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SUMMARY

Colorectal cancer (CRC) is characterized bymajor in-
ter-tumor diversity that complicates the prediction of
disease and treatment outcomes. Recent efforts help
resolve this by sub-classification of CRC into natural
molecular subtypes; however, this strategy is not yet
able to provide clinicians with improved tools for de-
cision making. We here present an extended frame-
work for CRC stratification that specifically aims to
improve patient prognostication. Using transcrip-
tional profiles from 1,100 CRCs, including >300 previ-
ously unpublished samples, we identify cancer cell
and tumor archetypes and suggest the tumor micro-
environment as a major prognostic determinant that
can be influenced by the microbiome. Notably, our
subtyping strategy allowed identification of arche-
type-specific prognostic biomarkers that provided
information beyond and independent of UICC-
TNM staging, MSI status, and consensus molecular
subtyping. The results illustrate that our extended
subtyping framework, combining subtyping and
subtype-specific biomarkers, could contribute to
improved patient prognostication and may form a
strong basis for future studies.
INTRODUCTION

The prognostication of CRC currently relies on the Tumor Node

Metastasis (TNM) staging system. Yet, tumors of the same
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stage can differ unpredictably in both prognosis and treatment

response, which leads to patient under- and overtreatment

(Puppa et al., 2010). Several research groups have proposed

to resolve this heterogeneity by molecular sub-classification,

culminating with the recent proposal of four transcriptional

consensus molecular subtypes (CMSs) by the CRC subtyping

consortium (CRCSC). The CMSs are associated with distinct

histopathological features and it is proposed that molecular

subtyping may advance precision diagnostics, treatment, and

guide rational drug design (Guinney et al., 2015). However, this

remains to be further documented, and consensus molecular

subtyping is not yet a tool used to guide clinical decisions.

Indeed, further development of molecular stratification ap-

proaches may be needed to unveil clinical potentials.

We hypothesized that the major inter-tumor molecular diver-

sity of CRC may have precluded validation of molecular prog-

nostic biomarkers in the past. Relevant biomarkers may well

be CRC subtype specific, and the distribution of subtypes in

the CRC cohorts used for biomarker identification and validation

may have differed.

We therefore pursued that molecular subtyping can establish

homogeneous patient subgroups and hereby help to uncover

the biological processes associated with aggressiveness within

each subtype. Furthermore, molecular subtyping facilitates

validation as it enables subtype-specific biomarkers to be vali-

dated in tumors of the relevant subtype, rather than in a bulk of

molecularly different tumors.

Using this strategy, we here established a framework for CRC

prognostication, based on the combination of molecular subtyp-

ing and subtype-specific prognostic biomarkers (Figure 1A),

which provided prognostic information independently of and

beyond CMS subtyping, TNM staging, and microsatellite insta-

bility (MSI) status.
.
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Figure 1. Improved Prognostication of CRC by Molecular-Subtype-Specific Biomarkers

(A) Schematic illustration of the principle of CRC patient prognostication by combining molecular subtyping with subtype-specific prognostic biomarkers.

Molecular subtyping is employed to reduce themajor inter-tumor molecular diversity of CRC and allows patient prognosis to bemore accurately predicted within

each subtype by application of subtype-specific prognostic biomarker panels. Patients with good or poor prognosis are indicated.

(B) Overview of the workflow employed for discovery and validation of CRC molecular archetypes (upper panel) and archetype-specific prognostic biomarkers

(lower panel). Three cancer cell (CC) and five tumor archetypes were independently identified in three CRC discovery cohorts. Establishment of archetype-

specific prognostic biomarkers were based on the stroma, SSC, and CIN tumor archetypes only as the goblet and dARE archetypes contained too few relapse

cases for biomarker identification/validation. Prognostic biomarkers were discovered in the SYSCOL and GSE39582 cohorts and validated in samples from the

five validation cohorts indicated. Number of samples investigated is given.
RESULTS

Three Cancer Cell Archetypes Exist in CRC
To identify homogeneous molecular archetypes of CRC, we

performed RNA sequencing (RNA-seq) and DNA methylation

profiling of 33 adenomas and 281 carcinomas (SYSCOL cohort)

and unsupervised class discovery by consensus non-negative

matrix factorization (NMF)-based clustering using two strate-

gies: one identifying ‘‘cancer cell’’ (CC) archetypes by analyzing

only epithelial cell-derived transcripts (as defined from Isella

et al., 2015; Figures 1B and 2) and one identifying ‘‘tumor’’ ar-

chetypes by analyzing epithelial cell and stroma-derived tran-

scripts together (Figures 1B and 3). The analysis of epithelial

cell-derived transcripts and DNA methylation data indepen-

dently suggested the existence of three distinct CC archetypes

(Figures 2A, S1A, and S1B; see Figure S1C for distribution of

CC archetypes according to TNM stage, gender, location, and

MSI status). Two of the archetypes were named ‘‘secretory’’

and ‘‘adsorptive’’ as gene set enrichment analysis (GSEA) indi-

cated resemblance to secretory and adsorptive enterocyte pre-

cursor cell lineages of the normal intestine, respectively (Fig-

ure 2B). In agreement, the secretory archetype exhibited key
features of secretory cell commitment, such as high ATOH1

mRNA expression (Figure 2A; Yang et al., 2001), extensive

secretory goblet cell differentiation as evaluated by immunohis-

tochemistry (IHC) staining (Figure S1D), and an enrichment for

KRASmutations and signaling (Figures 2A and 2D). The adsorp-

tive archetype exhibited classical features of ‘‘conventional’’

adenocarcinomas (Laiho et al., 2007) such as chromosomal

instability (CIN; Figures 2A and 2C), microsatellite stability

(MSS; Figure 2A), enhancedWnt/b-catenin-signaling (Figure 2D;

Mårtensson et al., 2007), and low DNA methylation (Figures 2A

and 2E). The third CC archetype was named ‘‘serrated’’ due to

its resemblance to sessile serrated CRC (SSC; Leggett and

Whitehall, 2010) including DNA hypermethylation (Figures 2A

and 2E), hypermutation, MSI, frequent right-sided location (Fig-

ure 2A), and gene expression associated with immune pro-

cesses, such as interferon (IFN) and inflammatory responses

(Figure 2D). For validation of the CC archetypes, we performed

independent class discovery in two public CRC datasets

GSE39582 (Marisa et al., 2013) and GSE41258 (Sheffer et al.,

2009; Figure S1E) and confirmed that the independently pre-

dicted archetypes were indeed similar between datasets by

principal component analysis (PCA; Figure 2F) and SubMap
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Figure 2. Identification of CC Archetypes

(A) CC archetypes in the SYSCOL cohort identified by consensus NMF-based clustering using epithelial transcripts only. Green indicates CC archetypes, white

indicates unclassified samples (‘‘U’’), and pink indicates that a value is unavailable (NA) or non-significant (NS). The methylation (Meth) class was determined by

independent class discovery using DNA methylation data. NTP analysis was used to compare samples to the published expression signatures as indicated (see

Supplemental Experimental Procedures). Mutations andmutation indexwere extracted fromMuTect analysis andCIN scores generated from combinedChAMP/

RNA-seq analysis. Scores and expression values are represented as 10 percentile bins.

