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Chapter I : Myeloid cells differentiation and 

activation 
 

 

 
The mononuclear phagocyte system  
 

 

The immune system comprises a variety of cell types and structures, which form a 

complex network where each component performs a specific function with the final goal 

of protecting the organism against pathogens and transformed cells. Classically, the 

immune system has been divided into innate and adaptive elements. The innate immune 

system is the first-line of defense that responds to pathogenic challenge and provides a 

robust and rapid response, within minutes of pathogen exposure, to generate a protective 

inflammatory response. Moreover, innate immunity plays a central role in activating the 

subsequent adaptive immune response. In turn, adaptive immunity refers to a group of 

specialized cells that have the capability to generate a memory immune response against 

pathogens once innate immune cells have presented them with specific antigens. The 

recognition of danger signals by immune cells triggers an inflammatory response that 

includes the secretion of cytokines and chemokines and the recruitment of phagocytic 

cells. The hematopoietic cells that integrate the adaptive immunity system include B and 

T lymphocytes while innate immune responses are mediated by macrophages, dendritic 

cells, mast cells, neutrophils, eosinophils, natural killer (NK) cells, and NK T cells. Most 

cell populations in the innate immune system arise from hematopoietic progenitors cells 

in the bone marrow that constitute the so-called mononuclear phagocyte system (MPS).  

 

 

Innate immune cells within the MPS are responsible for the maintenance of homeostatic 

surveillance, reaction to infection and injury as well as for the regenerative response after 
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the injury. Van Furth and colleagues initially proposed the concept of MPS in the 1970's 

with a basic and linear model (Van Furth and Cohn, 1968, Yona et al., 2013; Cassado et 

al., 2015). The MPS has been now expanded to include subpopulations regulated by 

specific growth and transcription factors as well as epigenetic modifications that result in 

subset-specific gene expression signatures, and distinct ontogenies, that include myeloid 

cells, however, some of these cells have an origin that is other than bone marrow 

hematopoietic stem cells (HSCs) (Davies and Taylor, 2015, Alvarez-Errico et al., 2015).  

	

	

Macrophages are myeloid cells that play central roles in tissue homeostasis and 

pathophysiological responses like host defense against infections, tissue repair, and 

inflammation, through various scavenger, pattern recognition, and phagocytic receptors.  

These functions enable macrophages to initiate appropriate inflammatory programs upon 

perturbation of homeostasis. Conversely, deregulated macrophage activation could occur 

during inflammation and in a number of diseases, including cancer (Wynn et al., 2013; 

Franklin and Li, 2016).  

 

 

The central paradigm established by the MPS concept were twofold: first, that tissue-

resident macrophages in homeostasis are maintained through the continuous recruitment 

of blood monocytes produced by bone marrow HSCs and, second, that macrophages are 

fully differentiated cells that have lost their proliferative potential. This model occurs as a 

linear process wherein progenitor cells in the bone marrow generate circulating blood 

monocytes that upon arrival into tissues can differentiate into macrophages. It was based 

on the observation that blood leukocytes recruited into the inflamed peritoneum can 

differentiate into mature macrophages (Chow et al., 2011).   

 

 

However, macrophage populations do not necessarily share the same origin, arising 

either from embryonic progenitors, such as yolk sac macrophages and fetal monocytes or 

from adult blood monocytes. Yolk sac erythromyeloid progenitors (EMPs) have both 

erythroid and myeloid potential. EMP-derived hematopoiesis gives rise to erythrocytes, 

macrophages, monocytes, granulocytes and mast cells. Macrophages are found in the 

mouse yolk sac before the initiation of HSCs-derived hematopoiesis as early as 
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embryonic day 9 (E9), before the establishment of the circulatory system (Ginhoux and 

Jung, 2014). Two highly coordinated waves of hematopoiesis have been identified, 

referred to as "primitive" and "definitive."  

 

 

The first early “primitive” wave is c-Myb- and Notch1-independent and generates 

primitive macrophages without monocytic intermediates in the yolk sac. The second 

"definitive" wave begins when HSCs appear in the aorta gonadal mesonephros region at 

approximately day 10.5 of embryonic development (E10.5). This second wave is c-Myb- 

and Notch1-dependent, and these precursors are capable of maintaining blood circulating 

cells lifelong. EMPs embryonic precursors of yolk sac macrophages and fetal monocytes 

can be distinguished according to the anatomical site (extra-embryonic yolk sac versus 

intra-embryonic region), their differentiation potential and their dependence on 

transcription factors. Thus, tissue resident macrophages are thought to arise 

independently of blood monocytes, and also can originate by in situ self-renewal 

(Hashimoto et al., 2013).  

 

 

EMP-derived macrophages from these first non-hematopoietic precursors colonize all 

tissues during fetal development, where they specialize in their tissue of residence after 

birth and appear to persist throughout adult life by local proliferation through a process 

of self-renewal (Varol et al., 2015; Bertrand et al., 2010). Examples of these 

macrophages include microglia of the central nervous system and some Langerhans cells 

in the epidermis (Figure 1). These results have been obtained through parabiosis of 

congenic mice that confirmed that the homeostatic maintenance of these macrophages 

populations is largely independent of blood monocytes expressing the C-C chemokine 

receptor type 2 (CCR2). CCR2 is highly expressed in monocytes, which is the basis of 

hematopoiesis derived from HSC (Hashimoto et al., 2013; Yona et al., 2013).  

 

 

However, in some tissues, resident macrophages derive from circulating monocytes like 

intestinal macrophages of the colonic mucosa that are continually replenished from 

circulating monocytes. In other tissues like heart, epidermis, and peritoneal cavity, a 

smaller subset of monocyte-derived macrophages can be found in homeostatic 
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conditions, derived from the physiological recruitment of monocyte population. 

Nevertheless, in the context of inflammation, upon radiation or in ischemic tissues, the 

recruitment and differentiation of blood monocytes may be involved in the maintenance 

of tissue-resident macrophages population. Likewise, during aging, tissue-resident 

macrophages in the heart and lung are replenished from monocytes (Lavin et al., 2015; 

Hoeffel et al., 2015; Miró-Mur et al., 2016). Interestingly, other studies found that tissue 

macrophages were replaced by adult bone marrow–derived cells, not necessarily by 

monocytes. This indicates that adult bone marrow–derived cells can acquire phenotypic 

and functional features and exhibit a gene expression profile similar to the original tissue 

macrophage population, with the tissue environments ultimately dictating macrophages’ 

phenotype (Gosselin et al., 2014; Lavin et al., 2014). 

 

In mouse, expression levels of the cell surface F4/80 antigen define different macrophage 

subsets. Ontogenically, mouse macrophages can be classified into two broad groups 

based on their levels of expression of this cell surface marker F4/80, with F4/80low 

(originating from circulating monocytes during adult hematopoiesis) and F4/80high (from 

embryonic precursors) (Schultz et al., 2012; Pérez-de Puig et al., 2013). In the case of 

peritoneal macrophages, these two subpopulations are referred as large peritoneal 

macrophages (LPM, F4/80high), which are the higher fraction under basal conditions and 

are replaced by small peritoneal macrophages (SPM, F4/80high) upon antigenic 

stimulation (Ghosn et al., 2010; Okabe and Medzhitov, 2014; Rei et al., 2014). SPM are 

short-lived cells that can replace LPMs under inflammatory conditions, although LPMs 

do not seem to contribute to the SPM subpopulation (Cassado et al., 2015).  
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Figure 1. Origin and differentiation of myeloid cells. The figure displays the origin of different 
macrophage populations. Taken with permission from Marco Prinz & Josef Priller, Nat Rev Neurosc 15, 
300–312 (2014).  
 
 
 
 
The differential phenotype of macrophages across mouse tissues depends on a tissue-

specific transcriptional and epigenetic regulation of their genes, supporting once again 

the idea that microenvironmental signals dictate the programming, activation, phenotype 

and cellular function of macrophages (Álvarez-Errico et al., 2015).  

 

 

There are many transcription factors that regulate the functions of tissue-resident 

macrophages. For instance, the MAF transcription factor is more expressed in tissue 

macrophages than in monocytes, and both MAF and MAFB are essential for macrophage 

terminal differentiation (Lavin et al., 2015). Same applies to the peroxisome proliferator-

activated receptor-γ (PPARγ) in alveolar macrophages, GATA-binding protein 6 

(GATA6) in peritoneal cavity macrophages, Myocyte-specific enhancer factor 2C 

(MEF2c) in microglia, and Liver X receptor alpha (LXRA) in Kupffer cells and splenic 

F4/80hi
LPM

F4/80lo
SPM
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macrophages (Lavin et al., 2014, Rosas et al., 2014). Along PU.1, these transcription 

factors define phenotype and function of the macrophages in physiological or 

pathophysiological tissue-dependent contexts (Lawrence and Natoli, 2011).   

 

 

Peritoneal macrophages are an illustration of how tissue-derived signals can shape tissue-

resident macrophages functional identity. These macrophages can retain some levels of 

plasticity and adapt to new environmental cues, here peritoneal cavity macrophages, 

adoptively transferred into the lung microenvironment, downregulated Gata6 and 

upregulated Pparγ expression, although some transcripts remained fixed and retained the 

signature of the tissue of origin (Lavin et al., 2014; Okabe and Medzhitov, 2014).  

 

 

 

Macrophage Polarization 
 

 

Extravasation of circulating monocytes into inflamed tissues and the tumor 

microenvironment promote their differentiation into macrophages and their subsequent 

activation along a continuum of functional phenotypes.  At the extremes, these 

phenotypes are classically referred to as M1 and M2 polarization although intermediate 

phenotypes are more common in vivo (Lawrence and Natali, 2011; Murray et al., 2014; 

Xue et al., 2014 and Figure 2). Although this binary model represents a simple 

representation of macrophage activation, evidence in human and mouse macrophages 

indicates that macrophages display a broad functional spectrum of phenotypes in 

response to complex and ever changing signals in their specific microenvironments. 

Macrophage polarization is not a static state rather is an active process coordinated by 

genetic and molecular pathways (Martinez and Gordon, 2014; Williams et al., 2016). 

  

 

Activation of macrophages towards M1 occurs in response to Th1 cytokines and results 

in the production of pro-inflammatory cytokines (e.g., IL1β, IL12, TNFα, SOCS3). In 

turn, Th2 cytokines IL4 and IL13 trigger an M2-type phenotype with upregulation of 
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anti-inflammatory cytokines (e.g., IL10) and scavenger receptors (e.g., CD163, CD204, 

CD206/MRC1) (Sica and Mantovani, 2012; Arango Duque and Descoteaux, 2014).  

 

 

 
 

Figure 2. Classical binary model of macrophage polarization. The figure displays the archetypical 

macrophage activation that is seen in vitro.  
  

 

 

SOCS proteins 
 

 

Among the molecules that regulate macrophage polarization the eight members of the 

“suppressor of cytokine signaling” (SOCS) family proteins play an essential role in 

driving the inflammatory process. They are upregulated by cytokines or TLR ligands that 

cause anti- or pro-inflammatory activation. Thus, SOCS proteins regulate inflammation 

through several signaling cascades such as JAK-STAT, ERK, Notch, 

Classic Activation (M1) Alternative Activation (M2)
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phosphatidylinositol-3 kinase (PI3K), mitogen-activated protein kinases (MAPK), and 

NF-κβ pathways (Wilson, 2014; Wang et al, 2014). SOCS2 has a role in anti-

inflammatory macrophages limiting pro-inflammatory activation. Accordingly, IL4 

increases SOCS2 expression and macrophages deficient in SOCS2 are more 

inflammatory (Wilson et al., 2014). 

 

 

SOCS3 is rapidly induced in macrophages and has distinct roles in shaping macrophage 

activation and controlling immune and inflammatory responses. Since pro-inflammatory 

macrophages upregulate SOCS3, it is considered an M1-associated marker. In turn, 

human monocyte-derived macrophages where SOCS3 has been silenced showed elevated 

expression of M2 markers and decrease of M1 ones (Arnold et al., 2014). Likewise, 

murine macrophages with ablation of Socs3 display a decreased inflammatory response 

upon LPS stimulation and mice lacking Socs3 in myeloid cells are resistant to endotoxic 

shock and have a reduced production of pro-inflammatory cytokines (Kubo et al., 2003; 

Wilson, 2014). SOCS3 has also a role in phagocytosis and its knockdown enhances the 

phagocytic capacity of macrophages through PI3K signaling pathway and this increase in 

PI3K-AKT activity would influence M1-polarization, since PI3K negatively regulates 

pro-inflammatory cytokine production, enhances IL10 and suppresses response in 

myeloid cells exposed to LPS (Arnold et al., 2014). Of note, the regulation of pro-

inflammatory cytokines for SOCS3 occurs in a gene-specific manner. 
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Chapter II : Macrophage function 
 

 

 

 

As part of the innate immune response, several functions of myeloid cells, including 

phagocytosis, wound healing and remodeling tissues, have a role in mediating the 

inflammatory process. Here, I will briefly review below three of the main macrophage 

functions, namely, phagocytic activity, migration to reparation/infection foci and 

inflammation modulation.  

 

 

It is not clear if all these macrophage functions, could be complemented by non-resident 

monocyte-derived macrophages or whether specialized macrophage functions are 

specific to resident macrophage lineages. Peritoneal macrophages represent a widely 

used model for the study of macrophage functions since the peritoneal cavity serves as a 

readily accessible source of both monocyte-derived and resident macrophages offering 

the possibility to study phagocytosis, migration, and inflammation both in vitro and in 

vivo.  

 

 

 

Phagocytosis and migration  
 

 

Phagocytosis is an essential process in homeostasis and in immune defense and it 

consists in the recognition and engulfment of cell fragments, senescent cells or apoptotic 

cells. Moreover, it is a mechanism utilized by the immune system to eliminate pathogens 

or foreign particles	and	the phagocytic process is critical event in the active resolution of 

inflammation. Dysregulation of phagocytosis can lead to impaired host immune 

responses to pathogens and may even evolve to chronic inflammation and autoimmune 

response (Underhill and Goodridge, 2012).	A number of cells in the organism have 
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phagocytic capabilities, however, macrophages are the most important phagocytic cells 

playing functions on apoptotic cell clearance and pathogen defense (Wynn et al., 2013). 

 

 

Macrophage polarization modulates their phagocytic capacity. Thus, M1 macrophages 

produce pro-inflammatory cytokines and promote the killing of bacterial pathogens by 

increasing bactericidal activity. On the other hand, the M2 phenotype is critical in 

defense of parasitic infections and tissue remodeling. M1-actived macrophages showed 

better phagocytic index of nanoparticles than M2 macrophages (Qie et al., 2016). The 

microenvironment also regulates the phagocytic activity of macrophages; thus, IL10 

derived from B cells or other cells in the peritoneum can impair phagocytosis, as well as 

age-related impair phagocytosis is an IL10-dependent phenomena (Martinez and Gordon, 

2014). There are also molecules specific to macrophages that affect their phagocytic 

activity. For instance, in mice lacking Pd-1, macrophages display improved bacterial 

clearance and mice presented decreased septic mortality (Huang et al., 2009). Moreover, 

macrophages from Vim (-/-) mice, an archetypal mesenchymal gene, had an improved 

phagocytic function (Mor-Vaknin et al., 2013). 

 

 

Migration is the fundamental locomotory mechanism for almost all cell types, but it is 

particularly important for immune cells as they maintain the homeostasis and defense of 

organism. Macrophages migrate more slowly that other immune cells, however, they 

respond rapidly in vivo and can travel considerable distances to inflammatory foci and 

they are therefore considered professional motile cells (Pixley, 2012).   

 

 

When monocytes and macrophages migrate in response to chemotactic stimuli the 

process is known as chemotaxis. Chemokines are secreted proteins, which act as 

sentinels at mucosal barriers and for the recruitment of the first line of innate immune 

effector cells to infection and inflammation foci. Chemokines bind to their respective 

receptors expressed on the cell surface of leukocytes, and that can be either constitutively 

expressed or induced in inflammatory conditions, in some cases the microenvironment is 

regulating their expression levels.	Monocytes respond to local stimuli such as cytokines 

and chemokines that direct migration toward inflammatory sites.  Experiments using 
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mice with targeted deletion of chemokines, demonstrate that hematopoietic circulating 

cells cannot maintain homeostasis or respond to pathologic conditions (Zamilpa et al., 

2011; Le Blanc and Mougiakakos, 2012).  
 

 

The chemokine CCL2 (also known as monocyte chemoattractant protein 1, MCP-1) is a 

small secretory protein that plays an important role in the chemotaxis of macrophages 

towards inflammatory foci and the tumor microenvironment. Its high affinity receptor, 

CCR2, can modulate HSC exit from the bone marrow and their release into the 

circulation. Upon extravasation, monocytes differentiate into a subset of monocytes that 

express CCR2 and are associated with immune defense against infection and the 

pathogenesis of inflammatory disorders. CCR2 signaling promotes pro-inflammatory 

monocyte migration into peripheral tissues in response to CCL2 (Italiani and Boraschi, 

2014; Deshmane et al., 2009). Binding of CCL2 to CCR2 leads to the internalization of 

CCL2 and triggers a number of signaling pathways such as PI3K, MAPK, Smad3, PKC 

and phospholipase C-γ. Stat3 and PI3K participate in endothelial activation associated 

with diapedesis of leukocytes during inflammation (Fang et al., 2012; Lim et al., 2014). 

Several signaling pathways that induces vascular permeability and extravasation, act 

downstream of CCR2; for instance, JAK2, Stat5, and p38MAPK. Thus, both CCL2 and 

its receptor CCR2 are involved in inflammation and in various diseases (Wolf et al, 

2012). In fact, blockade of CCL2-CCR2 signaling is an important therapeutic strategy in 

both inflammatory disorders and cancer therapy.  

 

 

Another chemokine that regulates the migration of monocytes and macrophages in 

homeostasis and pathologic process is the Colony-stimulating factor-1 (CSF1). CSF1 

stimulates actin polymerization and subsequent migration.  Moreover, the recruitment of 

macrophages to the proximity of tumors is mediated by CSF1 and CCL2 secreted by 

tumor cell. Furthermore, these factors are implicated in macrophage migration in several 

diseases, like arthritis, atherosclerosis, tumor growth, and metastasis (Pixley, 2012) and 

they, therefore, provide a promising therapeutic target. 

 

In sum, although migration is critical in immune response and homeostasis maintenance, 

it could also have a negative role in some diseases. In that line, many studies revealed 
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that reduction in macrophage motility is associated with a reduction in their capacity to 

enhance tumor cell invasion or inflammatory disorders. 

 

 

 

Role of macrophages in inflammation  
 

 

Once at tissues, macrophages can acquire different functions and phenotypes, which are 

modulated by signals from the environment. Inflammation occurs in several 

physiolopathological conditions and diseases. Its development as well as its resolution is 

closely related to macrophage function.  

 

 

Septic shock is a systemic inflammation that triggers a multiple organ dysfunction and is 

produced by bacterial infections or microbial toxins. Lipopolysaccharide (LPS) is the 

major cell wall component of Gram-negative bacteria that produce this inflammatory 

disorder. LPS stimulates immune cells through TLR4 interactions to produce several 

inflammatory cytokines whose overproduction can leads to death	(Roger et al., 2009).  

 

 

Endotoxin tolerance is the phenomenon in which immune cells, primarily monocytes and 

macrophages, transiently become hyporesponsive or tolerant upon repeated or prolonged 

exposure to LPS (Rajaiah et al., 2013). During disseminated endotoxin shock and acute 

sepsis, LPS induces a strong inflammatory response, but macrophages pre-exposed to 

LPS are hyporesponsive to a second LPS challenge and do not mount a full-fledged pro-

inflammatory reaction. Both inflammation and tolerance modulate macrophage functions 

and cannot be separated from the process of resolving inflammation, to avoid a non-

resolving inflammation such as cancer, inflammatory autoimmune diseases, or chronic 

inflammation that drives ongoing recruitment of monocytes to the inflammatory site 

(Biswas and Lopez-Collazo, 2009; Pena et al., 2011).  
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LPS tolerance models indicate that the macrophages have a rudimentary memory that 

makes them capable of recognizing the structural nature of foreign molecular patterns 

and discern the history and concentration of foreign stimulants, this can explain the 

paradigm of endotoxin priming and tolerance (Seeley and Ghosh, 2016).  

 

 

In a pivotal study, Freudenberg and Galanos (1998) demonstrate that macrophages have 

an essential role of in LPS-tolerance induction through a mice model defective for the 

LPS signaling receptor. When these mice received adoptive transfer of LPS-sensitive 

macrophages from a wild-type mouse, they became susceptible to lethal challenges of 

LPS. However, when transplanted mice were first challenged with non-lethal doses of 

LPS and then subjected to a lethal dose of LPS, all mice survived, thereby showing that 

macrophages are the primary mediators of endotoxin tolerance (Freudenberg and 

Galanos, 1988, Biswas et al., 2007; Deng et al., 2013).  

 

 

Subsequent in vitro studies have shown the induction of endotoxin tolerance in human 

monocytes and macrophages with reduced TNF expression. Likewise, compared to 

monocytes from healthy donors, those from sepsis patients showed an increase in the 

expression of anti-inflammatory cytokines like IL10 and TGFβ (Adib-Conquy et al., 

2006). Consequently, endotoxin tolerance is considered to be a physiological negative 

feedback response that protects the host against uncontrolled inflammation.   

 

 

There are two classes of genes involved in tolerance, “tolerizable genes” that are 

abrogated in tolerance including TNFα, and “non-tolerizable genes” that are upregulated 

in tolerance and include anti-inflammatory and wound repair genes, such as IL10 and 

matrix metalloproteinase 9  (MMP9) (Shalova et al., 2015; Alvarez-Errico et al., 2015).  
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Chapter III :  The tumor microenvironment 
 

 

 

Within both healthy tissues and solid tumors it is possible to distinguish the functional 

section or parenchyma from the supporting stroma, being both separated by the basal 

lamina. The stroma includes a wide array of cell types including endothelial cells, 

perivascular cells, adipocytes, fibroblasts, and immune cells, especially macrophages. In 

tumors, the stroma is often referred as the tumor microenvironment (TME) and becomes 

invaded by tumor cells once the basal lamina is disrupted. Stromal cells in the TME 

interact closely with tumor cells and mutually affect each other. For instance, factors 

released by the TME can either promote or inhibit tumor cell survival, invasiveness, and 

metastatic dissemination, as well as access and therapeutic responsiveness (Turley et al, 

2015).  

 

 

In turn, malignant cells activate macrophages and fibroblast in the TME that changes 

constantly during tumor progression according to the oncogenic signals it receives from 

the tumor (Kim eta al., 2007). Different stimuli like hypoxic conditions, growth factors, 

and immunosuppressive cytokines supplied by the TME, endow tumor-associated 

macrophages (TAMs) with pro-tumor characteristics that facilitate tumor development. 

The capacity of carcinomas to recruit and activate TAMs largely depends on malignant 

cells having acquired an undifferentiated phenotype with loss of epithelial markers and 

expression of mesenchymal markers as part of the so-called epithelial-to-mesenchymal 

transition (EMT). In turn, tumor cells, particularly those than have undergone an EMT 

secrete factors that modulate and activate cells in the TME (Su et al., 2014).		

