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I. INTRODUCTION

The hydrodynamical description of relativistic particle
collisions was first discussed more than 50 years ago by
Landau [1] and nowadays it is frequently used in different
versions for simulations of heavy-ion collisions. Such a
simulation basically includes three main stages: the initial
stage, the fluid-dynamical stage, and the so-called freeze-out
(FO) stage when the hydrodynamical description breaks down.
During this latter stage, the matter becomes dilute, cold, and
noninteracting, the particles stream toward the detectors freely,
and their momentum distribution freezes out. Thus, the FO
stage is essentially the last part of a collision process and the
source of the observables.

The usual recipe is to assume the validity of the hydrody-
namical treatment up to a sharp FO hypersurface (e.g., when
the temperature reaches a certain value, TFO). When we reach
this hypersurface, all interactions cease and the distribution of
particles can be calculated.

In such a treatment FO is a discontinuity where the proper-
ties of the matter change suddenly across some hypersurface in
space-time. The general theory of discontinuities in relativistic
flow was first discussed by Taub [2]. That description can
only be applied to discontinuities across propagating hypersur-
faces, which have a spacelike (dσµdσµ = −1) normal vector.
The discontinuities across hypersurfaces with a timelike
(dσµdσµ = 1) normal vector were considered unphysical. The
remedy for this came some 40 years later in [3], in which Taub’s
approach for both timelike and spacelike hypersurfaces was
generalized. Consequently, it is possible to take into account
conservation laws exactly across any surface of discontinuity
in relativistic flow.

As was shown recently in Refs. [4,5], the frequently used
Cooper-Frye prescription [6] to calculate post FO particle
spectra gives correct results only for discontinuities across
timelike normal vectors. The problem of negative contribu-
tions in the Cooper-Frye formula was healed by a simple
cutoff, �(pµdσµ), proposed by Bugaev [4]. However, this
formulation is still based on the existence of a sharp FO
hypersurface, which is a strong idealization of a FO layer
of finite thickness [7]. Thus, by assuming an immediate sharp

FO process, the questions of final-state interactions and the
departure from local equilibrium are left unjustified.

The recent papers [8,9] formulates the FO problem in
the framework of kinetic transport theory. The dynamical
FO description has to be based on the modified Boltzmann
transport equation (MBTE), rather than on the commonly used
Boltzmann transport equation (BTE). The MBTE abandons
the local molecular chaos assumption and the requirement
of smooth variation of the phase-space distribution, f (x, p),
in space-time. This modification of BTE makes it even
more difficult to solve the FO problem from first principles.
Therefore, it is very important to build phenomenological
models, that can explain the basic features of the FO process.

The present paper aims at building such a simple phe-
nomenological model. The kinetic approach presented is
applicable for FO in a layer of finite thickness with a
spacelike normal vector. It can be viewed as a continuation
and generalization of Refs. [10–12]. The kinetic model for FO
in the timelike direction was discussed in a recent paper [13];
however, the fully covariant model analysis and the treatment
are presented in Ref. [14].

In the present work we use stationary, one-dimensional
FO models for a transparent presentation. Such models can
be solved semianalytically, allowing us to trace the effects
of different model components, assumptions, and restrictions
applied to the FO description. We do not aim at directly
applying the results presented here to experimental heavy-ion
collision data; instead our purpose is to study qualitatively
the basic features of the FO process. We want to demonstrate
the applicability of the proposed covariant FO escape rate and
most importantly, to see the consequences of finishing FO in
a finite layer. Up to now, two extreme ways of describing FO
have been used; (i) FO on an infinitely narrow hypersurface and
(ii) infinitely long FO in a volume emission type of model. To
our knowledge this is the first attempt to, at least qualitatively,
understand how FO in a finite space-time domain can be
simulated and what will be its outcome. In such stationary,
one-dimensional models the expansion cannot be realistically
included, therefore it is ignored.

In realistic simulations of high-energy heavy-ion reactions
the full three-dimensional (3D) description of a expanding and
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freezing out system should be included. This work is under
initial development.

II. FREEZE-OUT FROM KINETIC THEORY

Kinetic theory describes the time evolution of a single-
particle distribution function f (x, p) = f (t, x, p0, p) in 6D
phase-space. To describe FO in a kinetic model, we split the
distribution function into two parts [10,15,16]:

f (x, p) = fi(x, p) + ff (x, p). (1)

The free component, ff , is the distribution of the frozen-
out particles, while fi is the distribution of the interacting
particles. Initially, we have only the interacting part, then
as a consequence of FO dynamics, fi gradually disappears,
whereas ff gradually builds up. In this paper we convert the
description of the FO process from a sudden FO (i.e., on a sharp
hypersurface) into a gradual FO (i.e., in some finite space-time
domain).

Freeze-out is known to be a strongly directed process
[17], where the particles are allowed to cross the FO layer
only outward, in the direction of the normal vector dσµ

of the FO hypersurface. Many dynamical processes such
as detonations, deflagrations, shocks, condensation waves,
happen in a way where the phenomenon propagates in some
direction. Basically, this means that the gradients of the
described quantity (the distribution function in our case) in
all perpendicular directions can be neglected compared to the
gradient in the given direction dσµ (i.e., �f ≈ dσµ∂µf ).
In such a situation these can be effectively described as
one-dimensional processes, and the space-time domain, where
such a process takes place, can be viewed as a layer.

Therefore, we develop a one-dimensional model for the
FO process in a layer of finite thickness L. We assume that
the boundaries of this layer are approximately parallel, and
thus the thickness of the layer does not vary much. This can
be justified, for example, in the case when the system size is
much larger than L. At the inside boundary of this layer there
are only interacting particles, whereas at the outside boundary
all particles are frozen-out and no interacting particles remain.
Note that the normal to the FO layer, dσµ, can be spacelike or
timelike.

The gradual FO model for the infinitely long one-
dimensional FO process was presented in recent works
[10–12]. We are going to build a similar model, but now we
make sure that FO is completely finished within a finite layer.

A. Freeze-out in a finite layer

In kinetic theory the interaction between particles is due
to collisions. A quantitative characterization of collisions is
given by the mean free path (mfp) λmfp, giving the average
distance between collisons. The mfp is inversely proportional
to the density: λmfp ∼ 1/n(x). If we have a finite FO layer,
the interacting particles inside this domain must have a finite
mfp. During the FO process, as the density of the interacting
particles decreases, they enter into a collisionless regime,
where their final mfp tends to infinity or at least gets much
larger than the system size L. The realistic FO process

for nucleons in heavy-ion collisions happens within a finite
space-time FO domain, which has a thickness of a few initial
mfps [18]. Hence, one must realize that the FO process cannot
be fully exploited by means of the mfp concept, since we have
to describe a process where we have on average a few collisions
per particle before FO. Therefore, this type of process should
be analyzed by having another characteristic length scale
different from the mfp. In our case it should be related to
the thickness L of the FO layer.