(B) Comparison of the CC archetypes to normal intestinal epithelial cell types by GSEA. The spider plot shows the archetype-specific normalized enrichment

scores (NESs) for ten cell-type-specific gene sets extracted from Gr€un et al., (2015).

(C) Distribution of copy number alterations (CNAs) along the 22 autosomes stratified according to CC archetypes. Shown is Log10 to the p value (two-tailed t test)

for comparison of each archetype to normal mucosa. Positive and negative values indicate gains and losses.

(D) Molecular features of the three CC archetypes as evaluated by applying GSEA to the three CRC cohorts SYSCOL, GSE39582, and GSE41258 using

‘‘hallmark’’ gene sets from the Molecular Signatures Database. Gene sets with a positive (i.e., enriched) or negative (i.e., depleted) NES are shown in red and blue

and highlighted if all three cohorts were significantly enriched/depleted (FDR <0.1).

(E) Heatmap of DNA methylation levels for the three CC archetypes (median-centered b values for top 17,711 most variable probes of the Infinium

HumanMethylation450 BeadChip).

(F) Comparison of independent CC archetype predictions in the SYSCOL, GSE41258, and GSE39582 cohorts by PCA of the CC archetype-specific area under

the curve (AUC) scores for genes common to all datasets. Plotted are the first three principal components (PCs), and colored circles represent CC archetypes

encompassing a representative from each cohort (black dots; 1 = SYSCOL, 2 = GSE39582, 3 = GSE41258). The adsorptive cluster encompassed two closely

related types from the GSE39582 cohort collapsed into one adsorptive archetype during subsequent analysis. Pairwise comparison of the three cohorts by

SubMap analysis confirmed that archetypes are similar between cohorts (BH-adjusted p values for each archetype association is given).

(G) Kaplan-Meier plots showing CC archetype-specific RFS for TNM stage II–III patients in a combined SYSCOL-GSE41258 cohort (top panel) and GSE39582

(lower panel). NS, non-significant (log-rank test).
analysis (Figure S1F). Finally, we found no significant difference

in relapse-free survival (RFS) between CC archetypes in TNM

stage II–III patients in two cohorts, GSE39582 and a combina-

tion of SYSCOL-GSE41258 (combined to increase the number

of relapse events per archetype; Figure 2G). Hence, the CC

archetype appeared not to be a major determinant of patient

prognosis per se.
1270 Cell Reports 19, 1268–1280, May 9, 2017
Five Tumor Archetypes Exist in CRC
Although CC archetypes were homogeneous for CC-related

traits (Figure 2), we found significant differences in the stroma

content of samples within each CC archetype (Figures S1G

and S1H), which may relate to patient prognosis. Therefore, to

integrate the contribution of the tumor stroma into CRC arche-

types, we performed class discovery in the SYSCOL cohort
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using transcripts of both epithelial and stromal origin. This

identified five tumor archetypes, denoted ‘‘goblet,’’ ‘‘stroma,’’

‘‘SSC,’’ ‘‘dARE,’’ and ‘‘CIN’’ (Figures 3A and S2A; see Figure S2B

for distribution of tumor archetypes according to TNM stage,

gender, location, and MSI status), which were validated in the

two independent CRC cohorts as described above for the CC

archetypes (Figures 3B, S2C, S2D, S2E, and S2F). The goblet

and SSC archetypes were dominated by the secretory and

serrated CC archetypes, respectively (Figure 3A) and character-

ized by the key features presented for those above (Figure 2).

More notably, the stroma tumor archetype encompassed a mix

of all three CC archetypes (Figure 3A) and was best character-

ized by properties of the tumor microenvironment (TME). Stroma

tumors showed high expression of transcripts derived from the

tumor stroma (Figure S2G) that were predicted to have both

immune cell and non-immune cell origin by the ESTIMATE tool

(Figure 3A; ‘‘ImmuneScore’’ and ‘‘Stroma score’’). Finally, the in-

clusion of stromal transcripts identified two tumor archetypes,

‘‘dARE’’ and ‘‘CIN’’ that both belonged to the adsorptive CC

archetype and shared features characteristic of conventional

CRC such as CIN (Figure 3A). Notably, we found that patients

with stroma archetype tumors had shorter RFS than other

patients, particularly the SSC tumor patients, in the GSE39582

and SYSCOL-GSE41258 cohorts (Figures 3C and S2H). This

indicated that the TME had a stronger impact on patient

prognosis than the CC archetypes (Figure 2G). To identify the

biological processes that distinguished tumor archetypes, and

possibly affected patient prognosis, we therefore performed

GSEA focusing on TME-related traits. Foremost, both the

poor-prognosis stroma tumors and good-prognosis SSC tumors

were enriched in gene sets associated with ‘‘immune pro-

cesses’’ and exhibited high T cell infiltration as evaluated by

both RNA-seq (Figure 3D) and DNA methylation profiling (Fig-

ure 3E). However, SSC tumors were enriched in transcripts

defining active cytotoxic CD4 and CD8 T cells and depleted in

transcripts associated with an activated ‘‘stroma’’ and ‘‘immune
Figure 3. Identification of Tumor Archetypes

(A) Tumor archetypes in the SYSCOL cohort identified by consensus NMF-base

archetype, CC archetype, and the predicted CMS consensus type (CMS1–4). W

unavailable (NA) or non-significant (NS). The plasma cell content was evaluated

IGHA2. Stroma score and ImmuneScore were evaluated using the ESTIMATE pac

by themean expression of ARE-positive transcripts (max-min-normalized), where

asRNA transcripts. Scores and expression values are represented as 10 percent

(B) Comparison of independent NMF-based tumor archetype predictions in the SY

a PCA of the archetype-specific AUC values for each gene. Colored circles repre

cohort (black dots; 1 = SYSCOL, 2 = GSE39582, 3 = GSE41258). The dARE cluste

into one dARE archetype during subsequent analysis. Pairwise comparison of

between cohorts (BH-adjusted p values for each archetype association are given

(C) Kaplan-Meier plots showing tumor-archetype-specific RFS for TNM stage II–II

(right panel). Goblet, dARE, and CIN samples have been collapsed into one group

rank test) are given for SSC versus stroma tumor groups.

