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Introduction

The Seifert-Van Kampen theorem describes a way of computing the fundamen-
tal group of a space X from the fundamental groups of two open subspaces that
cover X, and the fundamental group of their intersection. The classical proof of
this result is done by analyzing the loops in the space X and deforming them into
loops in the subspaces. For all the details of such proof see [1, Chapter I].

The aim of this work is to provide an alternative proof of this theorem using
covering spaces, sets with actions of groups and category theory. On this version
of the theorem we are going to ask more conditions on the topological space
than in the 'classical' proof. Nevertheless, the spaces which do not follow those
requirements are a bit 'pathological'.

First, we are going to introduce category theory, and all the concepts which
will be needed to follow the proof. Then we are going to talk about group actions,
focusing on its categorical implications. After we recall the basics of homotopy
theory, we are going to see covering spaces and how do they relate with the fun-
damental group. Finally, we are going to prove the theorem of Seifert-van Kampen
using covering spaces.
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Chapter 1

Category theory

In short, category theory studies mathematical structures and its relations in
an abstract way. Here we are going to see some basic concepts, but we recommend
to read [2] to learn about its logical foundations and [3] for its first steps.

1.1 Basic terminology

Definition 1.1. A category C consists of the following:

1) a class Ob(C), whose elements will be called "objects of the category";

2) for every pair A, B of objects, a set C(A, B), whose elements will be called "morphisms"
or "arrows" from A to B;

3) for every triple A, B, C of objects, a composition law

C(A, B)× C(B, C) −→ C(A, C);

the composite of the pair ( f , g) will be written g ◦ f or just g f ;

4) for every object A, a morphism 1A ∈ C(A, A) called the identity on A.

These data are subject to the following axioms:

1) Associativity axiom: given morphisms f ∈ C(A, B), g ∈ C(B, C), h ∈ C(C, D) the
following equality holds:

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

2) Identity axiom: given morphisms f ∈ C(A, B), g ∈ C(B, C) the following equalities
hold:

1B ◦ f = f , g ◦ 1B = g.

1



2 Category theory

Examples 1.2. Here is a list of some obvious examples of categories and the cor-
responding notation, when it is classical:

1. Sets and functions: Set.

2. Topological spaces and continuous maps: Top.

3. Groups and groups homomorphisms: Gr.

4. Abelian groups and groups homomorphisms: Ab.

5. Commutative rings with unit and ring homomorphisms: Rng.

6. If R is a commutative ring, R-modules and R-lineal maps: ModR.

Definition 1.3. A functor F from a category A to a category B consists of the following:

1) a function
Ob(A) −→ Ob(B)

between the classes of objects of A and B; the image of A ∈ Ob(A) is written F(A) or
just FA;

2) for every pair of objects A, A′ of A, a map

A(A, A′) −→ B(FA, FA′);

the image of f ∈ A(A, A′) is written F( f ) or just F f .

These data are subject to the following axioms:

1) for every pair of morphisms f ∈ A(A, A′), g ∈ A(A′, A′′)

F(g ◦ f ) = F(g) ◦ F( f );

2) for every object A ∈ A

F(1A) = 1FA.

Remark 1.4. Given two functors F : A→ B and G : B→ C, a pointwise composi-
tion immediately produces a new functor G ◦ F : A → C. This composition law is
obviously associative.

Examples 1.5. Some examples of functors include:

1. For any category C, the identity functor 1C : C → C that maps each object
and morphism of C to itself.
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2. The "forgetful functor" U : Ab → Set that maps a group (G,+) to the un-
derlying set G and a group homomorphism f to the corresponding map
f .

3. Let R be a commutative ring. Tensoring with R produces a functor from the
category Ab of abelian groups to ModR:

−⊗ R : Ab −→ModR.

An abelian group A is mapped to the group A⊗Z R provided with the scalar
multiplication induced by the formula

(a⊗ r)r′ = a⊗ (rr′)

A group homomorphism f : A → B is mapped to the R-linear mapping
f ⊗ idR.

4. We obtain a functor P : Set → Set from the category of sets to itself by
sending a set A to its power set P(A) and a map f : A → B to the "direct
image map" from P(A) to P(B).

Definition 1.6. A morphism f : A → B in a category C is called an isomorphism when
there exists a morphism g : B→ A of C which satisfies the relations

f ◦ g = 1B, g ◦ f = 1A.

Proposition 1.7. Every functor preserves isomorphisms.

Proof. Let F : A→ B be a functor and f : A→ B an isomorphism in A. Let g be a
morphism such that f ◦ g = 1B, g ◦ f = 1A. Then

1FA = F(1A) = F(g ◦ f ) = F(g) ◦ F( f ),

1FB = F(1B) = F( f ◦ g) = F( f ) ◦ F(g).

Definition 1.8. Consider two functors F, G : A ⇒ B from a category A to a cate-
gory B. A natural transformation α : F ⇒ G from F to G is a class of morphisms
(αA : FA→ GA)A∈A of B indexed by the objects of A and such that for every morphism
f : A→ A′ in A, the following diagram commutes

FA
αA //

F f
��

GA

G f
��

FA′
αA′

// GA′,



4 Category theory

that is αA′ ◦ F( f ) = G( f ) ◦ αA.
A natural isomorphism is a natural transformation α : F ⇒ G in which every arrow αA

is an isomorphism. In this case, the natural isomorphism may be depicted as α : F ∼= G.

Definition 1.9. An equivalence of categories consists of functors F : A � B : G together
with natural isomorphisms α : 1A ∼= GF, β : FG ∼= 1B. Two categories A and B are
equivalent, written A ∼= B, if there exists and equivalence between them.

Proposition 1.10. Consider two functors F, G : A ⇒ B such that α : F ∼= G. If F is an
equivalence of categories, then so is G.

Proof. Using the notations of 1.8 we have a commutative diagram

FA
αA //

F f
��

GA

G f
��

FA′
αA′

// GA′,

where the αA are isomorphisms. Denote H the functor such that β : 1A ∼= HF
and γ : FH ∼= 1B. Composing the above diagram with H and considering the one
given by β gives the following commutative diagram

A
βA //

1A f = f
��

HFA
HαA //

HF f
��

HGA

HG f
��

A′
βA′

// HFA′
HαA′

// HGA′,

with βA, βA′ , HαA and HαA′ isomorphisms. So, by the outer square of the diagram
we see β′ : 1A ∼= HG. We show in a similar way that γ′ : GH ∼= 1B.

Definition 1.11. Consider a functor F : A → B and for every pair of objects A, A′ ∈
Ob(A), the map

A(A, A′) −→ B(FA, FA′), f 7→ F f .

1) The functor F is faithful when the above-mentioned maps are injective for all A, A′.

2) The functor F is full when the above-mentioned maps are surjective for all A, A′.

3) The functor F is essentially surjective (on objects) when each object B ∈ Ob(B) is
isomorphic to an object of the form FA, A ∈ Ob(A).
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Theorem 1.12. Assuming the axiom of choice, given a functor F : A→ B the following
conditions are equivalent:

1) F is full, faithful and essentially surjective.

2) F is an equivalence of categories, i.e., there exist a functor G : B→ A and two natural
isomorphisms α : 1A ∼= GF, β : FG ∼= 1B.

Proof. See [3, Theorem 1.5.9].

Proposition 1.13. Consider two functors F : A→ B and G : B→ C:

1) If F and G are equivalences of cateogries, then so is GF.