	

	

In epithelial tissues that have dedifferentiated and undergone EMT, cells at the invasive 

tumor edge secrete cytokines, chemokines, growth factors and proteases that promote 

angiogenesis, remodel the extracellular matrix and can activate stromal cells (Rosen and 

Jordan, 2009).  
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Tumor-associated macrophages 
 

 

TAMs are the largest component of the TME and despite being a highly heterogeneous 

population, they share some characteristics with M2 macrophages, such as wound 

healing and angiogenic proprieties. Nevertheless, the transcritpome of M2 macrophages 

and TAMs is not completely overlapping (Xue et al., 2014). It is possible to find 

different TAMs populations within the same tumor with a combination of both pro-

inflammatory and anti-inflammatory gene expression. Moreover, macrophages involved 

in cancer-initiating inflammatory process may begin acting as anti-tumoral cells, 

however, once tumors are established, macrophages are educated to become pro-tumoral 

(Franklin et al., 2014; Noy and Pollard, 2014).  

 

 

The mechanisms by which macrophages switch from a tumor suppressing phenotype to 

tumor promoting one are not fully understood. It has been suggested that environmental 

signals such as secreted tumor factors or hypoxia may mediate this transition. TAMs 

accumulate in regions of hypoxia within growing tumors, and their recruitment is 

mediated by an upregulation of macrophage chemoattractants (Wen et al., 2015). CCL2 

is secreted in response to a variety of inflammatory stimuli; however, the primary source 

of CCL2 is unclear. It is possible that locally produced CCL2 derived from tumor or 

stromal cells enters the systemic circulation. In most tumor cells, CCL2 expression is 

positively correlated with monocyte infiltration. These monocytes can be polarized to an 

anti-inflammatory/pro-angiogenic phenotype becoming in TAMs that can promote 

immunosuppression in the tumor niche. Furthermore, CCL2 blocks apoptosis and 

enhanced migration in mammary carcinoma cells. Clinical evidence shows that elevated 

levels of CCL2 associate to poor prognosis in most of cancers (Ostuni et al., 2015).  

 

TAM accumulation in the TME also correlates with angiogenesis and the subsequent 

acquisition of an invasive phenotype (Figure 3). At the same time, angiogenesis is 

facilitated by TAM-derived proteases (e.g. matrix metalloproteinases, plasmin, 

urokinase-type plasminogen activator/uPA and urokinase-type plasminogen activator 

receptor/uPAR) that are released in tumor sites, as extracellular proteolysis, which is a 
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requirement for blood vessel formation. For example, TAM-derived MMP9 induces the 

release of vascular endothelial growth factor-α (VEGFα) that is crucial for the angiogenic 

switch.  

 

 

These enzymes also facilitate tumor invasion reorganizing the extracellular matrix and 

degrading the basement membrane. Moreover, inhibition of the MMP9 in macrophages 

blocked the release of VEGF and thereby inhibited angiogenesis and tumor growth in a 

cervical cancer mouse model (Ebrahem et al., 2010; Guiraudo et al., 2004). Likewise, 

expression of hypoxia-inducible factor (HIF1α) in cells in response to hypoxia promotes 

the expression of VEGF, matrix metalloproteinase 7 (MMP7), and MMP9 in TAMs 

(Hagerling et al., 2015; Condeelis and Pollard, 2006). Other example is Wnt Family 

Member 5A (WNT5A) that participate in Wnt/β-catenin-independent pathway, in 

macrophages induce a tolerogenic phenotype and is associated to transition from 

tumoricidal to tumor-promoting TAM profile (Pukrop et al., 2006; Bergenfelz et al., 

2012). 

 

 

 

ZEB1 and EMT 
 

 

EMT plays an important role during embryonic development, and it also contributes in 

tumor initiation and progression. Tumor cells undergoing EMT acquire a pro-invasive 

and stem-like phenotype and exhibit enhanced self-renewal properties, increased 

tumorigenic potential and increased chemotherapy resistance. Expression of EMT 

markers in tumors correlates with poorer prognosis (Tsai and Yang, 2013).  

 

 

EMT is driven by transcription factors of the TWIST, SNAIL, and ZEB families (Nieto 

et al., 2016). Of all EMT factors, the two members of the ZEB family, ZEB1 and ZEB2, 

present the best inverse correlation with epithelial markers and often function as 
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downstream effectors of Snail and Twist factors (Taube et al., 2010).  ZEB1 (also known 

as δEF1), which is expressed by malignant cells at the invasive front of carcinomas is a 

key inducer of EMT in cancer cells. ZEB1 inhibits the terminal differentiation of a 

number of cell types (e.g., epithelial cells, myoblasts, chondroblasts, osteoblasts), and its 

levels need to be downregulated for differentiation to occur (Brabletz and Brabletz, 2010; 

Siles et al., 2013). 

 

 

Despite ZEB1 has never been studied in myeloid cells, other EMT transcription factors 

have shown modulate myeloid differentiation or activation. Since, Snail and Twist have a 

role in anti-inflammatory macrophages (Zhang et al., 2014; Zheng et al., 2015), and 

ZEB2 regulates dendritic cells development (Scott et al., 2016) it was expected that 

ZEB1 would be playing a role in myeloid cells. Therefore, I decided to inquire whether 

ZEB1 is expressed and has a role in macrophage activation and function. ZEB1 contains 

multiple independent domains to interact with other transcriptional regulators and thus 

ZEB1 directly activates or represses gene expression by binding to the regulatory regions 

of its target genes (Postigo and Dean, 1999; Postigo et al., 2003)  

 

 

Macrophages are localized primarily at the periphery of the TME and around blood 

vessels but decrease in number toward the center (Lewis and Pollard, 2006; Quail and 

Joyce, 2013).  These observations suggest that TAMs modulate the phenotype of tumor 

cells located in the neighboring microenvironment and the occurrence of EMT in tumors 

may, therefore, be transient and highly dependent on the local microenvironment. 
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Figure 3. Crosstalk between cancer cells and myeloid cells in the TME. The TME is essential for tumor 
growth and invasion through chemokine signaling from tumor cells that recruit immature monocyte that 
later mature into TAMs to promote tumor aggressiveness. 
 

 

This relation between EMT and immune cells infiltration is the hallmark of many cancer 

types, including inter alia ovarian, pancreatic and prostate carcinoma.  

 

 

 

Ovarian Cancer  
 

Epithelial ovarian cancer (EOC) is the seventh most frequent cancer diagnosed in women 

accounting approximately 140,000 deaths and 200,000 patients being diagnosed annually 

worldwide  (Brown and Palmer, 2009). EOC has a poor prognosis largely because of the 

presence of local and distant metastases in the majority of patients at diagnosis. 

Treatment options for late-stage disease are limited since despite a positive response to 
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platinum-based therapies, eventually, patients become resistant to chemotherapy 

(Lengyel, 2010; Liu and Matulonis, 2014).  

 

 

Ovarian carcinomas are classified in different histological subtypes, with the high-grade 

serous ovarian carcinoma (HGSC) as the predominant OC (80-85%), followed by 

endometrioid tumors (10% of cases), while clear cell and mucinous carcinomas are rarer. 

These histological subtypes correspond to different epidemiological and, mutational 

characteristics, sites of origin and response to chemotherapy (Hasan et al., 2015). HGSC 

has a poorly differentiated phenotype and is highly proliferative; and given the lack of 

early symptoms, if is most often diagnosed advanced clinical stages (III and IV), and has 

therefore poor prognosis and survival rates (Chen, et al., 2014). HGSCs lines are widely 

used in ovarian cancer research, and of late it has been demonstrated the association 

among ZEB factors and in vivo tumor growth using a panel of these HGSCs lines 

(Medrano et al., 2017).   

 

 

Advanced OCs develop peritoneal ascites, which contributes to the dissemination and 

spread of tumor cells throughout the peritoneal cavity. Ascitic fluid is also implicated in 

resistance to chemotherapy (Kipps et al., 2013). Chronic inflammation during the 

development of ovarian cancer is a key factor in tumor progression as it prevents the 

maturation of myeloid cells and promotes their immunosuppressive polarization. In 

patients with advanced OC, it is possible to detect TAMs in the primary lesion as well as 

in the ascitic fluid, and are associated with worst prognosis and tumor dissemination in 

the peritoneal cavity (Reinartz et al., 2014). 

 

 

As in other cancers, TAMs are the most abundant leukocytes cells infiltrating in human 

ovarian tumors. Pro-tumor TAMs expressing pro- and anti-inflammatory markers such as 

CD163 and CD206 are recruited from circulating monocytes by ovarian tumors that 

express chemoattractant factors CCL2 and CSF1 (Colvin, 2014). CCL2 is overexpressed 

in ovarian tumor cells, but not in TAMs, also CSF1 expression is higher in malignant 

cells. Indeed there is a strong correlation between the number of infiltrating TAMs and 

the malignancy of OC. Likewise, peripheral blood monocytes and ascitic TAMs in 
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women with ovarian cancer have a dedifferentiated phenotype compared to cells from 

healthy. The expression of M2-markers or cytokines produced by TAMs are prognostic 

factors of poorer prognosis in human ovarian cancer. Thus, both CD163 and IL10 are 

correlated with progression-free survival and higher tumor grade (Colvin et al., 2014). 

 

 

TAMs form spheroids and secrete cytokines that promote the lymphangiogenesis process 

(Zhang and Thian, 2014; Yin et al., 2016). Co-culture experiments or culture with 

conditioned medium have shown that ovarian tumor cells can polarize macrophages 

towards an M2-protumoral phenotype, while TAMs can modulate ovarian cancer cells to 

more aggressive and chemoresistant phenotype, indicating the importance of this relation 

tumor cell-TAM in ovarian cancer progress (Lengyel, 2010; Colvin, 2014). Altogether, 

this evidence prompted me to use ovarian cancer as the experimental model for my PhD 

project. 

 

 

 

Ovarian Cancer models  
 

 

In xenograft cancer models, cells are injected into immunocompromised mice such as 

nude, SCID or NOD/SCID to enable the cells to engraft without being eliminated by the 

immune system (Bobbs et al., 2015). However, this model has some disadvantages, as it 

does not reflect what happens in clinical practice since the tumor is not located on the 

same site or in contact with peritoneal microenvironment, and immune response cannot 

be studied.  

 

 

Patient derived xenografts (PDX) models use human tumor engrafted in 

immunodeficient mice. This model offers a powerful tool to recapitulate woman ovarian 

cancer patient histotype with whole genome expression and evaluate accurately treatment 

response. Nevertheless PDX has the drawback that require the use of immunodeficient 

mice where it is not possible to study the role of the immune system and the tumor-
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stroma crosstalk, it is difficult to achieve tumor engraftment and it is more costly and 

time-consuming than other models (Siolas and Hannon, 2013). 

 

 

Some of these disadvantages can be overcome in syngeneic models, which use 

immunocompetent mice where mouse ovarian surface epithelial (MOSE) cells are 

isolated from the ovaries of wild-type normal mice then cultured in vitro for a prolonged 

period until to be spontaneously transformed or by inserting genetic modifications in 

healthy cells. These transformed cells are injected into recipient mice and will be able to 

form tumors. This model provides the opportunity to study the tumor microenvironment, 

tumor-stromal cells crosstalk, tumor-secreting factors and immune cell infiltration. 

Likewise, some syngeneic models use genetically modified cells and highly metastatic 

cell lines stably expressing luciferase for monitoring disease (Fong and Kakar, 2009). 

Overall, syngeneic models present tumors with similar histopathologic characteristics 

those observed in women with ovarian cancer as also development of closely resembling 

human disease. Roby et al. (2000) isolated and culture MOSE cells, which spontaneously 

were transformed in vitro with repeated passages. This is the origin of ID8 cell line that 

has been widely used as an experimental mouse model of ovarian cancer as it resembles 

the late metastatic stage of human HGSC (Roby et al., 2000). Like in human HGSC, ID8 

tumor deposits are highly infiltrated with immune cells, mainly macrophages. 

 

 

This ID8 model is particularly useful to study of interactions between tumor cells and 

their microenvironment, ID8 injected into the ovarian bursa of C57BL/6 mice showed 

that interaction between tumor cells and the ovarian stroma results in increased 

expression of proliferative and survival markers, including phosphorylated Akt, 

proliferating cell nuclear antigen, and Bcl-2 (Greenaway et al., 2008). In vivo passages of 

ID8 cells into naive mice increased their aggressiveness as defined by a shorter lag to 

develop both tumor and ascites and enhanced morbidity (Cai et al., 2015). Both studies 

highlight the interplay between tumor cells and their microenvironment in the 

modulation of tumor cell properties.  

 

 

 



	 29	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Objectives 
	



	 30	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 31	

 

 

This dissertation aimed to study the role of ZEB1 in macrophages and had two specific 

objectives: 

 

 

1. Characterize the expression and function of ZEB1 in macrophages during 

monocyte-macrophage differentiation and in macrophage homeostasis and activation. 

 

 

2. Characterize the expression and function of ZEB1 in tumor-associated 

macrophages and in their crosstalk with cancer cells. 

 

 

 

 

To address these goals, I used a wide number of techniques, namely, high throughput 

analysis (RNA sequencing) and different functional assays in a transgenic mouse model 

harboring the deletion one Zeb1 allele [Zeb1 (+/-)] and the ID8 syngeneic mouse model 

of ovarian cancer. 
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Antibodies 
 

Antibodies used in this article originated as follows: anti-human/mouse ZEB1 (Clones H-

102 and E-20, Santa Cruz Biotechnology, Dallas, TX, USA), anti-mouse β-Actin (Clone 

C4, Santa Cruz Biotechnology), anti-mouse F4/80 conjugated to APC (clone BM8, 

reference 17-4801; Bioscience Inc., San Diego, CA, USA), anti-mouse CD11b 

conjugated to PE (clone M1/70.15, reference 22159114; Immuno Tools GmbH, 

Friesoythe, Germany), anti-mouse CD45 conjugated to PerCP/Cy5.5 (clone 30-F11, 

reference 103131; BioLegend, San Diego, CA, USA), anti-human ZEB1 (clone 

HPA027524, Sigma-Aldrich, St. Louis, MO, USA), anti-human CCL2 (clone 2D8, 

Invitrogen, Thermo Fisher, Carlsbad, CA, USA), anti-human CD163 (clone 10D6, Leica 

Biosystems, Newcastle Upon Tyne, UK), anti-human CCR2 (clone 48607, R&D 

Systems, Minneapolis, MN, USA) and anti-human MMP9 (clone E-11, sc-393859, Santa 

Cruz Biotechnology). 

 

 

In addition, the study used the following secondary antibodies peroxidase-AffiniPure 

donkey anti-Mouse IgG (H+L) (reference 715-035-151), peroxidase-AffiniPure goat 

Anti-Rabbit IgG (H+L) (reference 111-035-144) and mouse gamma globulin (reference 

015-000-002), all purchased from Jackson ImmunoResearch Europe (Newmarket, UK).  

 

 

 

Mouse models 
	
Wild-type C57BL/6J and Lyz2Cre mice were obtained from Jackson Laboratories (Bar 

Harbor, ME, USA). Mice heterozygous for Zeb1 (Zeb1 (+/-) mice) were obtained from 

Dr. Douglas S. Darling (University of Louisville, KY, USA) and Dr. Y. Higashi 

(Institute for Development Research, Kasugai-shi, Aichi, Japan) (Takagi et al., 1998). 

Socs3f/f and Socs2-/- mice were obtained from D.J. Hilton (Royal Melburne Hospital, 

Victoria, Australia). All animal procedures were approved by Animal Experimentation 

Ethics Research Committee at the University of Barcelona. 
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Isolation and culture of normal mouse primary cells  
 
Bone marrow total cells (BMTCs) were obtained from 6-8 weeks-old C57BL/6 wild-type 

and Zeb1 (+/-) mice (Takagi et al., 1998) and differentiated into macrophages as 

described (Zhang et al., 2008). Briefly, femur and tibia bone marrows were flushed with 

Phosphate buffered saline (PBS) and BMTCs collected were centrifuged and 

resuspended fin Dulbecco’s modified Eagle Medium (DMEM) (Lonza, Basel, 

Switzerland) supplemented with 10% FBS (Sigma-Aldrich. St. Louis, MO), and 1% 

penicillin-streptomycin (Pen/Strep) (Lonza), medium hereafter referred as complete 

medium. To generate bone marrow–derived macrophages (BMDM), BMTCs were 

cultivated with 20 ng/ml of recombinant M-CSF (ImmunoTools GmbH, Friesoythe, 

Germany) during 6 days. Every 2 days, half of the medium was replaced with fresh 

medium supplemented with M-CSF. Identical results were obtained when BMTCs were 

cultivated with 40% of supernatant from L929 culture cells (ATCC, Manassas, VA, 

USA) stably transfected with M-CSF expression vectors.  

 

 

Peritoneal macrophages were isolated from 6-8 week-old Zeb1 (+/+) and Zeb1 (+/-) mice 

as per standard protocols (Zhang et al., 2008). Briefly, mice were euthanized and the 

peritoneal cavity was washed twice with 6 ml of ice-cold PBS supplemented with 3% 

FBS. Cells from the peritoneal lavage were centrifuged at 400 x g for 10 min at 4ºC and 

erythrocytes in the cell suspension were osmotically lysed by incubation with Red Blood 

Cell Lysis Buffer (Sigma-Aldrich), followed by washing with PBS and resuspension in 

PBS or complete medium. Peritoneal cells were then sorted for F4/80 and CD11b cell 

surface expression and isolated cells were then either examined for mRNA or cell surface 

markers expression or tested for the indicated functional assays.  

 

 

 

Isolation and culture of human primary cells 
 
Use of human samples was approved by the Ethics Committee for Clinical 

Experimentation at Hospital Clinic of Barcelona (Barcelona, Spain). Peripheral blood 
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mononuclear cells were obtained from buffy coats extracted from healthy donors and 

were separated by density gradient centrifugation with Lymphocyte Separation Medium 

(Lonza, Basel, Switzerland). Monocytes were purified from total PBMCs by magnetic 

cell sorting with Dynabeads® CD14 (Dynal®, Thermo Fisher, Waltham, MA, USA). 

Purified human monocytes (> 92% CD14+) were cultured for 7 days in RPMI 1640 

(Lonza) supplemented with 10% FBS (Sigma-Aldrich. St. Louis, MO), 1% penicillin-

streptomycin (Pen/Strep) (Lonza) and 20 ng/ml of human recombinant M-CSF/CSF1 

(ImmunoTools) or human recombinant GM-CSF/CSF2 (ImmunoTools GmbH). 

 

 

 

Flow cytometry analysis and sorting (FACS) 
 
Cells were first blocked for Fc receptors with mouse gamma globulin (Jackson 

ImmunoResearch Europe). Cells were then incubated in PBS with 2% FCS for 45 min at 

4˚C with the corresponding fluorochrome-labeled antibodies. Expression of cell surface 

proteins was assessed in a BD FACSCanto™ II analyzer (BD Biosciences, San Jose, CA, 

USA). Wherever indicated, cells were sorted for specific subpopulations in a FACS 

Aria™ II cell sorter (BD Biosciences) for subsequent experimentation. The acquired data 

were analyzed using FlowJo for Windows, version 7.6.1 (FlowJow, Ashland, OR, 

USA).   

 

 

 

RNA extraction and quantitative real time PCR 
 
Total RNA was extracted with RNAzol® RT reagent (Sigma-Aldrich) or TRIzol® (Life 

Technologies, Thermo Fisher Scientific) and reverse transcribed with oligodT using 

High-Capacity cDNA Reverse Transcription Kit (Life Technologies, Thermo Fisher 

Scientific). mRNA levels were then determined by quantitative real-time PCR (qRT-

PCR) at 60 ºC using GoTaq® qPCR Master Sybr Green Mix (Promega Corp., Madison, 

WI, USA). Results were analyzed using Opticon Monitor 3.1.32 software (Bio-Rad, 
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Hercules, CA, USA) by ΔΔCt method and normalizing values with respect to mouse 

Gapdh or human GAPDH housekeeping gene. DNA primers used in qRT-PCR were 

purchased from Sigma-Aldrich and their sequences are described in Table 1. The 

nomenclature for mouse and human genes adheres to MGI (Mouse Genome Informatics, 

http://www.informatics.jax.org/) and HGNC (HUGO Gene Nomenclature Committee, 

http://www.genenames.org/), respectively.  

 

 

 
Target 
gene 

 

 
Forward 5’ →  3’ 

 
Reverse 5’ →  3’ 

 
Ref 

Aldh1a1 GACAGGCTTTCCAG
ATTGGCTC 

AAGACTTTCCCACC
ATTGAGTGC 

Levi et al. 2009 Aldh1a1 GACAGGCTTTCCAG
ATTGGCTC 

AAGACTTTCCCACC
ATTGAGTGC 

Levi et al.,2009 

Ccl2 GGGATCATCTTGCT
GGTGAA 

AGGTCCCTGTCATG
CTTCTG 

Aurora et al., 
2014 

Ccr2 AGCACATGTGGTGA
ATCCAA 

TGCCATCATAAAGG
AGCCA 

Kitamoto et al., 
2013 

Cd163 TGTATGCCCTTCCTG
GAGTC 

TGTGCAGTGTCCAA
AAGGAG 

Li et al., 2015 

Cdh1 AGACTTTGGTGTGG
GTCAGG 

ATCTGTGGCGATGA
TGAGAG 

Lin et al., 2012 

Gapdh CGACTTCAACAGCA
ACTCCCACTCTTCC 

TGGGTGGTCCAGGG
TTTCTTACTCCTT 

De Freitas et al., 
2012 

Il1b TGACGTTCCCATTA
GACAACTG 

CCGTCTTTCATTACA
CAGGACA 

Arnold et al., 
2007 

Cxcl15/Il8 AGAGGCTTTTCATG
CTCAACA 

CCATGGGTGAAGGC
TACTGT 

Zhang et al., 
2017 

Il10 TGTCAAATTCATTC
ATGGCCT 

ATCGATTTCTCCCCT
GTGAA 

Kwon et al., 2014 

Kit GACGCAACTTCCTT
ATGATC 

TGGTTTGAGCATCTT
CACGG 

Leong et al., 
2008 

Mdr1 TCCACAGAAAGCAA
GACCAAGAG 

CCAGAGGCACATCT
TCATCCA 

Rankin et al., 
2006 

Mmp9 TAAGGACGGCAAAT
TTGGTT 

CTTTAGTGGTGCAG
GCAGAG 

Nakasone et al., 
2012 

Mrc1 AAGGCTATCCTGGT
GGAAGAA 

AGGGAAGGGTCAGT
CTGTGTT 

Colegio et al., 
2014 

Nfkb1 GAACGATAACCTTT
GCAGGC 

TTTCGATTCCGCTAT
GTGTG 

Eisele et al., 2013 

Retnla GCTGATGGTCCCAG
TGAATAC 

CCAGTAGCAGTCAT
CCCAGC 

Arranz et al., 
2012 

Tnf TTTCGATTCCGCTAT
GTGTG 

CCACCACGCTCTTCT
GTCTAC 

Eisele et al., 2013 

Vegf AATGCTTTCTCCGCT
CTGAA 

GATCATGCGGATCA
AACCTC 

Wei et al., 2015 

Vim CCAACCTTTTCTTCC
CTGAA 

TGAGTGGGTGTCAA
CCAGAG 

Olmeda et al., 
2007 

Zeb1 AACTGCTGGCAAGA
CAAC 

TTGCTGCAGAAATT
CTTCCA 

Siles et al., 2013 

hZEB1 AGCAGTGAAAGAGA
AGGGAATGC 

GGTCCTCTTCAGGT
GCCTCAG 

Sanchez Tillo et 
al., 2011 
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Table 1. Primers used in qRT-PCR assays  
 
 
 
 
 
 
RNA interference and stable transfection of mouse and human primary 

cells 

 
Mouse and human macrophages were transfected with 200 nM of either siRNA control 

or siRNAs specific against mouse Zeb1 or human ZEB1 with Lipofectamine® RNAimax 

(Thermo Fisher, Waltham, MA) as per manufacturer’s instructions. siRNA 

oligonucleotide duplexes were purchased from Sigma-Aldrich and their sequences are 

detailed in Table 2.  