(D) Molecular features of the tumor archetypes as evaluated by GSEA in the SYSC

or negative (i.e., depleted) NES are shown in red and blue, respectively, and in bo

sources: 1Grade et al. (2007) (MSigDB:M16740); 2MSigDB H: hallmark gene sets;

et al. (2011) (MSigDB: M2572); and 9Harris (2002) (MSigDB:M10508).

(E) DNAmethylation profiles of gene promoter regions were used to estimate the re

using the eFORGE tool. Error bars indicate the SD.

(F) Tumor archetype distribution of publicly available CRC transcriptome datasets

for the datasets are given. LMD, laser capture microdissected.
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suppression,’’ whereas the reverse pattern was observed in

poor-prognosis stroma tumors (Figure 3D). A relative enrichment

of stromal cells, such as myofibroblasts (IMR90) and mesen-

chymal stem cells (MSCs) in stroma tumors was observed by

RNA-seq (Figure 3D) and confirmed byDNAmethylation analysis

(Figure 3E). The CIN and dARE tumors were instead relatively

depleted in gene sets associated with both stromal and immune

activity, in particular, IFN-a/g signaling and T cells, again seen in

both RNA-seq (Figure 3D) and DNAmethylation data (Figure 3E).

Finally, the goblet tumor TME was most similar to normal

mucosa as evaluated by PCA of stromal transcripts (Figure S3A)

and characterized by high expression of immunoglobulin A

(IGHA1 and IGHA2), the principal antibody of normal intestine

(Figure 3A).

Interestingly, we found that the tumor archetype distribution

differed between public CRC cohorts (Figure 3F), which had

been subtyped into tumor archetypes using our ‘‘CRCclassifier’’

(Figure S3B). For example, the GSE13294 dataset contained

relatively many SSC tumors, whereas goblet tumors were more

infrequent in the TCGA colorectal samples (COREAD). Notably,

the stroma, dARE and SSC tumor archetypes, which are in

part characterized by stromal transcripts, were diminished or

completely absent in the laser capture microdissected (LMD)

cohort (GSE21510; Figure 3F). We also evaluated how the

sampling of spatially distinct regions of the tumor impacted

archetype assignment (Figure S3C). Archetype assignments

were overall very robust and only the stroma archetype assign-

ment varied in one biopsy from one patient, which may be

expected given some variance in the stromal content between

tumor biopsies. Collectively, our results suggest that properties

of the TME, primarily anti-tumor immune cell and fibroblast activ-

ity, are associated with the observed differences in patient prog-

nosis. However, our results also suggest that the evaluation of

such TME-related traits may, at least in some cases, be influ-

enced by the biopsy site and the chosen criteria for cancer cell

content.
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Figure 4. The dARE Archetype Is Influenced by the Microbiome

(A) The fraction of ARE-positive transcripts among all up- and downregulated transcripts (median FC >1 and FC <1, respectively; both p < 0.05; WRS) in the dARE

archetype of CRC cohorts (SYSCOL, GSE39582, GSE41258), normal mucosa samples (SYSCOL), breast cancer (BRAD; TCGA), prostate cancer (PRAD; TCGA),

lung cancer (LUAD; TCGA), and bladder cancer (BLAD; TCGA). ‘‘All RNAs analyzed’’ indicate the fraction of ARE-positive transcripts among all transcripts included

in the analysis (i.e., the ’’background’’ proportion of ARE-positive transcripts). An asterisk (*) indicates that the distribution of ARE-positive transcripts within a

dataset is significantly different between upregulated and downregulated transcripts at the following significance levels: *p < 0.05; **p < 10�7; ***p < 10�20 (WRS).

(B) Proportion of samples within the mucosa WT, mucosa dARE, CIN, and dARE tumor archetypes with a high (i.e., above average) ImmuneScore (evaluated by

the ESTIMATE package) or content of activated DCs and neutrophils (as evaluated by the CellMix tool). Significance was assessed using WRS.

(C) The average fold change (FC) in bacteria genera read numbers comparing mucosa dARE to mucosa WT (x axis) and CRC dARE to CIN archetypes (y axis).

Bacteria genera with significantly higher read counts in both CRC and mucosa dARE are shown in red (p < 0.01; WRS).

(D) Violin plot showing the RNA expression FC of the top 50 RNA transcripts upregulated or downregulated in the dARE versus CIN tumor archetypes of the three

discovery cohorts SYSCOL, GSE39582, and GSE41258 in DCs from two healthy donors after stimulation by plasma severely or non-severely infected with the

bacteria Burkholderia (data from GSE49753). Median FC (white dot), interquartile range (black boxes), 95% confidence interval (black line), and statistical sig-

nificance (WRS) are indicated.
The dARE Archetype Is Microbiome Dependent
We found an overall good resemblance between our tumor

archetypes and the four proposed CMS subtypes upon applica-

tion of the CMS classifier provided by the CRCSC (Guinney

et al., 2015). A very notable exception, however, was our further

stratification of CMS2 into the dARE and CIN tumor archetypes

(Figures 3A and S4A). Interestingly, dARE tumors were depleted

in transcripts containing 30 UTR AU-rich elements (AREs), which

motivated the name depleted in AU-rich elements (dARE) and

enriched in antisense RNA (asRNA)/long non-coding RNA

(lncRNA; Figures 3A and 4A and S2G). We observed a similar

dARE-like phenotype characterized by depletion of ARE-positive

(ARE+) transcripts in a group of 70 (of 301) normal mucosa sam-

ples identified by NMF-based clustering (referred to as ‘‘mucosa

dARE’’ opposed to ‘‘mucosa wild-type (WT)’’; Figures 4A, S4B,
and S4C). AREs are frequently found in immune related tran-

scripts, where they facilitate the post-transcriptional degradation

upon stimulation, e.g., by anti-inflammatory interleukin-10 (IL-10;