2) If G and GF are equivalences of categories, then so is F.

3) If F and GF are equivalences of categories, then so is G.

Proof.

1) Consider for every pair of objects A, A′ ∈ Ob(A) the map

A(A, A′) −→ B(FA, FA′) −→ C(GFA, GFA′)
f 7−→ F f 7−→ GF f

It is injective and surjective because it is the composition of two injective and
surjective maps, so GF is full and faithful. Now for each object C ∈ Ob(C), we
have C is isomorphic to an object of the form GB with B ∈ Ob(B), and B is
isomorphic of an object of the form FA with A ∈ Ob(A), so by Proposition 1.7
C is isomorphic to GFA, i.e. GF is essentially surjective.

2) For every pair of objects A, A′ ∈ Ob(A) consider the maps

A(A, A′) −→ B(FA, FA′), f 7→ F f

A(A, A′) −→ C(GFA, GFA′), f 7→ GF f

Fix A and A′ and consider f1, f2 ∈ A(A, A′) such that F f1 = F f2. Then GF f1 =

GF f2. Since GF is an equivalence of categories we have f1 = f2, so the first map
is injective. Now let g ∈ B(FA, FA′). We have Gg ∈ C(GFA, GFA′). Again since
GF is an equivalence of categories we know there exists f ∈ A(A, A′) such that
Gg = GF f , and since G is an equivalence of categories we have g = F f . Thus
the first map is surjective. Finally, if B ∈ Ob(B), then there exists A ∈ Ob(A)
such that GB ∈ Ob(C) is isomorphic to GFA. Denote as φ : GB → GFA such
isomorphism. Since G is an equivalence of categories, G−1φ : B → FA is an
isomorphism, and so F is essentially surjective.
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3) The fully faithfulness of G is shown in the same way as in 2). For essential
surjectivity, consider C ∈ Ob(C). We know there exists A ∈ Ob(A) such that
C ∼= GFA, and B ∈ Ob(B) such that B ∼= FA. Thus GB ∼= GFA ∼= C.

Corollary 1.14. Consider the following commutative diagram of functors:

A
α //

γ

��

B

β

��
C

µ
// D

with α, γ and µ equivalences of categories. Then β is an equivalence of categories.

Proof. By Proposition 1.13.1 the functor µγ is an equivalence of categories. If
βα = µγ, then by 1.13.3 the functor β is an equivalence of categories.

1.2 Coproducts

Definition 1.15. Let I be a set and (Ci)i∈I a family of objects in a given category C. A
coproduct of that family is a pair (P, (si)i∈I) where

1) P is an object of C,

2) for every i ∈ I, si : Ci → P is a morphism of C,

and this pair is such that for every other pair (Q, (ti)i∈I) where

1) Q is an object of C,

2) for every i ∈ I, ti : Ci → Q is a morphism of C,

there exists a unique morphism u : P→ Q such that for every index i, ti = u ◦ si.

P

u
  

Ci

si

OO

ti
// Q.

The following proposition guarantees that the coproduct is well defined:

Proposition 1.16. When the coproduct of a family of objects exists in a category, it is
unique up to an isomorphism.
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Proof. See [2, Proposition 2.2.2].

Example 1.17. In the category of groups Gr the coproduct of a family of groups
(Gi)i∈I exists and it is the free product ∏i∈I ∗Gi.

Proof. See [5, Theorem 4.2] .

1.3 Pushouts

Definition 1.18. Consider two morphisms f : C → A, g : C → B in a category C. A
pushout of ( f , g) is a triple (P, i1, i2) where

1) P is an object of C,

2) i1 : A→ P, i2 : B→ P are morphisms of C such that i1 ◦ f = i2 ◦ g,

P B
i2oo

A

i1

OO

C
f

oo

g
OO

and for every other triple (Q, j1, j2) where

1) Q is an object of C,

2) j1 : A→ Q, j2 : B→ Q are morphisms of C such that j1 ◦ f = j2 ◦ g,

there exists a unique morphism u : P→ Q such that j1 = u ◦ i1 and j2 = u ◦ i2

Q

P

u
__

B
i2oo

j2
kk

A

i1

OOj1

SS

C.
f

oo

g
OO

As with the coproduct we have:

Proposition 1.19. When the pushout exists in a category, it is unique up to an isomor-
phism.

Proof. See [2, Metatheorem 1.10.2, Proposition 2.5.2 and page 52]
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Example 1.20. In the category of groups Gr, given two morphisms f : H → G1, g :
H → G2 the pushout of ( f , g) exists and it is the free product with amalgamation
G1 ∗H G2.

Proof. Consider the coproduct of G1 and G2, (G1 ∗ G2, s1, s2). Let φ = s1 ◦ f , ψ =

s2 ◦ g
G1

s1

##
H

f >>

g   

G1 ∗ G2

G2

s2

;;

.

Recall that the free product with amalgamation is the quotient group

G1 ∗H G2 = G1 ∗ G2�N ,

where N = {φ(h)ψ(h)−1; h ∈ H}. Consider the projection maps π : G1 ∗ G2 →
G1 ∗H G2, π1 = π ◦ s1 : G1 → G1 ∗H G2, π2 = π ◦ s2 : G2 → G1 ∗H G2. For all
h ∈ H we have, by definition, π1 ◦ f (h) = π ◦ s1 ◦ f (h) = π ◦ φ(h) = π ◦ ψ(h) =
π ◦ s2 ◦ g(h) = π2 ◦ g(h), i.e. the following diagram

G1 ∗H G2 G2
π2oo

G1

π1

OO

H
f

oo

g

OO

commutes. Now let (Q, j1, j2) be another triple such that Q is a group and

j1 ◦ f = j2 ◦ g. (1.1)

Given that G1 ∗ G2 is the coproduct of G1 and G2 we know that there exists a
unique morphism r : G1 ∗ G2 → Q such that

j1 = r ◦ s1, j2 = r ◦ s2 (1.2)

Q

G1 s1
//

j1
;;

G1 ∗ G2

r
OO

G2.s2
oo

j2
cc

Using (1.1) and (1.2) we get that, for every h ∈ H,

r ◦ s1 ◦ f (h) = r ◦ s2 ◦ g(h) =⇒ r ◦ φ(h) = r ◦ ψ(h)
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=⇒ r(φ(h)ψ(h)−1) = r(1) = 1

so N ⊂ Ker(r) and thus by the fundamental homomorphism theorem there exists
a unique r̂ : G1 ∗H G2 → Q such that r = r̂ ◦ π

G1 ∗ G2

π

��

r // Q

G1 ∗H G2 = G1 ∗ G2�N .

r̂

88

We have now j1 = r ◦ s1 = r̂ ◦ π ◦ s1 = r̂ ◦ π1 and j2 = r ◦ s2 = r̂ ◦ π ◦ s2 = r̂ ◦ π2.
So u = r̂ is the unique morphism we were looking for.

1.4 Pullbacks

Definition 1.21. Consider two morphisms f : A → C, g : B → C in a category C. A
pushout of ( f , g) is a triple (P, i1, i2) where

1) P is an object of C,

2) i1 : P→ A, i2 : P→ B are morphisms of C such that f ◦ i1 = g ◦ i2,

P

i1
��

i2 // B

g
��

A
f
// C

and for every other triple (Q, j1, j2) where

1) Q is an object of C,

2) j1 : Q→ A, j2 : Q→ B are morphisms of C such that f ◦ j1 = g ◦ j2,

there exists a unique morphism u : Q→ P such that j1 = i1 ◦ u and j2 = i2 ◦ u

Q

u
��

j1

��

j2

""
P

i2 //

i1
��

B

g
��

A
f
// C.
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Remark 1.22. Abusing notation, we denote the pullback as A×C B.

