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Abstract We consider various lexicographic allocation procedures for coalitional
games with transferable utility where the payoffs are computed in an externally
given order of the players. The common feature of the methods is that if the
allocation is in the core, it is an extreme point of the core. We first investigate the
general relationships between these allocations and obtain two hierarchies on the
class of balanced games.

Secondly, we focus on assignment games and sharpen some of these general
relationships. Our main result shows that, similarly to the core and the coali-
tionally rational payoff set, also the dual coalitionally rational payoff set of an
assignment game is determined by the individual and mixed-pair coalitions, and
present an efficient and elementary way to compute these basic dual coalitional
values. As a byproduct we obtain the coincidence of the sets of lemarals (vectors
of lexicographic maxima over the set of dual coalitionally rational payoff vectors),
lemacols (vectors of lexicographic maxima over the core) and extreme core points.
This provides a way to compute the AL-value (the average of all lemacols) with
no need to obtain the whole coalitional function of the dual assignment game.
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1 Introduction

Assignment games (Shapley and Shubik, 1972) are models of assignment (two-
sided matching) markets with transferable utilities where the aim of each player
on one side is to form a profitable coalition with a player on the other side. Since
only such bilateral cooperations have worth, these games are completely defined
by the matrix containing the cooperative worths of all possible pairings of players
from the two sides.

Shapley and Shubik (1972) showed that the core of an assignment game is
precisely the set of dual optimal solutions to the assignment optimization problem
on the underlying matrix of mixed-pair profits. This result not only implies that all
assignment games have a non-empty core but also that the core can be determined
without explicitly generating the entire coalitional function of the game. Typically,
the core of the assignment game contains infinitely many allocations which makes
necessary some core selection.

The Shapley value (Shapley, 1953) is a well-known single-valued solution for
coalitional games with transferable utility. This value is the average of the marginal
payoff vectors, where the marginal payoff vector associated with a given ordering
of the set of agents is defined by paying to each agent his marginal contribution to
the set of predecessors in the ordering. In an assignment game, each extreme core
allocation is a marginal payoff vector (Hamers et al., 2002). However, the converse
is not true and this is why the Shapley value of an assignment game may not select
a core allocation.

Another single-valued solution for coalitional games (with a non-empty core) is
the AL-value (Tijs et al., 2011), that is defined as the average of the lexicographical
maximum core allocations or lemacols1. Given an order of the agents, the corre-
sponding lemacol is recursively defined by paying to each agent the maximum he
can obtain inside the core under the restriction that his predecessors in the order
have already been paid their restricted maxima. By its definition, the AL-value
always selects a core allocation. For convex games (Shapley, 1971), lemacols and
the marginal worth vectors coincide.

For arbitrary transferable utility (TU) games, we obtain that when a marginal
worth vector is in the core, it coincides with the corresponding lemiral (the vector
of lexicograhic minima over the set of coalitionally rational payoff vectors) and also
with the lemaral (the vector of lexicographic maxima over the set of dual coali-
tionally rational payoffs) associated to the reverse order of the players. Similarly,
if a lemiral / lemaral is in the core, it coincides with the corresponding lemicol
/ lemacol (the vector of the lexicograhically minimized / maximized payoffs over
the core). The roles of the allocations in these implications are not symmetric.

1 Lemacols are named lexinals in (Tijs et al., 2011). We change the name trying to find a
common nomenclature that includes the lexicographic minimization over the core and also the
lexicographic minimization (respectively maximization) over the set of coalitionally rational
payoff vectors (respectively over the set of dual coalitionally rational payoff vectors), where
efficiency is not required.
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For assignment games in general, not all lemirals are in the core.2 We find,
however, that if we consider the lemarals, all of them are extreme core points.
To prove that, we first show that to obtain the set of payoff vectors where each
coalition is paid at most its marginal contribution to the grand coalition (the dual
coalitional value), it is enough to consider the marginal contributions of individ-
uals and mixed-pairs. Moreover, these upper bounds for the core payoffs can be
obtained from the initial matrix of mixed-pair valuations with no need of solving
optimization problems.

The coincidence between the set of lemarals and the set of extreme core points
implies that lemarals coincide with the corresponding lemacols. This provides a
way of computing the AL-value of an assignment game with no need to obtain the
entire coalitional function of the dual game.

The paper is organized as follows. After some general preliminaries on TU
games, in Section 3 we establish some relationships between different lexicographic
allocations. In Section 4 we introduce assignment games and recall known results
regarding their extreme core points. We determine the essential coalitions in the
dual assignment game in Section 5 and provide an algorithm for the computation
of the values of the essential dual coalitions in Section 6. Finally, in Section 7
we prove that assignment games are not only ONTO-lemaral (all core extreme
points are lemarals) but also INTO-lemaral games (all lemarals are core extreme
points), which means that the set of extreme core allocations coincides with the
set of lemarals. Section 8 concludes with a remark regarding the computation of
the AL-value in assignment games.

2 General preliminaries on games

A transferable utility cooperative game on the nonempty finite set N of players is
defined by a coalitional function w : 2N → R satisfying w(∅) = 0. The function w

specifies the worth of every coalition S ⊆ N .
Given a game (N,w), a payoff allocation x ∈ RN is called efficient, if x(N) =

w(N); individually rational, if xi = x({i}) ≥ w({i}) for all i ∈ N ; coalitionally rational,
if x(S) ≥ w(S) for all S ⊆ N ; where, by the standard notation, x(S) =

∑
i∈S xi

if S 6= ∅, and x(∅) = 0. We denote by I(N,w) the imputation set (i.e., the set
of efficient and individually rational payoffs), and by C(N,w) the core (i.e., the
set of efficient and coalitionally rational payoffs) of the game (N,w). A game is
balanced, if its core is not empty, and totally balanced, if every subgame is balanced. A
(balanced) game is exact, if for each S ⊆ N there exists a core element x such that
x(S) = w(S). A (balanced) game has a large core, if for any coalitionally rational
allocation y with y(N) > w(N) there exists a core element x such that xi ≤ yi for
all i ∈ N .

Let the collection B ⊆ 2N contain all essential coalitions in the game (i.e. for
each S ∈ 2N \ B there is a proper partition {S1, . . . , Sr} ⊆ B, r ≥ 2, of S such that
w(S) ≤

∑r
j=1 w(Sj) holds), then it is clear that the core is completely determined

by such a collection B and the grand coalition N , i.e.

C(N,w) =
{
x ∈ RN : x(N) = w(N), x(S) ≥ w(S) ∀S ∈ B

}
. (1)

2 Izquierdo et al. (2007) show that in an assignment game all the lemirals are extreme core
points if and only if the game is exact, or alternatively, if the game has a large core.
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There are many classes of balanced games discussed extendedly in the literature
(the class of assignment games is a prime example) for which the efficient com-
putability of the core and related solutions relies on the existence of such a family
B consisting of only polynomial many coalitions.

An order on the player set N is a bijection σ : {1, 2, . . . , n} → N , where for
all i ∈ {1, 2, . . . , n}, σi = σ(i) is the player that occupies position i. The set of
predecessors of agent k ∈ N in the ordering σ is Pσk =

{
j ∈ N | σ−1(j) < σ−1(k)

}
.

For each order σ on the player set of game (N,w), a marginal payoff vector mσ,w

is defined as follows: for each i ∈ {1, 2, . . . , n} let mw,σ
σi = w(Pσσi ∪ {σi}) − w(Pσσi).

Marginal payoff vectors are efficient, but they may not be in the core. However, if
a marginal payoff vector is in the core then it is an extreme core point.

There exist in the literature other types of payoff vectors, that also sequentially
allocate payoffs following a given order on the player set, but do not modify the
payoffs already allocated to predecessor players. We discuss several variants of such
“lexicographic” payoff vectors in this paper.

For a balanced game (N,w) and an order σ on the player set N , the σ-lemacol

λ
σ,w ∈ RN is defined (Tijs et al., 2011)3 as the lexicographical maximum on
C(N,w) with respect to σ, that is, for each i = 1, 2, . . . , n, let

λ
σ,w
σi = max

{
xσi : x ∈ C(N,w), xσl = λ

σ,w
σl for all l ∈ {1, . . . , i− 1}

}
.

It is straightforward to notice that every lemacol is an extreme point of the core.
On the other hand, not all extreme core points of an arbitrary balanced game
need to be lemacols, as an example in (Tijs et al., 2011) or Example 5 below
demonstrates.

Then, for a balanced game (N,w), the Average Lexicographical value, AL-value,

AL(w) is defined as the average of all lemacols:

AL(w) =
1

|N |!
∑

σ∈Π(N)

λ
σ,w

,

where Π(N) denotes the set of orders over the player set N . Non-cooperative and
axiomatic characterizations for the AL-value4 as a single-valued core selector for
balanced games are given by Kongo et al. (2010).