 

 

Zeb1 was overexpressed in peritoneal macrophages by transduction of lentiviral particles 

generated from a plasmid encoding for mouse Zeb1 (LP-Mm05622-Lv103-0200-P) 

(Tebu-bio, Le-Perray-en-Yvelines, France) kindly provided by Dr D.C. Dean (University 

of Louisville, Louisville, KY, USA). 

 

 

 
 

Table 2. siRNA oligonucleotide sequences 
 
 

hGAPDH TGCACCACCAACTG
CTTAGC 

GGCATGGACTGTGG
TCATGAG 

Sanchez Tillo et 
al., 2011 

hCD163 AGGATGCTGGAGTG
ATTTGC 

CCAGCCGTCATCAC
ATATTG 

Medina et al., 
2011 

hWNT5A CTTGGTGGTCGCTA
GGTATG 

TCGGAATTGATACT
GGCATT 

Keller et al., 
2008 

 
siRNA 

 

Gene 
Targeted 

 

 
Sense strand sequence 

 
Reference 

siCtl 
 

N/A UAUAGCUUAGUUCGUA
ACCTT 

Siles et al., 
2013 

siZeb1-A Mouse Zeb1 & 
Human ZEB1 

AACUGAACCUGUGGAU
UAUTT 

Siles et al., 
2013 

siZeb1-B Mouse Zeb1 GACCAGAACAGUGUUC
CAUGUUUAATT 

Siles et al., 
2013 
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RNA sequencing and data analysis  
 
Peritoneal macrophages (CD45+, CD11b+, F4/80+) from Zeb1 (+/-) and Zeb1 (+/-) 6-to-8-

weeks old female mice—6 for each genotype—were isolated and their RNA extracted 

using RNAzol® RT reagent (Sigma-Aldrich) as per manufacturer’s instructions. RNA 

was quantified and its quality (RNA integrity numbers ≥ 8.5) assessed on a Agilent 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA). Part of the RNA samples were reverse 

transcribed as described above to examine Zeb1 expression. To obtain at least 1 µg of 

RNA required in the preparation of libraries in triplicate, two samples from each 

genotype were pooled.  

 

 

Libraries construction and RNA sequencing was performed at the Centro Nacional de 

Regulacion Genomica (Barcelona, Spain). Libraries were prepared from total RNA with 

the TruSeq®Stranded mRNA LT Sample Prep Kit (Illumina Inc., San Diego, USA 

Rev.E, October 2013). Briefly, 0.5 µg of total RNA was used for poly-A based mRNA 

enrichment with oligo-dT magnetic beads. The mRNA was fragmented (resulting RNA 

fragment size was 80-250nt, with the major peak at 130nt) and the first strand cDNA 

synthesis was done by random hexamers and reverse transcriptase. The second strand 

cDNA synthesis was performed in the presence of dUTP instead of dTTP, to achieve the 

strand specificity. The blunt-ended double stranded cDNA was 3´adenylated and 

Illumina indexed adapters were ligated. The ligation product was enriched with 15 PCR 

cycles and the final library was validated on an Agilent 2100 Bioanalyzer with the DNA 

7500 assay. Libraries were sequenced on HiSeq2000 (Illumina, Inc) in paired-end mode 

with a read length of 2 x 76bp using TruSeq SBS Kit v3-HS. 

 

 

 Over 20 million paired-end reads were generated for each sample in a fraction of a 

sequencing flowcell lane, following the manufacturer’s protocol. Image analysis, base 

calling and quality scoring of the run were processed using the manufacturer’s software 

Real Time Analysis (RTA 1.13.48) and followed by generation of FASTQ sequence files 

by CASAVA. Reads were mapped against the mouse reference genome (GRCm38) with 

STAR (Dobin and Gingeras, 2015) using the ENCODE parameters for long RNA. Gene 
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quantification was performed with RSEM (Li and Dewey, 2011) with default options and 

gencode version 11 mouse annotation. Normalization and differential expression analysis 

was done with edgeR (Robinson et al., 2010) with default options. GO and KEGG 

enrichment analyses were performed with the beta version of DAVID database 

(http://david.ncifcrf.gov/).  

 

 

All 412 differentially expressed (DE) genes were grouped in a Hierarchical clustering 

with Genesis software (http://genome.tugraz.at, Sturn et al. 2002) and some of them were 

examined using the gene-gene and gene-protein network tool GeneMANIA plataform 

(Mostafavi et al., 2008). 

 

 

 

Western blot  
 
Peritoneal macrophagess were harvested, washed with ice-cold PBS and resuspended in 

RIPA lysis buffer (150 mM NaCl, 50 mM Tris pH 8, 1 % NP40, 0.5 % SDS, 2 mM 

EDTA) containing protease inhibitors (10 µg/ml aprotinin, leupeptin, pepstatin A and 

PMSF) as previously described (Sánchez-Tilló et al., 2011). Lysates were sonicated in an 

Ultrasonic Liquid Processor (Misonix Inc.), clarified by centrifugation and quantified by 

Bradford assay. Lysates were then boiled and loaded onto 10 % polyacrylamide gels and 

transferred to a PVDF membrane (Immobilon-P, Millipore, Bedford, MA, USA). 

Membranes were blocked with 5% non-fat milk and blotted with the indicated primary 

antibodies overnight at 4 ºC. Detection was done after incubation with HRP-conjugated 

secondary antibodies. Reaction was developed with SuperSignal West Pico 

Chemilluminescent Substrate (Thermo Fisher Scientific). 
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In vivo phagocytosis assay 
 
5 × 106 ID8-GFP cells or ID8 labeled with CFSE cells were injected into the peritoneal 

cavity of Zeb1 (+/+) and Zeb1 (+/-) mice.  Mice were euthanized 3-4 h later and 

peritoneal exudate cells were collected by lavage with 6 ml of ice-cold PBS 

supplemented with 3% FBS twice. Cells were then analyzed in a BD FACSCanto™ II 

analyzer (BD Biosciences) and in vivo phagocytosis was determined by the percentage of 

GFP+ cells out of the total of those previously gated as positive for F4/80.  

 

 

 

In vitro macrophage migration  
  
In vitro migration of macrophages was assessed through two approaches. First, using a 

wound-healing assay. Briefly, 1 x 106 peritoneal macrophages in complete medium were 

seeded in 6-well plates and incubated overnight. A defined wound field was then created 

with a pipette tip and cell migration across the gap was monitored by light microscopy 

(Olympus, Hicksville, NY) for up to 24 h.  

 

 

 Secondly, macrophage migration was examined with a Transwell® migration assay. 

Briefly, 0.5 x 106 peritoneal macrophages were labeled with 5 mM Carboxy-fluorescein 

diacetate succinimidyl ester (CFSE, Sigma-Aldrich). After washing once with complete 

medium and thrice with PBS, cells were resuspended in 200 µl of DMEM supplemented 

with 2.5% FBS and added on top of 6.5 mm diameter/8 µm pore polycarbonate 

Transwell® inserts (Corning Inc., Tewksbury, MA, USA), which in turn were placed 

over a 24-well plate. The lower chamber was filled with 0.6 ml of complete medium 

containing 80 ng/ml mouse recombinant CCL2 (mrCCL2) (ImmunoTools GmbH). 

 

 

 After 2 hrs, macrophage migration was assessed by the CFSE fluorescence signal 

measured in a Modulus II GloMax®-Multi-Detection System microplate reader 
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(Promega Corp., Madison, WI, USA). Macrophage migration was then expressed as 

relative fluorescence units (RFU) with respect to a 100% value represented by the 

fluorescence of the cell suspension initially loaded on top of the Transwell® insert. RFU 

values are expressed as the mean with their standard errors of five mice for each 

genotype.  

	

	

	

In vivo migration 
 
Briefly, for in vivo migration of myeloid precursors and macrophages, bone marrow total 

cells (BMTCs) or bone marrow-derived macrophages (BMDMs) from Zeb1 (+/+) and 

Zeb1 (+/-) mice were first labeled with CFSE.  Wild-type mice were then injected i.p. 

with 1 ml of 3% thioglycollate (Sigma-Aldrich) before either 2-3 x 107 CSFE-labeled 

BMTCs or 5-6 x 106 CSFE-labeled BMDMs were then injected i.v. into these Zeb1 (+/+) 

recipients. After 48 h mice were sacrificed and the mobilization and recruitment of these 

cells into the peritoneal cavity was then assessed by CSFE expression in peritoneal 

lavage cells by FACS analysis. 

 

 

 

In vivo monocyte maturation  

  
In vivo monocyte maturation was carried out as described (Tsou et al., 2007). Briefly, 

bone marrow total cells (BMTCs) from Zeb1 (+/+) and Zeb1 (+/-) mice were first labeled 

with CFSE. 2-3 x 107 CSFE-labeled BMTCs were inoculated i.v. into Zeb1 (+/+) 

recipients. For in vivo mobilization and differentiation of myeloid precursors into 

macrophages, either 1 ml of conditioned medium from L929/M-CSF cells or 1 µg of 

recombinant CCL2 (Peprotech) were inoculated i.p. into 6-8 weeks-old Zeb1 (+/+) and 

Zeb1 (+/-) mice. The mobilization of monocytes into the peritoneal cavity and their 

maturation into macrophages was followed up at different time points up to 7 h by FACS 

analysis.   
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Endotoxic shock and tolerance susceptibility  
 
Zeb1 (+/+) and Zeb1 (+/-) mice, weighing ~20 g each (6–10 weeks old. A single high 

dose of LPS  (Escherichia coli 055:B5, Sigma-Aldrich), 0.5 mg LPS x 25g mouse was 

used and given i.p. and survival was monitored for 72 h.  For induction of Endotoxin 

Tolerance were used two doses, 1st dose LPS: 100µg LPS x 25g mouse and a 2nd dose 

24 h Later: 200 µg LPS x 25 g mouse. i.p., and survival was monitored for 120 h.  

 

 

 

Isolation and culture of tumor associated macrophages   
 
To generate conditioned medium (CM) from peritoneal macrophages and TAMs, both 

cells types were sorted by flow cytometry and 5 x 105 cells cultured on ultra-low 

attachment 6-well plates (Costar, Corning) during 24 h in 2 ml DMEM supplemented 

with 2% FBS. The CM was then collected and dialyzed overnight against PBS. Wherever 

indicated the CM was concentrated in a high retention dialysis tubing (Sigma-Aldrich) 

with poly-ethylene glycol 20,000 mw (Thermo Fisher Scientific) as per standard 

protocols.  

 

 

 

Chromatin Immunoprecipitation Assays 
 
Chromatin immunoprecipitation (ChIP) assays were performed using EpiQuick ChIP kit 

(Epigentek Group Inc, NY, USA) as per manufacturer’s instructions. Briefly, 1.5 x 107 

bone-marrow derived macrophages were incubated during 10 min with 1% formaldehyde 

solution (Electron Microscopy, PA, USA) at room temperature followed by incubation 

with 1.25 mM glycine. Lysates were sonicated as described elsewhere (Sanchez-Tillo et 

al., 2011). Goat anti-mouse/human ZEB1 (E-20) and its corresponding normal goat IgG 

(Jackson ImmunoResearch) were used. 
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 Identification of DNA binding sequences for ZEB1 and design of primers for qRT-PCR 

was conducted using MacVector software (MacVector Inc, Apex, NC, USA). DNA 

fragments were quantified by qRT-PCR as detailed above using the primers detailed in 

Table 3. In all qRT-PCRs, values shown represent relative binding in relation to input 

and are the average of at least three independent ChIP experiments, each one performed 

in triplicate.  

 

 
 

Table 3. Primers used in qRT-PCR for ChIP assays 
 

 

 

Culture of ID8 cells with conditioned medium, soluble factors, 

drugs and inhibitors 
 
The C57BL/6 mouse ovarian carcinoma cell line ID8 was obtained from K. Roby, 

(University of Kansas, Kansas City, KS, USA) and T. Lawrence (CIML, Marseille, 

France) (Roby et al., 2000) and cultured in complete medium. ID8-GFP cells were 

obtained by stable transfection of ID8 cells with pEGFP-C1 (Clontech Laboratories Inc., 

Mountain View, CA, USA). ID8-luc cells, harboring the luciferase gene obtained from T. 

Lawrence (CIML, Marseille, France) have been previously described (Hagemann et al., 

2008). In selected experiments, 0.5 x 106 ID8-luc cells were plated onto 6-well plates 

with 2 ml of complete medium and supplemented with 100-200 µl of concentrated CM 

from peritoneal macrophages or TAMs during 16-24 h.  

 

 

 
Promoter Region 

 

 
Forward 5’ →  3’ 

 
Reverse 5’ →  3’ 

Ccr2 promoter ZEB1 binding site (-
868 bp &-818bp) (-868/-772 bp) 

CAGGTGCCAATGGA
GTTCAAA 

CCCAAGTTGATTTC
CTATACCC 

Ccr2 promoter Non ZEB1 binding 
sites (NBS) (574/-422 bp) 

 

AGAATGCTTTTGGGT
ACAATGAA 

GTGTAGCATAGGCT
TTATGCTTGG 
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Inhibition of MMP9 in the CM from TAMs was conducted as follows. First, the CM 

from 5 x 105 TAMs isolated from 13-weeks ID8 tumor-bearing Zeb1 (+/+) or Zeb1 (+/-) 

mice was collected and concentrated as detailed above. Then, concentrated CM was 

diluted 30 times in complete medium (30 µl of concentrated CM in 1 ml of complete 

medium) and incubated during 45 min with 20 µM of MMP9 inhibitor dissolved in 

DMSO (MMP-9 PEX Inhibitor 444293, Calbiochem, Millipor, DC, USA) or the 

corresponding volume of DMSO (1 µl of MMP9 inhibitor or DMSO per 1 ml of diluted 

CM). Lastly, 0.3 x 106 ID8-luc cells were plated on 12-wells plates and incubated during 

16 h with 1 ml diluted CM (with or without MMP9 inhibitor) before cells were processed 

for gene expression by qRT-PCR. In experiments using rmMMP9, 0.3 x 106 ID8luc cells 

were plated in 12-wells plates with in 1 ml complete medium supplemented with 1 

mg/ml of rmMMP9 (590502, Biolegend) during 36 hours.  

 

 

Blocking of CCR2 signaling in co-cultures of ID8-luc cells with CM from TAMs was 

carried out as follows. First, six Zeb1 (+/+) and six Zeb1 (+/-) mice were inoculated i.p. 

with 5 x 106 ID8RI cells. After 72 h, mice for each genotype were divided into two 

cohorts and injected i.p. every 12 hours during 3 days with either PBS or 2.5 mg/kg of a 

small molecule CCR2 inhibitor (RS 504393, Tocris) before being sacrificed. The CM 

from TAMs for each mice and cohort were collected as detailed above. The CM was 

diluted twice in complete medium and 1 ml of the diluted CM was added onto ID8-luc 

cells for an additional 72 h before being assessed for Ccl2 expression by qRT-PCR. The 

effect of cisplatin on ID8 cells was examined through two different approaches. In a first 

approach, 5 x 106 ID8-luc were injected in Zeb1 (+/+) and (+/-) mice and allowed to 

grow in these mice for 8 weeks. At this point, (ID8RI) cancer cells were sorted out by 

FACS and 5 x 104 ID8RI cells were plated onto 96-well plates and incubated for 24 h in 

the absence (only complete medium) or presence of 50 µg/ml of cisplatin (Pharmacia 

Nostrum, Madrid, Spain).  

 

 

In the second set of experiments, 5 x 106 ID8-luc were injected in Zeb1 (+/+) and Zeb1 

(+/-) mice and TAMs were then sorted out 96 h after. TAMs were then cultured for 24 h 

as described above to generate CM. 5 x 104 ID8-luc cells were then plated in 96-well 

plate and culture for 24 h in the absence (only complete medium) or presence 50 µg/ml 
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of cisplatin and the CM from Zeb1 (+/+) and Zeb1 (+/-) TAMs.  In both cases, the 

response of ID8 cancer cells to cisplatin was examined through an MTT assay. Briefly, 

15 µl of a 5 mg/ml MTT solution (Sigma-Aldrich) was added to each well for 3 hours at 

37ºC. Then, 100 µl of DMSO was added to each well, incubated for 15 min under dark 

and the absorbance at 590 nm was read with a reference filter 750 in Glomax microplate 

reader (Promega). 

 

 

 

ID8 syngeneic mouse model and bioluminescence imaging 
 
Either 5 × 106 ID8, ID8-GFP or ID8-luc cells were resuspended in 500 µl of PBS and 

injected i.p. into 8 week-old Zeb1 (+/+) and Zeb1 (+/-) female mice. At the indicated 

periods, mice were euthanized and ID8 cells and total macrophages (CD11b+F4/80+) 

were sorted and processed for experimentation. At the end of each protocol, the 

abdominal perimeter, ascites volume and tumor deposits on the peritoneal lining were 

assessed. In selected experiments, tumor progression was followed up over time by 

bioluminescent imaging as described elsewhere (Evans et al., 2014). Briefly, mice were 

injected i.p. with 1.5 mM of CycLuc1 substrate (Calbiochem®, EMD Millipore, 

Billerica, MA, Spain) in 100 µl of PBS. Ten min later mice were anesthetized with 2.5% 

isofluorane and the photon flux signal was collected in a charge-coupled ORCA-2BT 

imaging system (Hamamatsu Photonics, Hamamatsu City, Japan).  

 

 

Bioluminescence data was analyzed with Wasabi! Imaging Software (Hamamatsu 

Photonics) and represented as the total photon flux/sec/cm2 signal emitted from the 

abdominal cavity. In ID8 reinoculation experiments, ID8-luc cells that had been injected 

in Zeb1 (+/+) and Zeb1 (+/-) mice were isolated from the ascites after 13 weeks and re-

inoculated into Zeb1 (+/+) recipients. As ID8RI cells accelerate tumor progression (Cai 

et al., 2015), mice were euthanized 6 weeks post-inoculation and peritoneal cells were 

isolated for subsequent analysis. 
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Adoptive transfer of bone marrow-derived macrophages into 

mice tumor-bearing mice 
 

Adoptive transfer of macrophages into ID8 tumor-bearing mice was performed as in 

(Hageman et al., 2008). Female Zeb1 (+/+) mice were injected with 1 x 106 ID8RI-luc 

cells previously inoculated in Zeb1 (+/+) female mice during 13 weeks. Twenty-three 

days after re-inoculation of ID8RI-luc cells, mice were inoculated with 3-4 x 106 BMDM 

from Zeb1 (+/+) and Zeb1 (+/-) mice. Tumor progression was monitored by 

bioluminescence imaging as described above. Mice were euthanized 7 days after BMDM 

inoculation and peritoneal cells were isolated for subsequent analysis. 

 

 

 

Human samples  
 

For correlations between relevant protein expression, a series of 18 cases of different 

stages of serous ovarian carcinomas were obtained from the Hospital Clinico San Carlos 

(Madrid, Spain). In case of survival plots correlating ZEB1 expression in TAMs and 

ovarian carcinoma patients survival, 18 cases of grade III and IV with complete surgery 

were obtained from the Hospital Clinico San Carlos (Madrid, Spain).  Use of human 

samples was approved by the corresponding local Ethics Research Committees. 

 

 

 

Immunohistochemistry of human ovarian carcinomas 
 
Immunohistochemistry of formalin-fixed, paraffin-embedded human samples of a series 

of 35 cases of human ovarian carcinomas was carried out as follows. Slides were 

deparaffinized and rehydrated before being subjected to antigen retrieval with 10 mM 

sodium citrate pH 6.0 for 5 min. Slides were then incubated with a non-specific binding 

blocking solution (5% donkey/goat normal serum plus 4% BSA in PBS, 0.5% Tween 20) 

followed by the corresponding primary and HRP-conjugated secondary antibodies (see 



	 49	

above for the source of antibodies). Staining was performed mannually except for CD163 

that was performed automatically in a Bond-Max automatic stainer (Leica Biosystems, 

clone 10D6).  

 

 

The primary antibodies used were as follows: ZEB1: 1/250 dilution overnight at 4ºC; 

CCL2: 1/50 dilution overnight at 4ºC; CCR2: 1/100 dilution overnight at 37ºC; MMP9: 

1/50 dilution overnight at room temperature; and CD163: 1/3000 dilution 1 h at room 

temperature. Secondary antibodies were incubated at 1/100 during 1 h at 37ºC, except for 

ZEB1 (1/200, 1 h at 37ºC) and CD163 (1/200, 30 min at room temperature). For CD163, 

automated staining was conducted as follows. Antigen retrieval was carried out with low 

pH Bond ER2 Buffer Solution® (Vision Biosystems, Leica, Wetzlar, Germany) for 30 

min, followed by incubations with CD163 antibody (30 min, room temperature) and 

Bond Refine Polymer (Vision Biosystems) (20 min, room temperature). The 

immunohistochemistry reaction was developed with a DAB substrate kit (Vector Labs, 

Burlingame, CA) before slides were counterstained with hematoxylin and mounted in 

Di-N- butylPhthalate in Xylene solution (DPX, Sigma-Aldrich).  

 

 

The number of positive cells was scored by microscopic analysis at 400X magnification. 

Statistical analyses of immunohistochemistry data was as follows. The percentage of 

tumor cells and TAMs expressing each protein was determined and cases were then 

segregated by their expression of ZEB1—in tumor cells or in TAMs—below or above 

the median. The means for CCL2 expression in tumor cells (n = 18), the percentage of 

TAM infiltration—determined by expression of CD163—(n = 18), and the expression of 

CCR2 (n = 15) and MMP9 (n =15) in TAMs was calculated for the low and high ZEB1 

cohorts and the significance of their difference was assessed by a Mann-Whitney U test. 