Based on strong flow and relatively small dissipation, it
has recently been conjectured that the state where collective
flow starts is strongly interacting and strongly correlated while
the viscosity is not large [19]. This indicates a small mfp,
in the interacting matter, while at the surface λmfp → ∞.
Several indications point out that in high-energy heavy-ion
reactions FO and hadronization happens simultaneously from
a supercooled plasma [20–22]. This could be modeled in a way
that prehadron formation and clusterization starts gradually in
the plasma, and this process is coupled to FO in a finite layer.
The FO is finished when the temperature of the interacting
phase drops under a critical value and all quarks cluster
into hadrons, which no longer collide. This is the possible
qualitative scenario with well-defined finite thickness L of the
FO layer.

Now, let us recall the equations describing the evolution
in the simple kinetic FO model [10–12]. Starting from
a fully equilibrated Jüttner distribution fJ (p) [i.e., fi(s =
0, p) = fJ (p) and ff (s = 0, p) = 0], we have that the two
components of the momentum distribution develop in the
direction of the FO (i.e., along dσµ) according to the following
differential equations:

∂sfi(s, p)ds = −fi(s, p)Wesc(s, p),
(2)

∂sff (s, p)ds = +fi(s, p)Wesc(s, p),

where Wesc(s, p) is the escape rate governing the FO devel-
opment and s = xµdσµ. Here xµ is a four-vector having its
origin1 at the inner surface S1 of the FO layer (see Fig. 1).
To obtain the escape probability, for a particle passing from
0 to s,Pesc(s), we have to integrate the escape rate along a
trajectory crossing the FO layer:

fi(s, p) = fJ (p) exp

(
−

∫ s

0
ds ′Wesc(s ′, p)

)
︸ ︷︷ ︸

1−Pesc

. (3)

The definition for the escape probability was previously given
in Ref. [16], in terms of collision or scattering rates, where the
FO process lasted an infinitely long time. In our finite-layer
FO description the quantity that defines the escape probability
is the escape rate.

To have a complete physical FO finished at a finite distance
and time, we require Pesc → 1 when s → L. In usual cascade

1Any point of the inner surface S1 can be considered as an origin,
since translations along S1 do not change s, the projection of xµ on the
FO normal vector dσµ, as long as S1 and S2 are parallel, as assumed.
Of course, this latter assumption can be justified only locally, in some
finite region, as is clear from Fig. 1.
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FIG. 1. The picture of a gradual FO process within the finite FO
layer, in the x direction [i.e., dσµ = (0, 1, 0, 0)]. The particles are
moving in different directions outward, indicated by the angle θ . The
inside boundary of the FO layer, S1 (thick line), indicates the points
where the FO starts. This is the origin of the coordinate vector xµ.
Within the finite thickness of the FO layer, L, the density of the
interacting particles gradually decreases (indicated by shading) and
disappears at the outside boundary S2 (thin line) of the FO layer.

models the probability of collision never becomes exactly
zero, and correspondingly Pesc never becomes exactly one,
and the FO process lasts ad infinitum. This is because the
probability of collision is calculated based on the thermally
averaged cross section, which does not vanish for thermal
(e.g., Gaussian) momentum distributions. In reality the free or
frozen-out particles have no isotropic thermal distributions but
these distributions can be anisotropic and strongly confined in
phase-space. This means that the collision probability can be
exactly zero and FO may be completed in a finite space-time
domain.

It seems reasonable to parametrize the escape rate, which
has dimension one over length, in terms of some characteristic
FO length λ′(s, p):

Wesc(xµ, pµ, dσµ) ≡ 1

λ′(s, p)
�(ps), (4)

where the cutoff factor �(ps) ≡ �(pµdσµ) forbids the FO
of particles with momenta not pointing outward [4]. This FO
parameter, λ′(s, p), is not necessarily an average distance in
space or duration in time between two subsequent collisions,
like the mfp. The mfp tends to infinity as the density decreases,
while the FO just becomes faster in this limit. Actually, the FO
scale behaves in the opposite way to the mfp. This can be seen,
for example, in a simple, purely geometrical FO model, which
takes into account the divergence of the flow in a 3D expansion
[23]. Both this and the phase transition or clusterization effect
described at the beginning of this section lead to a finite FO
layer L, even if the mfp (λmfp

∼= 1/nσ ) is still finite at the outer
edge of this layer.

We consider the thickness of the layer L to be the “proper”
thickness of the FO layer, because it depends only on invariant
scalar matter properties such as cross section, proper density,
velocity divergence, phase transition, or clusterization rates.

These should be evaluated in the local rest (LR) frame of
the matter, and, since the layer is finite, around the middle
of this layer. The proper thickness is analogous to the proper
time (i.e., time measured in the rest frame of the particle);
hence the proper thickness is the thickness of the FO layer
measured in the rest frame attached to the FO front, that is,
the rest frame of the front (RFF). Some of the parameters,
such as the velocity divergence and the phase transition rate,
describe the dynamical changes in the layer, so these can deter-
mine the properties (e.g., the thickness) of the finite layer.
However, calculating L from these mentioned properties is
beyond the scope of this paper, and L is treated as a parameter
in the following.

Let us consider the RFF, where the normal vector of
the front points either in the time (t) or in the space (x)
direction, introducing the following notations.2 Indeed, if dσµ

is spacelike the resulting equations can be transformed into a
frame where the process is stationary [here dσµ = (0, 1, 0, 0)
and correspondingly s ≡ x)], while in the case of a timelike
normal vector the equations can be transformed into a frame
where the process is uniform and time dependent [dσµ =
(1, 0, 0, 0), s ≡ t]. For the sake of transparency and simplicity
we will perform calculations only for FO in a finite layer with
a spacelike normal vector in this paper, but many intermediate
results can and will be obtained in a Lorentz-invariant way.