Again we have:

Proposition 1.23. When the pullback exists in a category, it is unique up to an isomor-
phism.

Proof. See [2, Proposition 2.5.2]

Examples 1.24.

1. In the category Set the pullback given by f : A→ C, g : B→ C is

A×C B = {(a, b); a ∈ A, b ∈ B, f (a) = g(b)} , i1(a, b) = a, i2(a, b) = b.

Obviously A ×C B is an object of Set and f ◦ i1 = g ◦ i2. If (Q, j1, j2) is
another triple as above then we can define for all q ∈ Q the morphism
u : Q → A ×C B, u(q) = (j1(q), j2(q)), which is trivially well defined and
j1 = i1 ◦ u, j2 = i2 ◦ u. If we have another morphism u′ : Q → A ×C B,
u′(q) = (u′1(q), u′2(q)) verifying the condition, then since j1(q) = i1 ◦ u′(q) =
u′1(q) and j2(q) = i2 ◦ u′(q) = u′2(q) for every q ∈ Q we get u = u′.

2. We can define the pullback in Top in a similar way as in Set.

1.5 Strict comma category

Definition 1.25. Consider two functors F : A→ C and G : B→ C. The "strict comma
category" A×C B is defined in the following way:

1) The objects of A×C B are the triples (A, B, f ) where A ∈ Ob(A), B ∈ Ob(B) and
f : FA→ GB is an isomorphism in C.

2) A morphism of A×CB from (A, B, f ) to (A′, B′, f ′) is a pair (a, b), where a : A→ A′

is a morphism of A, b : B → B′ is a morphism of B, and f ′ ◦ F(a) = G(b) ◦ f , i.e.,
the following diagram commutes

FA

Fa
��

f
// GB

Gb
��

FA′
f ′

// GB′.
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3) The composition law in A×C B is that induced by the composition laws of A and B,
thus

(a′, b′) ◦ (a, b) = (a′ ◦ a, b′ ◦ b).

Theorem 1.26. Consider two strict comma categories A×C B and A′ ×C′ B
′ defined by

the pair of functors (F, G) and (F′, G′) respectively. Suppose that there exists Φ1 : A →
A′, Φ2 : B→ B′ and ϕ : C→ C′ three equivalences of categories such that the following
diagram commutes

A
Φ1 //

F
��

A′

F′

  
C

ϕ
// C′

B
Φ2

//

G
??

B′
G′

>>

.

Then A×C B ∼= A′ ×C′ B
′.

Proof. Consider the functor Φ : A ×C B → A′ ×C′ B
′, defined by Φ(A, B, f ) =

(Φ1(A), Φ2(B), ϕ( f )). We are going to check that this functor is well defined.
Obviously Φ1(A) ∈ Ob(A′) and Φ2(B) ∈ Ob(B′). By hypotesis

ϕ(FA) = F′Φ1(A) and ϕ(GB) = G′Φ2(B) (1.3)

so ϕ( f ) : F′Φ1(A) → G′Φ2(B) is well defined and it is an isomorphism of C′ by
Proposition 1.7, therefore (Φ1(A), Φ2(B), ϕ( f )) ∈ Ob(A′ ×C′ B

′).
Now for any objects (A1, B1, f1), (A2, B2, f2) ∈ Ob(A×C B) consider the map

A×C B((A1, B1, f1), (A2, B2, f2))
Φ−→ A′ ×C′ B

′(Φ(A1, B1, f1), Φ(A2, B2, f2))

(a, b) 7→ Φ((a, b)) = (Φ1(a), Φ2(b))

Recall that f2 ◦ F(a) = G(b) ◦ f1, so by composing with ϕ we get ϕ( f2) ◦ ϕ(Fa) =
ϕ( f2 ◦ F(a)) = ϕ(G(b) ◦ f1) = ϕ(G(b)) ◦ ϕ( f1), i.e. the following diagram

ϕ(FA1)

ϕ(Fa)
��

ϕ( f1) // ϕ(GB1)

ϕ(Gb)
��

ϕ(FA2)
ϕ( f2)

// ϕ(GB2)

(1.4)
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commutes. Again by hypotesis we have F′Φ1(a) = ϕ(Fa) and G′Φ2(b) = ϕ(Gb),
so together with (1.3) and (1.4) we get that the diagram

F′Φ1(A1)

F′Φ1(a)
��

ϕ( f1) // G′Φ2(B1)

G′Φ2(b)
��

F′Φ1(A2)
ϕ( f2)

// G′Φ2(B2)

is well defined and commutes, thus (Φ1(a), Φ2(b)) ∈ A′×C′B
′(Φ(A1, B1, f1), Φ(A2, B2, f2)).

Checking the rest of the axioms is trivial as Φ1 and Φ2 are both functors.
Since Φ1 and Φ2 are equivalences of categories we can clearly see that Φ is full

and faithfull. Essential surjectivity is obvious since Φ1, Φ2 and ϕ are equivalences
of categories.

1.6 Initial objects

Definition 1.27. An object 0 of a category is initial when every object C is provided with
exactly one arrow from 0 to C.

Examples 1.28.

1. In the category Set, the empty set is the initial object. The same holds in the
category Top.

2. In the categories Gr and Ab, (0) is the initial object.

3. In the category Rng, Z is the initial object.

Proposition 1.29. An initial object 0 is unique up to isomorphism.

Proof. Let 0 and 0’ be two initial objects in a category. Then there exists exactly one
arrow ϕ : 0→ 0’ and another ψ : 0’→ 0. Consider the compositions ψ ◦ ϕ : 0→ 0,
ϕ ◦ ψ : 0’ → 0’. Since 0 is an initial object, the identity morphism 10 : 0 → 0 is
the only one that maps from 0 to 0, so 10 = ψ ◦ ϕ. We show in a similar way that
10’ = ϕ ◦ ψ.
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Groups actions

2.1 Groups acting on sets

Definition 2.1. Let S be a set and G a group. A left group action of G on the set S is a
map from G× S into S, the image of (g, s) being denoted by g · s, such that

1) e · s = s for e the identity of G and for all s ∈ S,

2) (g1g2) · s = g1 · (g2 · s) for all g1, g2 ∈ G and for all s ∈ S.

In this situation, we also say that G acts on S or that S is a G-set. We can define
a right group action of G on the set S in a similar way:

Definition 2.2. Let S be a set and G a group. A right group action of G on the set S is a
map from S× G into S, the image of (s, g) being denoted by s · g, such that

1) s · e = s for e the identity of G and for all s ∈ S,

2) s · (g1g2) = (s · g1) · g2 for all g1, g2 ∈ G and for all s ∈ S.

Example 2.3. Let G be an arbitrary group and let S be an arbitrary set. Let G act
on S by letting g · s = s for all g ∈ G and s ∈ S. This is known as the trivial action
of G on S.

Definition 2.4. A group G acts transitively on a set S if S = G · s for some s ∈ S.