We can also define, for each order σ on the player set of balanced game (N,w),
the payoff vector of lexicographical minima over the core, the σ-lemicol λσ,w ∈ RN :
for each i = 1, 2, . . . , n, let

λσ,wσi = min
{
xσi : x ∈ C(N,w), xσl = λσ,wσl for all l ∈ {1, . . . , i− 1}

}
. (2)

In (Tijs et al., 2011) these payoff vectors of lexicographical minima are called
reverse lexinals and their average is the reverse AL-value.

The lemicols can be obtained by solving sequences of linear programming prob-
lems, but, as it also happens with the lemacols, we do not have a closed (even if
iterative) formula for their computation. Trying to overcome this difficulty, we

3 These lexicographical maximum vectors over the core are called lexinals in (Tijs et al.,
2011) and leximals in (Kongo et al., 2010).

4 The AL-value was first introduced by Prof. Stef Tijs with the name of Alexia value.
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may not require efficiency and consider, instead of the core, the set of coalitionally

rational payoff vectors denoted by

R(N,w) =
{
x ∈ RN : x(S) ≥ w(S) ∀S ⊆ N

}
.

We consider a simple procedure to compute ‘as small as possible’ coalitionally
rational payoff vectors in hoping to get an efficient one, i.e. a core element. Similar
to the way we get a marginal payoff vector, we compute the payoffs according to
an externally given priority order of the players.

Given a game (N,w), for an order σ of the players, the σ-lemiral vector rσ,w ∈
RN is defined as follows: for each i = 1, 2, . . . , n,

rσ,wσi = min
{
xσi : x ∈ R(N,w), xσl = rσ,wσl ∀l ∈ {1, . . . , i− 1}

}
, (3)

which trivially leads to

rσ,wσi = max
{
w(Q ∪ {σi})− rσ,w(Q) : Q ⊆ Pσσi

}
. (4)

It is straightforward to notice that, as it happens with the core, only essential
coalitions are needed to define R(N,w), which means that, if B is a set which
contains all essential coalitions for (N,w), then the σ-lemiral vector is in fact

rσ,wσi = max
{
w(Q ∪ {σi})− rσ,w(Q) : Q ⊆ Pσσi , Q ∈ B

}
. (5)

We emphasize that this simplification could provide polynomial time computability
for each σ-lemiral vector for some special classes of games.

Obviously, rσ,wσ1
= w(σ1), the minimum payoff to player σ1 in any coalitionally

rational payoff vector. Similarly, for any i ∈ {2, . . . , n}, the amount rσ,wσi is the
smallest possible payoff needed to satisfy all rσ,w(Q ∪ {σi}) ≥ w(Q ∪ {σi}) ratio-
nality inequalities for coalitions containing only σi and his predecessors, given the
already determined conditionally minimal coalitionally rational payoffs. Thus, the
lemiral vector rσ,w is the lexicographical minimum on coalitionally rational payoff
vectors in w with respect to σ, explaining its ‘name’. In general, we will name
σ-lexicographic allocations those sets of vectors that, given an order σ on the player
set, are defined following a procedure of lexicographical minima or maxima over a
given set of payoff vectors.

For any position i ∈ {1, . . . , n}, let Qi ⊆ Pσσi denote a maximizing coalition in
(4). The lemiral rσ,w satisfies all inequalities in the system x ∈ RN , x(Qi ∪{σi}) ≥
w(Qi∪{σi}), i ∈ {1, . . . , n}, as equalities. Since the coefficient matrix is ‘triangular’,
hence invertible, the lemiral rσ,w is an extreme element of the convex polyhedral
set R(N,w). It follows that if rσ,w is efficient then it is an extreme element of
the core, rσ,w ∈ ext C(N,w). This is another similarity to the marginal allocation
procedure: if the outcome is in the core, it is an extreme point of the core.

3 Some relationships for σ-lexicographic allocations

We have seen so far that the aforementioned σ-lexicographical allocations present
several similarities. In this section we analyze under which circumstances the dif-
ferent payoff vectors defined from a same order σ do coincide. Later on, new
σ-lexicographic allocations are introduced by considering the dual game.
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Moreover, we are interested in classes of games where either all extreme core
payoff vectors belong to one of the defined classes of σ-lexicographic allocations,
or conversely, all outcomes of a given σ-lexicographic procedure are extreme core
allocations. To this end, we introduce the following definition.

A balanced game (N,w) is called

– ONTO-marginal (or ONTO-lemacol, or ONTO-lemicol, or ONTO-lemiral) if all
its extreme core points are marginal payoff vectors (or lemacols, or lemicols,
or lemirals, respectively).

– INTO-marginal (or INTO-lemacol, or INTO-lemicol, or INTO-lemiral) if all mar-
ginal payoff vectors (or lemacols, or lemicols, or lemirals, respectively) are
extreme core points of (N,w).

There are some known classes of ONTO-marginal games: convex games (Shap-
ley, 1971), information graph games (Kuipers, 1993) and assignment games (Hamers
et al., 2002). Contrary to that, the class of exact games, which contains the class
of convex games, is not ONTO-marginal. In fact, there are exact games where
none of its extreme core points are marginal payoff vectors (see e.g. Example 1
below). Precisely the same statements can be made about another superset of
convex games: the class of games with a large core.

By definition, all balanced games are INTO-lemicols and INTO-lemacols. Con-
vex games are also INTO-marginal games (Shapley, 1971). Moreover, the property
INTO-marginal characterizes the class of convex games (Ichiishi, 1981). A similar
characterization of the INTO-lemiral balanced games is not known to us. We can
only show that the INTO-lemiral property is necessary for largness of the core.

Proposition 1 Any balanced game with large core is INTO-lemiral.

Proof. Let (N,w) be a game with large core. Notice first that for all σ ∈ Π(N),
rσ,w is coalitionally rational. Indeed, for all S ⊆ N , let i = σk be the last agent of
S in the order σ. Then,

rσ,wi ≥ w(S \ {i} ∪ {i})− rσ,w(S \ {i}),

which implies rσ,w(S) ≥ w(S).

Now, if (N,w) has a large core, there exists x ∈ C(w) such that xi ≤ rσ,wi for
all i ∈ N . But note that for all i = σk ∈ N , there is a coalition Q ⊆ Pσσk such that
rσ,w({i}∪Q) = w({i}∪Q) and hence no coordinate of rσ,w can be decreased without
violating some coalitional rationality inequality. As a consequence, xi = rσ,wi for
all i ∈ N and rσ,w belongs to the core. �

The examples in this paper and the strong similarities of the lemirals and the
lexicographic allocations used by van Gellekom et al. (1999) to characterize large-
ness of the core suggest to us the coincidence of these two classes of games. Some
of the results in (Estévez-Fernández, 2012) also seem to support the conjecture
that the implication of Proposition 1 can be reversed.

Moreover, since convexity implies largeness of the core, we have the following
hierarchy: for any game,

INTO-marginal ⇒ INTO-lemiral ⇒ INTO-lemicol.
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The first implication follows from Proposition 1 and the second one is trivial since
all balanced games are INTO-lemicol.

We now show that the property ONTO-marginal implies ONTO-lemiral and
some other properties, as a consequence of the next and subsequent propositions.

Proposition 2 In a game (N,w), for any ordering σ of the players, mσ,w ∈ C(N,w)
if and only if mσ,w = rσ,w.

Proof. If mσ,w = rσ,w, then since mσ,w is efficient and rσ,w is coalitionally ratio-
nal, we trivially obtain that this payoff vector belongs to the core. We prove the
converse implication inductively, according to the order σ. Trivially, without any
condition, mσ,w

σ1
= w(σ1) = rσ,wσ1

.
For arbitrary i ∈ {2, . . . , n}, we assume to have mσ,w

σj = rσ,wσj for all 1 ≤ j ≤ i−1,
implying mσ,w(Q) = rσ,w(Q) for all Q ⊆ Pσσi . Since mσ,w ∈ C(N,w), we have
mσ,w
σi ≥ w(Q ∪ {σi}) − mσ,w(Q) = w(Q ∪ {σi}) − rσ,w(Q) for all Q ⊂ Pσσi . By

definition, mσ,w
σi = w(Pσσi ∪{σi})−m

σ,w(Pσσi) = w(Pσσi ∪{σi})−r
σ,w(Pσσi), implying

that Pσσi is a maximizing coalition in (4). Hence, mσ,w
σi = rσ,wσi . �

Proposition 2 implies that if for an ordering the associated marginal vector is
in the core, so does the associated lemiral vector. The following example shows
that the converse implication needs not hold.

Example 1 Consider the following 4-player, symmetric game:

v(S) =


0 if |S| ≤ 1
3 if |S| = 2
5 if |S| = 3
10 if |S| = 4.

It is easily checked that for the order σ = (1, 2, 3, 4), the lemiral vector rσ,v =
(0, 3, 3, 4) is a core element, but the associated marginal vector mσ,v = (0, 3, 2, 5)
is not. In fact, none of the marginal vectors (that are the permutations of (0, 3, 2, 5))
is in the core, but all the lemirals are. Indeed, for any order, the lemiral payoff
to the first player is 0, to the second and to the third player it is 3, and to the
last player the payoff is 4. Thus, for all orders, the associated lemiral vector is an
(extreme) element of the core, i.e. this is an INTO-lemiral game. The core, however,
has other vertices, e.g. the vector (1, 2, 2, 5) and all of its permuted variants are
also extreme elements of the core, i.e. this game is not ONTO-lemiral.