Inside the FO layer particles are separated into still-
colliding or interacting and not-colliding or free particles. The
probability not to collide with anything on the way out should
depend on the number of particles, in the way of a particle
moving outward in the direction p/|p| across the FO layer of
thickness L (see Fig. 1). If we follow a particle moving outward
form the beginning (xµ = 0), that is, the inner surface of the
FO layer, S1, to a position xµ, there is still a distance

L − s

cos θp

ahead of us, where θp is the angle between the normal vector
and p/|p|. As this remaining distance becomes smaller the
probability to freeze-out becomes larger; thus, we may assume
that the escape rate is inversely proportional to some power a

of this quantity [9,24].
Based on these assumptions we write the escape rate as

Wesc = 1

λ

(
L

L − s

)a (
cos θp

)a
�(ps), (5)

where this newly introduced parameter λ is the initial (i.e.,
at S1) characteristic FO length of the interacting matter,
λ = λ′(s = 0, cos θp = 1). The power a influences the FO pro-
file across the front. Indeed, calculating the escape probability

2

Timelike Spacelike
dσµ (1, 0, 0, 0) (0, 1, 0, 0)
s ≡ (dσρx

ρ) t x

ps ≡ (dσρp
ρ) p0 px

∂s ≡ (dσρ∂ρ) ∂t ∂x

λ′(s) τ ′(t) λ′(x)
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Pesc, Eq. (3), with the escape rate, given by Eq. (5), we find

Pesc = 1 −
(

L − s

L

) L
λ

cos θp�(ps )

,

for a = 1, and

Pesc = 1 − exp

[
L

λ
�(ps)

(cos θp)a

(a − 1)

(
1 −

(
L

L − s

)a−1
)]

,

for a �= 1. Thus, we see that for different a values we have
different FO profiles:

a = 1: powerlike FO,

a > 1: fast, exponential-like FO,

a < 1: no complete FO within the finite layer, since Pesc

does not tend to 1 as s approaches L.

In papers [10–12] the authors were using a = 1 and were
modeling FO in an infinite layer. To study the effects of FO
within a finite space-time domain, we would like to compare
the results of our calculations with those of earlier works;
therefore we shall also take a = 1 in further calculations. It is
easy to check that our escape rate, Eq. (5), equals the earlier
expression

Pesc = cos θp

λ
�(ps)

in the L → ∞ limit. Thus, the model discussed in this paper is
a generalization of the models for infinitely long FO, described
in [10–12], and allows us to study FO in a layer of finite
thickness.

The angular factor cos θp maximized the FO probability
for those particles, that propagate in the direction closest
to the normal of the FO layer. For the FO in timelike
directions, studied in Ref. [13], the angular factor was 1.
This factor, and correspondingly the escape rate, Eq. (5), are
not covariant. Furthermore, this earlier formulation does not
take into account that the escape rate of particles should be
proportional to the particle velocity (since the conventional
nonrelativistic limit of the collision rate contains the thermal
average 〈σv〉). Let us consider the simplest situation, when
the RFF is the same as the rest frame of the gas (RFG),
where the flow velocity is uµ = (1, 0, 0, 0). If FO propagates
in a spacelike direction [i.e., dσµ = (0, 1, 0, 0)], as shown
in Fig. 1, then cos θp = px/|p|. Therefore, a straightforward
generalization of the escape rate, based on these arguments, is

cos θp × |v| ≡ px

|p| × |p|
p0

=
(

pµdσµ

pµuµ

)
, (6)

where the right-hand side of this equation is an invariant
scalar in covariant form. Now, we assume that this simple
generalization is valid for any spacelike or timelike FO
direction, even when the RFG and RFF are different [9,17,25].

Based on these arguments, we can write the total escape
rate from Eq. (5) in a Lorentz-invariant3 form:

Wesc = 1

λ

(
L

L − s

)(
ps

pµuµ

)
�(ps), (7)

which now opens room for a general study of FO in relativistic
flow in layers of any thickness.

Former FO calculations in Refs. [10–12] were always
performed in the RFF. Aiming for semianalytical results and
transparent presentation, as well as to compare our results with
former calculations, we will also study the system evolution in
the RFF, but now this is only our preference. In principle
calculations can be performed in any reference frame. In
more realistic many-dimensional models, which will take
into account the system expansion simultaneous with the
gradual FO, it will be probably more adequate to work in
the RFG or in the lab frame, and our invariant escape rate,
Eq. (7), can be directly used as a basic FO ingredient of such
models.

B. The Lorentz-invariant escape rate

In this section let us study this new angular factor in more
detail. We will take the p-dependent part of the escape rate,
Eq. (7), and denote it as

W (p) = pµdσµ

pµuµ

�(pµdσµ). (8)

In the RFG, where the flow velocity of the matter is uµ =
(1, 0, 0, 0)RFG by definition, W (p) is given as

W (p) = pµdσµ

p0
�(pµdσµ)

∣∣∣∣
RFG

, (9)

and it is smoothly changing as the direction of the normal
vector changes in the RFG. This will be discussed in more
detail in the rest of this section.

Now, we will take different typical points of the FO
hypersurface, A, B, C, D, E, and F (see Fig. 2). At these points,
the normal vectors of the hypersurface, dσµ = (h, i, j, k)RFG,
are given in the following.

To calculate the normal vector for the different cases shown
in Fig. 2, we simply make use of the Lorentz transformation.
The normal vector of the timelike part of the FO hypersurface
may be defined as the local t ′ axis, while the normal vector of
the spacelike part may be defined as the local x ′ axis. As dσµ

is normalized to unity, its components may be interpreted in
terms of γσ and vσ , where γσ = 1/

√
1 − v2

σ . So, we have

(A) dσµ = (1, 0, 0, 0), which leads to W (p) = 1;
(B) dσµ = γσ (1, vσ , 0, 0), which leads to W (p) =

γσ (p0 + vσpx)/p0;
(C) dσµ = γε(1 + ε, 1 − ε, 0, 0), where γε = (4ε)−

1
2 ,

ε � 1; this leads to W (p) = γε[(p0 + px)+
ε(p0 − px)]/p0;

3Now, it is important that L is defined as an invariant scalar, so Wesc

is also an invariant scalar.
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FIG. 2. (Color online) A simple FO hypersurface [t, x] in the
RFG, where uµ = (1, 0, 0, 0)RFG, including timelike and spacelike
parts. The normal vector of the FO front, dσµ, is a timelike four-vector
at the timelike part and it is changing smoothly into a spacelike four-
vector in the spacelike part. On these two parts of the hypersurface, in
the RFF, dσµ points in the direction of the t ′ and x ′ axes, respectively.
At points A, B, C, D, E, and F, we have different REFs ([t ′, x ′]).

(D) dσµ = γε(1 − ε, 1 + ε, 0, 0), where γε = (4ε)−
1
2 , ε �

1; this leads to W (p) = {γε[(p0 + px) − ε(p0 −
px)]/p0}�[γε(p0 + px) − γεε(p0 − px)];

(E) dσµ = γσ (vσ , 1, 0, 0), which leads to W (p) =
[γσ (vσp0 − px)/p0]�[γσ (vσp0 − px)]; and

(F) dσµ = (0, 1, 0, 0), which leads to W (p) =
(px/p0)�(px).

The resulting phase-space escape rates are shown in Fig. 3 for
these six cases.