Correlations between relevant protein expression pairs in tumor cells and/or TAMs in 

serious ovarian carcinomas (n = 15) were assessed by a Spearman’s correlation 

coefficient (r). Their significance is represented by the p value.  
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Survival plots of women ovarian cancer patients  
 

Correlation between the expression of ZEB1 and CCL2 and progression-free survival was 

examined in published array databases of ovarian carcinoma. Only datasets publishing 

survival data with a mean follow-up of at least 2 years and using the Affymetrix Human 

Genome chips were considered to avoid platform differences when using different gene 

arrays. After MAS5 normalization in the R statistical environment, the probe set 

212758_s_at was used for ZEB1 and the probe set 216598_s_at was used for CCL2. The 

four datasets included in the study are GSE15622 (Ahmed et al., 2007), GSE26193 

(Mateescu et al. 2011), GSE30161 (Ferriss et al., 2012), and GSE26712 (Bonome et al., 

2008). Datasets were processed separately and assembled into a single final database. 

Cox proportional hazards regression analysis was performed and Kaplan-Meier survival 

plot was generated to compare survival of patients displaying high and low expression of 

the genes in the R statistical environment as described previously (Mihály et al., 2013).  

 

 

 

Statistical analysis 
 

Statistical analysis of all the data in this dissertation was performed using Prism for Mac 

version 5.0a (GraphPad Software Inc., La Jolla, CA, USA). Statistical significance was 

assessed with a non-parametric Mann-Whitney U test except in Kaplan Meier survival 

plots of ovarian cancer patients where a Cox proportional hazard regression was used. 

Error bars in all figures represent standard errors of means. Histogram bars represent the 

means with standard errors and relevant comparisons of conditions were labeled as either 

significant at the p ≤ 0.001 (***), p ≤ 0.01 (**) or p ≤ 0.05 (*) levels, or non-significant 

(ns) for values of p > 0.05.  
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Chapter I :  Role of ZEB1 in macrophage 

differentiation and polarization 
 

 

 

1. Zeb1 expression and function during monocyte-

macrophage differentiation  
  

 

As ZEB1 inhibits the terminal differentiation, I first examined the expression of Zeb1 

during monocyte-to-macrophage differentiation in mouse. Then, wild-type C57BL/6 

mice were treated with M-CSF and the mRNA expression of Zeb1 was examined in bone 

marrow total cells (BMTCs) and in mononuclear myeloid cells in the peritoneal cavity, 

an easily accessible source of macrophages (Zhang et al., 2008). I found that expression 

of Zeb1 was higher in monocytes (CD11b+F4/80-) than in macrophages (CD11b+F4/80+) 

(Figure 4).  

 

 

As noted earlier, expression of F4/80 antigen distinguishes those macrophages that 

originated from peripheral blood monocytes (CD11b+F4/80low macrophages) from those 

that have differentiated from embryonic precursors (CD11b+F4/80high macrophages). 

Peritoneal CD11b+F4/80high  macrophages are larger in size—and referred as large 

peritoneal macrophages (LPM)—and represent the largest fraction in basal conditions but 

disappear upon bacterial lipopolysaccharide (LPS) or thioglycolate (TG) stimulation. In 

turn, CD11b+4/80low are smaller—and consequently referred as small peritoneal 

macrophages (SPM)—express high levels of MHCII and are the main population 

following LPS or TG stimulation that increases monocyte migration and macrophage 

yields. LPM and SPM also differ in the functionally, LPM exhibit greater phagocytic 

activity than SPM (Goshn et al 2010; Rei et al 2014). As shown in Figure 4, Zeb1 was 

almost exclusively expressed in CD11b+F4/80low SPM.  
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Figure 4. Wild-type C57BL/6 mice were injected i.p. with M-CSF and 4 h later bone marrow total cells 
(BMTC) and peritoneal cells were harvested and, in the case of peritoneal cells, sorted for CD11b and 
F4/80. Zeb1 relative mRNA expression with respect to Gapdh was then assessed in BMTC, peritoneal 
monocytes (CD11b+F4/80), small peritoneal macrophages (SPMs, CD11b+F4/80low) and large peritoneal 
macrophages (LPMs, CD11b+F4/80high) by quantitative real time PCR (qRT-PCR).  
 

 

 

Next, I characterized Zeb1 expression and function in macrophages under homeostatic, 

since they begin to develop from bone marrow pluripotent cell until to reach macrophage 

state. Using mice with heterozygous deletion of Zeb1 [Zeb1 (+/-)]—null Zeb1 (-/-) are 

embryonic lethal— I characterized Zeb1 expression and function in macrophages under 

homeostatic and activation conditions, since they begin to develop from bone marrow 

pluripotent cell until to reach mature macrophage state. Bone marrow cells treated in 

vitro with either GM-CSF or M-CSF render cells with a gene expression profile closer to 

macrophages than to dendritic cells but the former generates cells secreting more 

inflammatory cytokines and less anti-inflammatory cytokines (M1-like macrophages) 

than the later (Fleetwood et al., 2007; Lacey et al., 2008). Bone marrow myeloid cells 

from wild type Zeb1 (+/+) and heterozygous Zeb1 (+/-) mice were derived into 
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macrophages by incubation with GM-CSF or M-CSF. As shown in Figure 5, expression 

of CD11b and F4/80 was similar in Zeb1 (+/+) and Zeb1 (+/-) bone marrow-derived 

macrophages suggesting that Zeb1 is dispensable for precursor myeloid cells 

differentiation into macrophages.        

  

 

 
                  
 
Figure 5. Bone marrow total cells (BMTCs) from Zeb1 (+/+) and Zeb1 (+/-) mice were derived into 
macrophages by incubation with GM-CSF or M-CSF as described in Materials and Methods and the 
distribution of macrophage subpopulations determined by CD11b and F4/80 expression by FACS.  
 

 

 

I also investigated whether Zeb1 plays a role in peritoneal macrophage homeostasis. I 

found that the number of macrophages, as the percentage of CD11b+F4/80+ cells in the 

peritoneal exudate, was significantly higher in Zeb1 (+/-) mice than in Zeb1 (+/+) mice. 
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At the same time, the ratio F4/80high vis-à-vis F4/80low macrophages was significantly 

larger in Zeb1 (+/-) mice (Figures 6, 7 and 8). Thus, Zeb1 modulates the total number of 

macrophages and the ratio of F4/80high and F4/80low macrophages populations as Zeb1 

deficient mice have higher levels of F4/80high. 

	

                                                                                    
Figure 6. Six animals for each genotype Zeb1 (+/+) and Zeb1 (+/-) mice were analyzed for the percentage 
of macrophages (CD11b+F4/80+) out total peritoneal exudate cells  
 

 

 

                                                  
 
Figure 7. Peritoneal macrophages from Zeb1 (+/+) and Zeb1 (+/-) mice were examined by FACS for 
CD11b and F4/80 expression. Graphic shows F4/80high to F4/80low ratio values are means with standard 
errors of six mice for each genotype. 
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 Figure 8. A representative plot for each genotype is shown. Gates numbering corresponds to total 
macrophages (1), SPMs (2) and LPMs (3).  
 
 
 
 
 
 

2. Zeb1 modulates genes related to inflammation and 
SPM subpopulation 
 

 

 The results above indicated that ZEB1 is dispensable for the development of 

macrophages but, in turn, it modulates the distribution of subpopulations of 

macrophages, which differ in ontogeny, polarization profile and function. Consequently, 

I evaluated whether Zeb1 has a role in macrophage polarization profile. First I 

characterized this activation state through their gene related polarization expression in 

both subpopulations in macrophages from wild-type mice. As expected, SPM and LPM 

subpopulations present different activation profile. LPMs have a reduced expression of 

several pro-inflammatory markers compared to SPM that have a pro and anti-

inflammatory mixed phenotype (Figure 9).  
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Figure 9. Gene expression of Ccr2, Mrc1 and Il1b in LPM and SPM subpopulations from three wild-type 
mice was analyzed by qRT-PCR. 
 

 

 

 

I then next investigated whether Zeb1 expression regulates the expression of these and 

other genes associated to either classical or alternative activation in macrophages in wild 

type peritoneal macrophages where Zeb1 expression had been knockdown by siRNA. 

Zeb1 (+/+) peritoneal macrophages were transfected with either a siRNA control (siCtl) 

or siRNA against Zeb1 (siZeb1), which specificity has been previously shown (Siles et 

al., 2013). The expression of M2- and/or TAM-associated genes as Ccr2, Cxcl15, Cd163, 

Mrc1 and Retnla were lower in Zeb1 knocked down macrophages than in macrophages 

transfected with siCtl. Conversely, expression of the M1-associated gene Socs3 was 

higher in macrophages interfered with siZeb1 than in those transfected with siCtl (Figure 

10).   
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Figure 10.  Gene expression analysis in wild-type and Zeb1-deficient peritoneal macrophages interfered 
with a specific siRNA against mouse Zeb1 (siZeb1) or a siRNA control (siCtl). Data represent at least three 
independent experiments.  

 

 

 

Zeb1 was also interfered with siZeb1 in mouse bone marrow cells. As shown in Figure 

11 expression of Cd163 and Wnt5a is also downregulated. It is known the association of 

Wnt5a overexpression with tumor aggressiveness. Wnt5a is produced by monocytes and 

monocyte-derived macrophages and regulates VEGF-C production and macrophage 

immunotolerant phenotype (Sessa et al., 2016).  
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Figure 11. Expression of Zeb1, Wnt5a and Cd163 in bone marrow total cells (BMTCs) interfered with 
siCtl or siZeb1.was assessed by qRT-PCR for the expression of Wnt5a and Cd163, along with ZEB1 as 
control, with reference to Gapdh. 
 
 
 
 

 

I also examined if the role of ZEB1 in human macrophages is parallel that I found in 

mouse counterparts. Human CD14+ peripheral blood monocytes were treated with either 

M-CSF (CSF1) or GM-CSF (CSF2) to generate macrophages that were then interfered 

with either a siCtl or a siRNA against human ZEB1 (siZEB1) (Sanchez-Tillo et al., 

2011). As shown in Figure 12, ZEB1 interference also resulted in the downregulation of 

CD163 and WNT5A. Altogether, the results above indicated that ZEB1 activates the 

expression of genes in macrophages associated to their activation. 
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Figure 12. Human macrophages derived from peripheral blood CD14+ monocytes treated with either 
recombinant human M-CSF (CSF1) or GM-CSF (CSF2) and interfered with a specific siRNA against 
human ZEB1 (siZEB1) or a siRNA control (siCtl) and were assessed by qRT-PCR for the expression of 
WNT5A and CD163, along with ZEB1 as control, with reference to GAPDH. Data show two independent 
experiments. 
 

 

 

Lastly, I also analyzed if Zeb1 activates genes that are associated to inflammation in 

peritoneal macrophages from Zeb1 (+/+) and Zeb1 (+/-) mice. In line with my results 

above, compared to their wild-type counterparts, peritoneal macrophages from Zeb1 (+/-) 

mice expressed reduced mRNA levels of a number of both pro-inflammatory and anti-

inflammatory genes. Thus, Zeb1 (+/-) macrophages expressed lower levels of Ccr2, 

Nfkβ1, Il1β, Cxcl15/Il8, Il10, Cd163, Cd206/Mrc1, Retnla and Mmp9, on the other hand, 

expression of Gata6 which expression is associated to LPMs was higher in Zeb1 (+/-) 

macrophages (Figure 13). Interestingly, all of these genes are related with SPM 

subpopulation. Therefore, Zeb1 not only modulates the distribution of LPM and SPM 

populations and increases the latter, but it also activates SPM-associated genes.   	
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Figure 13. Peritoneal macrophages from 6-8 week-old Zeb1 (+/+) and Zeb1 (+/-) mice, four mice for each 
genotype, were assessed for the indicated genes with respect to Gapdh by qRT-PCR.  

 

 

 

3. Gene expression analysis using RNA-Sequencing data 
 

 

I decided to study the gene signature associated to Zeb1 in peritoneal macrophages. To 

that effect, RNA transcripts from Zeb1 (+/+) and Zeb1 (+/-) peritoneal macrophages were 

compared by RNAseq technology that was performed at the Centro Nacional de Análisis 

Genómico (Barcelona). The gene signature in the three samples for each condition was 

very similar as shown in the MDS plot (Figure 14).  
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Figure 14. Multidimensional scaling (MDS) plot of digital gene expression profiles for the RNAseq data 
obtained from mRNA libraries of peritoneal macrophages from Zeb1 (+/+) (black) and Zeb1 (+/-) (red) 
mice. MDS plot show the relations between the samples in two dimensions and distances on the plot 
represent the biological coefficient of variation of expression between samples.  
 
 
 
 
 
For all samples, hierarchical clustering was performed using Genesis software as shown 

in Figure 15 normalizing rows of data for similar distribution.  Samples could be 

separated in 2 groups according their genotype, where Zeb1 (+/-) samples form A and 

Zeb1 (+/+) samples form B group. Of the 12,877 genes that yielded the RNAseq, 412 

were significantly differentiantly expressed (DE) between both groups. Genes were 

grouped in order their correlation in six clusters.  
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Figure 15. Hierarchical clustering of 412 differentially expressed genes in peritoneal macrophages from 
Zeb1 (+/+) and Zeb1 (+/-) mice. Each row represents a gene and each column a sample. The color scale 
ranges from saturated red for upregulated genes to green for downregulated genes. 
 
 
 
 
A Gene Ontology (GO) and an enriched KEGG pathways functional analysis of DE 

genes were performed. These bioinformatics analyses revealed that most DE genes were 

associated to immune system processes and hematopoietic cell lineage functions  (Tables 

4 and 5).  

 

 

 

 

1 
 
2 
 
 
3 
 
4 
5 
 
6 
 
 



	 65	

 
Biological Process 

 

 
Cou
nt 

 
% 

 
p value 

 
GO:0002376 immune system process 34 6,60 6,21E-10 

GO:0006954 inflammatory response 25 4,85 8,52E-06 

GO:0019886 antigen processing and presentation of 
exogenous peptide antigen via MHC class II 

6 1,16 1,60E-05 

GO:0001816 cytokine production 7 1,36 2,82E-05 

GO:0007155 cell adhesion 29 5,63 3,92E-05 

GO:0006874 cellular calcium ion homeostasis 12 2,33 4,11E-05 

GO:0019882 antigen processing and presentation 8 1,55 3,78E-04 

GO:0050853 B cell receptor signaling pathway 8 1,55 4,24E-04 

GO:0031623 receptor internalization 7 1,36 4,45E-04 

GO:0002250 adaptive immune response 12 2,33 6,73E-04 

GO:0042113 B cell activation 6 1,16 6,96E-04 

GO:0007568 aging 14 2,71 7,67E-04 

GO:0000082 G1/S transition of mitotic cell cycle 8 1,55 8,84E-04 

GO:0006164 purine nucleotide biosynthetic process 5 0,97 0,001115 

GO:0002504 antigen processing and presentation of 
peptide or polysaccharide antigen via MHC class II 

4 0,77 0,001171 

GO:0006955 immune response 19 3,69 0,001241 

GO:0009615 response to virus 9 1,74 0,001298 

GO:0007399 nervous system development 21 4,07 0,001345 

GO:0031589 cell-substrate adhesion 5 0,97 0,001367 

GO:0034113 heterotypic cell-cell adhesion 5 0,97 0,001367 

GO:0016337 single organismal cell-cell adhesion 10 1,94 0,001673 

GO:0007157 heterophilic cell-cell adhesion via 
plasma membrane cell adhesion molecules 

7 1,35 0,001833 

GO:0021785 branchiomotor neuron axon guidance 4 0,78 0,002216 

GO:0030335 positive regulation of cell migration 14 2,72 0,002217 

GO:0010628 positive regulation of gene expression 21 4,08 0,002836 

GO:0006816 calcium ion transport 11 2,13 0,002937 

GO:0071353 cellular response to interleukin-4 5 0,97 0,003234 

GO:0035556 intracellular signal transduction 21 4,08 0,003261 

GO:0007166 cell surface receptor signaling pathway 14 2,72 0,003601 

GO:1902287 semaphorin-plexin signaling pathway 
involved in axon guidance 

4 0,78 0,003701 

 
Table 4. Gene Ontology (GO) functional enrichment of genes differentially expressed (DE) between Zeb1 
(+/+) and Zeb1 (+/-) peritoneal macrophages. Only the top 30 biological process with value p<0.05 are 
shown. The first column refers to the GO term and the description of the biological process. The second 
and third columns indicate the number of genes and the share (in percentage) out all genes, respectively. 
The fourth column shows the p value 
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Biological Process 

 

 
Cou
nt 

 
% 

 
p value 

 
mmu04514: Cell adhesion molecules (CAMs) 18 3,74 6,11E-06 
mmu04640: Hematopoietic cell lineage 12 2,49 5,97E-05 
mmu03010: Ribosome 12 2,49 1,02E-04 
mmu05416: Viral myocarditis 11 2,28 7,22E-04 
mmu04662: B cell receptor signaling pathway 10 2,07 8,87E-04 
mmu04672: Intestinal immune network for IgA  7 1,45 0,006840 
mmu00562: Inositol phosphate metabolism 7 1,45 0,006840 
mmu04070: Phosphatidylinositol signaling system 8 1,66 0,009271 
mmu04510: Focal adhesion 14 2,91 0,009809 
mmu03320: PPAR signaling pathway 8 1,66 0,012185 
mmu05310: Asthma 5 1,03 0,019538 
mmu04612: Antigen processing and presentation 8 1,66 0,024827 
mmu05200: Pathways in cancer 18 3,74 0,026591 
mmu04650: Natural killer cell mediated cytotoxicity 9 1,87 0,039307 
mmu04512: ECM-receptor interaction 7 1,45 0,047312 

 
 
 
Table 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of genes differentially expressed 
(DE) between Zeb1 (+/+) and Zeb1 (+/-) peritoneal macrophages. The first column refers to the KEGG 
term and the description of the biological process. The second and third columns indicate the number of 
genes and the share (in percentage) out all genes, respectively. The fourth column shows the p value.  

 

 

Interestingly, many of the DE genes are implicated in macrophage activation/polarization 

and/or are associated to F4/80high and F4/80low phenotypes (e.g. Cd163, Mrc1, Retnla), 

corroborating my findings above about a potential role of Zeb1 in macrophage activation 

(Figure 16).  
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Figure 16.  Hierarchical clustering of some of top DE genes up and downregulated.  
 
 
 
 
Use of the GENEMANIA platform allowed me to elaborate a network weighting for 

some DE genes of the RNA-seq. Figure 17 shows the network established by the 

coexpression of Mrc1, Ccr2, Mmp9, Cd163 and Retnla. It is interesting to note that other 

TAM-related genes as Csf1, Il10 and Nfkb are coexpressed with the DE genes obtained in 

the RNAseq,  

 

 

 

 

 

 

 

 

 

 

      
 
 
Figure 17. Gene network extracted from GENEMANIA, describing the genetic relation for some 
inflammatory DE genes from RNA-seq. The arrows in purple represent co-expression of determined genes. 
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4. Socs3 is involved in Zeb1 regulation 
 

 

 

All of these data indicate that Zeb1 regulates macrophage phenotype and SPM 

distribution, and both anti and pro-inflammatory markers. This led me to explore other 

mouse models involved in the activation and distribution of peritoneal macrophages, 

including genes with could have common pathways with Zeb1 and study how it is 

modulating macrophage activation and try to revert Zeb1 deficiency through an in vivo 

model. Therefore, I used mice deficient for either Socs2 or Socs3 genes.  

 

 

 

In order to inquire whether Zeb1 regulates macrophage polarization through cross-

regulation of Socs2 or Socs3 and if macrophage polarization is restored or enhanced, I 

crossed Socs2 (-/-) and Socs3Lyz2cre/Zeb1 (+/+) with Zeb1 (+/-) mice. I analyzed the 

peritoneal exudate from these different mice and examined changes in macrophage 

distribution by FACS. I did not observe clear differences in peritoneal macrophage 

subpopulations between Socs3Lyz2cre/Zeb1 (+/+) and Socs3Lyz2cre/Zeb1 (+/-) mice (Figure 

18).  
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Figure 18. Flow cytometric dot plot of cells to peritoneal lavage cells from Zeb1 (+/+), Socs3Lyz2cre/Zeb1 
(+/+), Socs3Lyz2cre/Zeb1 (+/-), and Zeb1 (+/-) mice. There are variations in F4/80high and F4/80low 
populations as is known in these mice, but there is not difference between Socs3Lyz2cre/Zeb1 (+/+) 
Socs3Lyz2cre/Zeb1 (+/-) mice. 
 

 

 

Next, I analyzed the expression of Zeb1 and other polarization-associated genes in 

peritoneal macrophages from these mice and found a similar patron in gene expression in 

macrophages from Socs3Lyz2cre/Zeb1 (+/+) and Socs3Lyz2cre/Zeb1 (+/-) mice (Figure 19). 

Based on the gene expression profile, I concluded that Socs2 did not alter the 

polarization, nor have direct relationship with Zeb1. 
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Figure 19. Gene expression analysis by qRT-PCR (relative to Gapdh mRNA levels) in peritoneal 
macrophage from Zeb1 (+/+) (WT), Socs2-/- (SOCS2) Socs2-/-Zeb1(+/-) (SOCS2 Zeb1) Socs3Lyz2cre (SOCS3) 
Socs3Lyz2cre/Zeb1 (+/-) (SOCS3 Zeb1) and Zeb1 (+/-) (Zeb1) mice. 
 

 

 

 

 

 

 

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	
2	

WT SOCS2 SOCS2 
Zeb1 

SOCS3 SOCS3 
Zeb1 

Zeb1 

Il10 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

WT SOCS2 SOCS2 
Zeb1 

SOCS3 SOCS3 
Zeb1 

Zeb1 

Cxcl15 

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

WT SOCS2 SOCS2 
Zeb1 

SOCS3 SOCS3 
Zeb1 

Zeb1 

Gata6	

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

WT SOCS2 SOCS2 
Zeb1 

SOCS3 SOCS3 
Zeb1 

Zeb1 

Cd163 

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

0.007	

0.008	

0.009	

WT SOCS2 SOCS2 
Zeb1 

SOCS3 SOCS3 
Zeb1 

Zeb1 

Cdh1 



	 72	

Surprisingly, Socs3Lyz2cre/Zeb1 (+/+) mice express non-detectable mRNA or protein 

levels of Zeb1 (Figures 19, 20 and 21). In addition, I found that Socs3 expression was 

upregulated in Zeb1 (+/-). Likewise, classical ZEB1 target genes in epithelial tissues, like 

E-cadherin, were overexpressed in Socs3Lyz2cre/Zeb1 (+/+) mice (Figure 20). These results 

indicated that Zeb1 and Socs3 modulate each other expression in peritoneal macrophages. 

 

 

  

 
 
Figure 20. Gene expression analysis by qRT-PCR (relative to Gapdh mRNA levels) in peritoneal 
macrophage from different mice. Histogram show average of two independent experiments. 
 
 
 
 
 
 
 
 
                          

 

 

    

 
 
Figure 21.  Western blot for ZEB1 protein expression. β-Actin was used as a control.  
 