Observe that the family of extreme core vectors (0, 3, 3, 4), (1, 2, 2, 5) and their
permuted variants make all coalitional rationality inequalities tight, so this game
is an exact game. And it also has a large core, since for totally balanced symmetric
games both notions are equivalent (see Biswas et al., 1999). Hence Proposition 1
could have been applied to deduce that all lemirals belong to the core.

�

The lemiral and the lemicol vectors are determined on two different — al-
though for balanced games closely related — sets of payoffs. In general, already
the first player in an order can receive different payoffs in the lemiral and in the
lemicol allocations. The following proposition states when requiring efficiency of
the allocation makes no difference.
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Proposition 3 In a game (N,w) for any ordering σ of the players, rσ,w ∈ C(N,w) if

and only if λσ,w = rσ,w.

Proof. The lemicol vectors are in the core by definition, so the “if” direction needs
no explanation.

We show the “only if” direction inductively, according to the order σ. Trivially,
λσ,wσ1

≥ rσ,wσ1
= w(σ1). Now, if rσ,w ∈ C(N,w) then the core minimum payoff to

player σ1 must be rσ,wσ1
.

For arbitrary i ∈ {2, . . . , n}, we assume to have λσ,wσj = rσ,wσj for all 1 ≤ j ≤ i−1.
Then by comparing the minimization problems in (2) and (3), we get λσ,wσi ≥ r

σ,w
σi .

Here again, rσ,w ∈ C(N,w) implies that the conditional core minimum payoff to
player σi must be rσ,wσi , concluding the inductive step. �

Applied to the game in Example 1, Proposition 3 implies that the set of lemicol
vectors consists of the vector (0, 3, 3, 4) and its permuted variants. In this example,
all lemirals belong to the core, but this needs not always be the case, as the next
example shows. It also demonstrates that the roles of lemirals and lemicols in
Proposition 3 are not interchangeable.

Example 2 Consider the following 4-player, symmetric game:

v(S) =


0 if |S| ≤ 1
4 if |S| = 2
5 if |S| = 3
8 if |S| = 4.

The core of this game is a singleton, C(N, v) = {(2, 2, 2, 2)}. If we take the order
σ = (1, 2, 3, 4) and compute the corresponding lemiral, we find rσ,v = (0, 4, 4, 4),
which is not in the core. �

The combination of the two above propositions leads to a similar connection
between marginal payoff vectors and lemicols.

Corollary 1 In a game (N,w), for any ordering σ of the players, mσ,w ∈ C(N,w) if

and only if mσ,w = λσ,w.

Proof: The “if” part is obvious since lemicols belong to the core by definition. For
the “only if” part, notice that if mσ,w ∈ C(N,w), Proposition 2 implies mσ,w = rσ,w

and hence rσ,w ∈ C(N,w). Then, Proposition 3 implies mσ,w = rσ,w = λσ,w. �

In the above corollary the roles of the marginal payoff vector and that of
the lemicol are not interchangeable. The lemicols always belong to the core by
definition, while it is easy to find examples where some marginal payoff vector is
not a core allocation. Take for instance Example 1 where none of the marginal
payoff vectors belongs to the core.

The following hierarchy of the properties summarizes our results presented so
far: for any game

ONTO-marginal ⇒ ONTO-lemiral ⇒ ONTO-lemicol.
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As a consequence, for convex games, information graph games and assignment
games, all extreme core allocations are not only marginal payoff vectors but also
lemirals and lemicols.

Notice that the 4-player, exact, symmetric game in Example 1 is not ONTO-
lemicol. Indeed, the extreme core point (1,2,2,5) is not a lemicol since the first
player in any order should get 0. However, (1,2,2,5) is the lemacol related to the
reverse order σ = (4, 3, 2, 1) of the players. In order to look for new relationships
between the lemacols and other lexicographic allocations we need to introduce
some new notions.

Since R(N,w) is not bounded above, we do not propose a lexicographic max-
imization over this set of coalitionally rational payoffs. We now define a set of
payoff vectors supported by a similar “rationality” requirement: instead of impos-
ing that no coalition receives less than its coalitional value, we require that no
coalition receives more than its dual coalitional value, i.e. its contribution to the
grand coalition. Given a game (N,w), we name this set of payoffs the set of dual

coalitionally rational payoffs and write

R∗(N,w) =
{
x ∈ RN : x(S) ≤ w(N)− w(N \ S) for all S ⊆ N

}
.

Given a game (N,w), the game (N,w∗) defined by w∗(S) = w(N) − w(N \ S)
for all S ⊆ N is known in the literature as the dual game and thus inspires our
definition of the dual coalitionally rational payoffs. Notice that w∗(∅) = 0 and
w∗(N) = w(N) for any game (N,w). It follows that, under efficiency, the sets
of coalitionally rational payoffs and of dual coalitionally rational payoffs coincide
and also coincide with the core. In other words, the core of any coalitional game
coincides with the anticore of its dual game, that is,

C(N,w) = C∗(N,w∗) := {x ∈ RN : x(N) = w∗(N), x(S) ≤ w∗(S) ∀S ⊆ N}. (6)

As it happens with the core and the set of coalitionally rational payoff vec-
tors, for certain games, some coalitions may be redundant in the definition of the
anticore and of the dual coalitionally rational payoff set. A coalition S is called
inessential in the dual of a game (N,w) if it has a proper partition in non-empty
coalitions S1, . . . , Sk, k ≥ 2, such that w∗(S) ≥ w∗(S1) + . . .+ w∗(Sk). Notice that
if a coalition is inessential in the dual game, it is redundant for the set of dual
coalitionally rational payoff vectors and for the anticore. Then the analogous state-
ment to (1) easily follows: let the collection D ⊆ 2N contain all essential coalitions
in the dual game (N,w∗), then the core of the game is completely determined by
efficiency and such a collection D, i.e.

C(N,w) = C∗(N,w∗) =
{
x ∈ RN : x(N) = w∗(N), x(T ) ≤ w∗(T ) ∀T ∈ D

}
.

In the second part of this paper, we identify such a family D consisting of quadratic
many coalitions for assignment games.

Over the set R∗(N,w) of dual coalitionally rational payoff vectors, we propose
a lexicographic maximization procedure. Given a game (N,w), for an order σ of the
players, the σ-lemaral vector rσ,w ∈ RN is defined as follows: for all i ∈ {1, 2, . . . , n},

rσ,wσi = max
{
xσi : x ∈ R∗(N,w), xσl = rσ,wσl ∀l ∈ {1, . . . , i− 1}

}
,
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which trivially leads to

rσ,wσi = min
{
w∗(Q ∪ {σi})− rσ,w(Q) : Q ⊆ Pσσi

}
. (7)

The counterpart of statement (5) is as follows: if the collection D ⊆ 2N contains
all essential coalitions in the dual game (N,w∗), then

rσ,wσi = min
{
w∗(Q ∪ {σi})− rσ,w(Q) : Q ⊆ Pσσi , Q ∈ D

}
. (8)

As we will see below, for assignment games this reduction could provide polynomial
time computability for each σ-lemaral vector.

Now that all the lexicographic allocations we need have been introduced, we
provide a summary table for our nomenclature: the rows identify the type of lexi-
cographic optimization and the columns specify the domain.

Co Ra Ra∗

min lemicol lemiral —

max lemacol — lemaral

The next proposition is the counterpart of Proposition 2 as it states that
ONTO-marginal also implies ONTO-lemaral. Given any order σ ∈ Π(N), let us
define the reverse order σ∗ ∈ Π(N) by σ∗i = σn−i+1 for all i ∈ {1, 2, . . . , n}.

Proposition 4 In a game (N,w), for any ordering σ of the players, mσ,w ∈ C(N,w)

if and only if mσ,w = rσ
∗,w.

Proof. The “if” part is obvious since whenever a lemaral is efficient it belongs to
the core.

Let us prove the “only if” implication. Assume that for some σ ∈ Π(N), mσ,w ∈
C(N,w). Observe first of all that since the marginal vector satisfiesmσ,w({σ1, . . . , σn−k})
= w({σ1, . . . , σn−k}) for all 0 ≤ k ≤ n− 1, it also satisfies

mσ,w({σ∗1 , . . . , σ∗k}) = w∗({σ∗1 , . . . , σ∗k}) for all 1 ≤ k ≤ n. (9)

Then, trivially from (7), without any condition, mσ,w
σ∗1

= w∗ ({σ∗1}) = rσ
∗,w
σ∗1

.