Similar calculations can be done in the RFF, where dσµ =
(1, 0, 0, 0) for A, B, and C and dσµ = (0, 1, 0, 0) for D, E, and
F, leading to the following:

(A) uµ = (1, 0, 0, 0), which leads to W (p) = 1;
(B) uµ = γσ (1,−vσ , 0, 0), which leads to W (p) =

p0/[γσ (p0 − vσpx)];
(C) uµ = γε[1 + ε,−(1 − ε), 0, 0], where γε = (4ε)−

1
2 ,

ε � 1; this leads to W (p) = (1/γε)p0/[(p0 − px) +
ε(p0 + px)];

(D) uµ = γε[1 + ε,−(1 − ε), 0, 0], where γε = (4ε)−
1
2 ,

ε � 1; this leads to W (p) = (1/γε)p0/[(p0 − px) +
ε(p0 + px)] × �(px),

(E) uµ = γσ (1,−vσ , 0, 0), which leads to W (p) =
px/[γσ (p0 − vσpx)] × �(px); and

(F) uµ = (1, 0, 0, 0), which leads to W (p) = px/p0�(px).

For cases, A, B, C, D, E, and F in the RFF the resulting
phase-space escape rates are shown in Fig. 4.

Figures 3 and 4 show that the momentum dependence of
the escape rate, uniform in point A, becomes different at
different points of the FO hypersurface, but this change is
continuous, when we cross the light cone, from point C to
point D. Although in the RFF (Fig. 4) it seems that there
is a principal difference between spacelike and timelike FO
directions, owing to the cutoff �(pµdσµ) function, this is only
a consequence of the chosen reference frame; that is, the RFF
is defined in a way to stress the difference between these two
cases, since in going from C to D, the normal vector has a
jump [i.e., dσµ = (1, 0, 0, 0) goes over to dσµ = (0, 1, 0, 0)].
Nevertheless, W (p) is a continuous function as we change
dσµ, and in other frames, for example in the RFG (Fig. 3), we
can see this clearly.
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of the momentum-dependent part of the
escape rate, W (p), in the RFF. For region
A, uµ = (1, 0, 0, 0), and W (p) is one
uniformly; for B, uµ = γσ (1, −0.5, 0, 0);
for C, uµ = γε(1.01, −0.99, 0, 0); for D, uµ =
γε(1.01, −0.99, 0, 0); for E, uµ = γσ (1, −0.5,

0, 0); for F, uµ = (1, 0, 0, 0). In cases D, E, and
F the escape rate vanishes for momenta with
px < 0. The momenta are in units of particle
mass, [m].

C. The updated simple kinetic model

Now, using the new invariant escape rate, Eq. (7), we
can generalize the simple model presented in [10–12] [i.e.,
Eqs. (2)] for a finite space-time FO layer:

∂sfi ds = −
(

L

L − s

)(
ps

pµuµ

)
�(ps)fi

ds

λ
,

(10)

∂sff ds =
(

L

L − s

)(
ps

pµuµ

)
�(ps)fi

ds

λ
.

Solving the first equation we find for the interacting component

fi(s, p) = fJ (p)

(
L − s

L

) L
λ

(
ps

pµuµ

)
�(ps )

s→L−→ fJ (p)�(−ps). (11)

Now, inserting this result into the second differential equation,
from Eqs. (10), we obtain the FO solution, which describes
the momentum distribution of the frozen-out particles:

ff (s, p) = fJ (p)


1 −

(
L − s

L

) L
λ

(
ps

pµuµ

)
�(ps )




s→L−→ fJ (p)�(ps). (12)

As s tends to L (i.e., to the outer boundary of the FO layer),
this distribution, depending on the direction of the normal
vector (spacelike or timelike) will tend to the cut-Jüttner or
Jüttner distribution. The cut-Jüttner distribution means that
part of the original Jüttner distribution survives even when we
reach the outer boundary of the FO surface. To remedy this
highly unrealistic result, in Refs. [10–13], rethermalization
in the interacting component was taken into account via
the relaxation time approximation; that is, we insert into
the equation for the interacting component a new term, that
describes how the interacting component approaches some
equilibrated (Jüttner) distribution feq(s) with a relaxation

length λ0:

∂sfids = −
(

L

L − s

)(
ps

pµuµ

)
�(ps)fi

ds

λ

+ [feq(s) − fi]
ds

λ0
, (13)

∂sff ds =
(

L

L − s

)(
ps

pµuµ

)
�(ps)fi

ds

λ
. (14)

Let us concentrate on the equation for the interacting com-
ponent. Here the first term from Eq. (13), related to FO,
moves the distribution out of equilibrium and decreases
the energy-momentum density and baryon density of the
interacting particles. The second term from Eq. (13) changes
the distribution in the direction of the thermalization, although
it does not affect the conserved quantities. The relative strength
of the FO and rethermalization processes is determined by the
two characteristic lengths λ and λ0.

In general the evolution of the interacting component can
be solved numerically or semianalytically, at every step of the
integration. Then, the change of conserved quantities caused
by FO should be evaluated using the actual distribution fi (s, p)
at the corresponding point s. For the purpose of this work,
namely for the qualitative study of the FO features, it is enough
to use an approximate solution, similarly as was done in [11–
13]. This would also allow us to make a direct comparison with
results of these older calculations. Thus, the evaluation of the
change of the conserved quantities is done analytically; that
is, fi(s, p) is approximated with an equilibrium distribution
function feq(s) with parameters T (s), n(s), and uµ(s).

This approximation is based on the fact that in most
physical situations the overall number of particle collisions
vastly exceeds the number of those collisions after which a
particle leaves the system or freezes out. This allows us to
assume that rethermalization4 happens faster than the freeze

4The words “immediate rethermalization” used in a few earlier
publications were badly chosen, misleading, and inappropriate.
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FIG. 5. (Color online) Numerical solutions of Eq. (13) for
different λ0’s. This solution was obtained a using feq = e−s2

test
function, for L = 10λ. The results show that fi(s) approaches feq(s)
when λ0 � λ.

out (i.e., that λ0 < λ or λ0 � λ). Of course, this argument
is true only at the beginning of the FO process, when the
density of the interacting particles is still large. When s is
close to L (i.e., near the outer hypersurface), the first term in
Eq. (13) becomes more important than the rethermalization
term because of its denominator, but, as we shall see in the
results section, particles freeze-out exponentially fast and for
large s, when say 99% of the matter is frozen out, the error we
introduce with our approximate solution can not really affect
the physical situation.

