PHYSICAL REVIEW D

VOLUME 52, NUMBER 8

15 OCTOBER 1995

Semiclassical back reaction in the formation of a straight cosmic string
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We derive the back reaction on the gravitational field of a straight cosmic string during its
formation due to the gravitational coupling of the string to quantum matter fields. A very simple
model of string formation is considered. The gravitational field of the string is computed in the linear
approximation. The vacuum expectation value of the stress tensor of a massless scalar quantum field
coupled to the string gravitational field is computed to one loop order. Finally, the back-reaction
effect is obtained by solving perturbatively the semiclassical Einstein’s equations.
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I. INTRODUCTION

Cosmic strings are macroscopic topological defects that
may have been produced at phase transitions in the early
universe [1]. They are predicted by gauge theories with
spontaneous breakdown of symmetry whenever the un-
broken subgroup contains a discrete symmetry as is the
case of many grand unified theories (GUT’s), although
not in the simplest unified group SU(5). The GUT
strings would have been produced when the universe was
10734 sec old and had a temperature of T ~ 10'4-106
GeV. The gravitational field of such strings may seed
structure and, in fact, a network of these strings is an
alternative to inflation for the generation of the universe
structure [2—4].

There are two types of gravitational quantum effects
associated with cosmic strings (or to any other topo-
logical defect) which result from the interaction of the
string’s gravitational field with any quantum field (i.e.,
matter) present: namely, particle creation and vacuum
polarization. When a string forms, a sudden change in
the gravitational field takes place which may translate
into copious quantum pair production of particles in a
way similar as electron-positron pairs are created by ex-
ternal electromagnetic fields. This effect has been con-
sidered by several authors in different settings which go
from various models of string formation [5,6] to oscillat-
ing string loops [7]. The main conclusion is that even
though very energetic particles may be created the cos-
mological significance of these is very small compared to
the background radiation at the time of formation. Typ-
ically, the ratio of the energy density of particles created
by the formation of the strings and the energy density
of the radiation is of order N2(Gpu)?, where N is the
number of particle species, G Newton’s gravitational con-
stant, and p is the energy per unit length of the string;
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for GUT strings pu ~ 1022 g/cm, the square of the GUT
mass, and thus Gu ~ 1076, For particles created by os-
cillating loops such a ratio is much higher, N3/2(Gu)?,
but still cosmologically insignificant unless, of course, the
number of particles is absurdly large; at GUT time we
expect N ~ 102,

Vacuum polarization effects due to quantum fluctua-
tions of matter fields have been much less studied. This
is due, in part, to the fact that one does not expect very
significant changes in the classical string network picture
as a consequence of such effects, but also in part because
the computation of such effects is difficult [8,9]. The vac-
uum expectation value of the stress tensor of quantum
fields around the string is generally different from zero
even for a static string; consequently, it is the source of
a gravitational field which, in turn, modifies the clas-
sical gravitational field of the string. This is the back-
reaction effect of quantum matter on the classical gravita-
tional field. For example, the gravitational field outside
an unperturbed (i.e., not wiggly) straight static string
is described by the metric given by flat spacetime with
a deficit angle in the plane perpendicular to the string
[10-13]. The quantum stress tensor for conformally cou-
pled scalar fields has been computed exactly by Linet [14]
and by Helliwell and Konkowski [15] who found that the
energy density goes like NAGur~*%, where r is the radial
distance from the string axis. Such energy density cre-
ates in the weak field approximation a Newtonian poten-
tial outside the string of the order of ® ~ NAGur~2. In
fact, Hiscock [8] solved the semiclassical Einstein’s equa-
tions to linear order in this case and found the back re-
action in the gravitational field of the cosmic string. The
result is that the spacetime surrounding the string is no
longer flat with a deficit angle: The two-surface perpen-
dicular to the string is hyperboloid (rather than a cone)
and the corrections to the flat metric are of the order
just described. Two consequences of this are clear: One
is that a static string will exert Newtonian forces on sur-
rounding nonrelativistic particles; the other is that when
two cosmic strings approach they should feel increasingly
strong attractive forces. The relative significance of these
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effects will be discussed laier on.