For arbitrary i ∈ {2, . . . , n}, we assume to have mσ,w
σ∗j

= rσ
∗,w
σ∗j

for all 1 ≤ j ≤ i−1,

implying mσ,w(Q) = rσ
∗,w(Q) for all Q ⊆ Pσ

∗

σ∗i
. Since mσ,w ∈ C(N,w), we have

mσ,w
σ∗i
≤ w∗(Q∪{σ∗i })−m

σ,w(Q) = w∗(Q∪{σ∗i })−r
σ∗,w(Q) for all Q ⊂ Pσ

∗

σ∗i
. It follows

from (9) and the inductive assumption that mσ,w
σ∗i

= w∗(Pσ
∗

σ∗i
∪{σ∗i })−m

σ,w(Pσ
∗

σ∗i
) =

w∗(Pσ
∗

σ∗i
∪ {σ∗i })− r

σ∗,w(Pσ
∗

σ∗i
), implying that Pσ

∗

σ∗i
is a minimizing coalition in (7).

Hence, mσ,w
σ∗i

= rσ
∗,w
σ∗i

. �

Notice that the roles of lemarals and marginals in the above proposition are not
interchangeable. For instance, in Example 1, the lemaral corresponding to order
σ = (1, 2, 3, 4) is rσ,w = (5, 2, 2, 1), which belongs to the core. In fact all lemarals
are obtained by permuting the components of this payoff vector. However, recall
that for this game no marginal payoff vector is in the core.

We now prove the counterpart of Proposition 3, namely that property ONTO-
lemaral implies ONTO-lemacol.
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Proposition 5 In a game (N,w), for any ordering σ of the players, rσ,w ∈ C(N,w)
if and only if λ

σ,w
= rσ,w.

Proof. Since all lemacol payoff vectors are core elements by definition, whenever
a lemacol equals a lemaral, this lemaral payoff vector belongs to the core. To see
the converse statement, notice first that rσ,wσ1

= w∗({σ1}) = λ
σ,w
σ1

. Assume now
that for all 1 ≤ j ≤ i− 1 it holds rσ,wσj = λ

σ,w
σj . Then,

rσ,wσi = min
{
w∗(Q ∪ {σi})− rσ,w(Q) : Q ⊆ Pσσi

}
≥ λσ,wσi ,

where the inequality follows since λ
σ,w ∈ C(N,w). On the other hand, since we

assume rσ,w ∈ C(N,w), the definition of λ
σ,w

and the fact that rσ,wσj = λ
σ,w
σj for all

1 ≤ j ≤ i−1, implies the converse inequality rσ,wσi ≤ λ
σ,w
σi . Hence we get rσ,wσi = λ

σ,w
σi .
�

To see that the roles of lemarals and lemacols cannot be interchanged in the
above proposition, consider the dual of the game in Example 2:

v∗(S) =


0 if |S| = 0
3 if |S| = 1
4 if |S| = 2
8 if |S| ≥ 3.

Given the order σ = (1, 2, 3, 4), the corresponding lemaral payoff vector is rσ,v =
(3, 1, 1, 1) which is not a core element. Nevertheless, by definition, all lemacols
belong to the core.

To get the counterpart of Corollary 2, we combine the two last propositions to
show that ONTO-marginal also implies ONTO-lemacol.

Corollary 2 In a game (N,w) for any ordering σ of the players, mσ,w ∈ C(N,w) if

and only if mσ,w = λ
σ∗,w

.

Proof. If for some σ, mσ,w ∈ C(N,w), Proposition 4 implies that mσ,w = rσ
∗,w ∈

C(N,w). Now, Proposition ?? guarantees that rσ
∗,w = λ

σ∗,w
and hence mσ,w =

λ
σ∗,w

. The converse implication is straightforward. �

We finish this section by highlighting the hierarchy of the properties related to
the lexicographic maximization allocations: for any game

ONTO-marginal ⇒ ONTO-lemaral ⇒ ONTO-lemacol.

As a consequence, for convex games, information graph games and assignment
games, all extreme core allocations are not only marginal payoff vectors but also
lemarals and lemacols.

4 Assignment games

From now on we focus on a particular class of balanced games, namely on the class
of assignment games. Taken into account that assignment games are also ONTO-
marginal (Hamers et al., 2002), we get from the general implications proved in
Propositions 1-4 that assignment games are ONTO-lemiral/lemaral/lemicol/lemacol.
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Since any balanced game is INTO-lemicol/lemacol by definition, we will focus on
the INTO-lemiral/lemaral properties for assignment games. We first recall some
known related results in this section.

Given two disjoint finite sets S and T , we call µ ⊆ S×T an (S, T )-assignment, if it
is a bijection from some S′ ⊆ S to some T ′ ⊆ T such that |S′| = |T ′| = min(|S|, |T |).
Trivially, µ = ∅, if S = ∅ or T = ∅. We shall write (i, j) ∈ µ as well as µ(i) = j. We
denote by M(S, T ) the set of all (S, T )-assignments. Obviously, M(S, T ) = {∅}, if
S = ∅ or T = ∅.

A game (N,w) is called an assignment game, if there exists a partition N = I∪J ,
I ∩ J = ∅, of the player set and a non-negative matrix A = [aij ]i∈I,j∈J such that

w(S) = wA(S) := max
µ∈M(S∩I,S∩J)

∑
(i,j)∈µ

aij for all S ⊆ N.

A matching µ ∈ M(S ∩ I, S ∩ J) such that wA(S) =
∑

(i,j)∈µ aij is an optimal

matching. Due to the non-negativity of A, we can (and will) assume w.l.o.g. that
any optimal matching is a complete matching for the ‘short side’ of the coalition.
We denote by M∗A(S ∩ I, S ∩ J) the set of optimal matchings for coalition S. A
player in I or J is called a row or column player, respectively. Coalitions containing
one row and one column player are called mixed-pair coalitions. It is clear that

wA(S) =


0 if S ⊆ I or S ⊆ J
aij if S = {i, j}, i ∈ I, j ∈ J∑
(i,j)∈µ

aij for some µ ∈M(S ∩ I, S ∩ J) otherwise.

It follows that the collection

B =
{
{i} : i ∈ I

}
∪
{
{j} : j ∈ J

}
∪
{
{i, j} : i ∈ I, j ∈ J

}
(10)

contains all essential coalitions in any assignment game with player set I ∪ J ,
irrespective of the matrix A. Shapley and Shubik (1972) proved that with the
collection B given in (10) the simplified description (1) of the core of any assignment
game is nonempty, hence assignment games are always balanced.

First, by adding dummy player(s) (i.e. zero rows/columns to the matrix A), we
can assume without loss of generality that there are the same number of players of
both types (i.e. the underlying data matrix A is square). It is well known that the
core has the dummy-player property, consequently at any core allocation of the
augmented assignment game, all dummy players receive their individual values of
0.

In order to obtain a unified notation, we introduce a fictitious row player and a
fictitious column player, and consider a single-player coalition as a fictitious mixed-
pair coalition consisting of the ‘real’ player and the fictitious one of the other type.
Moreover, we identify the mixed-pair coalitions with the ordered pairs of the two
players, always the row player written first. More formally, (i, j) denotes the ‘real’
mixed-pair coalition {i, j}, i ∈ I, j ∈ J ; we write (i, 0) for single-player coalition
{i}, i ∈ I, and (0, j) for {j}, j ∈ J ; finally, (0, 0) denotes the coalition of the two
fictitious players. To capture the relevant part of the original coalitional function
wA needed for the simplified description (1) of its core, we augment the original
(square) data matrix with entries ai0 = 0 for all i ∈ I, also a0j = 0 for all j ∈ J ,
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finally a00 = 0. Since the type of the players is determined by their positions in
the ordered pairs, it will be convenient to use a common set M0 = {0, 1, 2, . . . ,m}
of indices, where m = |I| = |J |.

In what remains of the paper, we assume that the rows and columns of the
augmented (square) data matrix are arranged such that the diagonal assignment
{(i, i) : i ∈ M0} is of maximum value, i.e. wA(I ∪ J) =

∑m
i=1 aii, because, by

definition, a00 = 0.
To emphasize the bipartite nature of assignment games, we shall write the

payoff allocations as (u, v) ∈ RM0 × RM0 , but we always require u0 = v0 = 0 to
hold.

With all the above conventions, the core of the assignment game (N,wA) in-
duced by matrix A is

C(N,wA) =
{

(u, v) : u0 = v0 = 0, ui+vi = aii ∀ i ∈M0, ui+vj ≥ aij ∀ i 6= j ∈M0

}
.

(11)
Subclasses of assignment games were identified by properties of the underlying

matrices by Solymosi and Raghavan (2001) who proved that an assignment game
is exact if and only if it has a large core. Moreover, if the underlying A is a square
matrix with an optimal matching placed on the diagonal then both of these game
properties are equivalent to the matrix property:

aij + akk ≥ aik + akj for all i, j, k ∈M0, (12)

that can be checked efficiently.

Izquierdo et al. (2007) defined the so-called max-payoff vectors for assignment
games, and proved that

– in any assignment game all core extreme points are max-payoff vectors;
– all max-payoff vectors are extreme points of the core if and only if the assign-

ment game is exact (equivalently, has a large core).