2.2 The category of G-sets

Definition 2.5. Let G be a group and S1, S2 two G-sets. A morphism of G-sets from S1

to S2 is a map f : S1 → S2 such that f (g · s) = g · f (s), for any g ∈ G and s ∈ S1.

13
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Proposition 2.6. Let G be a group and S1, S2 and S3 three G-sets. Let f : S1 → S2,
f ′ : S2 → S3 be two morphisms of G-sets. Then the composition map f ′ ◦ f is a morphism
of G-sets.

Proof. Let s ∈ S1 and g ∈ G, then, since f and f ′ are morphisms of G-sets,

( f ′ ◦ f )(g · s) = f ′( f (g · s)) = f ′(g · f (s)) = g · f ′( f (s)) = g · ( f ′ ◦ f )(s).

Given a group G, the last proposition allows us to define what it is known as
the category of G-sets, denoted by G-Sets, whose objects are G-sets and whose
morphisms are morphisms of G-sets.

Let G1 and G2 be two groups and f : G2 → G1 be a group homomorphism.
For every S ∈ G1-Sets we denote f ∗(S) the G2-set we get by considering for every
s ∈ S and g ∈ G2 the (left) action

g · s = f (g) · s.

We therefore obtain a functor f ∗ : G1-Sets→ G2-Sets.

Proposition 2.7. The functor f ∗ is an equivalence of categories if and only if f is an
isomorphism of groups.

Proof. If f is an isomorphism, then we can consider ( f−1)∗, which is the inverse
of f ∗. We are going to see the converse (recall by Theorem 1.12 that, since f ∗ is an
equivalence of categories, it is full, faithful and essentially surjective):

1) f ∗ essentially surjective⇒ f injective. If f (g) = e, then the element g acts trivially
over each G2-set of the form f ∗(S), thus on every G2-set because f ∗ is essentially
surjective. In particular, it acts trivially over G2 by left translation, so g = e.

2) f ∗ is full and faithfull ⇒ f surjective. For any two objects S, S′ ∈ G1-Sets, every
morphism of G2-sets from S to S′ is a morphism of G1-sets. Take S = {s}
with the trivial action of G1 and S′ = G1�f (G2)

with a G1 action given by

g1 · [s′] = [g1 · s′] for g1 ∈ G1, [s′] ∈ S′. The map ϕ : S → S′ such that ϕ(S) is
the class of e the identity element is a morphism of G2-sets: if g2 ∈ G2,

ϕ(g2 · s) = ϕ( f (g2) · s) = ϕ(s) = [e] = [e] · [e] = [ f (g2)] · ϕ(s).

Then ϕ is a morphism of G1-sets and e is left fixed by G1. Since G1 acts transi-
tively over G1�f (G2)

we get

G1�f (G2)
= {[e]} =⇒ f (G2) = G1.



Chapter 3

Homotopy theory

In this chapter we will recall the basics of homotopy theory. From now on we
will consider X to be a topological space and I = [0, 1].

3.1 Homotopy of spaces

Definition 3.1. A path in X is a continuous map f : I → X.

Definition 3.2. A homotopy of paths in X is a family ft : I → X, 0 ≤ t ≤ 1, such that

1) the endpoints ft(0) = x0 and ft(1) = x1 are independent of t,

2) the associated map F : I × I → X defined by F(s, t) = ft(s) is continuous.

3.2 The fundamental group

Definition 3.3. When two paths f0 and f1 are connected in the above way by a homotopy
ft, they are said to be homotopic. The notation for this is f0 ' f1.

Proposition 3.4. The relation of homotopy on paths with fixed endpoints in any space is
an equivalence relation.

Proof. See [1, Proposition 1.2].

Definition 3.5. The equivalence class of a path f under the equivalence relation of homo-
topy will be denoted [ f ] and called the homotopy class of f .

Given two paths f , g : I → X such that f (1) = g(0), there is a composition or
product path f ∗ g that traverses first f and then g, defined by the formula

f ∗ g =

{
f (2s), 0 ≤ s ≤ 1

2

g(2s− 1), 1
2 ≤ s ≤ 1

15
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This product operation respects homotopy classes since f0 ' f1 and g0 ' g1 via
homotopies ft and gt, and if f0(1) = g0(0) so that f0 ∗ g0 is defined, then ft ∗ gt is
defined and provides a homotopy f0 ∗ g0 ' f1 ∗ g1.

Definition 3.6. Suppose we restrict attention to paths f : I → X with the same starting
and ending point f (0) = f (1) = x0 ∈ X. Such paths are called loops, and the common
starting and ending point x0 is referred to as the basepoint. The set of all homotopy classes
[ f ] of loops f : I → X at the basepoint x0 is denoted π1(X, x0) and it is called the
fundamental group of X at the basepoint x0.

Proposition 3.7. π1(X, x0) is a group with respect to the product [ f ] [g] = [ f ∗ g].

Proof. See [1, Proposition 1.3].

Definition 3.8. We say that X is path-connnected if any two points x0, x1 ∈ X may be
joined by a path f .

Proposition 3.9. If X is path-connected, then for any two points x0, x1 ∈ X we have
π1(X, x0) ∼= π1(X, x1).

Proof. See [1, Proposition 1.5].

Thus if X is path-connected, the group π1(X, x0) is, up to isomorphism, inde-
pendent of the choice of the basepoint x0. It is usual then to denote the funda-
mental group of a path-connected space X without taking any point π1(X). We
can then state the notion of simply connectedness:

Definition 3.10. We say that X is simply connected if it is path-connected and its funda-
mental group is trivial.



Chapter 4

Covering spaces

4.1 Definition and basic properties

Definition 4.1. A covering space of X is a topological space Y together with a continuous
map p : Y → X such that for every x ∈ X there exists a neighbourhood U of x in
X, a discrete space F (i.e. a space with the discrete topology) and a homeomorphism
ϕ : p−1(U)→ U × F such that the diagram

p−1(U)
ϕ
//

p
%%

U × F

π1
��

U

commutes (where π1 denotes the first projection).

Remark 4.2. In the literature the terms ’covering’ and ’cover’ are also used for
what we call a covering space. Abusing notation, when we refer to a covering
space (Y, p) we will just write Y.

Example 4.3. The exponential function p : R→ S1, p(t) = e2πit is a covering with
discrete space F = Z. For each t ∈ R and p(t) = z we have a homeomorphism

p−1(S1\z) = tn∈Z(t + n, t + n + 1) ∼= (t, t + 1)×Z.

Remark 4.4. Some authors define a covering space as a topological space Y to-
gether with a continuous map p : Y → X subject to the following condition: each
point in X has an open neighbourhood U for which p−1(U) decomposes as a
disjoint union of open subsets Ui of Y such that the restriction of p to each Ui

induces a homeomorphism of Ui with U. This definition and the one used above
are equivalent, as it is shown in [7, Proposition 2.1.3]. Note that if p : Y → X is a
cover, then p is surjective.

17



18 Covering spaces

Definition 4.5. A morphism between two covers pi : Yi → X (i = 1, 2) over X is given
by a continuous map f : Y1 → Y2 making the diagram

Y1
f
//

p1   

Y2

p2
��

X

commute. We say that f is an isomorphism of covers if f is a homeomorphism and its
inverse is compatible with the above diagram.

Proposition 4.6. Consider three covers pi : Yi → X, i = 1, 2, 3, and two morphisms
between them f j : Yj → Yj+1, j = 1, 2. Then f2 ◦ f1 is a morphism of covers.