In this paper we compute the back reaction on the
gravitational field of a cosmic string when it is formed.
Now in addition to pure vacuum polarization effects, as
in the case of a static string, we have an effect due to
the creation of particles which also contributes to the
quantum stress tensor. The computation is made within
the linear approximation of the semiclassical correction
to Einstein’s equations; i.e., we assume that the space-
time metric departs from the Minkowski metric by linear
terms h,, only. This approximation is appropriate when-
ever the energy per unit length of the string satisfies that
Gup < 1, which is certainly true for GUT strings. Also
the vacuum expectation value of the stress tensor for mat-
ter fields is computed perturbatively to first order in h,,
and to the one loop order using the results by Horowitz
[16] and Jordan [17] when the background metric is flat.
More general results for the stress tensor in conformally
flat backgrounds are known [18,19] but here we ignore
the effect due to the cosmological expansion. To this or-
der the stress tensor does not include the energy of the
particles created, which is second order in h,,; however,
particle creation effects such as those due to transition el-
ements from vacuum to two particles states are included
in this linear order, see the discussion in Ref. [19].

To implement string formation we use a very simple
macroscopic model for the classical stress tensor of the
string. The field dynamics of string formation is too com-
plicated an issue to be described at microscopic level and
one is restricted to consider rough macroscopic models
for this process. The models are either implemented by
giving the gravitational field of the string [5,20] or by giv-
ing a prescribed form of the string stress tensor [6,7,21].
The results for particle creation are rather independent
of specific models and thus we take the simplest model
based on the stress tensor given in Ref. [7]. In this model
the string is always there, first as a dust straight line
source, and it is the string tension which grows in time;
in this way the stress tensor is automatically conserved.

The plan and a summary of the main results of the
paper are the following. In Sec. II we describe the model
of string formation and derive its gravitational field in
the linear approximation. We allow for the possibility
that the string be a straight wiggly string. Straight wig-
gly strings are segments of long strings with small scale
structure whose effective stress tensor may be described
by a straight string with effective mass per unit length
larger than the unperturbed one (i.e., with no small scale
structure) and an effective tension which is also less than
the mass per unit length [22]. They appear as long strings
in the numerical simulations of string evolution [23] and
may be the seeds of large scale structure [3,24]. As a
consequence of linearity we can split the stress tensor in
two parts: one which is static and whose gravitational
field is easily solved and a time-dependent part whose
gravitational field is found by solving the correspond-
ing initial value problem. For simplicity we also use the
sudden approximation, this introduces divergences in the
gravitational field along the future light cone which must
be regularized. To get rid of gauge effects which appear
in the metric tensor we also compute the Riemann ten-
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sor. The evolution at large times of this tensor differs,
of course, if the string is wiggly or unperturbed. In the
first case we have Newtonian-like potentials which help
in building wakes [3] whereas in the second the curvature
tends to zero corresponding to flat space with a deficit
angle.

In Sec. IIT the vacuum expectation value of the stress
tensor outside the string for matter conformally coupled
to the string’s time dependent gravitational field is de-
rived. It is seen that after a short transient period the
stress tensor settles down to the values of a static, wiggly
or unperturbed, string. In both cases, the energy density
goes like NAiGur~* as one expects from dimensional ar-
guments. Note that, for GUT strings, the string radius
is 79 ~ 1073% cm, corresponding to the Compton wave-
length of the GUT mass, and this radius set bounds on
the energy density.

In Sec. IV the semiclassical Einstein’s equations for our
problem are solved to find the back reaction of the quan-
tum matter on the gravitational field of the string. We
can also split the stress tensor into a static source, which
includes the static part of the classical source and of the
quantum stress tensor, and a time-dependent part. The
Riemann tensor is computed using some approximations
in the stress tensor and we discuss specially its behav-
ior at large times. The results are quite different if the
string is wiggly or unperturbed. For wiggly strings there
is a Newtonian potential at the classical level already and
the quantum correction to such potential is too small to
quantitatively modify wake formation behind a moving
string. For unperturbed strings there is no Newtonian
potential at the classical level but a Newtonian potential
appears as a quantum correction and, thus, the string
will exert a force on nonrelativistic matter. However,
this effect would be only significant when r is very small,
say, of the order of 7o, i.e., only at a microscopic scale.
Perhaps back reaction might be significant to modify the
dynamics of string crossing; however, we should keep in
mind that when two strings approach at a distance of
order 79 the dynamics is dominated by the microscopic
field dynamics and the effective macroscopic picture that
we use breaks down.

