velocity will also decrease in both cases, E(sl) or (12),
3 because only forward going particles freeze-out, and the en-
Let the energy-momentum tensor of a systenTb& The energy ergy density will decrease also according to EB). Thus,
and momentum flow is characterized by the Landau flow velocity, &he initial contribution t0f 1ee at smallx will resemble the

unit four vectoru,,. We are looking for a relationship between the distribution shown in Fig. @), then asx increases and the

|nf!n|t_e3|mal change of the flow velocnyﬂl:# and_the corresponding velocity decreases it will become to similar to Fig(BL

shift in the energy-momentum tensoi*”. We introduce the pro- hile at the final st it will h Ei A

jector A#?=g#*"—u*u” with the properties[5] A#"u,=0 and while at the final stages 1t will approach. ig(@. As a

du,=A"du, sinceu,du*=0. The Landau flow velocity is parallel ©ONSeqUeENce the |_ntegrated distribution will not resemble a
s K cut Jutner distribution.

to the flow of the momentum. Thus,=consx T u,, therefore Thus th - f L il

A, T#"u,=0. We differentiate the above equation and take into us t_ € arising post-freeze-out distributifip will be a
consideration the identities=u, T#"u, and A“TP7AY= — PA~, superposition of cut Jdtner type of components, from a
wheree and P are the energy density and pressure of the dissipaS€lies of gradually slowing down tner distributions. This
tionless, fully equilibrated fluid. Then using the propertiesaé ~ Will lead to a comet shaped final momentum distribution,
we getdu,(e+P)+u,du,T#"u,=A,,dT*"u,. Since the flow ve- with a more dominant leading head and a tail. In these rough
locity and the momentum flow are parallel the second term on thénodels a large fraction~+95%) of the matter is frozen
left-hand side vanishes. Thus the equation describing the change otit by x=23\, thus the distributiorf.. at this distance can
Landau’s flow velocity becomesdu,=A,,dT*"u,/(e+P). be considered as a first estimate of the post-freeze-out distri-



394 Cs. ANDERLIK et al. PRC 59
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