Y1
f1 //

p1
  

Y2

p2

��

f2 // Y3

p3
~~

X .

Proof. As f2 ◦ f1 is a composition of two continuous maps, it is a continuous map.
Now we have to see p1 = p3 ◦ ( f2 ◦ f1). By hypotesis p1 = p2 ◦ f1 and p2 = p3 ◦ f2,
therefore p1 = p2 ◦ f1 = (p3 ◦ f1) ◦ f2 = p3 ◦ f2 ◦ f1 = p3 ◦ ( f2 ◦ f1).

Definition 4.7. We say that Y is a trivial cover of X if it is isomorphic to a cover of
the form X × F, with F a discrete space. An isomorphism φ : Y → X × F is called a
trivialisation of Y.

Lemma 4.8. Consider the following commutative diagram of continuous maps:

Y1
g1

��
ϕ

��

X′
f
// X

Y2

g2

__

then we get the commutative diagram:

X′ ×X Y1
i2 //

i1
$$

ϕ∗

��

Y1
g1

~~
ϕ

��

X′
f
// X

X′ ×X Y2
i′2 //

i′1

::

Y2.
g2

``

(4.1)
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If ϕ is a homeomorphism, then so is ϕ∗ as well.

Proof. Consider the pullbacks X′ ×X Y1 and X′ ×X Y2:

X′ ×X Y1

i1
��

i2 // Y1

g1
��

X′ ×X Y2

i′1 ��

i′2 // Y2

g2
��

X′
f

// X X′
f

// X.

By hypotesis g1 = g2 ◦ ϕ, so the following diagram

X′ ×X Y1

i1
��

ϕ ◦ i2// Y2

g2
��

X′
f

// X

commutes. By definition of pullback (in Top) we have a (unique) continuous
morphism ϕ∗ : X′ ×X Y1 → X′ ×X Y2, ϕ∗(x′, y1) = (x′, ϕ(y1)) which gives the
commutative diagram (4.1).

Now if ϕ is a homeomorphism then g2 = g1 ◦ ϕ−1 and we can build the inverse
of ϕ∗ as above. It is trivial to check that ϕ∗ is both injective and surjective.

Lemma 4.9. Let X and X′ be two topological spaces, f : X′ → X a continuous map and
p : Y → X a cover. Then q : Y′ = X′ ×X Y → X′, q(x′, y) = x′ is a cover of X′.

Proof. Consider for every f (x′) ∈ X with x′ ∈ X′ the commutative diagram of the
definition of covering space

p−1(U)
ϕ
//

p
%%

U × F

π1
��

U

We have the commutative diagram

p−1(U)
p

||
ϕ

��

f−1(U)
f
// U

U × F
π1

cc
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with f−1(U) a neighbourhood of x′ ( f is continuous). Apply last lemma to get the
commutative diagram

f−1(U)×U p−1(U)
i2 //

i1 = q

((
ϕ∗

��

p−1(U)
p

||
ϕ

��

f−1(U)
f
// U

f−1(U)×U (U × F)
i′2 //

i′1

66

U × F
π1

bb

with ϕ∗ a homeomorphism. Consider the map π : f−1(U)×U (U× F)→ f−1(U)×
F, π(v, ( f (v), d)) = (v, d). Clearly π is a homeomorphism, and so we get the com-
mutative diagram

q−1( f−1(U)) = f−1(U)×U p−1(U)
π ◦ ϕ∗

//

q
**

f−1(U)× F

i′1 ◦ π−1

��
f−1(U)

with π ◦ ϕ∗ a homeomorphism.

Definition 4.10. Under the conditions of the above lemma, we say that (X′, f ) trivialises
Y if the cover Y′ is trivial.

4.2 The category of covering spaces

With Proposition 4.6 we can define the category of covers of X, denoted by
Cov(X), whose objects are covers of X and its morphisms are morphisms of cov-
ers.

4.3 Universal covering spaces

Definition 4.11. Let f : Y → X be a map. The fiber of an element x0 ∈ X by f , denoted
by f−1(x0), is defined as

f−1(x0) = {y ∈ Y : f (y) = x0} .

Given a cover p : Y → X and a point x0 ∈ X we will denote the fiber of x0 by
the cover Y as Y(x0).
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Definition 4.12. A pointed cover of a pointed topological space (X, x0) is a cover Y of X
and a point y0 ∈ Y(x0).

Definition 4.13. Let (X, x0) be a pointed space. If the functor Y → Y(x0) from Cov(X)
to Set is representable by a pointed cover (X̃, x̃0), then we say that (X̃, x̃0) is a universal
pointed cover of (X, x0).

Remark 4.14. Fixed a point x0 ∈ X we may define the category of covers of the
pointed space (X, x0), denoted by Cov(X, x0), whose objects are pointed covers
(Y, y0) and its morphisms are morphisms of pointed covers (which are defined in
the obvious way).
We can then define a universal pointed cover as the initial object of Cov(Y, y0) for
any object Y ∈ Cov(X) and any point y0 ∈ Y(x0), i.e. as a pointed cover (X̃, x̃0)

such that for every cover Y and for any y0 ∈ Y(x0) there exists a unique morphism
of pointed covers f : X̃ → Y, f (x̃0) = y0.

Definition 4.15. We say that X is locally connected if each point has a basis of neigh-
bourhoods consisting of connected open subsets.

We are going to see a statement which will help us notice universal pointed
covers if the space is locally connected:

Proposition 4.16. Let X be locally connected. In order for a pointed cover (X̃, x̃0) of
(X, x0) to be universal, it is necessary and sufficient for X̃ to be connected and to trivialise
every cover of X.

We need to introduce a few concepts before we prove last proposition:

Definition 4.17. Consider two topological spaces X and Y and a continuous map f :
Y → X. We say that Y is Hausdorff over X if for every point x0 ∈ X and any two
different points y1, y2 ∈ Y(x0) there exists two neighbourhoods V1 of y1 and V2 of y2 in Y
such that V1 ∩V2 = ∅.

Lemma 4.18. Any cover p : Y → X is Hausdorff over X.

Proof. Fix x0 ∈ X and consider the commutative diagram of the definition of
cover. We claim that U × F is Hausdorff over U: if we have two different points
(u1, f1), (u2, f2) ∈ (U × F)(x0), then u1 = u2 = x0 and thus f1 6= f2. The sets of
the form U × { f } with f ∈ F are open in U × F, so U × { f1} is a neighbourhood
of (u1, f1) and U × { f2} is a neighbourhood of (u2, f2) such that U × { f1} ∩U ×
{ f2} = ∅.

Now for any two different points y1, y2 ∈ Y(x0) consider two disjoint neigh-
bourhoods V1 of ϕ(y1) and V2 of ϕ(y2). As ϕ is a homeomorphism ϕ−1(V1 ∩V2) =

ϕ−1(V1) ∩ ϕ−1(V2), and so we get two disjoint neighbourhoods ϕ−1(V1) of y1 and
ϕ−1(V2) of y2.
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Proposition 4.19. Consider two covers p : Y → X, q : Y′ → X and two morphisms of
covers f , g : Y → Y′. The set A = {y ∈ Y : f (y) = g(y)} is open and closed in Y. In
particular, if Y is connected and if there exists y ∈ Y such that f (y) = g(y), then f = g.

Proof.