Kishore et al., 1999). In accordance, we found reduced expres-

sion of immune transcripts in both tumor andmucosa dARE sam-

ples as compared to CIN tumors and mucosa WT samples,

respectively (ImmuneScore; Figure 4B). Colonic dendritic cells

(DCs) can be activated to produce IL-10 upon infection by certain

bacteria and attract neutrophilic cells (Rigby et al., 2005; Doz

et al., 2013). Indeed, themucosaand tumordAREgroupsencom-

passed significantly more samples with a high content of acti-

vated DCs (p < 10�12 and p < 0.05; Wilcoxon rank-sum [WRS]

test) and neutrophils (p < 10�4 and p < 10�3;WRS) thanCIN sam-

ples as evaluated by the CellMix tool (Figure 4B). To investigate

whether bacterial infection may have induced DC activation in
Cell Reports 19, 1268–1280, May 9, 2017 1273



dARE samples, wemappedSYSCOLRNA-seq reads to bacterial

genomes. We found that the proportion of samples with a high

bacterial read count was significantly higher for dARE than CIN

tumor samples (p < 23 10�7; WRS), for mucosa dARE than mu-

cosa WT samples (p < 3 3 10�5; WRS; Figure S4D) and that the

bacteria genus Burkholderia was enriched in both mucosa

(p < 3.3 3 10�3; WRS) and tumor (p < 7.3 3 10�4; WRS) dARE

samples (Figure 4C). To investigate whether Burkholderia infec-

tion could induce a dARE-like transcriptional phenotype in DCs,

we analyzed data from a study where DCs from two healthy do-

nors were exposed to Burkholderia-infected plasma (Khaenam

et al., 2014; GSE49753). Indeed, the exposure to severely in-

fected plasma induced a dARE-like phenotype with overrepre-

sentation of ARE+ transcripts among downregulated genes (Fig-

ure S4E) similar to our clinical samples (Figure 4A). In agreement,

the majority of top 50 up- or downregulated transcripts in dARE

tumors were similarly up- and downregulated in DCs from two

healthy donors upon exposure to severely infected Burkholderia

plasma (p < 10�13; WRS; Figure 4D). Furthermore, we found

dARE-like transcriptional profiles upon class discovery in other

cancers includingbreast, prostate, bladder, and lungcancer (Fig-

ure 4A), suggesting a possible microbial influence on a subfrac-

tion of these cancers, which require further investigation.

Identification of Archetype-Specific Prognostic
Biomarkers
The observation that the TME was strikingly different between

tumor archetypes and related to patient prognosis suggested

that prognostic biomarkersmaywell be archetype specific rather

than universal. Therefore, we investigated whether subtyping

of CRC into homogeneous tumor archetypes would allow identi-

fication and validation of archetype-specific prognostic bio-

markers (Figure 1). We divided the TNM stage II–III tumors

from the SYSCOL and GSE39582 cohorts into aggressive (CRC

relapse/CRC-related death) and non-aggressive groups (no

relapse or CRC-related death) within the stroma, SSC, and CIN

archetypes and compared aggressive and non-aggressive sam-

ples by GSEA (the goblet and dARE archetype tumors were

excluded from this analysis due to low numbers of relapsing

cases). Overall, we found that particularly gene sets related to

immune processes (e.g., lymphocyte activation, immune

processes and IFN responses) were depleted in aggressive tu-

mors for all three tumor archetypes (Figure 5A; see Figure S5A

for top enriched/depleted gene sets distinguishing aggressive

and non-aggressive tumors in SYSCOL/GSE39582 archetypes).

Conversely, gene sets related to an activated stroma/EMT

(epithelial-mesenchymal transition) (i.e., ECM/EMT) were en-

riched in aggressive stroma and SSC tumors, whereas gene

sets associated with respiratory electron transport (RET)/oxida-

tive phosphorylation (Oxphos) were depleted in aggressive CIN

tumors for both discovery cohorts (Figure 5A). This suggested

that the same biological processes (e.g., immune cell activity

and stromal EMT processes) distinguished aggressive and non-

aggressive tumors of the SSC and stroma archetypes. However,

inspection of the top-enriched gene set ‘‘mesenchymal transition

signature’’ (Anastassiou et al., 2011) in the SSC and stroma

archetypes revealed that the particular transcripts driving the

EMT gene-set enrichment were archetype specific. Most EMT-
1274 Cell Reports 19, 1268–1280, May 9, 2017
associated transcripts with a high ranked metric score (RMS;

i.e., enrichment) in the stroma archetype had a low RMS in the

SSC archetype and vice versa (Figure 5B). In agreement, a

biomarker panel based on the top ten enriched/depleted EMT-

related transcripts in aggressive stroma tumors were prognostic

only in stroma tumors and not SSC tumors, and vice versa (Fig-

ures 5C and S5B). This was validated in the independent cohort

GSE17538 (Figure 5D). We next focused on aggressive CIN tu-

mors where top depleted gene sets were associated with RET

(Figures 5A, 5E, and S5A). Similarly, a panel of the top ten en-

riched/depleted RET-related transcripts was only prognostic in

CIN tumors and not in SSC/stroma tumors (shown for the valida-

tion cohort GSE17538 in Figure 5F and for the discovery cohorts

SYSCOL and GSE39582 in Figure S5C). Collectively, these ob-

servations show that archetype-specific prognostic biomarkers

exist and underscore the strength of our strategy to molecularly

subtype CRC cohorts prior to biomarker validation attempts.

Establishment of Composite Prognostic Biomarker
Panels for CRC
Our aboveanalysis indicated that several biological traits contrib-

uted to aggressiveness within each tumor archetype (such as

immune signaling, EMT processes, and RET/oxphos; Figure 5A)

and that archetype-specific biomarker panels for each of these

traits could be established. To further improve the prognostica-

tion of CRC patients, we therefore next generated ‘‘composite’’

biomarker panels that interrogate several aggressive traits per

archetype by summing the biomarker scores for the individual

traits. For stroma tumors, we combined three biomarker panels

for enhanced EMT, DNA methylation loss, and reduced IFN-g

signaling, for SSC tumors, we combined three biomarker panels

for enhanced EMT, stromal stem cell (STC) activity, and reduced

IFN-g signaling and for CIN tumors four biomarker panels

for reduced RET/Oxphos/peripheral blood mononuclear cell

(PBMC)/IFN-g signaling were combined (for details on how the

composite panels were derived see Supplemental Experimental

Procedures section ‘‘Establishment of archetype-specific prog-

nostic biomarker panels and calculation of panel scores’’; the

relevant gene sets are marked with asterisk in Figure 5A). Each

of these three composite biomarker panels generated a panel

score (P-score), which were denoted P-stroma, P-SSC, and

P-CIN for the stroma, SSC, and CIN archetypes, respectively.