For illustration let us take a test function, feq(s) = e−s2

(ignoring the p dependence for the moment), that is a smoothly
and fastly decreasing function.5 In Fig. 5 we show the
numerical solutions for the interacting component for λ0 = λ

and λ0 = 0.1λ. The results show that for the latter case we can
safely take the approximate solution [11–13]:

fi(s) = feq(s) . (15)

D. Conservation laws

The goal of the FO calculations is to find the final post FO
momentum distribution, and then the corresponding quantities
defined through it, starting from the initial pre FO distribution.
On the pre FO side we can have equilibrated matter or gas. Its
local rest frame defines the RFG (see Fig. 6). We can also define
the reference frame, which is attached to the FO front, namely
the RFF (see Fig. 7). These choices are usually advantageous,
but other choices are also possible.

5In real calculations the s dependence of feq(s, p) is calculated from
the energy, momentum, and baryon charge loss of the interacting
component, where these losses are determined by the momentum
dependence of the escape rate and the actual shape of fi(s, p), as
discussed here.

x

t

lig
ht c

one

Pre FO
Post FO

dσ µ

FIG. 6. The orientation of the freeze-out front in the RFG is given
as dσµ = γσ (vσ , 1, 0, 0)RFG.

Furthermore, the conservation laws and the nondecreasing
entropy condition must be satisfied [10]:

[Nµdσµ] = 0, [T µνdσµ] = 0, [Sµdσµ] � 0, (16)

where [A] = A − A0. The pre FO side baryon and entropy
currents and the energy-momentum tensor are denoted by
N

µ

0 , S
µ

0 , T
µν

0 , while the post FO quantities are denoted by
Nµ, Sµ, T µν .

The change of conserved quantities caused by the particle
transfer from the interacting matter to the free matter can
be obtained in the following way. For the conserved particle
four-current we have

dNµ = dN
µ

i + dN
µ

f = 0 ⇒ dN
µ

i = −dN
µ

f . (17)

Then, using the kinetic definition of the particle current,
together with Eqs. (14) and (15), we obtain

dN
µ

i (s)= ds

∫
d3p

p0
pµ[∂sfi]

=−ds

λ

(
L

L − s

)∫
d3p

p0
pµ

[
ps

pρu
ρ

i

�(ps)

]
feq(s). (18)

x

t

lig
ht c

one

Pre FO
Post FOdσµ

FIG. 7. The orientation of the freeze-out front in the RFF (i.e. in
its own rest frame) is dσµ = (0, 1, 0, 0)RFF. In this frame the gas has
nonvanishing velocity in general.
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Similarly, the change in the energy-momentum is

dT
µν

i (s) = −ds

λ

(
L

L − s

)∫
d3p

p0
pµpν

[
ps

pρu
ρ

i

�(ps)

]
feq(s) .

(19)

The parameters of the equilibrium (Jüttner) distribution feq(s)
have to be recalculated after each step ds from the conservation
laws as in [11–13].

The change of flow velocity, du
µ

i (s), can be calculated using
Eckart’s or Landau’s definition of the flow, that is, from dN

µ

i (s)
or dT

µν

i (s), correspondingly. Then the change of conserved
particle density is given by

dni(s) = u
µ

i (s)dN
µ

i (s), (20)

and for the change of energy density we have

dei(s) = uµ,i(s)dT
µν

i (s)uν,i(s). (21)

The change of the temperature of interacting component can be
found from this last equation, Eq. (21), and from the equation
of state (EoS). This closes our system of equations.

If we fix the FO direction to the x direction, then Eqs. (18)
and (19) can be rewritten as

dN
µ

i (x) = −dx

λ

(
L

L − x

)∫
d3p

p0
pµ

×
[

p cos θp

γ (p0 − jup cos θp)
�(cos θp)

]
feq(x, p)

(22)

and

dT
µν

i (x) = −dx

λ

(
L

L − x

)∫
d3p

p0
pµpν

×
[

p cos θp

γ (p0 − jup cos θp)
�(cos θp)

]
feq(x, p),

(23)

where the four-momentum of particles is pµ = (p0, p), p =
|p|, px = p cos θp, the flow velocity of the interacting mat-
ter is u

µ

i = γ (1, v, 0, 0), γ = 1/
√

1 − v2, u = |v|, and j =
sign(v).

E. Changes of the conserved current and
energy-momentum tensor

In this section we show new analytical results for the
changes of the conserved particle current and energy-
momentum tensor. The formulas are analogous to those from
Refs. [10,11], but now they are calculated with the Lorentz-
invariant angular factor from Eq. (7). We show results for both
massive and massless particles:

dN0
i (x) = − dx

λ

(
L

L − x

)
n

4u2γ 2

{
γG−

1 (m) + b3�(0, b)

3γ 2

− 2γ bu[(1 + j )K1(a) − K1(a, b)]

−ub2[(1 + j )K0(a) − K0(a, b)]

+
[
u2γ 2(1 + b)(u2 − 3) − A(b)

3γ 2

]
e−b

}

m=0−→ −dx

λ

(
L

L − x

)
n

4

[
(3 − v)(1 + v)3

3
γ 2

]
,

dNx
i (x) = dN0

i (x)

ju
− dx

λ

(
L

L − x

)
n

4u2γ 2

×{−2jγ bu2[(1 + j )K1(a) − K1(a, b)]

− jb2u2[(1 + j )K0(a, b) − K0(a, b)]

− juγ 2(1 + u2)(1 + b)e−b}
m=0−→ −dx

λ

(
L

L − x

)
n

4

[
2(1 + v)3

3
γ 2

]
, (24)

dT 00
i (x) = −dx

λ

(
L

L − x

)
nT

4u2γ 2

{
b4�(0, b)

4γ 3
− γG−

2 (m)

−uγ b2(u2 + 3) [(1 + j )K2(a) − K2(a, b)]

−ub3 [(1 + j )K1(a) − K1(a, b)]

+ γ 3

[
−A(b)(3u2 + 1) + B(b)

2γ 6
− b2(3 + b)

3γ 6

− b2u2(1 + b)

γ 6
+ 2

3
b3u4(u2 − 3) + a2

]
e−b

}
m=0−→ −dx

λ

(
L

L − x

)
nT

4

×
[

(1 + v)4

2
(6 − 4v + v2)γ 3

]
,

dT 0x
i (x) = dT 00

i (x)

ju
− dx

λ

(
L

L − x

)
nT

4u2γ 2

×
{

− jγ b2(3u2 + 1) [(1 + j )K2(a) − K2(a, b)]

− jb(b2u2 − 2) [(1 + j )K1(a) − K1(a, b)]

+ jab [(1 + j )K0(a) − K0(a, b)]

− juγ

[
γ 2A(b)(u2 + 3) + (1 + b)(u2 − 3)

+ 4b3

3
u2γ 2 − b2

]
e−b

}
m=0−→ −dx

λ

(
L

L − x

)
nT

4

[
(1 + v)4

2
(4 − v)γ 3

]
,

dT xx
i (x) = dT 0x(x)

ju
− 2

T

γju

[
dNx

i − dN0
i (x)

ju

]