1) A is closed. We are going to see that Y\A is open. Consider any point y ∈
Y\A. Since Y′ is Hausdorff over X by last lemma, there exists two disjoint
neighbourhoods Vf of f (y), and Vg of g(y). We have W = f−1(Vf )∩ g−1(Vg) is
a neighbourhood of y and W ⊂ Y\A: if w ∈ W then f (w) ∈ Vf and g(w) ∈ Vg,
and as Vf ∩Vg = ∅ we get f (w) 6= g(w), thus w ∈ Y\A.

2) A is open. Let y ∈ A. By definition we have q ◦ f (y) = p(y) = q ◦ g(y). The
map q is locally injective (easy to check using Remark 4.4), so there exists a
neighbourhood V of f (y) = g(y) such that q

∣∣
V is injective. We have f−1(V) is

a neighbourhood of y, and f−1(V) ⊂ A: if ỹ ∈ f−1(V) then q ◦ f (ỹ) = p(ỹ) =
q ◦ g(ỹ), but as ỹ ∈ f−1(V) we get f (ỹ) = g(ỹ), thus ỹ ∈ A.

Corollary 4.20. With the same notations, if X is connected and if there exists x ∈ X such
that f

∣∣
Y(x) = g

∣∣
Y(x), then f = g.

Proof. Each connected component of Y has a point of Y(x).

Lemma 4.21. Let X be connected, Y, Y′ be two trivial covers of X and f : Y → Y′ a
morphism. Then (Y, f ) is a cover of Y′, trivial over each connected component of Y′.

Proof. We can suppose Y′ = X × F and Y = X × G, where F and G are discrete.
Then f is of the form (x, u) 7→ (x, α(x, u)), where α : X × G → F is a continuous
map. Since X is connected and F is discrete, α(x, u) does not depend of x, so we
can write α(x, u) = ϕ(u), where ϕ(u) is an application from G to F. For t ∈ F we
have f−1(X× {t}) = X× ϕ−1(t), and this space is a trivial cover of X× {t}.

Corollary 4.22. Let Y, Y′ be two covers of a locally connected space X and f : Y → Y′ a
morphism of covers. Then (Y, f ) is a cover of Y′.

Proof. Cover X with connected open sets trivialising both Y and Y′.

Definition 4.23. Given a cover p : Y → X, a continuous section (or just a section) of Y
is a continuous map σ : X → Y such that p ◦ σ = 1X. We say that σ goes through a point
y ∈ Y if σ(p(y)) = y.
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Definition 4.24. Given a cover p : Y → X and x ∈ X, the degree of Y in x, denoted by
degx(Y), is the cardinality of the fibre Y(x). If X 6= ∅ and degx(Y) does not depend on x
(for example, if X is connected) then we will just write deg(Y) or degX(Y).

Proposition 4.25. Let X be connected and locally connected, and let Y be a cover of X. If
it exists x0 ∈ X such that for all y ∈ Y(x0) there exists a continuous section, then Y is
trivial.

Proof. Let Γ be the set of the continuous sections of Y with the discrete topology.
The map ε : X × Γ → Y defined by ε(x, s) = s(x) is a morphism of covers and
(X× Γ, ε) is a cover of Y by 4.22. We are going to see that ε is an isomorphism. We
just need to show that for every connected component V of Y we have degV(X ×
Γ, ε) = 1. Let V be a connected component of Y, which is a cover of X, its projection
over X is open and closed so it is equal to X. In particular V ∩Y(x) is non empty:
let v ∈ V ∩ Y(x), we have degv(X × Γ, ε) = degV(X × Γ, ε) > 0. If s and s′ are
two continuous sections of Y going through v, they coincide by Corollary 4.20, so
degV(X× Γ, ε) = 1.

Proof (of Proposition 4.16).

1) If (X̃, x̃0) is universal, then X̃ is connected. Let F be a closed open set of X̃ con-
taining x̃0. Define f , g : X̃ → X × {0, 1} by f (x̃) = (p(x̃), 0) for all x̃ ∈ X̃
and g(x̃) = (p(x̃), 1) for all x̃ /∈ F and g(x̃) = (p(x̃), 0) for all x̃ ∈ F. We
have f (x̃0) = g(x̃0) from which we conclude that f = g by uniqueness of the
universal property (see Remark 4.14). So F = X̃ and thus X̃ is connected.

2) If (X̃, x̃0) is universal, then X̃ trivializes every cover of X. Let Y be a cover of X. We
are going to show that X̃×X Y is trivial. By Proposition 4.25 it is enough to see
that for every y ∈ Y(x0) there exists a continuous section X̃ → X̃ ×X Y going
through (x̃0, y). From the universal property of X̃ there exists a morphism of
covers f : X̃ → Y such that f (x̃0) = y, so x̃ 7→ (x̃, f (x̃)) is the section we were
looking for.

3) Converse. Let Y be a cover of X and y ∈ Y(x0). Since X̃ trivialise Y, for (x̃0, y)
there exists a continuous section X̃ → X̃ ×X Y going through (x̃0, y). This
section is unique as X̃ is connected. This section corresponds to a unique
morphism of covers f : X̃ → Y such that f (x̃0) = y.

Remark 4.26. The hypothesis ’X be locally connected’ was only used at the neces-
sity part of the proof. The sufficiency part is true without this hypothesis.
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Corollary 4.27. Let (X̃, x̃0) be a universal pointed cover of a locally connected pointed
space (X, x0). Let x ∈ X and x̃ ∈ X̃(x). Then (X̃, x̃) is a universal pointed cover of
(X, x).

Proof. The characterisation given in last proposition does not use base points.

Definition 4.28. Let X̃ be a cover of X. We say that X̃ is a universal cover of X if there
exists a point x0 ∈ X and a point x̃0 ∈ X̃(x0) such that (X̃, x̃0) is a universal pointed
cover of (X, x0).

Using last corollary we see that a universal cover is a universal pointed cover
for any pair (x, x̃) such that x̃ ∈ X̃(x). We are going to see some conditions on X
for which we can guarantee the existence of a universal cover.

Definition 4.29. We say that X is semi-locally simply connected if each point x ∈ X has
a neighbourhood U such that the inclusion induced map π1(U, x)→ π1(X, x) is trivial.

In other words, X is semi-locally simply connected if every loop in such neigh-
bourhood U is homotopic in X to a constant path.

The spaces one generally meets are semi-locally simply connected: any open
set in the plane or in Rn, or any manifold, or any finite graph, is semi-locally
simply connected. An example of a space that is not semi-locally simply con-
nected is the shrinking wedge of circles or Hawaiian earring, the subspace X ⊂ R2

consisting of the circles of radius 1
n centred at the point ( 1

n , 0) for n = 1, 2, . . .

Theorem 4.30. If X is connected, locally path connected and semi-locally simply con-
nected then there exists a universal cover of X.

Before proving the above theorem we need to prove some preliminary con-
cepts:

Proposition 4.31. If X is connected, locally path connected and semi-locally simply con-
nected, then there exists a cover of X which is simply connected.

Proof. See [1, pages 63-65] for its construction (note that if X is connected and
locally path connected, then it is path connected).

Lemma 4.32. Let X be a locally path connected space. Then any cover p : Y → X is
locally path connected.