 

 

 

0	

20	

40	

60	

80	

100	

120	

Ze
b1
	(+
/+)
	

So
cs3
f/f
Lyz
M	

So
cs3
f/f
Lyz
MZ
eb
1+
/-	

Ze
b1
	(+
/-)
	

Zeb1	

0	

50	

100	

150	

200	

250	

Ze
b1
	(+
/+)
	

So
cs3
f/f
Lyz
M	

So
cs3
f/f
Lyz
MZ
eb
1+
/-	

Ze
b1
	(+
/-)
	

Socs3	

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

Ze
b1
	(+
/+)
	

So
cs3
f/f
Lyz
M	

So
cs3
f/f
Lyz
MZ
eb
1+
/-	

Ze
b1
	(+
/-)
	

Ecadh	

 
Zeb1 
 
β-actin	

MWM    Zeb1(+/+)    Zeb1 (+/+)   Zeb1 (+/-)   Zeb1 (+/-)   Socs3 (-/-)    Socs3 (-/-) 

Zeb1 

bActina 

Zeb1 



	 73	

Next, I sought to investigate the molecular mechanism of this mutual regulation between 

Zeb1 and Socs3. To that effect, Zeb1 was overexpressed in peritoneal macrophage using 

lentivirus that carries the mouse Zeb1 gene fused to GFP. Transduced cells were 

analyzed for Zeb1 expression and GFP. Peritoneal macrophages showed high 

transduction efficiencies as scored by FACS with over  >50% of cells positive for GFP 

(Figure 22). These transduced cells I assessed by qRT-PCR for the expression of 

different genes associated to polarization as well as Zeb1 and Socs3 target genes. Genes 

like Ccr2 displayed a similar expression pattern in normal macrophages and in 

Socs3f/fLyz2cre+/- macrophages when overexpressed Zeb1. In both situations levels were 

higher when Zeb1 was overexpressed, independently of Socs3 levels. Nevertheless, other 

genes like Gata6 or Il6 displayed different regulation as shown in Figure 23. These data 

indicate that some genes are regulated for Socs3 in independently of Zeb1.   

 

 

                  

 
 
 
Figure 22. FACS dotplot and histogram showing peritoneal macrophages from Zeb1 (+/+) (n=2) and 
Socs3Lyz2cre (n=2) mice transduced with a lentiviral Zeb1 expression vector co-expressing eGFP, or a 
control vector expressing eGFP only are shown. 
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Figure 23. mRNA expression levels for Zeb1 and other Zeb1 and Socs3-related genes with respect to 
Gapdh  were analyzed by qRT-PCR 96 h after transduction. Data show two independent experiments. 
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Chapter II :  Role of ZEB1 in macrophage 

function 
 

 

 

 

1. Zeb1 expression impairs macrophage phagocytosis 
 

 

Macrophages are specialized phagocytes that remove pathogens and clear dead and 

malignant cells. CD11b+F4/80high LPMs display higher phagocytic capacity than 

CD11b+F4/80low SPMs (Cain et al., 2013). Since my results above indicate that Zeb1 (+/-

) mice have a larger CD11b+F4/80high LPM subpopulation, I studied the phagocytic 

capacity of peritoneal Zeb1 (+/+) and Zeb1 (+/-) macrophages. To that effect, I used the 

ID8 syngeneic murine ovarian cancer model. Intraperitoneal (i.p.) injection of ID8 cancer 

cells results in their rapid growth and development of ascites with abundant infiltration of 

immune cells, mostly TAMs (Hagemann et al., 2006; Hagemann et al., 2008).  

 

 

I stably transfected ID8 cells with an expression vector encoding GFP and injected them 

or ID8 CFSE-labeled i.p. into Zeb1 (+/+) and Zeb1 (+/-) mice. The peritoneal exudate 

was harvested after 3 h and phagocytosis of ID8-GFP cells by F4/80 macrophages was 

assessed by FACS. I found that peritoneal macrophages from Zeb1 (+/-) displayed higher 

phagocytic capacity than their Zeb1 (+/+) counterparts (Figure 24).  
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Figure 24. Upper panel: Zeb1 (+/-) macrophages display increased phagocytic capacity. Zeb1 (+/+) and 
Zeb1 (+/-) mice were injected i.p. with ID8-GFP cells and 3 h later mice were euthanized and in vivo 
phagocytosis was assessed by FACS as F4/80+ cells that were also GFP+ (gate 1). Lower panel: The 
histogram shows the percentage of ID8 cells phagocyted in relation to the total peritoneal cells. 
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2.  ZEB1 expression promotes macrophage migration 
 

ZEB1 enhances the invasive behavior in cancer cells. Consequently, I sought to 

investigate whether Zeb1 also regulates migration in macrophages. First, I analyzed the 

basal motility of Zeb1 (+/+) and Zeb1 (+/-) peritoneal macrophages in an in vitro wound 

healing assay. In the absence of chemotactic stimuli, Zeb1-deficient macrophages 

showed a slower closure of the scratch wound than wild-type macrophages (Figure 25).  

 

 

 

 
                        

 
Figure 25. Zeb1 (+/+) peritoneal macrophages migrated more than Zeb1 (+/-) ones in a wound healing 
assay. Images shown are representative of at least four different mice for each genotype.  
 

 

 

In addition to its role in the recruitment of circulating monocytes into the tumor 

microenvironment, CCL2 is required for the mobilization of pro-inflammatory CCR2+ 

monocytes into inflammatory and infection foci (Serbina and Palmer, 2006; Si et al., 

2010). I examined the chemotaxis of macrophages from both genotypes to CCL2 in a 

Transwell® migration assay and found that Zeb1 (+/-) macrophages migrated less 

efficiently to mouse recombinant Ccl2 (mrCcl2) than their wild-type counterparts (Figure 
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26). These data indicate that Zeb1 promotes macrophage motility both under basal and 

chemotactic conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Transwell® chemotaxis assay for CFSE-labeled peritoneal macrophages from Zeb1 (+/+) and 
Zeb1 (+/-) mice under the stimulus of recombinant mouse Ccl2. Values are the means of relative 
fluorescence units (RFU) of five mice for each genotype with standard errors.  
      

 

 

The lower migratory capacity of Zeb1 (+/-) macrophages was then assessed in vivo by 

examining the adoptive transfer of BMTC and BMDM into wild-type mice. BMTC and 

BMDM from Zeb1 (+/+) and Zeb1 (+/-) mice were labeled with the fluorescent cell 

tracer carboxyfluorescein succinimidyl ester (CFSE) and injected intravenously (i.v.) in 

Zeb1 (+/+) mice. A control cohort of Zeb1 (+/+) mice was injected with PBS. In the case 

of BMTCs mice received a thyoglicolate i.p. injection after BMTCs i.v. injection and  

peritoneal exudates were collected and analyzed for CFSE+ cells 72 hours after, and for 

BMDM peritoneal exudate was analyzed 24-48 hours after inoculation. In line with my 

ex vivo results above, BMDMs and BMTCs from Zeb1 (+/+) migrate more efficiently 

than their Zeb1 (+/-) counterparts (Figures 27 and 28). 
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Figures 27 and 28. Increased in vivo migration of Zeb1 (+/-) BMTCs and BMDMs in adoptive transfer 
assays. CFSE-labeled BMTCs and BMDMs from Zeb1 (+/+) and Zeb1 (+/-) mice were inoculated into 
Zeb1 (+/+) mice and their BMTC/BMDM in vivo migration into the peritoneal cavity was examined 24-72 
h later as described in Materials and Methods. 
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3. Zeb1 expression impairs macrophage maturation to LPM 

subpopulation 
	
	
I next explored whether Zeb1 regulates bone marrow mobilization of monocytes in vivo 

by chemotactic stimuli such as M-CSF, CCL2 or by ID8 tumor cells. Intraperitoneal 

injection of M-CSF or CCL2 in Zeb1 (+/-) mice failed to elicit the mobilization and 

peritoneal infiltration of monocytes and the reduction in LPMs that is observed in Zeb1 

(+/+) mice after only 3 h (Figures 29 and 30), the same phenomena occurs using ID8 

tumor cells as chemotactic stimulus after 72 hours (Figure 29).  

 

 

 

 
 
Figure 29. Zeb1 (+/+) and Zeb1 (+/-) mice were injected i.p. with PBS, CSF1, CCL2 for 3 hours or ID8 
cells for 72 hours, and cells were analyzed by FACS 
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Figure 30. Four Zeb1 (+/+) and four Zeb1 (+/-) mice were injected i.p. with PBS or CSF1 and monocyte 
chemotaxis into the peritoneum and maturation into macrophages was examined after 3 h. 
 

 

 

 

After 7 hours, SPM and LPM subpopulations almost recovered to basal conditions in 

Zeb1 (+/+) but not in Zeb1 (+/-) mice (Figure 31). Altogether, these results indicate a 

deficient mobilization of monocytes-macrophages in Zeb1 (+/-) mice.   
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Figure 31.  Zeb1 (+/+) and Zeb1 (+/-) mice were treated with CSF1 and the peritoneal myeloid 
subpopulation assessed by FACS as in Figure 22 over time (20 min-7h). 
 

 

 

 

Next, I investigated whether the wild-type or Zeb1-deficient microenvironment 

background influences the migration of monocytes into the peritoneal cavity and their 

subsequent maturation into macrophages. To that effect, BMTCs from Zeb1 (+/+) and 

Zeb1 (+/-) mice were labeled with CFSE and injected i.v. and M-CSF i.p. into a Zeb1 

(+/+) recipient background. After only 4 h, a larger share of Zeb1 (+/-) BMTCs [BMTC 

(+/-)] than wild-type ones [BMTC (+/+)] had differentiated toward macrophages (Figure 

32). At later times (7 h), virtually all macrophages originated from BMTC (+/-), but only 

a small fraction of those originated from BMTC (+/+), were F4/80high LPMs.  
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differentiation. In addition, these results allow me to conclude that the failure of BMTC 

(+/-) to generate F4/80low SPMs is independent of the microenvironment background of 

the recipient host—whether Zeb1 (+/-) or (+/+)—but it is rather intrinsic to the Zeb1-

deficiency of BMTCs. 

 

 

 

 

                             
 
Figure 32. CFSE-labeled BMTCs from Zeb1 (+/+) (BMTC (+/+)) and Zeb1 (+/-) (BMTC (+/-)) mice were 
inoculated into wild-type mice. Mice were then injected i.p. with CSF1 and myeloid cell mobilization was 
assessed at 3 h and 7 h.  
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4. Zeb1 in response to LPS-induced endotoxic shock and 

tolerance 
 

 

In light of the results above indicating that Zeb1 regulates key pro-inflammatory and 

anti-inflammatory genes, I examined whether Zeb1 modulates LPS-induced endotoxic 

shock and tolerance responses. Injection of LPS into mice triggers a strong pro-

inflammatory macrophage-induced and NFκB-mediated response with high secretion of 

Tnfa, Il1β, Il6, and Cox2, which could eventually lead to death (Benoit et al., 

2008). However, when mice are subjected to repeated doses of LPS, they developed a 

protective adaptive response (endotoxin tolerance) characterized by the inability of 

macrophages to produce pro-inflammatory cytokines and their switch to an anti-

inflammatory phenotype (Il10, Tgfβ1, Il1ra) (Biswas and Lopez-Collazo, 2009; Pena et 

al., 2011). Since my results above indicate that Zeb1 regulates key pro-inflammatory and 

anti-inflammatory genes, I examined whether Zeb1 modulates LPS-induced endotoxic 

shock and tolerance responses.  

  

 

Zeb1 (+/+) and Zeb1 (+/-) mice were injected i.p. with a single lethal dose of LPS and 

their survival followed over time. I found that Zeb1-deficient mice have improved 

survival rates to LPS-induced shock compared than Zeb1 (+/+) mice (Figure 33). This is 

in line with Figure 13 showing that Zeb1 (+/-) macrophages produce lower levels of Il1b, 

Nfkb1/p50 and Il8.  
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Figure 33. Kaplan Meier survival plots of Zeb1 (+/+) and Zeb1 (+/-) mice treated with a single lethal dose 
of LPS (endotoxic shock).  
 
 
 
 
 
 
Next, mice from both genotypes were injected with a single sub-lethal dose of LPS 

followed by a lethal dose of LPS. Under these conditions, the opposite pattern was 

observed; Zeb1 (+/-) mice died throughout the protocol, while all Zeb1 (+/+) mice 

survived, indicating that Zeb1 conferred strong protection against secondary endotoxin 

re-challenge (Figure 34). These data are also consistent with Figure 13, where Zeb1 (+/-) 

macrophages failed to shift to an anti-inflammatory state and displayed lower levels of 

Il10. Altogether, these results indicate that Zeb1 enhances not only the in vivo 

inflammatory response to LPS-induced endotoxic shock but also the tolerance response 

to secondary LPS stimulation.  
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Figure 34. Kaplan Meier survival plots of Zeb1 (+/+) and Zeb1 (+/-) mice treated with a sub-lethal dose of 
LPS followed a lethal one (tolerance). 
 

 

 

 

Next, I sought to investigate whether the response of Zeb1 (+/-) mice to endotoxin shock 

or tolerance translated in a differential pattern of cytokine expression. Peritoneal 

macrophages from Zeb1 (+/+) and Zeb1 (+/-) mice were treated ex vivo with either a 

single dose or subsequent doses of LPS to mimic in vivo settings. Macrophages were 

then assessed for their expression of Tnfa (encoding TNFa) and Il10, the prototypical 

pro-inflammatory and anti-inflammatory cytokines responsible for the septic shock and 

tolerance, respectively (Sanchez-Tilló et al., 2007; Biswas and Lopez-Collazo, 2009). In 

line with in vivo results of Figure 33 and 34, I found that Zeb1 (+/-) macrophages 

expressed lower levels of Tnfa in response to septic shock and had lower expression of 

Il10 in response to tolerance (Figure 35).  
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Figure 35. Peritoneal macrophages from Zeb1 (+/+) and Zeb1 (+/-) mice were treated with either a single 
doses or subsequent doses of LPS. Expression of Tnf and Il10 were determined by qRT-PCR. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

LPS

***	

PBS

*	

100

300

500

Zeb1 (+/+)
Zeb1 (+/-)

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

0

700

LPS

***	

PBS

*	

100

300

500

Tnf Il10

Septic Shock Tolerance



	 88	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 89	

Chapter III :  Role of Zeb1 in the tumor 

microenvironment 
 

 

 

 

1. Zeb1 is upregulated in TAMs increasing SPMs and a 

pro-tumor profile 
 

 
My results above show that Zeb1 (+/-) macrophages display lower levels of SPM-

associated markers that are known to be also expressed by TAMs. Consequently, I first 

examined whether Zeb1 expression in peritoneal macrophages was modulated by the 

presence malignant cells. To that effect, I used again the ID8 ovarian carcinoma model.  

 

 

In wild-type mice, I found that Zeb1 expression was much higher in peritoneal TAMs 

obtained from mice that had been injected with ID8 cells during 13 weeks than in basal 

peritoneal macrophages mice that had never been exposed to tumor cells (Figure 36). 

Similar upregulation of Zeb1 was observed in peritoneal TAMs vis-à-vis normal 

peritoneal macrophages in Zeb1 (+/-) mice (Figure 36). Importantly, these results 

indicate that Zeb1 expression is activated by the presence of cancer cells and support a 

role for Zeb1 in the regulation of a TAM phenotype.  
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Figure 36.  Zeb1 expression increases during activation of peritoneal macrophages into TAMs. Zeb1 
mRNA levels were determined by qRT-PCR in peritoneal macrophages from Zeb1 (+/+) and Zeb1 (+/-) 
mice either under homeostasis conditions (peritoneal macrophages) or 13 weeks after injection of ID8 
carcinoma cells (peritoneal TAMs).  
 
 
 
 
 
I next explored whether or not expression of Zeb1 by macrophages affects their 

activation towards TAMs. Zeb1 (+/+) and Zeb1 (+/-) mice were injected with ID8 cells 

during 8 weeks and the resulting peritoneal TAMs were examined for the expression of 

genes associated with a TAM phenotype. I found that expression of Ccr2, Nfkb1/p50, 

Il1b, Il10, Cd163, Mrc1, Mmp9, and Vegf was significantly lower in peritoneal Zeb1 (+/-

) TAMs than in their wild-type counterparts (Figure 37). Interestingly, the archetypal M1 

Nos2 and M2 Arg1 genes—that displayed similar levels in both genotypes under 

homeostasis—were upregulated and downregulated, respectively, in Zeb1 (+/-) TAMs 

(Figure 37). The above data indicate that Zeb1 promotes the in vivo 

differentiation/activation of macrophages into TAMs, a process that is compromised in 

Zeb1 (+/-) mice. 
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Figure 37. Zeb1 (+/+) and Zeb1 (+/-) mice were injected with ID8 cells and 6 weeks later peritoneal TAMs 
were isolated and assessed for gene expression by qRT-PCR.  
 
 

 

 

In the ID8 ovarian cancer model, peritoneal TAMs with low expression of F4/80 

(F4/80low) (SPM-TAMs) display a strong pro-inflammatory and pro-angiogenic 

phenotype (e.g., high levels of Vegf, Il1b, Il6) that promotes ID8 cell proliferation 

(Hagemann et al., 2006; Cain et al., 2013; Rei et al., 2013). We examined the F4/80low 

(SPM-TAMs) and F4/80high (LPM-TAMs) subpopulations in the peritoneal exudate of 

Zeb1 (+/+) and Zeb1 (+/-) mice that had been injected with ID8 carcinoma cells for 6 

weeks. I found that, compared to wild-type mice, the F4/80high LPM-TAM subpopulation 

was expanded in Zeb1 (+/-) mice (Figure 38). Likewise, the ratio F4/80high to F4/80low in 

Zeb1 (+/-) TAMs was also higher than in Zeb1 (+/+) TAMs (Figures 38 and 39). Of note, 

this ratio was even higher in TAMs than in the normal macrophages shown in Figures 7 

and 8. The lower share of F4/80low in Zeb1 (+/-) TAMs reflects a deficient recruitment of 

circulating monocytes into the tumor microenvironment in Zeb1 (+/-) mice, which 

parallels the lower Ccr2 expression in Zeb1 (+/-) macrophages and TAMs (Figures 13 

and 37).  
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Figure 38. Left panels: Zeb1 (+/+) and Zeb1 (+/-) mice were injected with ID8 cells and the distribution of 
ID8 tumor (CD45-) and immune (CD45+) cells in peritoneal exudates was examined 6 weeks post-
inoculation. Right panels: CD45+ cells were then analyzed for CD11b and F4/80 expression to determine 
the distribution of SPM (F4/80low) and LPM (F4/80high) TAM subpopulations. On the left panels, gates 
represent total leukocytes (1) and ID8 tumor cells (2). On the right panels, gates represent SPMs (3) and 
LPMs (4) from gate (1).  
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Figure 39. As in Figure 38, expression of F4/80 was assessed in TAMs from Zeb1 (+/+) and Zeb1 (+/-) 
mice 6 weeks upon injection with ID8 carcinoma cells.  
 
 
 
 
The above results indicate that Zeb1 upregulates Ccr2 expression in macrophages and 

TAMs. I therefore investigated whether ZEB1 regulates Ccr2 by direct binding to its 

promoter. ZEB1 binds to a subset of E-box and E-box-like sequences in the regulatory 

regions of its target genes (Brabletz and Brabletz, 2010).  

 

 

Examination of the first 2 kb of the mouse Ccr2 promoter revealed the existence of at six 

ZEB1 high-affinity binding sequences (Figure 40). The ability of endogenous Zeb1 to 

directly bind to the Ccr2 promoter was tested for two of these sites (-868 bp and -818 bp) 

by chromatin immunoprecipitation (ChIP) assay in BMDMs from wild-type mice. It was 

found that an antibody against Zeb1, but not its respective host matched control IgG, 

immunoprecipitated a region of the mouse Ccr2 promoter containing both of these sites 

but not a region lacking consensus binding sites for Zeb1 (Figure 40).  
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Figure 40. ZEB1 binds to the mouse Ccr2 promoter. Upper panel: Scheme of 2 kb of the Ccr2 promoter. 
Consensus binding sites for ZEB1 in the first -2 kb of the Ccr2 promoter include six high affinity 
sequences (red boxes) at -1713 bp (CAGCTG), -1398 bp (CACCTG), -1136 bp (CAGCTG), -984 bp 
(CACGTA), -868 bp (CAGGTG), and -818 bp (CAGGTG). The regions examined by ChIP assay are 
represented by blue bars (see below). Lower panel: DNA from BMDM immunoprecipitated with 
antibodies against ZEB1 (E-20X) or goat IgG serum control was amplified by qRT-PCR for two regions of 
the Ccr2 promoter, one containing a consensus ZEB1 binding sites at – 868 bp and -818 bp (-868/-772 bp) 
and another lacking consensus binding sites for ZEB1 (non-binding site, NBS, -574/-422 bp) (blue bars in 
the upper panel). A condition without antibody is also shown. For each promoter fragment, the condition 
without antibody was equaled to 100.  
 
 
 
 
 
 

2. Expression of Zeb1 in F4/80low TAMs promotes tumor 

progression  
 

 

Within TAMs, those with F4/80low (SPM-TAMs), have a stronger pro-tumor effect by 

supporting cancer cell survival and tumor angiogenesis (Ostuni et al., 2015; Rei et al., 

2014). I therefore explored whether the smaller fraction of F4/80low SPM-TAM in Zeb1 

(+/-) mice affects tumor progression.  
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Zeb1 (+/+) and Zeb1 (+/-) mice were injected with ID8 cells and sacrificed 6 weeks later 

to examine tumor growth. I found that the number of ID8 cells in the peritoneal exudate 

of Zeb1 (+/-) mice—assessed as the percentage of CD45- cells—was drastically lower 

than in Zeb1 (+/+) mice (Left panel Figure 38 and Figure 41). These results indicate that 

Zeb1 expression in TAMs promotes tumor growth. I then investigated whether the more 

differentiated phenotype of ID8 cells when they have been injected in Zeb1 (+/-) mice 

than in Zeb1 (+/+) mice translated into a less aggressive tumor behavior. Indeed, 

compared to wild-type mice, there were not only lower number of ID8 cells in Zeb1 (+/-) 

mice, but I also detected fewer tumor deposits in the peritoneal lining of these mice 

(Figure 42).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 41.  Reduced tumor growth of ID8 cells in Zeb1 (+/-) mice. As in the the percentage of ID8 cells in 
the peritoneal cavity of Zeb1 (+/+) and Zeb1 (+/-) mice was assessed by FACS 6 weeks after injection.  
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Figure 42. Representative images of the peritoneal lining of Zeb1 (+/+) and Zeb1 (+/-) mice 13 weeks after 
i.p. injection with ID8 carcinoma cells are shown.  
 