− dx

λ

(
L

L − x

)
nT

4u2γ 2

{
− γ ub2(3 + u2)

× [(1 + j )K2(a) − K2(a, b)] + γ 3

×
[
A(b)(3u2 + 1) + 2

3
b3u4(u2 − 3) + a2

]
e−b

}
m=0−→ − dx

λ

(
L

L − x

)
nT

4

[
3(1 + v)4

2
γ 3

]
,
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dT
yy

i (x) = − dT xx(x)

2
− dx

λ

(
L

L − x

)
nT

8u2γ 2

×
{

− γ ub2(3 + u2)[(1 + j )K2(a) − K2(a, b)]

+ γ 3

[
A(b)(3u2 + 1) − 3B(b)

2γ 6

+ (b2 + 1)(1 + b)

2γ 6
+ 2

3
b3u4(u2 − 3) + a2

]
e−b

− b4�(0, b)

4γ 3
+ γH−

2 (m)

}
m=0−→ −dx

λ

(
L

L − x

)
nT

8

[
γ (1 + v)3

4v2
(−4 + 12v

− 9v2 + 3v3)

]
,

and

dT zz
i (x) = dT

yy

i (x), (25)

where a = m/T, b = aγ,A(b) = (2 + 2b + b2)e−b, B(b) =
1
6 (6 + 6b + 3b2 + b3)e−b, and n = 4πT 3a2K2(a)geµ/T /

(2πh̄)3 is the particle density, g is the degeneracy factor;
G−(m),H−(m),K(a, b),K(a), and �(0, b) are defined in the
Appendix. Note that the x-dependent factor L/(L − x) is just
a multiplier in these calculations, and tends to unity if we are
dealing with an infinitely long FO, as in [10–12].

III. RESULTS AND DISCUSSION

In this section we calculate the post FO distributions and
compare the results to former calculations presented in [10–
12]. The effect of two main differences attributed to the new
Lorentz-invariant escape rate, Eq. (7), is to be checked:

(i) the infinite (∞) FO layer or finite (L) FO layer,
(ii) the simple angular escape rate P or the covariant escape

rate W .

We performed calculations for a baryon-free massless gas,
where we have used a simple EoS, e = σSBT 4, where σSB =
π2/10. The change of temperature is calculated based on this
EoS and Eq. (21). There are no conserved charges in our
system; consequently we use Landau’s definition of the flow
velocity [11]:

du
µ

i,Landau(x) = 
µν

i (x) dTi,νσ (x) uσ
i (x)

ei(x) + Pi(x)
, (26)

where 
µν

i (x) = gµν − u
µ

i (x)uν
i (x) is a projector to the

plane orthogonal to u
µ

i (x), and ei(x) and Pi(x) are
the local energy density and pressure of the inter-
acting component, respectively, [i.e., T

µν

i (x) = (ei(x) +
Pi(x))uµ

i (x)uν
i (x) − Pi(x)gµν]. A detailed treatment of

Eckart’s flow velocity can be found in Refs. [10,11].

For such a system we finally obtain the following set of
differential equations:

d ln T = γ 2

4σSBT 4

[
dT 00

i − 2vdT 0x
i + v2dT xx

i

]
,

(27)

dv = 3

4σSBT 4

[− vdT 00
i + (1 + v2)dT 0x

i − vdT xx
i

]
.

We will present the results for four different cases:

P∞: We use the simple, but relativistically not invariant,
angular factor cos θp in the escape rate:

P∞ = cos θp

λ
� (p cos θp).

The system is characterized by an infinite FO length (up
to xmax = 300λ in calculations). The results are shown in
Figs. 8, 10, and 12. This is the same model as in [10–12].

PL: Next, we use the simple angular factor

PL =
(

L

L − x

)
cos θp

λ
�(p cos θp, ),

but in this case inside a finite FO layer of L = 10λ. The
results are shown in Figs. 9, 11, and 14.

W∞: Then, we are dealing with the new Lorentz-invariant
angular factor in the escape rate and with an infinite FO
length (xmax = 300λ)

W∞ = 1

λ

(
p cos θp

pµuµ

)
�(p cos θp).

The results are shown in Figs. 8, 10, 12, and 13.

WL: Finally, we present the primary results of this paper,
using both our new improvements, that is, the covariant
escape rate of Eq. (7),

WL = 1

λ

(
L

L − x

)(
p cos θp

pµuµ

)
�(p cos θp) .

The results are shown in Figs. 9, 11, 14, and 15.

In the case of FO in the infinite layer the factor L/(L − x)
was replaced by 1. We presented the situation at a distance of
xmax = 300λ, where the amount of still interacting particles is
negligible.

For the particular cases when we are dealing with an infinite
FO (i.e., P∞ and W∞) or with finite layer FO (i.e. PL and WL),
the results are plotted together. Thus, in one figure the focus is
on the consequences caused by the different angular factors.

Thin lines always denote the cases with a simple relativis-
tically not invariant angular factor; these correspond to P∞
and PL. Thick lines always correspond to cases with covariant
angular factor W∞ and WL.

All the figures are presented in the RFF.

A. The evolution of temperature of the interacting component

The first set of figures, Figs. 8 and 9, shows the evolution
of temperature of the interacting component, in fact the
gradual cooling of the interacting matter, for the different cases
P∞, PL,W∞, and WL.
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FIG. 8. (Color online) The temperature of the interacting compo-
nent in the RFF for a baryon-free massless gas, calculated with the two
escape rates P∞ (thin lines) and W∞ (thick lines), for an infinitely
long FO (xmax = 300λ). The initial temperature is T0 = 170 MeV;
v0 is the initial velocity in the RFF.

First, on all figures matter with larger (positive) flow
velocity v0 cools faster. This is caused by the momentum
dependence of the escape rate, which basically tells us that
faster particles in the FO direction will freeze-out faster. Thus,
the remaining interacting component cools down, since the
most energetic particles freeze-out more often than the slow
ones. Of course, for larger initial flow velocity v0, in the FO
direction, there are more particles moving in the FO direction
with higher momenta on average than for a smaller flow
velocity.