It is straightforward to note that the max-payoff vectors are precisely the lemiral
vectors specialized for assignment games (only the single-player and the mixed-
pair coalitions are considered, but the underlying idea of satisfying the rationality
constraints with lexicographically minimum payoffs is the same). Hence, in our
terminology, Izquierdo et al. (2007) proved that

– all assignment games are ONTO-lemiral, (this can also be deduced from
our Proposition 2 by taking into account that assignment games are ONTO-
marginal (Hamers et al., 2002)),

– an assignment game is INTO-lemiral if and only if it is exact (equivalently, has
a large core).

It is interesting to compare these results with Example 1 in the previous section,
where an exact symmetric game is also INTO-lemiral but not ONTO-lemiral.

Notice that among the above discussed σ-lexicographic allocations the only
ones that satisfy both the ONTO and INTO properties for all assignment games,
are the lemacols and the lemicols. These allocations, however, are not easy to
compute, mainly due to the pairwise efficiency equalities required for core vectors.
The lemiral (max-payoff) vectors are easier to compute but they are guaranteed
to be in the core only under the exactness condition (12). In the next sections we
focus on the lemaral vectors and prove that these also easier-to-compute allocations
characterize the extreme points of the core in all assignment games.
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5 The dual assignment game

It is well known that the core of any coalitional game coincides with the anticore
of its dual game (cf. (6)). For assignment games, Mart́ınez-de-Albéniz et al. (2011)
showed that in the usual description (11) of the core the lower bound inequalities
ui + vj ≥ aij = wA((i, j)) related to i 6= j mixed pairs can be replaced with the
dual upper bound inequalities ui+vj ≤ w∗A((i, j)), while maintaining efficiency for
the grand coalition and non-negativity for the individual payoffs. Since obviously
w∗A ((i, i)) = aii for all i ∈ M , and w∗A(N) =

∑m
i=1 aii, it easily follows that the

grand efficiency constraint u(I) + v(J) = wA(N) = w∗A(N) can also be replaced
by the pairwise efficiency equalities ui + vi = w∗A((i, i)) = aii for all i ∈ M . It is
not difficult to see (for brevity, however, we omit the details) that under efficiency
this dualization process can be completed by also replacing the non-negativity
restrictions for the individual payoffs with the individual dual constraints ui ≤
w∗A((i, 0)) ∀ i ∈ M and vj ≤ w∗A((0, j)) ∀ j ∈ M , and thus obtain the purely dual
counterpart of (11).

C(wA) =
{

(u, v) : u0 = v0 = 0, ui+vi = w∗A((i, i)) ∀ i ∈M0, ui+vj ≤ w∗A((i, j)) ∀ i 6= j ∈M0

}
.

(13)
Without the efficiency constraint(s), however, it is not at all obvious whether the
larger coalitions could still be omitted and such a small size description (using only
quadratic many constraints) could also be obtained for the set of dual coalitionally
rational payoffs in assignment games.

Interestingly, all the aformentioned core upper bounds are known to be tight.
Both Demange (1982) and Leonard (1983) proved that all individual contributions
to the grand coalition are attained in the core of the assignment game. Moreover,
Núñez and Rafels (2002) showed that for each ‘real’ mixed pair (i, j) ∈ I × J

the upper bound wA(N) − wA(N \ {i, j}) = w∗A ((i, j)) of their total payoff is also
attained in the core. This is a major difference with the usual individual or mixed-
pair lower bounds ui + vj ≥ aij for (i, j) ∈ M0 ×M0, for some of these may not
be attained in the core. Precisely the unconditional tightness of these dual upper
bounds suggests that maybe the set of lemarals coincides with the set of extreme
core allocations, with no need of requiring exactness as we must do for the lemirals.
To give an affirmative answer to this question, we prove first that in the definition
of the set of dual coalitionally rational payoff vectors of the assignment game only
individual and mixed-pair coalitions are needed.

Theorem 1 Let (N,wA) be an assignment game. For all S ⊆ I ∪ J there exists a

partition of S in S1, S2, . . . , Sr ∈ B such that

w∗(S) ≥
r∑

k=1

w∗(Sk),

where collection B is defined in (10).

Proof. Let A be square and assume also without loss of generality that |S ∩ I| ≥
|S ∩ J |, otherwise interchange the roles of i and j in this proof. Let µ be an
optimal (complete) matching for the grand coalition, µ ∈ M∗A(I, J), and let µ′ be
an optimal matching for the complement T := N \ S of coalition S (complete for
its short side T ∩ I), that is µ′ ∈M∗A(T ∩ I, T ∩ J). We first present two remarks.



Lexicographic allocations in assignment games 15

If there is some i ∈ S ∩ I with µ(i) ∈ S or j ∈ S ∩ J with µ−1(j) ∈ S, denote by
S̃ the subset of S with this property, i.e.

S̃ = {k ∈ S matched by µ to another agent in S}

and define N ′ = N \ S̃ and S′ = S \ S̃. Then,

w∗A(S) = wA(N)− wA(N \ S) =
∑

k∈S̃∩I

akµ(k) + wA(N ′)− wA(N ′ \ S′). (14)

Since for all k ∈ S̃ ∩ I, akµ(k) = wA(N) − wA(N \ {k, µ(k)}) = w∗A({k, µ(k)}),
equation (14) means that we can restrict our attention to the case where for all
k ∈ S ∩ I, µ(k) 6∈ S, in fact, µ(k) ∈ T ∩ J .

Similarly, if µ(i) = µ′(i) holds for some i ∈ I \ S = T ∩ I, or µ−1(j) = µ′−1(j)
holds for some j ∈ J \ S = T ∩ J , we denote by Ŝ the set of agents with this
property, i.e.

Ŝ = {k ∈ T = N \ S with the same partner by µ and µ′}.

Then,

w∗(S) = w(N)− w(N \ S)

=
∑
i∈Ŝ∩I

aiµ(i) + w(N \ Ŝ)−

 ∑
i∈Ŝ∩I

aiµ(i) + w((N \ Ŝ) \ S)


= w(N \ Ŝ)− w((N \ Ŝ) \ S).

So, again, we can assume without loss of generality that for all k ∈ N \ S, player
k has different partners in µ and in µ′.

After the above two remarks, we define a directed graph G with set of nodes
N and the following edges: if i ∈ I and j ∈ J , there is an edge of the type i −→ j

if (i, j) ∈ µ, and there is an edge j −→ i whenever (i, j) ∈ µ′. Notice that at each
node i ∈ I we have exactly one outgoing edge and at most one incoming edge,
whereas at each node j ∈ J there is at most one outgoing edge and exactly one
incoming edge. Hence, the graph G is partitioned in connected components. We
can assume without loss of generality that each component of G is a path, since in
case of a cycle (i1, j1, i2, j2, . . . , ik, jk, i1) with ih ∈ I and jh ∈ J for all 1 ≤ h ≤ k,
the restrictions of µ and of µ′ to the coalition R = {i1, j1, i2, j2, . . . , ik, jk} are both
optimal matchings for R ⊆ T , so we could alter µ′ on R to coincide with µ and
apply our second remark.

For each i ∈ S∩I, let Ci = (i = i1, j1, i2, j2, . . . , ik, jk) be the maximal path in G
starting at i. Clearly, nodes in S∩I can only be starting points of paths in G, since
they cannot have an incoming edge. Notice that such a path ends either at jk ∈ S
or at jk ∈ J \S not matched by µ′. Notice also that all il in this path, l ∈ {2, . . . , k},
belong to I \ S. Define now the following matching for (I \ {i1}) ∪ (J \ {jk}):

µ̃ =
⋃

i∈I\Ci1

{(i, µ(i))} ∪
k−1⋃
l=1

{(il+1, jl)}.
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In the first case, that is if jk ∈ S, we get

w∗A((i1, jk)) = wA(N)− wA(N \ {i1, jk}) ≤
∑

(i,j)∈µ
aij −

∑
(i,j)∈µ̃

aij

=
k∑
l=1

ailµ(il) −
k−1∑
l=1

ail+1jl =
k∑
l=1

ailµ(il) −
k−1∑
l=1

ail+1µ′(il+1).

(15)

In the second case, that is if jk ∈ J \ S but unmatched by µ′, we also get

w∗A((i1, 0)) = wA(N)− wA(N \ {i1}) ≤
∑

(i,j)∈µ
aij −

∑
(i,j)∈µ̃

aij

=
k∑
l=1

ailµ(il) −
k−1∑
l=1

ail+1µ′(il+1).

(16)

We now show that all pairs (i, j) ∈ µ and (i, j) ∈ µ′ belong to some component
Ci′ of G for some i′ ∈ S. Notice first that if j ∈ J \ S, then either µ−1(j) = i ∈ S
and then the edge (i, j) belongs to the component Ci; or µ−1(j) = i1 ∈ I \ S and
then, since |J \ S| ≥ |I \ S|, i1 is matched by µ′, and we denote µ(i1) = j2 ∈ J \ S.
Going backwards we built a chain (jr+1, ir, jr, . . . , i1, j1 = j) with all jl ∈ J \S, for
all l ∈ {1, . . . , r+ 1}, such that µ−1(jr+1) = ir+1 ∈ S. Then, the edge (i, j) belongs
to the component Cir+1

. Once we have that all (i, j) ∈ µ with j ∈ J \ S belong to
some component Ci′ with i′ ∈ S, it follows immediately that the edge (µ′−1(j), j)
also belongs to Ci′ . Hence, all pairs (i, j) ∈ µ′ also belong to some component Ci′ .
Finally, if we have a pair (i, j) ∈ µ with j ∈ S, by our initial assumption we can
guarantee that i ∈ I \ S and then the pair (i, µ′(i)) belongs to some component
Ci′ for i′ ∈ S. By the construction of the graph, this implies that the path that
reaches i can be continued with the edge (i, j) and hence also (i, j) ∈ Ci′ .