We confirmed that our three archetype-specific composite

panels stratified patients from the stroma, SSC, and CIN arche-

types into groups with significantly different RFS in the discovery

cohorts SYSCOL andGSE39582 (Figure 6A; left panels).We next

validated the P-scores in samples from independent public

cohorts sufficiently sized for archetype-specific analysis of RFS

(Figure 6A, right panels; cohortswere combined to increase num-

ber of relapse events in each cohort; see Supplemental Experi-

mental Procedures section ‘‘Relapse-free survival analysis and

samples included’’): here, the CIN panel could be evaluated in

more validation cohorts than the SSC and stroma panels due to

the higher frequency of the CIN archetype. Also, we confirmed

that the archetype-specific panels were prognostic only in the in-

tended tumor archetype in both discovery and validation cohorts

(Figure S6A). We next compared the hazard ratios (HRs) and HR

95%confidence interval (HR95%CI) for P-scores and TNMstage
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Figure 5. Identification of Subtype-Specific Prognostic Biomarker Panels

(A) GSEA enrichment maps showing gene sets enriched (red circles) or depleted (blue circles; connected by green lines) in aggressive stroma, SSC, and CIN

archetype tumors from the SYSCOL and GSE39582 cohorts (FDR <0.1). Text labels indicate the most prominent gene ontology features associated with the

particular gene-set cluster. ECM, extracellular matrix; AP, antigen presentation; EMT, epithelial-to-mesenchymal transition; STC, stroma stem cells; RET, res-

piratory electron transport; Oxphos, oxidative phospohorylation; INFg, IFN-g signaling; PBMC, peripheral blood mononuclear cell; DNA meth., DNA methylation

loss; UN, unknown function. Gene sets utilized for establishment of archetype-specific prognostic biomarker panels are indicated with asterisks (*).

(B) Distribution of the GSEA rank metric scores (RMS) for transcripts of the gene set mesenchymal transition signature (EMT; Anastassiou et al., 2011; MSigDB:

M2572) comparing aggressive and non-aggressive SSC and stroma tumors in the SYSCOL and GSE39582 datasets. Red indicates a high relative RMS and that

the transcript is enriched in aggressive tumors. Top transcripts enriched (i.e., high RMS) in aggressive tumors of the stroma and SSC archetypes are indicated

with red bars. The stroma expression (expr.) score (fraction of transcripts of stromal origin; Isella et al., 2015) is given to the right.

(C and D) Kaplan-Meier survival plots showing the RFS of TNM stage II–III SSC (left two panels) and stroma (right two panels) patients of the of SYSCOL (C) and

GSE17538 (D) cohorts stratified by the EMT-SSC and EMT-stroma prognostic biomarker panels as indicated. p values (log-rank test) and HR95%CI are

indicated.

(E) Distribution of the GSEA rank metric scores (RMS) for transcripts of the gene set respiratory electron transport, ATP synthesis by chemiosmosis coupling, and

heat production by uncoupling proteins (here denoted RET; MSigDB: M1025) comparing aggressive and non-aggressive CIN tumors in the SYSCOL and

GSE39582 cohorts. Top transcripts depleted (i.e., low RMS) in aggressive CIN tumors are indicated with a blue bar. The stroma expr. score is given to the right.

(F) Kaplan-Meier survival plots showing the RFS of CIN, stroma, and SSC TNM stage II–III patients of the GSE17538 cohort stratified by the RET-CIN prognostic

biomarker panel. p values (log-rank test) and HR95%CI are indicated.
in a univariate (Figure 6B) and multivariate Cox regression

analysis (Figure S6B). Multivariate Cox regression analysis, also

including the molecular subtypes (CMS or tumor archetype),

showed that the P-scores were independent predictors of RFS

and overall stronger than both TNM stage and molecular sub-

types (Figures 6C and S6C). The P-score added significant prog-

nostic value to both TNM stage II and III patients (stage II: HR,

5.06; 95% CI, 3.24–7.92; p = 0; Figure 6D, center panel;

stage III: HR, 4.05; 95% CI, 2.67–6.13; p = 0; Figure 6D, right
panel). We applied Harrell’s C-index to estimate how much the

predictive accuracy of the regression model was increased by

adding the P-score to the TNM stage. A C-index increase of

0.14 and 0.06 was observed in the discovery and validation co-

horts, respectively, confirming that theP-score improved thepre-

dictive accuracy. Finally, the P-score also provided prognostic

information additional to MSI status, a well-established marker

of favorable prognosis (Saridaki et al., 2014), in the patient sam-

ples for which tumorMSI/MSS status was available (Figure S6D).
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Figure 6. Validation of Composite Prognostic Biomarker Panels

(A) Kaplan-Meier survival plots showing the RFS of stroma (top panel), SSC (middle panel), and CIN (lower panel) tumor patients stratified by the archetype-

specific prognostic biomarker panels P-stroma, P-SSC, and P-CIN. Plots for the two prognosis discovery cohorts, SYSCOL and GSE39582, are shown in the left

panel, whereas independent validation cohorts are shown in the right panel. See Supplemental Experimental Procedures for a description of the cohorts used.

p values are indicated (log-rank test).

(B) Forest plot of the HRs (black lines) and HR95%CIs estimated for the prognostic biomarker panels (red) and tumor TNM stage (blue) in CRC cohorts evaluated

by a univariate Cox regression analysis. N indicates that the HR95%CI has an infinite value and was here set to 1–8 for illustration purposes.

(C) Tables showing the significance and HR for TNM stage, CMS subtype, tumor archetype, and P-score in CRC samples of the discovery cohorts (upper table)

and validation cohorts (lower table) included in (A) using a univariate and multivariate cox regression analysis (TNM stage, CMS subtype, tumor archetype, and

P-scores were co-variables). The analysis was restricted to CRC samples for which a CMS annotation was provided by the CRCSC (Guinney et al., 2015) or

calculated using the CMSclassifier for the SYSCOL/GSE41258 cohorts, which were not analyzed by the CRCSC.