Now, comparing Fig. 8 with Fig. 9, we can see the difference
between finite and infinite FO dynamics. In a finite layer
cooling of interacting matter occurs increasingly faster as FO
proceeds, whereas for FO in an infinite layer cooling gradually
slows down as x increases. The reason is the factor L/(L − x),
which speeds up FO as L − x decreases and forces it to be
completed within L.
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FIG. 9. (Color online) The temperature of the interacting compo-
nent in the RFF, calculated with the two escape rates PL (thin lines)
and WL (thick lines), for a finite (L = 10λ) FO layer. The initial
temperature is T0 = 170 MeV; v0 is the initial velocity in the RFF.
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FIG. 10. (Color online) The flow velocity of the interacting
component in the RFF for a baryon-free massless gas, calculated
with the two escape rates P∞ (thin lines) and W∞ (thick lines),
for an infinitely long FO (xmax = 300λ). The initial temperature is
T0 = 170 MeV; v0 is the initial velocity in the RFF.

The difference between P and W escape rates comes from
the denominator, which is p0 for P and pµuµ for W . This
difference leads to a stronger cooling for the escape rate P ,
which is bigger than W , if v0 �= 0. This can be seen well at later
stages of infinitely long FO (Fig. 8), particularly for the positive
initial flow velocity. In all other cases the difference between
old and new angular factors is insignificant, supporting our
“naive” generalization of the angular factor.

B. The evolution of common flow velocity of the interacting
component

The second set of figures, Figs. 10 and 11, shows the
evolution of the flow velocity of the interacting component.

In both cases the flow velocity of the interacting component
tends to −1, because the FO points in the positive direction and
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FIG. 11. (Color online) The flow velocity of the interacting
component in the RFF, calculated with the two escape rates PL (thin
lines) and WL (thick lines), for a finite (L = 10λ) FO layer. The initial
temperature is T0 = 170 MeV; v0 is the initial velocity in the RFF.
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FIG. 12. (Color online) The local transverse momentum (here px)
distribution for a baryon-free massless gas at (py = 0), calculated
with the two escape rates P∞ (thin lines) and W∞ (thick lines), for an
infinitely long FO (xmax = 300λ). The initial parameters are v0 = 0
and T0 = 170 MeV. The transverse momentum spectrum is obviously
curved owing to the freeze-out process. The slope of the transverse
momentum distribution increases as we approach infinity.

particles with positive momenta freeze-out. Thus, the mean
momentum of the rest must become negative.

Comparing Fig. 10 with Fig. 11, we can see again that in
a finite layer the flow velocity decreases faster and faster as
FO proceeds, whereas for FO in an infinite layer the velocity
change gradually slows down as x increases. The reason is the
L/(L − x) factor, as previously discussed.

The difference between the evolution of the flow velocity,
owing to the different angular factors, is again not significant,
supporting its generalization.

C. The evolution of the transverse momentum and contour
plots of the post FO distribution

The next set of figures, Figs. 12 and 13, shows the
evolution of the transverse momentum distribution, Figs. 14
and 15 present the contour plots of the post FO momentum
distribution for W∞ and WL. We have presented a one-
dimensional model here, but we assume that it is applicable for
the direction transverse to the beam in heavy-ion experiments.
The presented plots should be qualitatively compared to the
transverse momentum distributions of measured pions.

What we see is that all the final post FO momentum
distributions are essentially the same. This a is very important
outcome from our analysis, which we will discuss in the
following. Also, one can see that the resulting post FO
distributions are nonthermal distributions, as has been shown
already in [10–12]; they strongly deviate from exponential
form in the low-momentum region. The increase in the final
FO spectra over the thermal distribution for low momenta is
connected to the fact that at late stages of the FO process, the
interacting component is cold and its flow velocity is negative.
So, it contributes only to the low-momentum region of the post
FO spectra.
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FIG. 13. (Color online) The post FO distribution, ff (x, p), in the
RFF. The calculations were done with the Lorentz-invariant escape
rate W∞ for an infinitely long FO (xmax = 300λ). The subplots
correspond to x = 1λ, 10λ, and 300λ, respectively. The initial
parameters are v0 = 0 and T0 = 170 MeV. Contour lines are given at
values represented on the figure. The maximum is increasing with x as
indicated in Fig. 12. The distribution is asymmetric and elongated in
the FO direction. This may lead to a large-pt enhancement, compared
to the usual Jüttner assumption used in many earlier calculations as a
post FO distribution. Note that ff (x, p) does not tend to the cut-Jüttner
distribution even at very large x.

These results were obtained in a stationary one-dimensional
model with a single flow velocity. In reality different space-
time sections of the overall FO layer are moving with respect
to each other with considerable velocities (i.e., v ≈ 0.2–0.7).
Therefore, the superposition of these parts of the FO layer
wash out the very sharp peaks at small momenta, while the
curvature at higher momenta, although it is smaller, may persist
even after superposition. There are several effects mentioned
in the literature that can cause such a curvature. The effects
discussed in this section, arising from the kinetic description,
may contribute to the curvature of the spectra, but we need
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FIG. 14. (Color online) The local transverse momentum (here
px) distribution for a baryon-free massless gas at py = 0, calculated
with the two escape rates PL (thin lines) and WL (thick lines) for
a finite (L = 10λ) FO layer. The initial parameters are v0 = 0 and
T0 = 170 MeV.
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FIG. 15. (Color online) The post FO distribution, ff (x, p), in
the RFF. The calculation was made using the covariant escape rate
WL for a finite (L = 10λ) FO layer. The subplots correspond to
x = 0.1λ, 1λ, and 10λ, respectively. The initial parameters are v0 = 0
and T0 = 170 MeV. Contour lines are given at values represented on
the figure.

a more realistic full scale, nonstationary three-dimensional
model to estimate the expected shape of the pt spectra in
measurements. Consequently, both the spacelike and timelike
sections of the FO layer have to contribute.

D. Freeze-out in layers of different thickness

In this section we show the results of calculations per-
formed with the WL escape rate for different finite FO layer
thicknesses. Some results of such an analysis have also been
presented in [26].

In Figs. 16 and 17, we present the evolution of the
temperature and flow velocity of the interacting component
for L = 2λ, 5λ, 10λ, and 15λ. We plot the resulting curves
as a function of x/L, which allows us to present them all
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FIG. 16. (Color online) The evolution of the temperature of the
interacting component in the RFF for a baryon-free massless gas,
calculated with the WL escape rate for different FO layer thicknesses
L = 2λ, 5λ, 10λ, and 15λ. The initial parameters are v0 = 0.5 and
T0 = 170 MeV.
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FIG. 17. (Color online) The evolution of the flow velocity of the
interacting component in the RFF for a baryon-free massless gas,
calculated with the WL escape rate for different FO layer thicknesses
L = 2λ, 5λ, 10λ, and 15λ. The initial parameters are v0 = 0.5 and
T0 = 170 MeV.

in one figure. We clearly see, and this agrees also with our
previous comparison to infinitely long FO, that by introducing
and varying the thickness of the FO layer, we are strongly
affecting the evolution of the interacting component.