The above argument means that the components Ci, with i ∈ S form a partition
of the graph G. Let us name S1 = {i ∈ S | Ci ends at j(i) ∈ S} and S2 = {i ∈ S |
Ci ends at j(i) 6∈ S}. Then,

w∗(S) = w(N)− w(N \ S) =
∑

(i,j)∈µ
aij −

∑
(i,j)∈µ′

aij

=
∑
i′∈S1

 ∑
i∈Ci′

aiµ(i) −
∑

i∈Ci′\{i′}

aiµ′(i)

+
∑
i′∈S2

 ∑
i∈Ci′

aiµ(i) −
∑

i∈Ci′\{i′}

aiµ′(i)


≥
∑
i′∈S1

w∗((i′, j(i′))) +
∑
i′∈S2

w∗((i′, 0)),

where the inequality follows from (15) and (16), which completes the proof. �

As a consequence of the above theorem, the set of dual coalitionally ratio-
nal allocations of an assignment game can be defined only in terms of the dual
constraints for mixed-pair and individual coalitions. Let us define for (extended)
matrix A = [aij ]i,j∈M0

a dual matrix B = B(A) = [bij ]i,j∈M0
consisting of the dual

coalitional values bij = w∗A((i, j)) for all i, j ∈ M0, including b00 = 0 = w∗A((0, 0)).
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With this notation, the set of dual coalitionally rational payoff vectors in (N,wA)
is simply

R∗(N,wA) =
{

(u, v) ∈ RM0 ×RM0 : ui + vj ≤ bij for all i, j ∈M0

}
.

Notice that bii = aii for all i ∈M0, so to use this description of R∗(N,wA) (or the
dual description (13) of the core) only the bij = wA(N)−wA(N \ {i, j}) values for
i 6= j ∈M0 need to be computed from the underlying matrix A.

Recall that the individual and mixed-pair upper bounds collected in matrix B

are attained in the core. Hence no entry in B can be decreased without modifying
the core of the game and B is the minimum matrix among those representing the
same core. Consequently, the dual matrix B satisfies a dual form of the exactness
property (12).

Proposition 6 Let (N,wA) be a square assignment game with an optimal matching

on the main diagonal. Then, the dual matrix B = B(A) satisfies

bij + bkk ≤ bik + bkj for all i, j, k ∈M0. (17)

Proof. Let (u, v) ∈ C(N,wA) be the core element that attains, for an arbitrarily
chosen pair i, j ∈M0, the upper bound bij , that is, ui + vj = bij . Then, bij + bkk =
ui + vj + uk + vk ≤ bik + bkj holds for any k ∈M0. �

6 Computation of the essential dual coalitional values

We now turn to the question of how to determine the dual matrix B = B(A). The
diagonal entries are obviously bii = aii for all i ∈ M0. To obtain the off-diagonal
entries by their definition, we must compute each of the (m+1)m optimum values
wA(N \{i, j}), i 6= j ∈M0. Since solving an m×m assignment optimization problem
takes, in general, O(m3) time, this straightforward approach would require O(m5)
time. Alternatively, we could use the tightness of the dual upper bounds and obtain
bij as the optimum value of the linear programming problem max{ui+vj : (u, v) ∈
C(N,wA)}, but the computational complexity of this approach is not known to us.
Next we present an O(m4) method that requires no optimization.

Suppose we already know the (extended) matrix Ā = [āij ]i,j∈M0
of the exact

core lower bounds, that is, for any i, j ∈ M0 there exists a core vector (u, v) such
that ui + vj = āij . Obviously, āii = aii for all i ∈M0. We claim that the matrix of
exact core upper bounds B(A) is given by

bij = āii + ājj − āji, for all (i, j) ∈M0 ×M0. (18)

Indeed, for all core vectors (u, v) and all i, j ∈M0 we have ui + vj = ui + vi + uj +
vj − uj − vi ≤ āii + ājj − āji. To see that this upper bound is attained, take a core
vector (u, v) for which uj + vi = āji. Thus, āii+ ājj − āji is the exact upper bound
for core payoffs ui + vj , implying our claim (18).

Notice that it only takes O(m2) elementary operations to obtain matrix B(A)
from matrix Ā via (18). Combined with the O(m4) algorithm we propose next to
compute Ā from the initial matrix A, we obtain a method to compute B(A) from
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A that is faster than the aformentioned direct approaches. Moreover, our method
requires only elementary operations and no optimization.

Algorithm Cover

Initially, let A0 = AM0×M0
be a square matrix with an optimal matching in the

diagonal. Set r = 1.

Iteration r: compute matrix Ar from matrix Ar−1 as follows:

arij := max
{
ar−1
ij , max{ar−1

ik + ar−1
kj − a

r−1
kk : k 6= i, j ∈M0}

}
for all i, j ∈M0.

(19)
If Ar = Ar−1 then STOP, else set r := r + 1 and start a new iteration.

Output: matrix Ā = Ar̄ where r̄ is the first r ≥ 1 for which Ar = Ar−1.

In Proposition 7 below we show that the algorithm terminates after a finite
number of iterations, but we need some preparation. Given a square matrix A with
an optimal matching in the diagonal, we say that entry aij is (strictly) majorized

by a loop of length r if there is a sequence of r distinct indices k1, . . . , kr, all of them
different from i and j, such that aij(<) ≤ aik1 −ak1k1 +ak1k2 −ak2k2 + . . .−akrkr +
akrj . We say that an aij-majorizing loop is stronger than another aij-majorizing
loop (irrespective of their length), if its value (= the alternating sum of the loop
entries) is higher than the value of the other loop. We remark that

1. by the optimality of the diagonal, none of its entries aii can be strictly ma-
jorized by any loop, and that a loop which weakly majorizes aii gives an alter-
native optimal assignment for A;

2. the exactness condition (12) means that no entry of the matrix is strictly
majorized by a loop of length 1;

3. the exactness condition (12) implies that no entry of the matrix is strictly
majorized by a loop of any length. Indeed, suppose the strict majorization
aij < aik1 − ak1k1 + ak1k2 − ak2k2 + . . .− akrkr + akrj by a loop of length r ≥ 2.
Under (12), the first three terms of the right hand side is ≤ aik2 , revealing
the strict majorization aij < aik2 − ak2k2 + ak2k3 − . . .− akrkr + akrj by a loop
of length r − 1. Sequentially repeating the above argument reveals the strict
majorization aij < aikr − akrkr + akrj by a loop of length 1, a contradiction to
(12).

Now we are ready to show the correctness of the algorithm.

Proposition 7 In algorithm Cover

1. the number of iterations is r̄ ≤ m;

2. the number of elementary operations is O(m4).

Proof. Obviously, for any r ≥ 1, arij ≥ ar−1
ij for all i, j ∈ M0, hence the name of

the algorithm. By the above remark 1, the diagonal entries are never increased,
arii = ar−1

ii for all i ∈M0.
Claim 1 follows from two observations. The first one is that if an entry aij of the

input matrix A0 = AM0×M0
is strictly majorized by a loop that contains an entry



Lexicographic allocations in assignment games 19

apq then aij can not be part of any loop that (strictly) majorizes apq. Indeed, let, for
example, aij < aik1−ak1k1 +ak1k2−ak2k2 +ak2=p,k3=q−ak3k3 +ak3k4−ak4k4 +ak4j ,
and at the same time, apq ≤ aps1 − as1s1 + as1=i,s2=j − as2s2 + as2s3 − as3s3 + as3q.
By adding these two inequalities and cancelling aij + apq from both sides, we get
0 < [aik1 −ak1k1 +ak1k2 −ak2,k2=p] + [aps1 −as1,s1=i] + [−aq=k3,k3 +ak3k4 −ak4k4 +
ak4j ]+ [−aj=s2,s2 +as2s3 −as3s3 +as3,q], where the first and third brackets contain
the terms from the first inequality separated by apq, while the second and fourth
brackets contain the terms from the second inequality separated by aij . However,
the sum of the terms in the first and second brackets is ≤ 0 by the optimality
of the diagonal assignment and, similarly, the sum of the terms in the third and
fourth brackets is also ≤ 0 by the same reason. Thus, the sum of the terms in all
four brackets is ≤ 0. This contradiction proves the acyclicity of the (mixed strict
and weak) loop-majorization relation between the matrix entries.