 
 
Also tumor progression of the ID8 tumor model in Zeb1 (+/+) and Zeb1 (+/-) mice was 

also followed over time by bioluminescence imaging. Mice from both genotypes were 

injected with ID8 cells that carried the luciferase-2 gene (ID8-luc) followed by 

administration of the cycLuc1 luciferase substrate. As shown in Figures 43 and 44, tumor 

load was lower in Zeb1 (+/-) mice than in Zeb1 (+/+) counterparts, confirming once again 

a faster tumor progression in a wild-type microenvironment. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 43. A Zeb1 (+/-) background suppresses tumor growth. Zeb1 (+/+) and Zeb1 (+/-) mice were 
injected with ID8-luc cells and tumor load progression was followed up over time by bioluminescence 
imaging. Tumor load in Zeb1 (+/+) was significantly larger than in Zeb1 (+/-) with a p ≤ 0.05 (*) at the 
indicated time points. Five mice of each genotype were included. 
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Figure 44. Representative pictures of the bioluminescence signal of mice for each genotype at week 6. 
 

 

 

Next, I investigated whether the smaller proportion of F4/80low TAMs in Zeb1 (+/-) mice 

alters the phenotype of the injected ID8 tumor cells. The expression of an epithelial 

phenotype in carcinomas, including E-cadherin, is associated with a less aggressive 

behavior (Perl et al., 1998; Sawada et al., 2008; and reviewed in Nieto et al., 2016). Mice 

from both genotypes were injected with ID8 cells and after 13 weeks they were sacrificed 

and ID8 cells were examined for the expression of a panel of genes, namely: Zeb1 itself, 

whose expression determines worse prognosis in most cancers; E-cadherin (Cdh1) and 

vimentin (Vim), the archetypal epithelial and mesenchymal markers, respectively (Nieto 

et al., 2016); Aldh1a1 and Kit, two cancer stem cell markers whose expression is 

associated with tumor progression and poorer prognosis in most carcinomas, including 

ovarian (Ginestier et al., 2007; Silva et al., 2011; Chau et al. 2013); and Mdr1/Abcb1, an 

efflux drug transporter whose expression is associated to chemotherapy resistance 

(Gottesman et al., 2002).  
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Interestingly, I found that expression of Zeb1 was higher in the ID8 cells isolated from 

peritoneal cavity of Zeb1 (+/+) mice than in those from Zeb1 (+/-) mice (Figure 45). In 

that line, expression of Vim, Aldh1a1, Kit and Mdr1 were also higher in ID8 cells 

recovered from Zeb1 (+/+) mice while Cdh1 was lower (Figure 45). Two conclusions can 

be raised from the above results: first, Zeb1 (+/+) TAMs elicit a greater tumor response 

than Zeb1 (+/-) counterparts, and second, Zeb1 expression in TAMs alters the functional 

phenotype of malignant cells triggering a mesenchymal, stem-like EMT phenotype and 

chemotherapy resistance. 

 

   

 
 

 

Figure 45. ID8 cells were either cultured in vitro (DMEM) or injected i.p. during 13 weeks into Zeb1 (+/+) 
and Zeb1 (+/-) mice. ID8 cells for the three conditions were assessed by qRT-PCR for the expression of the 
indicated genes in reference to Gapdh.  
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TAM infiltration associates with higher tumor cell resistance to chemotherapy (De Palma 

and Lewis, 2013). Therefore, I examined whether expression of Zeb1 in TAMs affected 

the response of ID8 cells to cisplatin. I found that ID8 cells isolated from Zeb1 (+/-) mice 

displayed higher sensitivity to cisplatin than ID8 isolated from wild-type counterparts 

(Figure 46). Likewise, incubation of ID8 cells with CM from wild-type TAMs, but not 

with CM from Zeb1-deficient TAMs, rendered cancer cells more resistant to cisplatin 

(Fig. 47). I can thus conclude that for TAMs to enhance resistance to cisplatin they have 

to express full levels of Zeb1. 

 

 
 
 

                                      
 

 
Figure 46. ID8 cells isolated from mice of both genotypes 8 weeks after injection were culture in complete 
medium or in the presence of 50 µg/ml of cisplatin and their viability assessed by an MTT assay.  
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Figure 47. ID8 cells were cultured in complete medium or treated with 50 µg/ml of cisplatin and then 
either incubated with CM from Zeb1 (+/+) or Zeb1 (+/-) TAMs.  
 
 
 
 
 
 
 

3.  Zeb1 activates a Ccr2-Mmp9-Ccl2 loop between TAMs 

and cancer cells 
 

Growth of ID8 cancer cells in the peritoneal cavity of a mouse activates the Src/Akt/Erk 

pathways and confers them with enhanced tumor aggressiveness (Cai et al. 2015). Thus, 

when ID8 cells are isolated from a mouse ascites and are reinjected into a new recipient 

mouse, these new ID8 cells—renamed hereafter as ID8RI—accelerate the onset and 

progression of tumor growth and ascites formation further (Cai et al., 2015). This 

indicates that the tumor microenvironment provided by the mouse peritoneal cavity 

modulates the functional phenotype of ID8 cells previously grown in vitro. I next tested 

the expression of Zeb1 and Ccl2 in ID8RI cells and found that, ID8RI cells that had 

grown in the peritoneal cavity of mice expressed higher levels of both genes than ID8 

cells (Figure 48).  
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Figure 48. ID8RI cells express higher levels of Zeb1 and Ccl2 than parental ID8 cells. ID8 and ID8RI cells 
were assessed for gene expression by qRT-PCR with respect to Gapdh.  
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ID8 cells incubated with CM from Zeb1 (+/+) macrophages or TAMs than in ID8 cells 

cultured with CM from Zeb1 (+/-) counterparts (Figure 49, center and right panels, 

respectively). Importantly, these results indicate that Zeb1 not only upregulates Ccr2 in 

TAMs (Figure 37) but also induces the expression of Ccl2 in cancer cells (Figure 49). By 

triggering this positive Ccr2-Ccl2 loop between TAMs and cancer cells, Zeb1 regulates 

the crosstalk between tumors and their microenvironment that contributes to tumor 

progression.  
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Figure 49. The expression of Ccl2 was examined by qRT-PCR in ID8 cells cultured in vitro in complete 
medium (DMEM), from 13 weeks tumor-bearing mice or co-cultured with conditioned medium (CM) from 
either Zeb1 (+/+) and Zeb1 (+/-) peritoneal macrophages (central panel) or with CM from Zeb1 (+/+) and 
Zeb1 (+/-) peritoneal TAMs (right panel).  
 

 

 

Production of the metalloproteinase MMP9 by tissue macrophages and TAMs is not only 

required for their migration and infiltration but it also promotes invasiveness and 

metastasis of malignant cells and tumor angiogenesis (Hiratsuka et al., 2002; Giraudo et 

al., 2004; Gong et al., 2008). I therefore explored whether the lower Mmp9 expression I 

observed in Zeb1-deficient macrophages and TAMs (Figures 13 and 37) participates in 

the more differentiated phenotype of ID8 cancer cells when injected in Zeb1 (+/+). I first 

examined whether the MMP9 produced by TAMs affected Ccl2 expression in ID8 cells. 

ID8 cells were incubated with CM from Zeb1 (+/+) and Zeb1 (+/-) TAMs in the presence 

of absence of an MMP9 allosteric inhibitor. Upregulation of Ccl2 in ID8 cells by CM 

from Zeb1 (+/+) TAMs was reduced by the MMP9 inhibitor (Figure 50). In contrast, 

Ccl2 expression was not altered by CM from Zeb1 (+/-) TAMs nor by the MMP9 

inhibitor (Figure 50). 

ID8 in CM Zeb1 (+/-) TAMs
ID8 in CM Zeb1 (+/+) TAMs
ID8 in DMEM 

0

700

Ccl2

*	

500

***	

ns

100

300

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

0

800 ***	

600

***	

ns

200

400

Ccl2 Ccl2
0

200
**	 **	

ns

100

ID8 in CM Zeb1 (+/-) Mac
ID8 in CM Zeb1 (+/+) Mac
ID8 in DMEM 

TAMs	 ID8	

CM

Zeb1 (+/+) TAMs
Zeb1 (+/-) TAMs

Mac	 ID8	

CM

Zeb1 (+/+) Mac
Zeb1 (+/-) Mac

ID8RI in Zeb1 (+/-) mice
ID8RI in Zeb1 (+/+) mice
ID8 in DMEM 

Zeb1 (+/+)

Zeb1 (+/-)

ID8
Tumor 
cells



	 103	

  

                                      

 
 
 
Figure 50. ID8 cells were incubated with CM from Zeb1 (+/+) and Zeb1 (+/-) TAMs in the presence of 
absence of an MMP9 as described in Materials and Methods.   
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Figures 51. Recombinant mouse MMP9 (rmMMP9) upregulated Ccl2 in ID8-luc cells. Data show three 
independent experiments. 
 
 
 

                                              
 
Figures 52. Recombinant mouse CCL2 (rmCCL2) induces MMP9 in peritoneal macrophages. Data show 
three independent experiments. 
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Blockade of CCL2-CCR2 signaling in macrophages reduces tumor progression and 

metastasis (Qian et al., 2011). I next tested the effect of blocking CCL2-CCR2 signaling 

on the phenotype of ID8 cells. ID8 tumor-bearing Zeb1 (+/-) and Zeb1 (+/+) mice were 

injected with a CCR2 small molecule antagonist and the CM produced by their 

respective TAM was use to culture ID8 cells in vitro. In line with the experiments above, 

the CM collected from Zeb1 (+/+) mice elicited higher Ccl2 expression in ID8 cells that 

the CM from Zeb1 (+/-) mice (Figure 49). Notably, the effect on Ccl2 expression by the 

CM from Zeb1 (+/+) mice was drastically inhibited by the CCR2 antagonist while it had 

no significant effect on ID8 cells that were cultured with Zeb1 (+/-) TAMs CM (Figure 

53).   

 

 

 

 

 

 

 

                                   

 

 

 

 

 

 

 

     

   
Figure 53. Blocking of CCL2-CCR2 signaling in TAMs inhibited Ccl2 expression in cancer cells. Wild-
type and Zeb1-deficient ID8 tumor-bearing mice were injected with a CCR2 antagonist and the CM 
produced by their respective TAM was added to ID8-luc cells and their expression of Ccl2 assessed by 
qRT-PCR as described in Methods. 
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4. More aggressive phenotype by tumor cells elicits a 

more pro-tumoral phenotype in TAMs 
 

 

My results above showed the progression of the ID8 cancer model and the phenotype of 

ID8 cancer cells are determined by the levels of Zeb1 expression in TAMs. Compared to 

wild-type TAMs, Zeb1-deficient TAMs, which also express lower levels of Mmp9 and 

Ccr2, trigger a more differentiated and less aggressive phenotype in ID8 cells. Since 

tumor cells also modulate the phenotype of TAMs, I examined whether a more or less 

aggressive phenotype of ID8 cells elicits a different TAM response. ID8 carcinoma cells 

were injected into Zeb1 (+/+) and Zeb1 (+/-) mice. After 13 weeks, tumor cells were 

isolated (ID8RI cells) and reinjected into wild-type mice during 6 weeks (see scheme of 

the experiment on top of Figure 54).  

 

 

I isolated TAMs in both experimental conditions and characterized their gene expression 

profile. It was found that the ID8RI cells obtained from wild-type mice—that 

consequently express higher levels of Ccl2 (Figure 48)—produced a stronger 

macrophage activation toward TAMs than the ID8RI cells isolated from Zeb1 (+/-) mice 

(Figure 54). Thus, the expression of Ccr2, Il1b, Il10, Cd163, Mrc1 and Mmp9 were 

higher in the TAMs isolated from wild-type mice injected with ID8RI previously grown 

in a wild-type tumor microenvironment that in the TAMs of also wild-type mice but 

injected with ID8RI previously grown in a Zeb1-deficient background. These results 

indicate that, independently of the recipient background—all recipient mice were wild-

type—the more aggressive and less differentiated ID8RI cells from wild-type have a 

greater capacity to induce macrophage activation towards TAMs than ID8RI cells that 

have been previously modulated by Zeb1-deficient TAMs. 
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Figure 54. ID8 cells that had been previously inoculated in Zeb1 (+/+) or Zeb1 (+/-) mice for 13 weeks 
(ID8-RI-wt and ID8-RI-het cells, respectively) were reinjected into Zeb1 (+/+) mice. After 6 weeks, TAMs 
were isolated and analyzed for their gene expression profile analyzed by qRT-PCR with reference to 
Gapdh.  
 

 

In line with the higher aggressiveness of ID8RI cells compared to ID8 cells, I found that 

after 6 weeks ID8RI isolated from wild-type mice cells developed similar levels of tumor 

deposits and ascites after only 6 weeks than those observed upon 13 weeks with parental 

ID8 cells. Interestingly, the ID8RI cells isolated from Zeb1 (+/-) mice resulted in lower 

ascites and tumor deposits than those rendered by ID8RI obtained from Zeb1 (+/+) mice  

(Figures 55). These results indicate that the slower tumor progression of ID8 cells in the 

context of Zeb1-deficient mice is transferable into wild-type mice. 

 

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

0

40

80

120

Il10

***	

Cd163

***	
***	

Mrc1

***	

Ccr2

***	

Il1bZeb1

**	 ***	

Mmp9

***	

Cd74

TAMs

TAMs
Zeb1 (+/+)

Zeb1 (+/+)

ID8RI
from 
(+/+)

ID8RI
from
(+/-) Zeb1 (+/-)

Zeb1 (+/+)

13 wks 6 wks

ID8
Tumor 
cells

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

0

40

80

120

Il10

***	

Cd163

***	
***	

Mrc1

***	

Ccr2

***	

Il1bZeb1

**	 ***	

Mmp9

***	

Cd74

TAMs

TAMs
Zeb1 (+/+)

Zeb1 (+/+)

ID8RI
from 
(+/+)

ID8RI
from
(+/-) Zeb1 (+/-)

Zeb1 (+/+)

13 wks 6 wks

ID8
Tumor 
cells



	 108	

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 55. Representative images of Zeb1 (+/+) mice injected with ID8 RI (+/+) and ID8RI  (+/-) 
showing ascites and tumor deposits in peritoneal cavity. 
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(Hagemann et al., 2008).  
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I injected ID8RI cells into wild-type mice that were then divided in three cohorts. 

Twenty-three days later, one of the cohorts of tumor-bearing mice was injected i.p. with 

PBS while the other two cohorts were injected i.p. with BMDM derived from either Zeb1 

(+/+) and Zeb1 (+/-) mice [BMDMs (+/+) and BMDMs (+/-), respectively]. Tumor 

progression was then followed by luminescence bioimaging up to thirty days from the 

time of ID8RI cell injection. In line with Hagemann et al. (2008), tumor-bearing mice 

injected with BMDMs (+/+) displayed an accelerated tumor growth compared to those 

injected with PBS (Figure 56). Importantly, tumor-bearing mice injected with BMDMs 

(+/-) displayed a slower tumor progression than those injected with BMDMs (+/+) 

(Figure 56). These results indicate that expression of Zeb1 in macrophages (BMDM) and 

TAMs promotes tumor progression and that Zeb1-deficient TAMs are responsible for the 

reduced tumor progression of the ID8 carcinoma model in Zeb1 (+/-) mice.   

 

 
 
 Figure 56. ID8-luc cells isolated from Zeb1 (+/+) mice 13 weeks upon inoculation (ID8RI-wt) were 
reinjected in Zeb1 (+/+) mice that were then divided in three cohorts. At day 23, each cohort was 
inoculated i.p. with PBS, BMDM from Zeb1 (+/+) or BMDM from Zeb1 (+/-) mice. Tumor load 
progression was followed by bioluminescence and mice were euthanized seven days later.  
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After all mice were euthanized at day 30, ID8RI cells from the three cohorts were 

assessed for Ccl2 expression. ID8RI cells in the cohort that received BMDMs (+/+) 

expressed higher levels of Ccl2 than ID8RI cells isolated from mice injected with 

BMDMs (+/-) (Figure 57). These results further reinforce my results shown above 

indicating that Zeb1-deficient macrophages are unable to induce Ccl2 in tumor cells. 

 

                                        
 
Figure 57. Zeb1 (+/+) macrophages induce higher expression of Ccl2 in tumor cells than Zeb1 (+/-) 
macrophages. ID8-RI-wt isolated from the experiment in panel were assessed for Ccl2 expression by qRT-
PCR.  
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yellow lines in Figure 58). Patients with low expression of both ZEB1 and CCL2 

displayed the best survival probability. In other words, the maximum effect of ZEB1 as a 

predictor of reduced survival requires high levels of CCL2. This suggests that, at least for 

some of its tumor-promoting functions, ZEB1 depends on CCL2 expression. 

 

   

 

            

 

 

 

 

 

 

 

 

 

 

 
 
Figure 58. Ovarian cancer patients with the highest expression of ZEB1 and CCL2 (red line) have shorter 
progression-free survival than those with high expression of ZEB1 but low expression of CCL2 (green line) 
or high CCL2 but low ZEB1 (yellow line) or that display low levels of both genes (blue line). Their 
survival probability was plotted in a Kaplan Meier graph according to a best cut off expression as detailed 
in Supplementary Information.  
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that effect, a series of serous ovarian carcinomas was stained for ZEB1, CCL2, CD163, 
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microenvironment by TAMs correlated with higher expression of ZEB1 by tumor cells. 
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Higher expression of ZEB1 by these TAMs also associated with their higher expression 

of CCR2 and MMP9. Lastly, expression of ZEB1 in tumor cells associated with that of 

CCL2. These results further support previous results in this study showing that ZEB1 is 

expressed in both TAMs and tumor cells and that ZEB1 expression in TAMs induces the 

expression of TAM-associated markers.  

 

 

 

  
 

     
Figure 59. Expression of ZEB1 (HPA027524), CCL2 (2D8), CD163 (10D6), CCR2 (48607), and MMP9 
(E11) in human serous ovarian carcinomas. Representative pictures of the tumor and its microenvironment 
are shown. Magnification 400X. 
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Figure 60. Quantification of data from Figure 55. The percentage of tumor cells and TAMs expressing 
each protein was determined and cases were then segregated by their expression of ZEB1—in tumor cells 
or in TAMs—below or above the median into two cohorts (Low ZEB1 and High ZEB1). The means for 
CCL2 expression in tumor cells (n = 18), the percentage of TAM infiltration—determined by expression of 
CD163—(n = 18), and the expression of CCR2 (n = 15) and MMP9 (n =15) in TAMs was calculated for 
the low and high ZEB1 cohorts and the significance of their difference was assessed by a Mann-Whitney U 
test. 
 
 
 

                                     
 
Figure 61. Correlations between relevant protein expression pairs in tumor cells and/or TAMs in serious 
ovarian carcinomas (n = 15) were assessed by a Spearman’s correlation coefficient (r). Their significance is 
represented by the p value.   
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In the ID8 mouse model I found that expression of Zeb1 by TAMs promoted tumor 

progression. Therefore, I studied whether ZEB1 expression in TAMs affected the 

prognosis of ovarian carcinoma patients. Importantly, I found that higher expression of 

ZEB1 in TAMs was associated with poorer survival in these patients (Figure 62). 

                  

 

 
 
Figure 62 High expression of ZEB1 in TAMs in human serous ovarian carcinomas determined poorer 
overall survival. Expression of ZEB1 (clone HPA027524) in TAMs (CD163, clone 10D6) was assessed by 
immunostaining. 
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This project has used different technical approaches to determinate the role of Zeb1 in 

macrophages both during homeostasis and in the tumor microenvironment. The results 

shown in this dissertation indicate that ZEB1 regulates the response to inflammatory 

challenge and tolerance and have also defined a pro-tumoral role of Zeb1 in the tumor 

microenvironment beyond its already known expression in tumor cells. 

 

 

Although ZEB1 has a role in the differentiation of many cellular types, including 

hematopoietic cells (Vandewalle et al., 2009; Goosens and Haigh, 2012), its expression 

and function in myeloid differentiation has not been studied. In this study I showed that 

ZEB1 is expressed in myeloid cells and has an essential role in both their differentiation 

and activation. Interestingly, during myeloid maturation, monocytes have higher levels of 

Zeb1 than macrophages. In turn, SPMs express more Zeb1 than LPMs that are almost 

negative for Zeb1. In that line, in Zeb1-deficient mice the LPM subpopulation and total 

macrophage count are higher than in normal wild-type mice. Different levels of Zeb1 

expression resulted in distinct status of activation and polarization since Zeb1 

heterozygous macrophages have lower levels of expression of both anti and pro-

inflammatory cytokines (Okabe et al., 2014). 	

 

 

Comparison of the RNAseq data from wild-type and Zeb1-deficient macrophages 

confirmed their different polarization/activation pattern as well as provided evidence for 

the role of ZEB1 in a number of other immune and non-immune functions. 

Downregulation of Zeb1 levels in macrophages resulted in the differential expression of 

over 400 genes, associated to 150 GO pathways. This wealth of information obtained 

from the RNAseq analysis will also open new areas of research on the role of ZEB1 in 

macrophages.   

 

 

Zeb1 regulated and was regulated by Socs3, an important gene in macrophage regulation. 

Zeb1 was not regulated by or regulate Socs2, since Socs2 (-/-) and Socs2 (-/-) Zeb1 (+/-) 

mice had a similar peritoneal macrophage distribution and gene profile. However, the 

results with Socs3 mice showed a potential regulation of Zeb1 by Socs3 as Socs3Lyz2cre 

macrophages expressed less Zeb1 than Zeb1 (+/-) animals. Overall, the phenotype of 
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Socs3Lyz2cre/Zeb1 (+/-) mice was similar to that of Zeb1 (+/-) mice but, if anything, even 

more pronounced. Thus, peritoneal macrophage distribution in these mice showed a large 

difference between SPM and LPM subpopulations and a similar genetic expression 

profile. My results indicated that some genes are directly modulated by one of them 

whereas others, (as the classical Socs3 targets Il6) depended on both genes showing 

differential expression in the presence or lack of each or in their mutual expression. 

Despite its structural and functional homology with Socs3, there was not regulatory or 

functional relationship between Zeb1 and Socs2. 

 

 

Zeb1 also had a role in the phagocytic activity of peritoneal macrophages. Macrophage 

polarization modulates the capacity of macrophages to in phagocytosis with M1 

macrophages being more efficient than M2 macrophages (Martinez and Gordon, 2014). 

LPMs are responsible for the phagocytosis of apoptotic cells and tissue repair assuming a 

role in the maintenance of physiological conditions, while SPMs are responsible for 

controlling infections and inflammatory process. I have showed that LPMs represent a 

larger share in Zeb1 (+/-) mice and showed less M2-related gene profile than in wild-type 

mice and, likewise, Zeb1-deficient macrophage presented a higher phagocytic capability 

than wild-type macrophages. ZEB1 impaired the clearance of malignant cells, but it 

remains to be studied whether it also enhances macrophage phagocytic capacity of 

pathogens as well apoptotic cells. For instance, macrophages deficient for Vim, a gene 

activated by Zeb1, are more efficient in the phagocytosis of bacteria, which results in 

lower inflammatory response in acute colitis model (Mor-Vaknin et al., 2013). 