Proof. Let y ∈ Y and consider an open neighbourhood V of y in Y. Recall by
Remark 4.4 that there exists an open neighbourhood U of p(y) and an open set
Uy ⊂ Y such that y ∈ Uy and py : Uy → U is a homeomorphism. Then V ∩Uy

is homeomorphic to py(V ∩Uy). This is an open set of p(y), so it has a path con-
nected neighbourhood W. Thus p−1

y (W) ⊂ V is a path connected neighbourhood
of y.
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Lemma 4.33. A cover of a simply connected and locally path-connected space is trivial.

Proof. See [7, Lemma 2.4.4].

Remark 4.34. If X is locally path connected, then it is locally connected.

Proof (of Theorem 4.30). We have seen in Proposition 4.31 that there exists a simply
connected cover X̃ of X. In particular, X̃ is connected. From Lemma 4.32 we see
that X̃ is locally path connected. Then by Lemma 4.33 every cover of X̃ is trivial,
so X̃ trivialises any cover of X. Thus by Proposition 4.16 we get X̃ is universal.

4.4 Galois covering spaces

Given a cover p : Y → X we can define the set Aut(Y|X) given by all the
morphisms of covers f : Y → Y such that f is a homeomorphism. It is trivial to
check that Aut(Y|X) is a group with respect to composition. This group is called
the group of automorphisms of Y over X.

Definition 4.35. We say that a cover p : Y → X is Galois if Aut(Y|X) acts transitively
over each fibre of Y.

Theorem 4.36. Let X be connected and Y be a connected cover of X. The following
conditions are equivalent:

1) Y is Galois.

2) Y trivialises itself (i.e., Y ×X Y with π1 : Y ×X Y → Y the first projection is a trivial
cover of Y).

We need a lemma before proving the above theorem:

Lemma 4.37. Let X be connected and p : Y → X a cover. Then Y is a trivial cover of
X if and only if for all y ∈ Y there exists a continuous section s : X → Y such that
s(p(y)) = y.

Proof. The ’only if’ part is clear. We are going to see the ’if’ one. Let Γ be the
set of the sections X → Y with the discrete topology. Consider the application
ε : X× Γ→ Y defined by ε(x, s) = s(x). The application ε is obviously continuous.
It is a local homeomorphism as X × Γ and Y are locally homeomorphic to X, and
it is surjective by hypothesis. The map is also injective: if s(x) = s′(x′) we have
x = x′ = p(s(x)), and the set of points where s and s′ coincide is closed as Y
is Hausdorff over X, open because p is locally injective and non-empty as it has
x, so it is equal to X since X is connected. Therefore, ε is bijective and a local
homeomorphism, so it is a homeomorphism.
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Proof (of Theorem 4.36). By Lemma 4.37 condition 2) is equivalent to:

2′) For every point of Y×X Y there exists a continuous section going through it.

This condition is equivalent to:

2′′) For all (y, y′) ∈ Y×X Y there exists a morphism of covers f : Y → Y such that
f (y) = y′.

It is trivial to see that 1)⇒ 2′). We are going to see the converse. If 2′′) is true, then
for y and y′ of the same fibre there exist two morphisms of covers f , f ′ : Y → Y
such that f (y) = y′ and f ′(y′) = y. Thus f ◦ f ′ and f ′ ◦ f have a fixed point, so
f ◦ f ′ = f ′ ◦ f = 1Y by Corollary 4.20.

Corollary 4.38. Let X be connected, locally path connected and semi-locally simply con-
nected. The universal cover constructed in Theorem 4.30 is Galois.

Proof. Since such universal cover trivialises every cover of X, it trivialises itself.

Let X be connected and locally connected. Suppose that there exists a Ga-
lois cover Ỹ of X and consider the category Aut(Ỹ|X)-Sets. Denote by C the
category of covers of X trivialised by Ỹ. For every object Y in C denote S(Y)
the set HomX(Ỹ, Y) of homomorphisms f : Ỹ → Y on which Aut(Ỹ|X) acts by
(g, f ) 7→ f ◦ g−1. This assignment defines a functor S : C→ Aut(Ỹ|X)-Sets.

Theorem 4.39. The above functor S is an equivalence of categories.

Proof. See [8, Theorem 4.5.3].

4.5 A relation between covering spaces and the fundamen-
tal group

Given a cover p : Y → X, the fibre p−1(x0) over a point x0 ∈ X carries a natural
action by the group π1(X, x0). This will be a consequence of the following lemma
on ’lifting paths and homotopies’:

Lemma 4.40. Let p : Y → X be a cover, y0 a point of Y and x0 = p(y0).

1) Given a path f : [0, 1] → X with f (0) = x0, there is a unique path f̃ : [0, 1] → Y
with f̃ (0) = y0 and p ◦ f̃ = f .

2) Assume moreover given a second path g : [0, 1]→ X homotopic to f . Then the unique
g̃ : [0, 1]→ Y with g̃(0) = y0 and p ◦ g̃ = g has the same endpoint as f̃ , i.e., we have
that f̃ (1) = g̃(1).
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Proof. See [7, Lemma 2.3.2].

We can now construct the left action of π1(X, x0) on the fibre p−1(x0). Given
y ∈ p−1(x0) and α ∈ π1(X, x0) represented by a path f : [0, 1] → X with f (0) =

f (1) = x0, we define αy := f̃ (1), where f̃ is the unique lifting f̃ to Y with f̃ (0) = y
given by part 1) of the lemma above. By part 2) of the lemma αy does not depend
on the coice of f , and it lies in p−1(x0) by construction. This is indeed a left action
of π1(X, x0) on p−1(x0): (α ∗ β)y = α(βy) for α, β ∈ π1(X, x0). It is called the
monodromy action on the fibre p−1(x0).

Theorem 4.41. Let X be connected, locally path connected and semi-locally simply con-
nected. For any x0 ∈ X the functor Φ : Y → Y(x0) from Cov(X) to π1(X, x0)-Sets is
an equivalence of categories.

We need a proposition before proving the above theorem:

Proposition 4.42. If p : Y → X is a cover with Y simply connected and X locally path
connected then π1(X, x0) ∼= Aut(Y|X)

Proof. See [6, Corollary 13.15].

Proof (of Theorem 4.41). Consider X̃ the universal cover constructed in 4.30. Since
X̃ is a Galois cover of X (see Corollary 4.38) and it trivialises every cover of X, the
functor S : Y 7→ Hom(X̃, Y) from Cov(X) to Aut(X̃|X)-Sets is an equivalence of
categories by Theorem 4.39. Identify π1(X, x0) and Aut(X̃|X) by the isomorphism
ε of the last proposition. By Proposition 2.7 we get an equivalence of categories
ε∗ : Aut(X̃|X)-Sets → π1(X, x0)-Sets. By Proposition 1.13 ε∗ ◦ S is an equivalence
of categories. We are going to show that the functors ε∗ ◦ S and Φ are naturally
isomorphic so we can apply Proposition 1.10. From the universal property of
(X̃, x̃0), for any cover Y of X the map δx̃0 : f 7→ f (x̃0) from Hom(X̃, Y) to Y(x0) is
bijective. It is then an isomorphism of π1(X, x0)-sets. The functoriality is obvious,
so δx̃0 is a natural isomorphism.
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Chapter 5

The Seifert–van Kampen theorem

Finally, we state the main theorem of this paper:

Theorem 5.1 (Seifert–van Kampen). Let U1 and U2 be two subsets of X, both open
or both closed such that X = U1 ∪U2, V = U1 ∩U2, U1 and U2 are connected, locally
path connected and semi-locally simply connected. If x0 ∈ V, then π1(X, x0) is the
pushout of ( f : π1(V, v0)→ π1(U1, x0), g : π1(V, v0)→ π1(U2, x0)), i.e., π1(X, x0) ∼=
π1(U1, x0) ∗π1(V,x0) π1(U2, x0).