The second observation is that (19) eliminates strict majorizations by loops of
length 1 in the current matrix Ar−1. Although it may create strict majorization
by loops of length 1 of the same entry in the updated matrix Ar, but only if a
longer and stronger majorizing loop existed in Ar−1. Indeed, it may even happen
that an entry is not increased in an iteration, but it must be increased in the
next or some subsequent iteration(s). Assume, for example, ar−1

ij = arij , but arij <

ar+1
ij = arik1 − a

r
k1k1

+ ark1j because the entry ar−1
ik1

< arik1 = ar−1
ik2
− ar−1

k2k2
+ ar−1

k2k1
had to be increased in iteration r. Substituting arik1 with this loop value in the

above expression that defines ar+1
ij , we get arij < ar−1

ik2
−ar−1

k2k2
+ar−1

k2k1
−ark1k1 +ark1j .

By replacing ark1k1 = ar−1
k1k1

and ark1j with its defining expression in (19), we get a

strictly majorizing longer loop in Ar−1 that is stronger than any of the loops of
length 1. Since (19) strictly reduces the length of the majorizing loops that exist
in the current matrix Ar−1, and by definition their length is at most m, Claim 1
follows.

To see Claim 2, notice that updating an entry by (19) takes O(m) time, O(m2)
entries need to be updated, so each iteration takes O(m3) time. By Claim 1, the
number of iterations is at most m, so algorithm Cover takes O(m4) time. �

Before we prove that algorithm Cover determines matrix Ā = [āij ]i,j∈M0
of

the exact core lower bounds, we illustrate it on the following example.

Example 3 Let the assignment game with row agents I = {1, 2, 3} and columns
agents J = {1′, 2′, 3′} be induced by the following extended matrix A. The value
of the grand coalition is given by the optimal assignment in the diagonal.

A =


0 0 0 0

0 5 2 2

0 6 5 1

0 3 4 3

 .

When computing matrix A1 from the initial A0 = A in iteration r = 1, we
find that matrix A violates the exactness property (12) for several combination of
indices, so we increase, if necessary, the off-diagonal entries of A0 as little as needed
to satisfy property (12). For example, a1

01 = 1 = max{a0
02 +a0

21−a0
22 = 0+6−5 =

1 , a0
03 + a0

31 − a0
33 = 0 + 3 − 3 = 0}. Similarly, a1

31 = 5 = max{a0
21 + a0

32 − a0
22 =



20 Marina Núñez, Tamás Solymosi

6 + 4− 5 = 5 , a0
30 + a0

01 − a0
00 = 0}. We get

A1 =


0 1 1 0

0 5 3 2

1 6 5 3

0 5 4 3

 ,
set r := 2, and start a new iteration.

In iteration r = 2 we check whether A1 violates property (12) by computing
matrix A2 and checking whether there is an entry to be increased. There is only
one, namely, a2

01 = 2 = max{a1
02 + a1

21 − a1
22 = 1 + 6 − 5 = 2 , a1

03 + a1
31 − a1

33 =
0 + 5− 3 = 2}. We get

A2 =


0 2 1 0

0 5 3 2

1 6 5 3

0 5 4 3

 ,
set r := 3, and start a new iteration.

In iteration r = 3 we find that A3 = A2, so it satisfies the exactness property
(12). The algorithm stops after r̄ = 3 (≤ m = 3) iterations.

The reader can easily check that in this example the entries of the output
matrix A3 = A2 are precisely the exact core lower bounds, so indeed Ā = A3 and
the matrix

B =


0 5 4 3

3 5 4 3

4 7 5 4

3 6 5 3


obtained from Ā by (18) consists of the exact core upper bounds. Notice that
at the margins we obtained the individual core upper bounds for all players. No
optimization was needed to compute the dual game values. �

Now we show that algorithm Cover determines the exact core lower bounds for
coalitions in family B given in (10). It will be convenient to refer to the solution set
of the system in (11) for any non-negative square matrix AM0×M0

with an optimal
assignment on the main diagonal as the cover of matrix A, and denote it by C(A).
Since we might judiciously think of C(A) as the core of a generalized assignment
game (Owen, 1992), where the individual values are not necessarily all zero, but
ai0 ≥ 0 for i ∈ I and a0j ≥ 0 for j ∈ J , using the same notation as for the core of
the game should not be confusing. Naturally, C(A) = C(N,wA) in case AM0×M0

is
the standard extension with zeros of the mixed-pair value matrix AI×J .

Proposition 8 In any iteration 1 ≤ r ≤ r̄ of algorithm Cover,

1. C(Ar) = C(Ar−1) 6= ∅;

2. Ar is diagonal-optimal (i.e. its main diagonal forms an optimal assignment).

Proof. We simultaneously prove the claims by induction. Obviously, at the start
of the first iteration r = 1, we have C(Ar−1) 6= ∅ and Ar−1 is diagonal-optimal.
Now we assume that both statements hold at the start of arbitrary iteration r ≥ 1.
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To see Claim 1, first recall that arij ≥ ar−1
ij for all i, j ∈ M0 by (19), and

arii = ar−1
ii for all i ∈ M0 by the diagonal-optimality of Ar−1. This immediately

implies C(Ar) ⊆ C(Ar−1). To show the reverse inclusion, take any (u, v) ∈ C(Ar−1)
and i, j ∈M0. Then we have ui+vj = ui+vk+uk+vj−(uk+vk) ≥ ar−1

ik +ar−1
kj −a

r−1
kk

for any k 6= i, j ∈M0, and also ui + vj ≥ ar−1
ij , hence ui + vj ≥ arij by (19). On the

other hand, ui + vi = ar−1
ii = arii for all i ∈ M0, thus C(Ar) ⊇ C(Ar−1) also holds,

implying C(Ar) 6= ∅.
To see Claim 2, take any (u, v) ∈ C(Ar) 6= ∅. Then

∑m
k=0 a

r
kk =

∑m
k=0(uk +

vk) =
∑

(i,j)∈µ(ui+vj) ≥
∑

(i,j)∈µ a
r
ij for any full matching µ ∈M(I∪{0}, J∪{0′}),

where 0 and 0′ denotes the fictitious row and column player, respectively. �

Notice that the output matrix Ā = Ar̄ defines the unique generalized assign-
ment game in sense of Owen (1992) which is exact and has the same core as the
original assignment game induced by the input matrix A.

7 Lemaral vectors and extreme core points

With the above efficient and elementary way of computing the dual matrix B(A)
at hand, let us see how to use it to obtain the set of extreme core allocations of
an assignment game.

Theorem 1 shows that, given an assignment game (N,wA), the lemaral payoff
vectors are computed from expression (8) with D = B defined in (10). In order to
be consistent with our conventions in representing a single player as a mixed pair
with the artificial player of the other type, we need to adjust the general definitions
as follows. Let I0 = I ∪ {0} and J0 = J ∪ {0′} denote the extended sets of row and
column players, respectively. We will consider only those orders of the extended
player set N0 = I0∪J0 in which the first two positions are occupied by the artificial
players 0 and 0′. Let Π0(N0) denote their set. Notice that the orders in Π0(N0)
are in one-to-one correspondence with the orders in Π(N), thus |Π0(N0)| = (2m)!
although |N0| = 2m+ 2.

The lemarals are obtained from the dual matrix BM0×M0
in the following way.

For each order σ ∈ Π0(N0), the corresponding lemaral rσ,wA ∈ RN0 is iteratively
defined by rσ,wAσ1

= rσ,wAσ2
= 0 and, for all k = 3, . . . , 2m+ 2 by

rσ,wAσk =

{
minj∈J0∩Pσσk

{bσkj − r
σ,wA
j } if σk ∈ I,

mini∈I0∩Pσσk
{biσk − r

σ,wA
i } if σk ∈ J.

(20)

Recall that we require Pσσ3
= {0, 0′}. Notice that expression (20) is indeed the

specialization of (8) with D = B to assignment games, thus for each order σ ∈
Π0(N0), the corresponding payoff vector is indeed the lemaral rσ,wA .

Since assignment games are ONTO-marginal (Hamers et al., 2002), a conse-
quence of Proposition 4 is that assignment games are also ONTO-lemaral, that is,
each extreme core allocation is a lemaral payoff vector. The next theorem shows
that assignment games are also INTO-lemaral.

Theorem 2 Let (N,wA) be the assignment game induced by matrix AM0×M0
. For

each order σ ∈ Π0(N0), the lemaral payoff vector rσ,wA is an extreme point of C(N,wA).
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Proof. Since any lemaral which is in the core is an extreme point of the core, we
only need to show that all lemarals are in the core. Since for each σ ∈ Π0(N0) we
have rσ,wA ∈ R∗(N,wA) by definition, we only need to check efficiency to prove
rσ,wA ∈ C(N,wA). To make notation easier, let us write rσ,wA = (u, v).

To this end, let µ = {(k, k) : k ∈ M0} be an optimal matching in A. By
definition, rσ,wAk = 0 for both k = 0 and k = 0′, so u0 + v0 = b00. Now take a pair
(k, k) for some k ∈ M . Let us assume without loss of generality that σ−1(µ(k)) >
σ−1(k), i.e. row player k precedes column player k′. We want to prove that bkk −
uk ≤ bik − ui for all i ∈ Pσµ(k) ∩ I0, which means that bkk − uk is the minimum in

(20) for vk = rσ,wAµ(k)
, implying uk + vk = bkk.