 

 

Among the genes differentially expressed between both wild-type and Zeb1-deficient 

macrophages was Ccr2. Blocking CCL2-CCR2 signaling inhibited the ability of TAMs 

to upregulate Ccl2 in cancer cells. In that line, I found that Zeb1-deficient macrophages 

had impaired migration rate upon CCL2 stimulus. The reduced migration of Zeb1-

defiecient macrophages could be related to the fact that LPM macrophages are tissue-

resident macrophages, and they have a role controlling tissue homeostasis whereas SPMs 

are more similar to dendritic cells with respect to inflammation and antigen presentation 

and, consequently, they migrate faster than LPMs. 
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Nevertheless, even in the absence of chemotactic stimuli, Zeb1 deficient macrophages 

also displayed lower migratory ability than wild-type macrophages, and the mechanism 

that modulates this basal motility capacity will be explored in the future. Thus, the 

RNAseq showed a number of motility-related genes downregulated in Zeb1-deficient 

macrophages, such as those involved in actin polymerization and cellular contractility, 

and via enhanced ECM degradation and invasion. It is worth noting that ZEB1 regulates 

motility and prometastatic invasion in tumor cells, through actin cytoskeletal remodeling 

by downregulating miR-34a expression (Ahn et al., 2012). Taken together these data 

indicate that as ZEB1 modulates motility and migration in tumor cells, in macrophages 

would have a similar role regulating their normal migratory capacities.  

 

 

The role of ZEB1 in the migration of macrophages was also corroborated in vivo. In vivo 

migration is influenced by the composition of the local extracellular matrix (ECM) but 

my in vivo model showed that the regulation of Zeb1 regulating migration is intrinsic to 

macrophages themselves, independent of the mouse background. Certain MMPs may be 

involved both positively and negatively in monocyte/macrophage migration. Even 

double Mmp2 (-/-) Mmp9 (-/-) monocytes showed reduced infiltration, suggestive of a 

reduction in migration (Agrawal et al., 2006). Likewise, knockdown of three MMP7, 

MMP9 and MMP18 demonstrated that they are necessary for normal macrophage 

migration in vivo (Tomlinson et al., 2008). It could be therefore postulated that reduced 

levels of MMP9 in Zeb1 (+/-) macrophages contribute to their lower migratory capacity.  

 

 

In macrophages, CSF1 functions as both a growth factor and an important regulator of 

macrophage motility (Pixley, 2012). An in vivo differentiation model in response to 

CSF1 showed the role of ZEB1 both in monocyte migration as along their differentiation 

to mature macrophages. In this model, I found that Zeb1 is blocking LPM subpopulation 

maturation, this based on the observation of decreased LPM in wild-type mice exposed 

to CSF1. As discussed earlier, endogenous cytokines modulate myeloid cells attraction, 

but exogenous bacterial products such as LPS can also mobilize monocytes at the 

inflammatory focus. In fact, I found that monocyte mobilization to peritoneal cavity 
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could be mediated by CSF1 or CCL2, and also by tumor cells stimulus, probably for 

exogenous chemokines that are generated for cancer cells.  

 

 

Interestingly, Zeb1-deficient bone marrow cells displayed improved capacity to 

differentiate and reconstitute the LPM population compared to wild-type bone marrow 

cells, in a wild-type animal background where Zeb1 deficiency in injected myeloid cells 

is the only variable. Furthermore, these results together with the higher Zeb1 in monocyte 

population, suggest that Zeb1 might have a role in maintaining stemness in hematopoietic 

progenitor cells and support the hypothesis that Zeb1 is blocking the maturation of 

myeloid progenitor cells into a mature macrophage lineage. Also this is supported by the 

fact that ZEB1 can modulate stemness features in tumor cells (Wellner et al., 2009). 

These data are also consistent with other studies showing that Ccr2 is downregulated 

during myeloid maturation, being therefore a marker of immature monocytes. Similarly 

Zeb1 would be acting probably modulating Ccr2 expression and thus macrophage 

migration and maturation.  

 

 

A number of transcription factors participate in the differentiation of progenitor cells into 

monocytes and then into mature macrophages. Of note, and some of these factors are 

regulated by ZEB1 (e.g., Pu.1, c-Myc and c-myb) (Lawrence and Natoli, 2011; Lavin et 

al., 2014). My results here set Zeb1 as a new member of the transcription factors 

implicated in hematopoietic differentiation. Notably, Zeb2 regulates plasmocytoid 

dendritic cell lineage, and in Zeb2-deficient mice there is differentiation impairment in 

myeloid cells (Li et al., 2016, Wu et al., 2016). Hence it is possible to speculate that Zeb1 

has a similar role in myeloid lineage wherein blocking terminal differentiation in 

macrophages.  

 

 

 

In that line, our group is generating Zeb1 and Zeb2 floxed mice that will be crossed with 

LyzM-Cre mice in order to obtain the specific deletion of Zeb1 and Zeb2 in macrophages. 

These mice will prove very useful to study to explore whether specific deletion of Zeb1 

in macrophages not only alters the phenotype of TAMs, vis-à-vis TAMs in Zeb1 (+/-) 
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mice but also how this influences the progression of the ID8 cancer model. I expect a 

slower progression of the ID8 model in Zeb1f/fLisMCre than wild-type mice. Likewise, my 

hypothesis is that progression of the ID8 model in the Zeb2f/fLisMCre would accelerate it 

since they would have not the myeloid terminal differentiation and would has more 

TAM-like immature myeloid cells. 

 

 

Zeb1 deficiency protected mice from death upon a single dose of LPS (toxic shock), 

which correlates with the decreased expression of pro or anti-inflammatory genes in their 

macrophages. Of note, SPM and LPM subpopulations have different responses to LPS in 

vivo. Thus, SPMs produce increased amounts of inflammatory cytokines (i.e. TNFα and 

RANTES), and LPMs migrate to omentum and decreased in number in peritoneal cavity 

(Okabe et al., 2014; Rei et al., 2015) and SPM/LPM ratio is altered by Zeb1 levels.  

Hence, Zeb1 (+/-) mice with lesser SPM subset display decreased expression of 

inflammatory cytokines and improve their survival.  

 

 

Interestingly, Zeb1-deficient macrophages failed to acquire a tolerance state and failed to 

survive. During tolerance, macrophages undergo a reduction in pro-inflammatory 

cytokines and adopt a reparative and wound healing polarization profile. In order to 

understand my in vivo results and how Zeb1 is regulating this process, I examined the 

gene expression profile in both models for in wild-type and Zeb1-deficient mice. Tnfα 

one of the most important pro-inflammatory genes involved in mortality of septic shock 

was significantly upregulated in wild-type macrophages, but not in Zeb1-deficient 

macrophages. Moreover, the same occurs with the Il10 gene in tolerance model that was 

upregulated in wild-type macrophages but not in Zeb1-deficient counterparts and the 

inability of the latter to control inflammation, help explaining the death of Zeb1 (+/-) 

mice died in the tolerance model. 

 

 

LPS in monocytes modulates active histone marks at promoter and enhancers of genes in 

the lipid metabolism and phagocytic pathways.  Furthermore, histone deacetylases 

(HDACs) are involved in macrophage differentiation, metabolism, and activation 

(Alvarez-Errico et al., 2014; Lloberas et al., 2016; Novakovic et al., 2016). ZEB1 is a 
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transcription factor, which in turn can recruit (HDACs), in T cells ZEB1 together with 

CtBP-2 and HDAC1 repress the IL2 promoter (Wang et al., 2009). 

 

 

 It remains to elucidate whether similar regulation takes place in macrophages through 

HDAC and whether Zeb1 can modulate macrophage functions referred above. Indeed, 

the expression of “non tolerizable” genes as Il10 depends of the maintenance of 

H3K4me3 mark of acetylation at different of “tolerizable” genes in front to second 

inflammatory stimulus (Alvarez-Errico et al., 2014). This information together the fact 

H3K4me3 regulates transcriptional activation of ZEB1 (Chaffer et al., 2013) indicates 

that ZEB1 is implicated in the control of inflammation in macrophages. 

 

 

ZEB1 expression in cancer cells promotes tumor initiation and progression. I show here 

that, ZEB1 is also induced in TAMs at the TME where it plays a parallel tumor-

promoting function than in cancer cells although through a different mechanism. ZEB1 

in TAMs activates a Ccr2-Mmp9-Ccl2 feedback loop between tumor cells and TAMs, 

and induces a more aggressive phenotype in cancer cells (see model in Figure 63).  
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Figure 63. Expression of Zeb1 in TAMs induces tumor progression by activation of a Ccr2-Mmp9-Ccl2 
loop between TAMs and cancer cells. 
 

 

Of note, this tumor-promoting loop was inhibited by just a partial downregulation of 

Zeb1 in TAMs. Compared to wild-type TAMs, reduced expression of Mmp9 in Zeb1 (+/-

) TAMs results in lower levels of expression of Ccl2 in tumor cells. Of note, it was found 

that a more aggressive phenotype by tumor cells—with higher Ccl2 and Zeb1 

expression— elicits a more pro-tumoral phenotype in TAMs, including higher levels of 

Ccr2 and Mmp9. Importantly, injection of wild-type macrophages, but not Zeb1-deficient 

ones, into wild-type tumor-bearing mice accelerated tumor growth and upregulated Ccl2 

expression in tumor cells. In human ovarian carcinomas, TAM infiltration in the 

microenvironment correlated with ZEB1 expression by cancer cells and higher ZEB1 

expression in TAMs associated with higher levels of CCR2 and MMP9. Altogether, my 

results indicate that, ZEB1 plays an important role in the crosstalk between tumor cells 

and their microenvironment and that ZEB1 expression in TAMs enhances pro-tumor 

phenotype in cancer cells and promotes tumor growth. 
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F4/80low SPM-TAMs express a pro-tumor and pro-angiogenic phenotype and, compared 

to F4/80high LPM-TAMs, stimulate enhanced tumor growth (Rei et al., 2014). This 

dissertation found that Zeb1 is not only restricted to F4/80low SPM normal macrophages 

and TAMs but that it also expands this subpopulation. Deletion of Zeb1 downregulated 

the expression of an SPM-associated gene profile in normal macrophages and TAMs and 

reduced the F4/80low SPM-TAM population. These effects help explaining the slower 

progression of tumors in Zeb1 (+/-) mice and the failure of Zeb1-deficient macrophages 

to accelerate tumor growth compared to PBS when injected in tumor-bearing mice.  

  

 

Although the expression of ZEB1 among stromal cells of the tumor microenvironment 

has been noted, the identity of the cell types expressing ZEB1 (e.g., fibroblast, 

macrophages, other immune cells) had not been until now established (Spaderna et al., 

2006; Chaffer et al., 2013; Isella et al., 2015). In that line, this is the first study to 

characterize the expression and function of ZEB1 in the tumor microenvironment. Zeb1 

expression in macrophages was drastically upregulated when macrophages were exposed 

to cancer cells. I also showed that the activation of normal macrophages toward a pro-

tumoral F4/80low SPM TAMs is compromised in Zeb1-deficient mice and that the 

expression of pro-tumor and pro-angiogenic genes in TAMs was downregulated. 

Furthermore, I showed that cancer cells also modulate the phenotype of TAMs—ID8RI 

cells isolated from tumor-bearing wild-type mice trigger a stronger pro-tumoral 

phenotype in TAMs than ID8RI cells obtained from Zeb1-deficient mice. 

   

 

Importantly, this study shows that, like in tumor cells, Zeb1 expression in TAMs 

triggered in vitro and in vivo a more dedifferentiated and aggressive phenotype in 

adjacent malignant cells. Thus, Zeb1 in TAMs upregulates genes associated with a 

mesenchymal and stem-like phenotype and to resistance to chemotherapy in tumor cells, 

including expression of Zeb1 itself. Loss of epithelial markers (e.g., Cdh1) and 

acquisition of an EMT phenotype (e.g., Vim, Zeb1) by epithelial cells is required for 

adenoma-to-carcinoma transition and increased aggressiveness in epithelial tumors (Perl 

et al., 1998; Liu et al., 2014). In turn, cancer cells induce Zeb1 in peritoneal macrophages 
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and TAMs. The role of ZEB1 promoting tumor progression is therefore supported by a 

positive feedback of its expression between malignant cells and TAMs. Tumor 

infiltration by TAMs promotes tumor growth, angiogenesis and metastasis (Franklin and 

Li, 2016) and I found that a partial downregulation of Zeb1 in TAMs was sufficient to 

hinder TAM pro-tumor functions and to drastically reduce tumor growth in the ID8 

cancer model. Notably, this deficient pro-tumor function of Zeb1 (+/-) TAMs was 

transferable into wild-type tumor-bearing mice. Of note, c-myc, a proto-oncogene that 

promotes cancer cell proliferation, is also expressed by TAMs although its function in 

TAMs (e.g., tumor promoting or suppressing) has not been studied (Pello et al., 2012; 

Valledor et al., 2008).  

  

 

Expression of ZEB1 by malignant cells is a well-established prognostic and predictive 

biomarker in most cancers (Brabletz and Brabletz, 2010). My results here has shown that 

downregulation of ZEB1 in TAMs decreases their pro-tumor functions thus setting ZEB1 

expression in stromal cells in the microenvironment as a relevant target in cancer 

therapy. All these data presented here, introduced a new role of ZEB1 in myeloid lineage 

opening new possibilities to modulate ZEB1 expression in the innate immune system in 

the context of chronic inflammation, autoimmune disorders and cancer disease. The dual 

role of ZEB1 promoting tumor progression in cancer cells and TAMs—and through 

different mechanisms—has important implications for strategies aimed at blocking 

ZEB1. The simultaneous and mutually reinforcing expression of ZEB1 in TAMs and 

tumor cells sets ZEB1 as a target in cancer therapy whose expression has to be 

modulated at multiple levels. Emerging new diagnostic approaches in ovarian cancer 

patients like liquid biopsies would allow to evaluate ZEB1 levels in peritoneal 

macrophages in order to determine personalized treatment, prognosis, staging, and 

response to treatment. 

 

 

 

 

 

 

 



	 126	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 127	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Conclusions 
	



	 128	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 129	

 
• Zeb1 inhibits the differentiation of myeloid precursors towards LPMs and activates 

F4/80low-associated genes. 
 
 

• Zeb1 reduces macrophage phagocytic capacity while increasing their migration towards 
inflammatory foci and the tumor microenvironment. 
 
 

• Zeb1 expression in macrophages increases in the context of cancer cells where it 
reprograms TAMs towards a pro-tumoral phenotype. 
 
 

• Zeb1 in TAMs promotes a dedifferentiated and chemotherapy-resistant phenotype in 
cancer cells and promotes tumor progression in vivo by activating a Ccr2-Mmp9-Ccl2 
loop between TAMs and cancer cells.  
 
 

• In ovarian carcinomas, ZEB1 expression in tumor cells correlates with higher infiltration 
of TAMs and expression of ZEB1 in both cancer cells and TAMs determines poorer 
survival. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 130	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 131	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

     BIBLIOGRAPHY 
	



	 132	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 133	

1. Adib-Conquy M, Adrie C, Fitting C, Gattolliat O, Beyaert R, Cavaillon JM.Up-regulation of MyD88s and 
SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care 
Med. 2006;34(9):2377-85. 
 

2. Agrawal S, Anderson P, Durbeej M, van RN, Ivars F, Opdenakker G, Sorokin LM. Dystroglycan is 
selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in 
experimental autoimmune encephalomyelitis. J Exp Med. 2006;203(4):1007–1019. 
 

3. Ahmed AA, Mills AD, Ibrahim AE, Temple J, Blenkiron C, Vias M, Massie CE, Iyer NG, McGeoch A, 
Crawford R, Nicke B, Downward J, Swanton C, Bell SD, Earl HM, Laskey RA, Caldas C, Brenton JD. 
The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to 
paclitaxel. Cancer Cell. 2007;12(6):514-27. 
 

4. Ahn YH, Gibbons DL, Chakravarti D, Creighton CJ, Rizvi ZH, Adams HP, Pertsemlidis A, Gregory PA, 
Wright JA, Goodall GJ, Flores ER, Kurie JM. ZEB1 drives prometastatic actin cytoskeletal remodeling by 
downregulating miR-34a expression. J Clin Invest. 2012;122(9):3170-83. 
 

5. Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell 
differentiation, identity and function. Nat Rev Immunol. 2015;15(1):7-17.  
 

6. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. 
Front Immunol. 2014;5:491.  
 

7. Arnold CE, Whyte CS, Gordon P, Barker RN, Rees AJ, Wilson HM. A critical role for suppressor of 
cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in 
vivo. Immunology. 2014;141(1):96-110. 
 

8. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. 
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages 
to support myogenesis. J Exp Med. 2007;204(5):1057-69. 
 

9. Arranz A	 Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, 
Androulidaki A, Venihaki M, Margioris AN, Stathopoulos EN, Tsichlis PN, Tsatsanis C.. Akt1 and Akt2 
protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 
2012;109(24):9517-22. 
 

10. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. 
Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382-92.  
 

11. Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. 2008; J. Immunol. 
181(6):3733-9. 
 

12. Bergenfelz C., Medrek C., Ekstrom E., Jirstrom K., Janols H., Wullt M., Bredberg A., Leandersson K. 
Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. J. Immunol. 
2012;188(11):5448–5458. 
 

13. Bertrand JY, Cisson JL, Stachura DL, Traver D. Notch signaling distinguishes 2 waves of definitive 
hematopoiesis in the zebrafish embryo. Blood. 2010; 115(14):2777-83.  
 

14. Biswas SK, Bist P, Dhillon MK, Kajiji T, Del Fresno C, Yamamoto M, Lopez-Collazo E, Akira S, 
Tergaonkar V. Role for myd88-independent, trif pathway in lipid A/TLR4-induced endotoxin tolerance. J 
Immunol. 2007, 179(6):4083–92. 
 



	 134	

15. Biswas SK, Lopez-Collazo. E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. 
Trends Immunol. 2009; 30(10):475-487. 
 

16. Bobbs AS, Cole JM, Cowden Dahl KD. Emerging and Evolving Ovarian Cancer Animal Models. Cancer 
Growth and Metastasis. 2015;8(Suppl 1):29-36.  
 

17. Bonome, T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, 
Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients 
with ovarian cancer. Cancer Res. 2008;68(13):5478-5486. 
 

18. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development 
and cancer?. EMBO Rep. 2010;11(9):670-7. 
 

19. Brown PO, Palmer C. The preclinical natural history of serous ovarian cancer: defining the target for early 
detection. PLoS Med. 2009;6(7):e1000114.  
 

20. Cai Q, Yan L, Xu Y. Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. 
Oncogene. 2015;34(25):3315-24. 
 

21. Cain DW, O'Koren EG, Kan MJ, Womble M, Sempowski GD, Hopper K, Gunn MD, Kelsoe G. 
Identification of a tissue-specific, C/EBPβ-dependent pathway of differentiation for murine peritoneal 
macrophages. J. Immunol. 2013;191(9):4665-75. 
 

22. Cassado Ados A, D'Império Lima MR, Bortoluci KR. Revisiting mouse peritoneal macrophages: 
heterogeneity, development, and function. Front Immunol. 2015;6:225.  
 

23. Cassetta L, Pollard JW. Cancer immunosurveillance: role of patrolling monocytes. Cell Res. 2016;26(1):3-
4. 
 

24. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA, Weinberg 
RA. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances 
tumorigenicity. Cell. 2013;154(1):61-74. 
 

25. Chen M, Jin Y, Bi Y, Yin J, Wang Y, Pan L. A survival analysis comparing women with ovarian low-
grade serous carcinoma to those with high-grade histology. Onco Targets Ther. 2014;7:1891-1899.  
 

26. Chau WK, Ip CK, Mak AS, Lai HC, Wong AS. c-Kit mediates chemoresistance and tumor-initiating 
capacity of ovarian cancer cells through activation of Wnt/β-catenin–ATP-binding cassette G2 signaling. 
Oncogene 2013;32(22):2767-81.  
 

27. Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev 
Immunol. 2011; (11):788-98.  

 
28. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth 

SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R. Functional polarization of tumour-associated 
macrophages by tumour-derived lactic acid. Nature. 2014;513(7519):559-63. 

 
29. Colvin EK. Tumor-Associated Macrophages Contribute to Tumor Progression in Ovarian Cancer. Front 

Onc. 2014;4:137.  

 
30. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. 

Cell. 2006;124(2):263-6. 



	 135	

 
31. Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, 

Schischmanoff PO, Gattegno L, Oudar O, Sutton A, Charnaux N. Monocyte chemoattractant protein‐1 
(MCP‐1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma 
cells. Int J Cancer . 2010;126(5):1095-108. 
 

32. Davies LC, Taylor PR. Tissue-resident macrophages: then and now. Immunology. 2015;144(4):541-8.  
 

33. de Freitas A, Banerjee S, Xie N, Cui H, Davis KI, Friggeri A, Fu M, Abraham E, Liu G. Identification of 
TLT2 as an engulfment receptor for apoptotic cells. J Immunol. 2012;188(12):6381-6388. 
 

34. De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 
2013 Mar 18;23(3):277-86.  
 

35. Deng H, Maitra U, Morris M, Li L. Molecular Mechanism Responsible for the Priming of Macrophage 
Activation.  J Biol Chem. 2013;288(6):3897-3906.  
 

36. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an 
overview.  J Interferon Cytokine Res. 2009;29(6):313-26.  
 

37. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. Curr Protoc Bioinformatics. 
2015;51:11.14.1-19.  
 

38. Ebrahem Q, Chaurasia SS, Vasanji A,	Qi JH, Klenotic PA, Cutler A, Asosingh K, Erzurum S, Anand-Apte 
B. Cross-Talk between Vascular Endothelial Growth Factor and Matrix Metalloproteinases in the 
Induction of Neovascularization in Vivo.  Am J Pathol. 2010;176(1):496-503. 
 

39. Eisele PS, Salatino S, Sobek J, Hottiger MO, Handschin C. The peroxisome proliferator-activated receptor 
γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle 
cells. J Biol Chem. 2013;288(4):2246-60. 
 

40. Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N. CCL2/CCR2 chemokine signaling 
coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-
activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem. 2012;287(43):36593-608.  
 

41. Ferriss, JS, Kim Y, Duska L, Birrer M, Levine DA, Moskaluk C, Theodorescu D, Lee JK. Multi-gene 
expression predictors of single drug responses to adjuvant chemotherapy in ovarian carcinoma: predicting 
platinum resistance. PLoS One. 2012;7(2): e30550. 
 

42. Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte-macrophage colony-stimulating factor 
(CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles 
and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 
2007;78(8):5245-52. 
 

43. Fong MY, Kakar SS. Ovarian cancer mouse models: a summary of current models and their limitations. J 
Ovarian Res. 2009;2(1):12.  
 

44. Franklin RA, Li MO. Ontogeny of Tumor-Associated Macrophages and its implication in cancer 
regulation. Trends Cancer. 2016;2(1):20-34. 
 

45. Freudenberg MA, Galanos C. Induction of tolerance to lipopolysaccharide (LPS)-D-galactosamine lethality 
by pretreatment with LPS is mediated by macrophages. Infect Immun. 1988 ;56(5):1352-7. 



	 136	

 
46. Ghosn EEB, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, Bortoluci KR, Almeida SR, 

Herzenberg LA, Herzenberg LA. Two physically, functionally, and developmentally distinct peritoneal 
macrophage subsets. Proc Acad Natl Sci USA. 2010;107(6):2568-73. 
 

47. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer 
CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and 
malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 
2007;1(5):555-67. 
 

48. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat 
Rev Immunol. 2014;14(6):392-404.  
 

49. Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9–expressing macrophages and 
angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 2004;114:623-33. 
 

50. Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 
activation by plasminogen in mice. J. Clin Invest. 2008;118(9):3012-24. 
 

51. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, 
Garner H, Geissmann F, Glass CK. Environment drives selection and function of enhancers controlling 
tissue-specific macrophage identities. Cell. 2014;159(6):1327-40.  
 

52. Goossens S, Haigh J. The Role of EMT Modulators in Hematopoiesis and Leukemic Transformation. 
Hematology : Science and Practice. Ed. Charles H Lawrie. Rijeka, Croatia: InTech, 2012. 101–120.  
 

53. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. 
Nat Rev Cancer. 2002;2(1):48-58. 
 

54. Greenaway J, Moorehead R, Shaw P, Petrik J. Epithelial-stromal interaction increases cell proliferation, 
survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol. 
2008;108(2):385-94.  
 

55. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, Charles K, Gordon S, Balkwill FR. 
Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol  
2006;176(8):5023-32. 
 

56. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR. 
“Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 2008;205(6):1261-8. 
 

57. Hagerling C, Casbon A-J, Werb Z. Balancing the innate immune system in tumor development. Trends in 
cell biology. 2015;25(4):214-220.  
 

58. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.  
 

59. Hasan N, Ohman AW, Dinulescu DM. The promise and challenge of ovarian cancer models. Transl 
Cancer Res. 2015;4(1):14-28.  
 

60. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, 
Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, García-Sastre A, Stanley ER, 
Ginhoux F, Frenette PS, Merad M. Tissue-resident macrophages self-maintain locally throughout adult life 
with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792-804.  
 



	 137	

61. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M. 
MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific 
metastasis. Cancer Cell, 2002;2(4):289-300. 
 

62. Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J1, Low I, Forsberg EC, 
Poidinger M1, Zolezzi F, Larbi A, Ng LG, Chan JK, Greter M, Becher B, Samokhvalov IM, Merad M, 
Ginhoux F. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident 
macrophages. Immunity. 2015;42(4):665-78.  
 

63. Huang S Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ. Contributions of stromal 
metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst. 
2002;94(15):1134-42. 
 

64. Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, Swan R, Kherouf H, Monneret G, Chung CS, 
Ayala A. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the 
innate inflammatory response to sepsis. Proc Natl Acad Sci U S A. 2009;106(15):6303-8.  
 

65. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A, Mellano A, Senetta R, Cassenti A, 
Sonetto C, Inghirami G, Trusolino L, Fekete Z, De Ridder M, Cassoni P, Storme G, Bertotti A, Medico E. 
Stromal contribution to the colorectal cancer transcriptome. Nat Genet. 2015;47:312-9. 
 

66. Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional 
Differentiation. Front Immunol. 2014 ;17;5:514.  
 

67. Jin M, Yang Z, Ye W, Xu H, and Hua X. MicroRNA-150 predicts a favorable prognosis in patients with 
epithelial ovarian cancer, and inhibits cell invasion and metastasis by suppressing transcriptional repressor 
ZEB1. PLoS One. 2014;9(8):e103965. 
 

68. Jones GE, Prigmore E, Calvez R, Hogan C, Dunn GA, Hirsch E, Wymann MP, Ridley AJ. Requirement 
for PI 3-kinase gamma in macrophage migration to MCP-1 and CSF-1. Exp Cell Res. 2003;290(1):120-31. 
 

69. Keller E, Hall C, Aaronson S. shRNA Materials and Methods of Using Same for Inhibition of DKK-1. 
2008; US 20080293053  
 

70. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune 
escape. Immunology. 2007;121(1):1-14.  
 

71. Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy 
and research. Nat Rev Cancer. 2013;13(4):273-82.  
 

72. Kitamoto S, Egashira K, Ichiki T, Han X, McCurdy S, Sakuda S, Sunagawa K, Boisvert WA. Chitinase 
inhibition promotes atherosclerosis in hyperlipidemic mice. Am J Pathol. 2013;183(1):313-325. 
 

73. Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol. 
2003;4(12):1169-76. 
 

74. Kwon SJ, Crespo-Barreto J, Zhang W, Wang T, Kim DS, Krensky A, Clayberger C. KLF13 cooperates 
with c-Maf to regulate IL-4 expression in CD4+ T cells.  J Immunol. 2014;192(12):5703-5709. 
 

75. Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, Chang MW, Beckman SK, Cook 
AD, Hamilton JA. Defining GM-CSF–and macrophage-CSF–dependent macrophage responses by in vitro 
models. J Immunol. 2008;188(11):5752-65. 



	 138	

 
76. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. Tissue-resident 

macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312-26.  
 

77. Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in 
peripheral tissues. Nat Rev Immunol. 2015;15(12):731-44.  
 

78. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with 
identity. Nat Rev Immunol. 2011;11:750-61. 
 

79. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat 
Rev Immunol. 2012;12(5):383-96.  
 

80. Lengyel E. Ovarian Cancer Development and Metastasis. Am J Pathol. 2010;177(3):1053-1064. 
 

81. Leong KG, Wang BE, Johnson L, Gao WQ.  Generation of a prostate from a single adult stem cell. Nature. 
2008;456(7223):804-808. 
 

82. Levi BP, Yilmaz OH, Duester G,  Morrison SJ.  Aldehyde dehydrogenase 1a1 is dispensable for stem cell 
function in the mouse hematopoietic and nervous systems. Blood. 2009;113(8):1670-1680.  
 

83. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 
2006;66(2):605-12. 
 

84. Li B, Dewey CN.RSEM: accurate transcript quantification from RNA-Seq data with or without a reference 
genome. BMC Bioinformatics. 2011; 4;12:323.  
 

85. Li F, Faustino J, Woo MS, Derugin N, Vexler ZS.  Lack of the scavenger receptor CD36 alters microglial 
phenotypes after neonatal stroke. J Neurochem. 2015;135(3):445-52.  
 

86. Li H, Mar BG, Zhang H, Puram RV, Vazquez, Weir BA, Hahn WC, Ebert B4, Pellman D. The EMT 
regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood. 
2017;129(4):497-508.  
 

87. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Targeting the CCL2-CCR2 signaling axis in 
cancer metastasis. Oncotarget. 2016;7(19):28697-710. 
 

88. Lin ZS, Chu HC, Yen YC, Lewis BC, Chen YW. Krüppel-like factor 4, a tumor suppressor in 
hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. 
PLoS One. 2012;7(8):e43593. 
 

89. Liu J, Matulonis UA. New strategies in ovarian cancer: translating the molecular complexity of ovarian 
cancer into treatment advances. Clin Cancer Res. 2014;20(20):5150-6.  
 

90. Liu Y, Lu X, Huang L, Wang W, Jiang G, Dean KC, Clem B, Telang S, Jenson AB, Cuatrecasas M, 
Chesney J, Darling DS, Postigo A, Dean DC. Different thresholds of ZEB1 are required for Ras-mediated 
tumour initiation and metastasis. Nat Commun. 2014;5:5660. 
  

91. Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. Mitogen-Activated Protein Kinases and Mitogen 
Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology. Front Mol Biosci. 2016;3:28. 
 

92. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. 
F1000Prime Rep. 2014;6:13. 



	 139	

 
93. Mateescu, B,	Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, 

Sastre-Garau X, Mechta-Grigoriou F..miR-141 and miR-200a act on ovarian tumorigenesis by controlling 
oxidative stress response. Nature Med. 2011;17(12):1627-1635. 
 

94. Medina RJ, O'Neill CL, O'Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA, Stitt AW. Myeloid 
angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol 
Med. 2011;17(9-10):1045-55. 
 

95. Medrano M, Communal L, Brown KR, Iwanicki M, Normand J, Paterson J, Sircoulomb F, Krzyzanowski 
P, Novak M, Doodnauth SA, Saiz FS, Cullis J, Al-Awar R, Neel BG, McPherson J, Drapkin R, Ailles L, 
Mes-Massons AM1 Rottapel R. Interrogation of Functional Cell-Surface Markers Identifies CD151 
Dependency in High-Grade Serous Ovarian Cancer. Cell Rep. 2017;18(10):2343-2358.  
 

96. Mihály, Z, Kormos M, Lánczky A, Dank M, Budczies J, Szász MA, Győrffy B. A meta-analysis of gene 
expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer 
Res Treat. 2013;140(2): 219-32. 
 

97. Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A, Planas AM. Immature 
monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of 
alternative activation. Brain Behav Immun. 2016;53:18-33.  
 

98. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association 
network integration algorithm for predicting gene function. Genome Biol. 2008;9 Suppl 1:S4.  
 

99. Mor-Vaknin N, Legendre M, Yu Y, Serezani CH, Garg SK, Jatzek A, Swanson MD, Gonzalez-Hernandez 
MJ, Teitz-Tennenbaum S, Punturieri A, Engleberg NC, Banerjee R, Peters-Golden M, Kao JY, Markovitz 
DM.  Murine colitis is mediated by vimentin. Sci Rep. 2013;3:1045.  
 

100. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, 
Lawrence T, Locati M1 Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze 
JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. Macrophage 
activation and polarization: nomenclature and experimental guidelines. Immunity.  2014;41(1):14-20. 
 

101. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan YX, Qiu J, 
Park J, Sinha P, Bissell MJ, Frengen E, Werb Z, Egeblad M. Imaging tumor-stroma interactions during 
chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012;21(4):488-
503. 
 

102. Nieto MA, Huang R, Jackson RY-J, Thiery JP. EMT:2016. Cell. 2016; 166(1):21-45. 
 

103. Novakovic B, Habibi E, Wang SY, Arts RJ, Davar R, Megchelenbrink W, Kim B, Kuznetsova T, Kox M, 
Zwaag J, Matarese F, van Heeringen SJ, Janssen-Megens EM, Sharifi N, Wang C1, Keramati F, 
Schoonenberg V, Flicek P, Clarke L, Pickkers P, Heath S, Gut I, Netea MG, Martens JH, Logie C, 
Stunnenberg HG.  β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell. 
2016;167(5):1354-1368.  
 

104. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 
2014;41(1):49-61. 
 

105. Okabe Y, Medzhitov R.  Tissue-specific signals control reversible program of localization and functional 
polarization of macrophages. Cell 2014; 157(4):832-44. 
 



	 140	

106. Olmeda D, Jordá M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth 
and invasiveness. Oncogene. 2007;26:1862-74. 
 

107. Ostuni, R, Kratochvill F. Murray PJ, Natoli G. Macrophages and cancer: from mechanisms to therapeutic 
implications. Trends Immunol. 2015;36(4):229-39. 
 

108. Padda SK, Narayan R, Burt BM, Engleman EG. Tumor Immunology. Reviews in Cell Biology and 
Molecular Medicine 2015;1:244–299. 
 

109. Parcesepe P, Giordano G, Laudanna C, Febbraro A, Pancione M. Cancer-Associated Immune Resistance 
and Evasion of Immune Surveillance in Colorectal Cancer. Gastroenterol Res Pract. 2016;2016:6261721.  
 

110. Pixley FJ. Macrophage Migration and Its Regulation by CSF-1. Int J Cell Biol. 2012;2012:501962. 
 

111. Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A, Doni A, Nebuloni M, Swigart 
LB, Evan GI, Mantovani A, Locati M. Role of c-MYC in alternative activation of human macrophages and 
tumor-associated macrophage biology. Blood. 2012;119(2): 411-421. 
 

112. Pena OM, Pistolic J, Raj D, Fjell CD, Hancock RE. Endotoxin tolerance represents a distinctive state of 
alternative polarization (M2) in human mononuclear cells. J Immunol. 2011;186(12):7243-54. 
 

113. Pérez-de Puig I, Miró F, Salas-Perdomo A, Bonfill-Teixidor E, Ferrer-Ferrer M, Márquez-Kisinousky L, 
Planas AM. IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without 
preventing resolution of the lesion. J Cereb Blood Flow Metab. 2013;33(12):1955-66.  
 

114. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from 
adenoma to carcinoma. Nature. 1998; 392(6672):190-3. 
 

115. Postigo A, Dean DC. ZEB represses transcription through interaction with the corepressor CtBP. Proc Nat 
Acad Sci USA. 1999;96(12):6683-8. 
 

116. Postigo A, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment 
of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22(10):2453-62. 
 

117. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric 
disease. Nat Rev Neurosci. 2014;15(5):300-12.  
 

118. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Trumper L, Binder C. Wnt5a signaling is 
critical for macrophage-induced invasion of breast cancer cell lines. Proc. Natl. Acad. Sci. USA. 
2006;103(14):5454–5459. 
 

119. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 
recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature.  2011;475(7355):222-5. 
 

120. Qie Y, Yuan H, von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, 
Kim BY. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by 
distinct macrophage phenotypes. Sci Rep. 2016; 19;6:26269.  
 

121. Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 
2013;19(11):1423-1437.  
 



	 141	

122. Rajaiah R, Perkins DJ, Polumuri SK, Zhao A, Keegan AD, Vogel SN. Dissociation of Endotoxin 
Tolerance and Differentiation of Alternatively Activated Macrophages. J Immunol. 2013;190(9):4763-
4772. 
 

123. Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with conditional inactivation of 
the von Hippel-Lindau tumor suppressor. Cancer Res. 2006;66:2576-83. 
 

124. Rei M, Gonçalves-Sousa N, Lança T, Thompson RG, Mensurado S, Balkwill FR, Kulbe H, Pennington DJ, 
Silva-Santos B. Murine CD27(-) Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via 
mobilization of protumor small peritoneal macrophages. Proc Natl Acad Sci USA. 2014;111(34):E3562-70.  
 

125. Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, 
Wagner U, Müller-Brüsselbach S, Müller R. Mixed-polarization phenotype of ascites-associated 
macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early 
relapse. Int J Cancer 2014;134(1):32-42.  
 

126. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression 
analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40.  
 

127. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Persons DL, Smith PG, Terranova PF. 
Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 
2000;(4):585-91. 
 

128. Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL, Mauri D, Burns K, Riederer BM, Akira S, 
Calandra T. Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc 
Natl Acad Sci U S A. 2009;17;106(7):2348-52.  
 

129. Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B, Stone TC, O'Donnell VB, Fraser DJ, Jones SA, Taylor 
PR. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science. 
2014;344(6184):645-648.  
 

130. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science. 
2009;324(5935):1670-3.  
 

131. Sánchez-Tilló E, Comalada M, Xaus J, Farrera C, Valledor AF, Caelles C, Lloberas J, Celada A. JNK1 Is 
required for the induction of Mkp1 expression in macrophages during proliferation and lipopolysaccharide-
dependent activation. J Biol Chem. 2007;282(17):12566-73.  
 

132. Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A. β-catenin/TCF4 complex 
induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. 
Proc Natl Acad Sci USA. 2011;108:19204-9. 
 

133. Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, 
Becker A, Kenny HA, Peter ME, Ramakrishnan V, Yamada SD, Lengyel E. Loss of E-cadherin promotes 
ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res. 2008;68(7):2329-39. 
 

134. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, 
Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F. A lineage of myeloid cells independent of 
Myb and hematopoietic stem cells. Science. 2012;336:86-90. 
 

135. Scott CH, Soen B, Martens L, Skrypek N, Saelens W, Taminau J, Blancke G, Isterdael GV, Huylebroeck 
D, Haigh J, Saeys Y, Guilliams M, Lambrecht BN, Berx G. The transcription factor Zeb2 regulates 
development of conventional and plasmacytoid DCs by repressing Id2. J Ex Med. 2016, 213 (6) 897-911. 



	 142	

 
136. Seeley JJ, Ghosh S.Molecular mechanisms of innate memory and tolerance to LPS. J Leukoc Biol. 

2017;101(1):107-119.  
 

137. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires 
signals mediated by chemokine receptor CCR2. Nat Immunol, 2006;7(3):311-7. 
 

138. Sessa R, Yuen D, Wan S, Rosner M, Padmanaban P, Ge S, Smith A, Fletcher R, Baudhuin-Kessel A, 
Yamaguchi TP, Lang RA, Chen L. Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis. 
Cell Res. 2016;26(2):262-5.  
 

139. Shalova IN, Lim JY, Chittezhath M, Zinkernagel AS, Beasley F, Hernández-Jiménez E, Toledano V, 
Cubillos-Zapata C, Rapisarda A, Chen J, Duan K, Yang H, Poidinger M, Melillo G, Nizet V, Arnalich F, 
López-Collazo E, Biswas SK. Human monocytes undergo functional re-programming during sepsis 
mediated by hypoxia-inducible factor-1α. Immunity. 2015;42(3):484-98.  
 

140. Si Y, Tsou CL, Croft K, Charo IF. CCR2 mediates hematopoietic stem and progenitor cell trafficking to 
sites of inflammation in mice.  J. Clin Invest. 2010;120(4):1192-203. 
 

141. Sica A, Mantovani A.J. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 
2012;122(3):787-95.  
 

142. Siles L, Sánchez-Tilló E, Lim JW, Darling DS, Kroll KL, Postigo A. ZEB1 imposes a temporary stage-
dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional 
repression. Mol Cell Biol. 2013;33:1368-82. 
 

143. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds 
RK, Wicha MS, Buckanovich RJ. Aldehyde dehydrogenase in combination with CD133 defines 
angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71(11):3991-
4001. 
 

144. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. 
Cancer Res. 2013;1;73(17):5315-9.  
 

145. Smith HA, Kang Y. The Metastasis-Promoting Roles of Tumor-Associated Immune Cells. J Mol Med. 
2013;91(4):411-429.  
 

146. Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, Zhang J, Cui X, Zheng F, 
Li H, Yao H, Su F, Song E. A positive feedback loop between mesenchymal-like cancer cells and 
macrophages is essential to breast cancer metastasis. Cancer Cell 2014;25(5):605-20. 
 

147. Takagi T, Moribe H, Kondoh H, Higashi Y.  dEF1, a zinc finger and homeodomain transcription factor, is 
required for skeleton patterning in multiple lineages. Development. 1998;125(1):21-31. 
 

148. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, 
Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA. Core epithelial-to-
mesenchymal transition interactome gene-expression signature is associated with claudin-low and 
metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A. 2010;107(35):15449-54. 
  

149. Tomlinson ML, Garcia-Morales C, Abu-Elmagd M, Wheeler GN. Three matrix metalloproteinases are 
required in vivo for macrophage migration during embryonic development. Mech Dev. 2008;125(11-
12):1059-70. 
 



	 143	

150. Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes  Dev. 
2013;27(20):2192-2206.  
 

151. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF. Critical roles for 
CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J 
Clin Invest. 2007;117(4):902-9.  
 

152. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour 
microenvironment. Nat Rev Immunol. 2015;15(11):669-82.  
 

153. Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol. 
2012;12(7):492-502. 
 

154. van Furth, R, Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968;128, 
415–435. 
 

155. Valledor AF, Arpa L, Sánchez-Tilló E, Comalada M, Casals C, Xaus J, Caelles C, Lloberas J, Celada A. 
IFN-{gamma}-mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity 
in response to M-CSF and inhibition of proliferation. Blood. 2008;112(8):3274-82.  
 

156. Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and 
disease. Cell Mol Life Sci. 2009;66(5):773-87.  
 

157. Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 
2015;33:643-75.  
 

158. Wang J, Lee S, Teh CE, Bunting K, Ma L, Shannon MF. The transcription repressor, ZEB1, cooperates 
with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells. Int Immunol. 2009;21(3):227-35. 
 

159. Wang N, Liang H, Zen K. Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization 
Balance. Front Immunol. 2014;5:614. 
 

160. Wei K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M, Maruyama S, Zhu W, Fajardo G, Noseda M, 
Nakamura K, Tian X, Liu Q, Wang A, Matsuura Y, Bushway P, Cai W, Savchenko A, Mahmoudi M, 
Schneider MD, van den Hoff MJ, Butte MJ, Yang PC, Walsh K, Zhou B, Bernstein D, Mercola M, Ruiz-
Lozano P. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;25:479-
485. 
 

161. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, 
zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck 
T, Brabletz S, Brabletz T. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-
inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487-95. 
 

162. Wen Z, Liu H, Li M, Li B, Gao W, Shao Q, Fan B, Zhao F, Wang Q, Xie Q, Yang Y, Yu J, Qu X. 
Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated 
macrophage infiltration.  Oncogene. 2015; 5;34(10):1241-52.  
 

163. Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer 
malignancy. NPJ Breast Cancer. 2016;2. pii: 15025.  
 

164. Wilson HM. SOCS Proteins in Macrophage Polarization and Function. Front Immunol. 2014;5:357.  
 



	 144	

165. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A, Simonavicius N, Schneider C, Lang M, Stürzl 
M, Croner RS, Konrad A, Manz MG, Moch H, Aguzzi A, van Loo G, Pasparakis M, Prinz M, Borsig L, 
Heikenwalder M. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via 
the JAK2-Stat5 and p38MAPK pathway. Cancer Cell. 2012;22(1):91-105.  
 

166. Wu X, Briseño CG, Grajales-Reyes GE, Haldar M, Iwata A, Kretzer NM, Kc W, Tussiwand R, Higashi Y, 
Murphy TL, Murphy KM. Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell 
and monocyte fate. Proc Natl Acad Sci U S A. 2016;113(51):14775-14780. Wynn TA, Chawla A, Pollard 
JW. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease. Nature. 
2013;496(7446):445-455.  
 

167. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, 
Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz 
E, Freeman TC, Ulas T, Schultze JL. Transcriptome-based network analysis reveals a spectrum model of 
human macrophage activation. Immunity 2014;40(2):274-88. 
 

168. Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G, Min W. Tumor-
associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. 
J Clin Invest. 2016;126(11):4157-4173.  

 
169. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, 

Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S. Fate mapping reveals origins and 
dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79-91.  

 
170. Zamilpa R, Kanakia R, Cigarroa J, Dai Q, Escobar GP, Martinez H, Jimenez F, Ahuja SS, Lindsey ML. 

CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling 
following myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;300(4):H1418-H1426.  

 
171. Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated 

suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7(32):52294-52306.  

 
172. Zhang W, Tian J, Hao Q. HMGB1 combining with tumor-associated macrophages enhanced 

lymphangiogenesis in human epithelial ovarian cancer. Tumour Biol. 2014;35(3):2175-86.  

 
173. Zhang X, Goncalves R, Mosser DM.. The isolation and characterization of murine macrophages. In: Curr 

Protoc Immunol. 2008;Chapter 14.1.  

 
174. Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson 

A. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1−/− mice is correlated 
to increased cellular senescence. Redox Biology. 2017;11:30-37. 

 
175. Zheng S, Hedl M, Abraham C. Twist1 and Twist2 contribute to cytokine downregulation following chronic 

NOD2 stimulation of human macrophages through the coordinated regulation of transcriptional repressors 
and activators. J Immunol. 2015;195(1):217-226.  
 
	

 

 

 



	 145	

 

 


	MCH_COVER
	Tesis completa Marlies
	Portada Tesis4.pdf
	Tesis Marlies DEPOSITO TDX.pdf