(D) Kaplan-Meier survival plot showing the RFS of stroma, CIN, and SSC TNM stage II–III tumor patients from all cohorts analyzed in (A) stratified by TNM stage

only (left panel) or by P-scores in TNM stage II (middle panel) and III tumors (right panel). p values (log-rank test), HR (±SD), and HR95%CI are given for a univariate

cox regression analysis (HR).

(E) Schematic illustration of the potential application of P-scores to stratify TNM stage II–III patients with aggressive disease for adjuvant chemotherapeutic

treatment. Typically, adjuvant chemotherapy is offered to stage III patients only leading to systematic under- and overtreatment of stage II and stage III patients,

respectively (left panel). The P-score helps reduce this problem by identifying patients with aggressive disease within the stage II and stage III patient groups,

which allows targeting of chemotherapeutic treatment to these patients only. The sensitivity, specificity, NPV, and positive predictive value (PPV) for the TNM

stage (left) and P-score (right) in TNM stage II and III patients included in (A) are given.
Collectively, this illustrated that our archetype-specificbiomarker

panels enable CRC prognostication to be enhanced beyond

CMS subtyping, MSI status, and the routinely used TNM staging.

DISCUSSION

In this work,we hypothesized thatmolecular stratification ofCRC

into homogeneous subtypes is required for validation of robust
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prognostic biomarkers acrossCRCcohorts.We therefore initially

identified molecular archetypes of CRC by performing class dis-

covery in independent CRC cohorts, both upon exclusion and in-

clusion of stromal transcripts. This approach adds to previous

subtyping strategies that have not weighed the cellular origin of

the analyzed transcripts (Guinney et al., 2015) and allowed us

to propose a model of CRC in which three major CC archetypes

are encompassed within a total of five major tumor archetypes.



The three CC archetypes agree with the proposal of three

molecular origins of CRC (Leggett and Whitehall, 2010). Here,

the adsorptive and serrated archetypes likely reflect tumori-

genesis along the well-established ‘‘conventional’’ pathway,

initiated by APC mutation, and the more recently described

‘‘serrated’’ pathway, initiated by BRAF activating mutations,

respectively (Fearon and Vogelstein, 1990; Leggett and White-

hall, 2010). The secretory archetype may represent tumorigen-

esis along the less-described ‘‘alternate pathway’’ characterized

by frequent KRAS activating mutations (Leggett and Whitehall,

2010). In agreement, KRAS mutation can promote intestinal hy-

perplasia and goblet cell pool expansion (Feng et al., 2011) simi-

larly to our observations.

Our tumor archetypes bear resemblance to the CMSs pro-

posed by the CRCSC with the notable exception that we identi-

fied an additional subtype of CIN tumors, named dARE, which

is likely metabiome dependent. We hypothesize that bacterial

infection by certain bacteria can induce the dARE phenotype

by activating intestinal DCs to induce immune tolerance,

possibly mediated by IL-10 and ARE+ transcript downregulation.

Given that host anti-tumor immune responses greatly impact

cancer dissemination and patient prognosis, further studies

should consolidate our model and establish how immune modu-

lation by the microbiota influences CRC development and treat-

ment in patients with dARE tumors, and possibly in other can-

cers. It should be stressed that the identification of the dARE

archetype also proved essential to our prognostication strategy:

we were unable to validate CIN subtype-specific prognostic

biomarkers if the transcriptionally extreme dARE tumors were

not separated from the CIN tumors (data not shown).

Our dual class discovery approach also helped illustrate that

the TME, rather than the CC archetype, is a major determinant

of patient prognosis both between and within tumor archetypes.

In particular, the aggressive stroma archetype is characterized

by high transforming growth factor b (TGF-b) expression, inhibi-

tion of cytotoxic CD4/CD8 T cell activation (Thomas and Mas-

sagué, 2005), and activation of fibroblasts into cancer-associ-

ated fibroblasts (CAFs) that augments EMT processes (Calon

et al., 2012). Instead, the good-prognosis SSC tumors are char-

acterized by an active, anti-tumor immune response mediated

by active cytotoxic CD4 and CD8 T cells (Figure 3). Notably,

the biological processes that contribute most negatively to

archetype-specific prognosis, namely, stroma activation (i.e.,

EMT) and reduction of immune processes (i.e., IFN-g signaling),

are also prognostic determinants within tumor archetypes. Yet,

we find that the specific gene expression biomarkers that best

reflect this are archetype specific rather than universal. This

observation may help explain the difficulties of validating CRC

biomarkers without molecular subtyping in the past. In this re-

gard, differences in archetype distributions between public

CRC cohorts may, at least in some cases, reflect differences in

biopsy processing requirements: this is most clearly reflected

in the laser microdissected cohorts in which, e.g., stroma arche-

type tumors are not identified. This calls for standardization of

sample collection when the aim is subtyping and application of

TME-based biomarkers, a concern recently shared by others

(Dunne et al., 2016). Furthermore, only few publicly available

CRC cohorts are large enough to support the study of arche-
type-specific biomarkers. Consequently, patient numbers in

archetype-specific analysis of RFS, as presented here, are

currently limited as cohortsmust be divided into archetypes prior

to biomarker discovery/validation. Thus, future clinical validation

in prospective cohorts calls for large collaborative efforts.

Based on our results, we envision that our prognostication

framework may potentially supplement TNM classification to

enhance clinical patient prognostication and guide treatment de-

cisions, e.g., to stratify patients for chemotherapeutic treatment

(Figures 6D, 6E, and S6E). Today, only TNM stage III patients

are routinely offered adjuvant chemotherapeutic treatment,

which results in frequent undertreatment of TNM stage II patients

(�25% disease relapse) and overtreatment of stage III patients

(�50% disease relapse; Marshall, 2010; Puppa et al., 2010; Tsi-

kitis et al., 2014). We foresee that TNM stage II–III patients may

alternatively be stratified according to their molecular P-score,

thereby enabling treatment to be directed to those patients with

highest risk of relapsing. In the CRC samples analyzed here,

stratification of TNM stage II patients for adjuvant treatment

would dramatically help to reduce patient undertreatment:

�69% (61/89) of TNM stage II patients with relapse/CRC-death

were P-score positive, while <10% (28/298) of P-score negative

patients experienced relapse/CRC-death (negative predictive

value [NPV] of �91%; Figure 6E). We foresee that the P-score

may similarly help reduce the current overtreatment of stage III

patients given its high NPV in stage III tumors (Figure 6E). While

this is promising, prospective clinical studies are needed todocu-

ment the clinical benefits of the strategy. Finally, we envision that

the molecular subtyping framework presented here is equally

applicable in other cancer types and can also be used for devel-

opment of archetype-specific treatment-predictive biomarkers.