To this end, take any i ∈ Pσµ(k) ∩ I0, and assume that uk = bkj − vj for some

j ∈ Pσk ∩ J0. We consider two cases. If σ−1(i) > σ−1(j) then j ∈ Pσi ∩ J0 and

bkk − uk = bkk − (bkj − vj) ≤ bik − (bij − vj) ≤ bik − ui,

where the first inequality follows from bij + bkk ≤ bik + bkj , which holds by Propo-
sition 6, and the second inequality from ui + vj ≤ bij .

Otherwise, that is, if σ−1(i) < σ−1(j), then vj ≤ bij − ui and hence

bkk − uk = bkk − bkj + vj ≤ bkk − bkj + bij − ui ≤ bik − ui,

where the last inequality follows again from Proposition 6. �

The above theorem also enables us to simplify the computation of the lemarals.
Since any lemaral is now proved to be in the core of the assignment game, once
we determine the payoff to a player in (20), the payoff to his optimally assigned
partner is also determined by their efficiency equation uk + vk = bkk = akk. The
next example illustrates this simplified way of computing the lemarals.

Example 4 Consider the assignment game and its dual matrix B in Example 3.
We compute the lemaral rσ related to the order σ = (3′, 3, 2′, 2, 1, 1′) (for brevity,
we omit the artificial players in the first two positions, since always rσ0 = 0 and
rσ0′ = 0):

rσ3′ = b03 = 3 and rσ3 = 3− 3 = 0,
rσ2′ = min{b02, b32 − rσ3} = 4 and rσ2 = 5− 4 = 1,
rσ1 = min{b10, b12 − rσ2′ , b13 − rσ3′} = 0 and rσ1′ = 5− 0 = 5.

Hence, rσ = (0, 1, 0; 5, 4, 3). It is easily checked to be the extreme core allocation
that gives all sellers their core minimum payoffs, see the output matrix A2 in
Example 3. �

Having seen that for assignment games the set of extreme core allocations
coincides with the set of lemarals, and thus by Proposition ?? with the set of
lemacols, we get that Algorithm COVER together with (18) and (20) give a simple
and quite efficient way to compute the extreme core allocations, or the lemacols,
directly from the extended matrix A0.

In order to further emphasize the relevance of Theorem 2, we give a game
whose core shows very strong similarities with the core of an assignment game,
but has an extreme core element that is neither a lemacol, nor a lemicol vector.
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Example 5 Consider the 6-player game (N, v) with

v(S) =


12 if S = N

4 if S ∈ {{1, 4}, {2, 5}, {3, 6}}
3 if S = {2, 3}
4 if S ∈ {{1, 2, 3}, {1, 2, 6}}
0 otherwise

In any core allocation x1 + x4 = 4, x2 + x5 = 4, x3 + x6 = 4, so we can picture
the core in the (x1, x2, x3)-space, see Figure 1. Moreover, xi ≥ 0, i = 1, . . . , 6,

x1

x2

x3
(1, 3, 0) (4, 3, 0)

(4, 4, 0)

(4, 0, 4)

(4, 0, 3)
(3, 0, 3)

(4, 4, 4)(0, 4, 4)

(0, 4, 0)

(0, 2, 2)
(1, 1, 2)

(2, 0, 2)

Fig. 1 The (projection of the) core in Example 5

thus the (projection to that space of the) core is included in the box 0 ≤ xi ≤ 4,
i = 1, 2, 3.

The inequality x1 + x2 + x3 ≥ 4 cuts off corner (0, 0, 0), the inequality x1 +
x2 + x6 ≥ 4 cuts off corner (0, 0, 4). These two planes intersect in the line segment
joining the points (0, 2, 2) (the midpoint of the left-side square), and (2, 0, 2) (the
midpoint of the front side-square). The inequality x2 + x3 ≥ 3 cuts off this latter
point and the corner (4, 0, 0). The above-mentioned three planes intersect in the
point (1, 1, 2).

The point (1, 1, 2) is an extreme point of the core (it makes 6 linearly indepen-
dent core inequalities binding). All other core extreme points (shown) are on the
sides of the box (at least one of their coordinates is 0 or 4, the core-minimum or
the core-maximum payoff, respectively, for each variable). Therefore, the core ex-
treme point (1, 1, 2) is neither a lemacol, nor a lemicol. It cannot even be obtained
by any mixed sequence of maximization / minimization within a given order (e.g.
max for the first player, min for the second and for the third, again max for the
fourth, etc.).
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Notice, however, that because of the dichotomous relation between the pairs
of payoffs xi and x3+i = 4 − xi for i = 1, 2, 3 inside the core, all but the (1, 1, 2)
core extreme points are actually lemacols (and also lemicols). �

8 Concluding remarks for the average lexicographical values

An immediate consequence of the above results regarding the computation of the
lemarals is that we have obtained an easy way to compute the average of all lemacol
payoff vectors, that is the AL-value.

As the reader will realize after computing several lemarals for our Example
4, many of them coincide. The reason is that once the payoff to an agent in a
given order σ is fixed, the position that his optimally assigned partner occupies
among his followers does not matter. Thus we can restrict ourselves to those orders
where optimally assigned partners are consecutive. Let µ be an optimal assignment,
µ ∈M∗A(I, J), and define

Π̃(N) =
{
σ ∈ Π(N) : for all i ∈ I, if σ−1(i) = r then σ−1(µ(i)) ∈ {r − 1, r + 1}

}
.

Notice that for (m + m)-player assignment games, i.e. when |N | = |I ∪ J | = 2m,
the cardinality of Π̃(N) is m! · 2m, much less than (2m)!, the cardinality of Π(N).
In the above (3 + 3)-player example, we would only need to consider 48 orders
instead of 720. For (4 + 4)-player assignment games, the respective numbers are
384 versus 40320.

In light of the above remark, the expression of the AL-value for assignment
game (N,wA) can be rewritten as follows:

AL(wA) =
1

m! · 2m
∑

σ∈Π̃(N)

rσ,wA . (21)

The inequalities m! · 2m < m! ·mm < (2m)! and the fact that it is more efficient
to compute a lemaral than a marginal payoff vector show that for assignment
games the AL-value is computationally far more tractable than the Shapley value.
Moreover, we believe that the number of orders for which the lemaral is computed
in (21) can be further decreased. Since the number of extreme core points in an
(m + m)-player assignment game is at most (2m

m ) (Balinski and Gale, 1987), and
(2m
m ) < (m + 1)! ≤ m! · 2m, several lemacols related to orders even in Π̃(N) must

coincide in the same extreme core point. Further studies are needed to see how
these groups of orders (and their multiplicity) could be determined.

Moreover, the AL-value and the reverse AL-value coincide in the case of assign-
ment games. This is because the lemacol/lemicol for an order σ = (σ1, σ2, . . . , σn)
of the players is the same as the lemicol/lemacol for the related order

σ̃ = (µ(σ1), µ(σ2), . . . , µ(σn)).

Notice that σ̃ keeps the order between pairs as in σ but reverses the order of the
players within each pair: if for example σ = (1, 2′, 3, 3′, 1′, 2), then σ̃ = (1′, 2, 3′, 3, 1, 2′).
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The reason is that, over any subset of the core, when i ∈ M0 attains her maxi-
mum payoff, the partner µ(i) attains his minimum one. Formally, since λσ,wσ1

=
min {xσi : x ∈ C(N,w)}, we have

λσ,wµ(σ1)
= max {xσ1 : x ∈ C(N,w)} = λ

σ̃,w
µ(σ1).

In the core, once fixed the payoff to σ1, the payoff to the partner µ(σ1) is fixed
simultaneously. Hence, we have that, if σ2 6= µ(σ1), then

λσ,wσ2
= min{xσ2 : x ∈ C(N,w), xσ1 = λσ,wσ1

}
= min{xσ2 : x ∈ C(N,w), xσ1 = λσ,wσ1

, xµ(σ1) = λσ,wµ(σ1)
}.

As a consequence,

λσ,wµ(σ2)
= max{xµ(σ2) : x ∈ C(N,w), xσ1 = λσ,wσ1

, xµ(σ1) = λσ,wµ(σ1)
}

= max{xµ(σ2) : x ∈ C(N,w), xµ(σ1) = λ
σ̃,w
µ(σ1)} = λ

σ̃,w
µ(σ2).

By iteration of the above argument we obtain λσ,wk = λ
σ̃,w
k for all k ∈ N . As a

consequence, the AL-value coincides with the reverse AL-value.
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13. Núñez M, Rafels C (2002) Buyer-seller exactness in the assignment game. International
Journal of Game Theory, 31:423-436.

14. Owen, G. (1992) The assignment game: The reduced game. Annales D’Economie et de
Statistique, 25/26:71-79.

15. Shapley LS (1971) Cores of convex games. International Journal of Game Theory, 1:11-26.
16. Shapley LS, Shubik M (1972) The assignment game I: The core. International Journal of
Game Theory, 1:111-130.
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