We can also study how fast the energy density of the
interacting component is decreasing (see Fig. 18). Since
there is no expansion in our simple model, the evolution
of the energy density is equivalent to the evolution of the
total energy of the remaining interacting matter. We can see
that the decrease of the energy density of the interacting
component is exponentially fast, which justifies our way of
getting an approximate solution for the interacting component
(See Sec. II C).

Figure 19 shows the final post FO transverse momentum
distribution for different L. Despite the differences in the evo-
lution of the interacting component, all the final post FO dis-
tributions look the same and are practically indistinguishable.
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FIG. 18. (Color online) The evolution of the energy density of
the interacting component in the RFF for a baryon-free massless gas,
σSB = π 2/10, calculated with the WL escape rate for different FO
layer thicknesses L = 2λ, 5λ, 10λ, and 15λ. The initial parameters
are v0 = 0.5 and T0 = 170 MeV.
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FIG. 19. (Color online) Final post FO transverse momentum (here px) distributions for the FO layers of different thicknesses. Calculations
were done for baryon-free massless gas with escape rate WL for L = 2λ, 5λ, and 15λ and with W∞ (thick line). The initial conditions are the
same as in Figs. 16 and 17: T0 = 170 MeV, v0 = 0.5. Distributions for the different FO layer thicknesses are very similar, with some difference
in the low-momenta region, which is shown in more detail in the zoomed subplot. The two thick lines correspond to some effective thermal
distributions, with the corresponding parameters displayed in the plot legend. These are shown to illustrate the difference between obtained
post FO distributions and thermal distributions.

The difference between the result for a FO layer as thin as
L = 2λ and that for the L → ∞ limit shows up only in the
low-momentum region, and it is not significant enough to allow
us to resolve layers of different thicknesses from experimental
spectra. Thus, the thickness of the FO layer does not affect, as
we have seen already in the previous section, the final post FO
distribution, which is in fact the measured quantity!

IV. CONCLUSIONS AND OUTLOOK

In this paper we presented a simplified, but still nontrivial,
Lorentz-invariant freeze-out model, that allows us to obtain
analytical results in the case of a massless baryon-free
gas. In addition, the model realizes FO within a finite FO
layer.

We did not aim to apply directly the results presented here to
the experimental heavy-ion collision data; instead our purpose
was to study qualitatively the basic features of the FO effect and
to demonstrate the applicability of this covariant formulation
for FO in finite length.

In Figs. 8, 10, and 12 and Figs. 9, 11, and 14, we
compare results with the simple, cos θp, angular factor and
with the Lorentz-invariant angular factor, pµdσµ/pµuµ. The
differences are insignificant, supporting our generalization.

As has been indicated in the previous publications [10–12],
the final post FO distributions are nonequilibrated distribu-
tions, which deviate from thermal ones particularly in the
low-momentum region. The final spectra have a complicated
form and were calculated here numerically. In large-scale

(e.g., three-dimensional CFD) simulations for spacelike FO
the cancelling Jüttner distribution [27] may be a satisfactory
analytical approximation.

Our analysis shows that, by introducing and varying the
thickness of the FO layer, we are strongly affecting the
evolution of the interacting component, but the final post FO
distributions, even for small thicknesses ( e.g., L = 2λ), look
very close to our results for an infinitely long FO, first obtained
in Refs. [10–12].

The results suggest that if the measured post FO spectrum
is curved, as shown in Fig. 19, then it does not matter how
thick the FO layer was, and we do not need to model the
details of FO dynamics in simulations of collisions! Once
we have a good parametrization of the post FO spectrum
(asymmetric and nonthermal), it is enough to write down the
conservation laws and nondecreasing entropy condition with
this distribution function [7] (and probably with some volume
scaling factor to effectively account for the expansion during
FO). This Cooper-Frye type of description can be viewed from
two sides. From the experimental side, when we know the post
FO spectra, we can extract information about the conditions
in the interacting matter before FO. In theoretical (e.g., fluid
dynamical) simulations such a procedure would allow us to
calculate parameters of the final post FO distributions to be
compared with data. In this way our results may justify the
use of the FO hypersurface in hydrodynamical models for
heavy-ion collisions, but with proper nonthermal post FO
distributions.

At the same time, although the final distribution f (p) is not
sensitive to the kinetic evolution, other measurables, especially
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the two-particle correlation function, may be more sensitive to
the details and extent of the FO process.

The model can also be applied to FO across a layer with a
timelike normal. Several of the conclusions can be extended
to the timelike case, but this requires additional studies [14].

For realistic simulations of high-energy heavy-ion reactions
the full 3D description of expansion and FO of the system
should be modeled simultaneously. We believe that our
invariant escape rate can be a basic ingredient of such models.
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APPENDIX

The definition of the Kn(z,w) function is

Kn(z,w) = 2nn!

(2n)!
z−n

∫ ∞

w

dx e−x (x2 − z2)n− 1
2 , (A1)

where in the case of w = z and n > −1 this formula will lead
to the modified Bessel function of the second kind, Kn(z).
Furthermore, the indefinite integral [28] is∫

zα−1�(n, z)dz = zα�(n, z) − �(n + α, z)

α
, (A2)

where �(n, z) is the incomplete gamma function:

�(n, z) =
∫ ∞

z

dt tn−1 e−t . (A3)

The analytically not integrable functions G−
n (m) and H−

n (m)
are defined as

G−
n (m) = 1

T n+2

∫ ∞

0
dp p(

√
p2 + m2)n

×�

(
0,

γ

T

√
p2 + m2 − γjup

T

)
(A4)

and

H−
n (m) = 1

T n+2

∫ ∞

0
dp pn+1�

(
0,

γ

T

√
p2 + m2 − γjup

T

)
.

(A5)

In the massless limit, we have the G−
n (0) = H−

n (0). Values of
these functions for (n = 1, 2) are

G−
1 (0) = 1

T 3

∫ ∞

0
dpp2�

(
0,

γ

T
p(1 − ju)

)

= 2

3γ 3
(1 − ju)−3, (A6)

G−
2 (0) = 1

T 4

∫ ∞

0
dpp3 �

(
0,

γ

T
p(1 − ju)

)

= 3

2γ 4
(1 − ju)−4. (A7)

In the general calculation of the integrals in RFF, we change
variables from p to z as follows:∫ ∞

0
dpf (p) e− γ

T
(
√

p2+m2−jup)

= jγ T

∫ a

b

dz

(
u − z√

z2 − a2

)
e−z

× f [γ T (juz − j
√

z2 − a2)]

+ jγ T

∫ ∞

a

dz

(
u + j

z√
z2 − a2

)
e−z

× f [γ T (juz +
√

z2 − a2)], (A8)

where z = γ (
√

p2 + m2 − jup)/T , a = m/T , and b = γ a.
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