EXPERIMENTAL PROCEDURES

Additional experimental procedures are available in the Supplemental Exper-

imental Procedures.

Patients and Tumor Material

A total of 33 adenoma, 281 carcinoma samples, and 301 normal mucosa sam-

ples (SYSCOL cohort) from a total of 301 patients were selected from the colo-

rectal cancer biobank at the Department of Molecular Medicine, Aarhus

University Hospital, Skejby, Denmark (see Table S1 for an overview of basic

molecular and clinical features for patients in the SYSCOL cohort). Patients

gave their written informed consent and were followed according to national

clinical guidelines. This study was conducted in accordance with local law

and is approved by local institutional review boards and ethical committees.

RNA-Seq and DNA Methylation Profiling

RNA purification and sequencing of the SYSCOL cohort were performed as

described (Ongen et al., 2014). Transcriptome quantification was performed

using by mapping sequencing reads to human genome issue HG19 (hg19) us-

ing Tophat2 (Kim et al., 2013) and estimating fragments per kilobase of exon

per million fragments mapped (FPKM) values for individual Ensembl Genes

using Cufflink (Gencode v.15 annotation w/o Pseudogenes; Trapnell et al.,

2010). Bacterial read counts were obtained by mapping unmapped reads (to

hg19) to bacterial and viral genomes available at NCBI genome database.

DNA Methylation Profiling

DNA methylation profiles of the SYSCOL samples were generated using the

infinium HumanMethylation450 BeadChip technology as previously described

(Lopez-Serra et al., 2014). Raw data were processed into b values using the

ChAMP R-package (Morris et al., 2014).
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NMF-Based Consensus Clustering and Comparison of Predictions

NMF-based consensus clustering was performed using the R-package

‘‘NMF’’ (Gaujoux and Seoighe, 2010). The class number was set based

on evaluation of the cophenetic coefficient, and consensus silhouette

scores and samples with silhouette scores <0 were labeled as ‘‘unclassi-

fied.’’ For identification of CC archetypes, only transcripts (HUGO Gene

Nomenclature Committee [HGNC] symbols) that had a ‘‘fraction of reads

of murine origin’’ <0.01 were analyzed (as devised by Isella et al., 2015),

whereas all transcripts were included during tumor archetype discovery.

The similarity of the CC and tumor archetypes, independently defined in

the SYSCOL, GSE39582, and GSE41258 cohorts, was assessed using

PCA of the archetype-specific area under the curve (AUC) values obtained

for all common transcripts using the R-package ROCR (Sing et al., 2005)

and the SubMap algorithm (Hoshida et al., 2007) via the GenePattern inter-

face (Reich et al., 2006) using 1,000 markers genes, each null distribution,

and Benjamini-Hochberg (BH)-corrected false discovery rates (FDRs).

NMF-based clustering of DNA methylome data was performed using a

similar strategy based on b values from the 17,711 most variable probes

(interquartile range >1).

Stromal and ARE Transcripts

The ARE content of RNA transcripts were defined by the AREsite database

(Gruber et al., 2011). Stromal transcripts were defined as those with a fraction

of reads of murine origin >0.80 as devised by Isella et al. (2015).

Mutation and Copy Number Analysis

KRAS codon 12, 13, and 61 mutations and the mutation score were evaluated

from the SYSCOL RNA-seqdata using the MuTect package (Cibulskis et al.,

2013). BRAF exon 15 (V600E) mutations were identified by singleplex PCRs

using LightScannerMasterMix and LightScanner analysis (Idaho Technology).

Copy number alterations (CNAs) were estimated from the intensity of the Infin-

ium HumanMethylation450 BeadChip by comparing adenoma-carcinoma

samples to normal mucosa samples using the ChAMP R-package (Feber

et al., 2014). The MSI status of the SYSCOL samples was evaluated using a

Pentaplex PCR with five quasimonomorphic mononucleotide repeats and

samples with three or more of five positive markers classified as MSI, as rec-

ommended in Suraweera et al. (2002).

Nearest Template Prediction

Nearest template prediction (NTP) was performed using the NTP module

(Hoshida, 2010) of the GenePattern analysis toolkit (Reich et al., 2006) using

default settings and a BH corrected FDR <0.25. The utilized datasets are

described in the Supplemental Experimental Procedures.

Estimation of Sample Cellular Content

The cellular content of CRC samples was estimated from RNA expression

and DNA methylation data using several bioinformatics methods (details

in Supplemental Experimental Procedures). The following packages were

used. ESTIMATE (Yoshihara et al., 2013) estimated the stroma score and

ImmuneScore. CellMix (Gaujoux and Seoighe, 2013) estimated the proportion

of immune cell types in CRC samples (using the basis matrix from Abbas et al.,

2009). CIBERSORT (Newman et al., 2015) was used to estimate the content of

leukocyte cells using the leukocyte signature matrix (LM22). The eFORGE tool

v.1.1 (Breeze et al., 2016) was used to estimate the cell content of the tumor

samples based on their DNA methylation profile.

Gene-Set Enrichment Analysis

GSEA was performed using GSEA v.2.2.2 provided by the Broad Institute

(Mootha et al., 2003; Subramanian et al., 2005) using default settings (except

minimum gene-set size = 10), and gene-set permutation type and results were

visualized using EnrichmentMap (Merico et al., 2010) via the Cytoscape

software v.3.2.0 (Shannon et al., 2003). Refer to Supplemental Experimental

Procedures for a description of the included gene sets.