The proof of the above theorem needs some lemmas:

Lemma 5.2. Let X and Y be two topological spaces, f : X → Y an application and (Ck)

a finite family of closed sets of X such that
⋃

k Ck = X. If f
∣∣
Ck

is continuous for all k, then
f is continuous.

Proof. Let D be a closed subset of Y. For all k, f−1(D)∩Ck = ( f
∣∣
Ck
)−1(D) is closed

in Ck, thus it is in X, and f−1(D) =
⋃

k(( f )−1(D) ∩ Ck) is closed.

Lemma 5.3. Let X be locally connected, U1 and U2 be two subspaces of X both open or
both closed. We can suppose X = U1 ∪U2 and we denote V = U1 ∩U2 (if the Ui are
open, they are locally connected and so is V; if the Ui are closed, then it is necessary to
suppose U1, U2 and V are locally connected).

The functor α : Cov(X)→ Cov(U1)×Cov(V) Cov(U2) defined by α(Y) = (Y
∣∣
U1

, Y
∣∣
U2

, 1Y
∣∣
V)

is an equivalence of categories.

Proof.

1) The functor α is full and faithfull. If Y and Z are two covers of X and if f1 : Y
∣∣
U1
→

Z
∣∣
U1

and f2 : Y
∣∣
U2
→ Z

∣∣
U2

are two morphisms that coincide over V, then f1 and
f2 are glued together in a morphism f : Y → Z (the case where U1 and U2 are
both closed the continuity of f is given by Lemma 5.2).

29
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2) The functor α is essentially surjective. Let (Y1, Y2, f ) ∈ Cov(U1)×Cov(V) Cov(U2).
Denote Y the space over X quotient of the disjoint union Y1 t Y2 by the equiv-
alence relation identifying y with f (y) for y ∈ Y1

∣∣
V . The canonical injection

Y1 → Y1 t Y2 is open and closed, and the canonical application Y1 t Y2 → Y is
open if the Ui are open and closed if the Ui are closed. Therefore, the canonical
injection i1 : Y1 → Y is an homeomorphism from Y1 to Y

∣∣
U1

. Same holds for
i2 : Y2 → Y.
We are going to show that Y is a cover of X. It is obvious if the Ui are open.
Suppose the Ui are closed and let x ∈ X. If x ∈ X\V, then the point x is in-
terior of one of the Ui, and Y is a cover over a neighbourhood of x. Suppose
x ∈ V. Since V is locally connected, we can find a neighbourhood S of x in X
such that T = S ∩V is connected and such that Y1

∣∣
S1

and Y2
∣∣
S2

are trivial, with
Si = S∩Ui. Let τi : Yi

∣∣
Si
→ Si× Fi be its trivialisations. Since we can identify F1

and F2 by τ2
∣∣
Y2(x) ◦ f

∣∣
Y1(x) ◦ (τ1

∣∣
Y1(x))

−1, we can suppose F1 = F2 = F and that
the diagram

Y1(x)
f
∣∣
Y1(x) //

τ1
∣∣
Y1(x) !!

Y2(x)

τ2
∣∣
Y2(x)}}

F

is commutative. We have then that the diagram

Y1
∣∣
T

f
//

τ1 ##

Y2
∣∣
T

τ2{{
T × F

is commutative since τ2 ◦ f and τ1 are two morphisms from Y1
∣∣
T to T × F that

coincide over x, so in at least one point of each connected component (recall
Corollary 4.20). Consequently, τ1 and τ2 gather in a trivialisation τ : YS →
S × F; the continuity of τ and its inverse comes from Lemma 5.2. We have
Y ∈ Cov(X) and α(Y) ∼= (Y1, Y2, f ).

From now on, we will denote G = π1(X, x0), Gi = π1(Ui, x0) and H =

π1(V, x0).
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Lemma 5.4. Consider the commutative diagram:

G1 ∗H G2 G2
i2oo

G1

i1

OO

H
f

oo

g

OO

Note that if F ⊂ H, then f ∗i∗1 F = g∗i∗2 F. The functor γ : (G1 ∗H G2)-Sets →
G1-Sets×H-Sets G2-Sets defined by γ(F) = (i∗1 F, i∗2 F, 1 f ∗i∗1 F) is an equivalence of cat-
egories.

Proof. Consider the functor λ : G1-Sets×H-Sets G2-Sets→ (G1 ∗H G2)-Sets defined
by λ(A, B, ε) = B. It is obvious that γ and λ are well defined. It is also trivial
to check that there exists a natural isomorphism η : 1(G1∗H G2)-Sets

∼= λγ. We are
going to see that there exists a natural isomorphism µ : 1G1-Sets×H-SetsG2-Sets

∼= γλ.
If (A, B, ε) ∈ G1-Sets×H-Sets G2-Sets, then the isomorphism ε yields an isomor-
phisms of sets ε∗ : A → B. So (ε∗, 1B) : (A, B, ε) → (B, B, 1B) is an isomorphism
of G1-Sets×H-Sets G2-Sets. For every morphism (q1, q2) : (A, B, ε)→ (A′, B′, ε′) we
have the commutative diagram of sets

f ∗A ε //

f ∗q1

��

g∗B

g∗q2

��
f ∗A′

ε′
// g∗B′.

Then the diagram

A
ε∗ //

q1

��

B

q2

��
A′

ε
′
∗

// B′

commutes, thus the diagram

(A, B, ε)
(ε∗, 1B) //

(q1, q2)

��

γλ(A, B, ε) = (B, B, 1B)

γλ(q1, q2) = (q2, q2)

��
(A′, B′, ε′)

(ε
′
∗, 1B′)

// γλ(A′, B′, ε′) = (B′, B′, 1B′)
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commutes too.

Proof (of Theorem 5.1). We have the commutative diagram

Cov(X)
θ //

α

��

G-Sets

β

��

υ∗

**
(G1 ∗H G2)-Sets

γtt
Cov(U1)×Cov(V) Cov(U2) Φ

// G1-Sets×H-Sets G2-Sets,

where θ(Y) = Y(x0), Φ(Y1, Y2, ε) = (Y1(x0), Y2(x0), εx0), α(Y) = (Y
∣∣
U1

, Y
∣∣
U2

, 1),
β(F) = (i∗1 F, i∗2 F, 1 f ∗i∗1 F) and γ(F) = (i∗1 F, i∗2 F, 1 f ∗i∗1 F). Since the diagram

Cov(U1)
Φ1 //

ĩ1
&&

G1-Sets
f ∗

%%
Cov(V)

ϕ
// H-Sets

Cov(U2) Φ2
//

ĩ2
88

G2-Sets
g∗

99

commutes with ϕ, Φ1 and Φ2 equivalences of categories by Theorem 4.41, by The-
orem 1.26 we have Φ is an equivalence of categories. Now α and θ are equivalences
of categories by Lemma 5.3 and Theorem 4.41 respectively, then so is β by Corol-
lary 1.14. Since γ is an equivalence by Lemma 5.4, then by Proposition 1.13 so is
υ∗. Therefore, by Proposition 2.7 υ : G1 ∗H G2 → G is an isomorphism.
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