External CRC Datasets

Transcriptome data from the two external datasets used for archetype dis-

covery (GSE39582 and GSE41258) were acquired as series matrix files from
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the Gene Expression Omnibus (GEO; Edgar et al., 2002; https://www.ncbi.

nlm.nih.gov/geo/). The Cancer Genome Atlas (TCGA) cohorts ‘‘COAD,’’

‘‘READ,’’ ‘‘BLAD,’’ BRAD,’’ ‘‘LUAD,’’ and ‘‘PRAD’’ were acquired as level 3

(processed) data matrixes for RNA-seqV2 data from the TCGA portal

(https://tcga-data.nci.nih.gov/docs/publications/tcga?). The transcriptome

dataset of Burkholderia pseudomallei-infected DCs (Khaenam et al., 2014)

was acquired as a series matrix file from GEO: GSE49753; https://www.

ncbi.nlm.nih.gov/geo). External cohorts used for validation of prognostic

biomarker panels, GSE37892, GSE14333, and GSE13294, were acquired

from the CRCSC synapse data portal as frozen robust multiarray analysis

(fRMA) normalized data (Guinney et al., 2015; https://www.synapse.org

[Synapse id:syn2623706]), whereas GSE17538 and GSE41258 (not available

at CRCSC) were acquired as series matrix files from GEO (https://www.ncbi.

nlm.nih.gov/geo). See Supplemental Experimental Procedures for accession

numbers for samples included in the archetype discovery and RFS

analyses.

CRC Classifiers and Classification

The development and application of the CRCclassifier as well as the applica-

tion of the CMSclassifier provided by the CRCSC (Guinney et al., 2015) is

described in the Supplemental Experimental Procedures.

Establishment of Archetype-Specific Biomarker Panels

Details of the development and application of archetype-specific biomarker

panels are described in the Supplemental Experimental Procedures.

Statistical Analysis

Unless otherwise noted, statistical significance of data was determined using

a non-parametric WRS test, and p < 0.05 was considered significant. GSEA

estimated the statistical significance by a permutation test by creating a

random gene set: gene sets with FDR q values below 0.25 are generally

considered significant (Mootha et al., 2003; Subramanian et al., 2005); how-

ever, a FDR limit of 0.1 is used here unless indicated in the text. For NTP

analysis, samples were assigned to a template if FDR was <0.25 (BH cor-

rected). RFS analysis was performed in TNM stage II–III patients only. RFS

was measured as the interval between surgery and first recurrence or death

as a result of CRC and was censored at the last follow-up or non-CRC-

related death. The survival analysis and Kaplan-Meier plots were generated

using Stata/IC 12.1 (StataCorp). The presented p values were evaluated by a

log-rank test of equality, whereas HR and HR (95%CI) were evaluated using

a Cox proportional hazards model. Multivariate Cox regression analysis was

performed using tumor TNM stage, CMS type, MSI status, tumor archetype,

and the relevant archetype-specific biomarker P-score as co-variables, as

indicated in the text.

ACCESSION NUMBERS

The accession number for the RNA-seq data from the 314 SYSCOL adenoma

and carcinoma samples reported in this paper is EGA: EGAS00001002376

(https://www.ebi.ac.uk/ega/), which is hosted by the EBI and the CRG, for

controlled accesses.
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Grade, M., Hörmann, P., Becker, S., Hummon, A.B., Wangsa, D., Varma, S.,

Simon, R., Liersch, T., Becker, H., Difilippantonio, M.J., et al. (2007). Gene

expression profiling reveals a massive, aneuploidy-dependent transcriptional

deregulation and distinct differences between lymph node-negative and

lymph node-positive colon carcinomas. Cancer Res. 67, 41–56.

Gruber, A.R., Fallmann, J., Kratochvill, F., Kovarik, P., and Hofacker, I.L.

(2011). AREsite: A database for the comprehensive investigation of AU-rich

elements. Nucleic Acids Res. 39, D66–D69.

Gr€un, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N.,

Clevers, H., and van Oudenaarden, A. (2015). Single-cell messenger RNA

sequencing reveals rare intestinal cell types. Nature 525, 251–255.

Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson,

C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., et al. (2015). The

consensusmolecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356.

Harris, A.L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nat.

Rev. Cancer 2, 38–47.

Hoshida, Y. (2010). Nearest template prediction: A single-sample-based flex-

ible class prediction with confidence assessment. PLoS ONE 5, e15543.

Hoshida, Y., Brunet, J.P., Tamayo, P., Golub, T.R., and Mesirov, J.P. (2007).

Subclass mapping: Identifying common subtypes in independent disease

data sets. PLoS ONE 2, e1195.

Isella, C., Terrasi, A., Bellomo, S.E., Petti, C., Galatola, G., Muratore, A.,

Mellano, A., Senetta, R., Cassenti, A., Sonetto, C., et al. (2015). Stromal contri-

bution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319.

Khaenam, P., Rinchai, D., Altman, M.C., Chiche, L., Buddhisa, S., Kewchar-

oenwong, C., Suwannasaen, D., Mason, M., Whalen, E., Presnell, S., et al.

(2014). A transcriptomic reporter assay employing neutrophils to measure

immunogenic activity of septic patients’ plasma. J. Transl. Med. 12, 65.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L.

(2013). TopHat2: Accurate alignment of transcriptomes in the presence of

insertions, deletions and gene fusions. Genome Biol. 14, R36.

Kishore, R., Tebo, J.M., Kolosov, M., and Hamilton, T.A. (1999). Cutting edge:

Clustered AU-rich elements are the target of IL-10-mediated mRNA destabili-

zation in mouse macrophages. J. Immunol. 162, 2457–2461.

Laiho, P., Kokko, A., Vanharanta, S., Salovaara, R., Sammalkorpi, H., Järvinen,

H., Mecklin, J.P., Karttunen, T.J., Tuppurainen, K., Davalos, V., et al. (2007).

Serrated carcinomas form a subclass of colorectal cancer with distinct molec-

ular basis. Oncogene 26, 312–320.

Leggett, B., andWhitehall, V. (2010). Role of the serrated pathway in colorectal

cancer pathogenesis. Gastroenterology 138, 2088–2100.

Lopez-Serra, P., Marcilla, M., Villanueva, A., Ramos-Fernandez, A., Palau, A.,

Leal, L., Wahi, J.E., Setien-Baranda, F., Szczesna, K., Moutinho, C., et al.

(2014). A DERL3-associated defect in the degradation of SLC2A1 mediates

the Warburg effect. Nat. Commun. 5, 3608.

Marisa, L., de Reyniès, A., Duval, A., Selves, J., Gaub, M.P., Vescovo, L., Eti-

enne-Grimaldi, M.C., Schiappa, R., Guenot, D., Ayadi, M., et al. (2013). Gene

expression classification of colon cancer into molecular subtypes: Character-

ization, validation, and prognostic value. PLoS Med. 10, e1001453.

Marshall, J.L. (2010). Risk assessment in Stage II colorectal cancer. Oncology

(Williston Park) 24 (1, Suppl 1), 9–13.
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