II. CLASSICAL ANALYSIS

In this section we compute the gravitational field cre-
ated by the string as it is formed. We use the follow-
ing classical stress tensor for the formation of a straight
string which lies along the z axis [7]:

Tr, = pé(z)d(y) diag(1,0,0,76(t)), (2.1)
where g is the mass per unit length of the string, 6(t)
the step function, and 7 a parameter (0 < 7 < 1) used to
modulate the tension u7 of the string. If 7 = 1, the string
is an unperturbed cosmic string, whereas if 7 < 1, this
tensor gives a macroscopic description of a straight but
wiggly cosmic string. In this last case the effective equa-
tion of state for the string is [22,25] Tu? = pZ, where
fo is the unperturbed mass per unit length (i.e., for a
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GUT string Guo ~ 10‘6). From numerical simulations
one has in the matter era the typical value (3] u ~ 1.4u0
(i.e., 7 ~ 0.5). Note that when the string forms each seg-
ment may be approximated by an unperturbed cosmic
string; a long segment becomes wiggly only after evolu-
tion of the string network by string intersection and by
chopping off small loops. Thus back reaction is more im-
portant when an unperturbed string forms, since it takes
the smallest time; however, we keep 7 arbitrary in what
follows since vacuum polarization will also exist once the
string settles into a wiggly string and, in any way, keep-
ing 7 arbitrary allows a simple identification ot the time
dependent effects.

In Ref. [21] a refinement of this model is considered in
which the compensating issue [26] is discussed in some
detail. This issue arises in more realistic scenarios when
both ordinary matter and cosmic strings are present; it
concerns the restrictions on the matter and metric per-
turbations due to the conservation laws of the total stress
tensor (i.e., including matter and defects). Note also that
in the classical stress tensor (2.1) we are using two si-
multaneous approximations. The first is the thin line
approximation which assumes that the string has zero
thickness, but, as we have emphasized earlier, a physical
string has a radius r¢ which gives a cutoff radius inside
which the approximation cannot be trusted. The second
is the step approximation which assumes that the string
is suddenly formed at time ¢t = 0; the use of 0(t) instead
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of a smooth function which grows from zero to one in a
certain time T requires a cutoff in the momentum of the
quantum modes of the order of 1/T". The time of forma-
tion T is bounded by the age of the universe when the
string forms (for GUT strings T < 10734 sec).

In the weak field approximation the metric in Cartesian
coordinates can be written as

gMV(m) = 77;w + huu(w)a (22)

where n,, = diag(1,—-1,-1,-1), | hy, |< 1, and we
have the gauge freedom, due to infinitesimal coordinate
changes z'# = z* + {#(z), that

h:w =huy + &y + & (2.3)

for arbitrary £*(z). Einstein’s equations for the metric
perturbation h,, can be written in the harmonic gauge
(h#¥ — %n“”h"‘a),u =0 as

Ohyy = —167 GS,,, (2.4)
where S, = Ty, —% Nue TS, and we still have the freedom
within the harmonic gauge of choosing functions £#(z)
such that O&*(z) = 0.

Since we start with a static prescribed metric before
the string forms at ¢ = 0, we can find the solution of
(2.4) for t > 0 as a Cauchy problem. As is well known,
such a solution is given by Kirchhoff’s formula

hu(t, &) = / d*z’ [8phyu (0,8 ) D(t, & — &) + b (0,8") 8, D(t, & — &' ]

R3

t
——167rG/ dt’/ d*z' Dp(t—t',Z — ') S,.(t, %),
0 RS

(2.5)

where Dp, is the retarded Green function for a massless scalar field, i.e., Dr(z — z') = 2 d[(z — z)?]0(t — t') or
£6(t—t'—|F—z'|)/|£—2'|, and D = Dg — D4 is the Schwinger Green function (D, is the advanced Green
function), which may be written as D(z — z') = 5= 8[(x — 2')?] [0(t — t') — 8(t' — t)]. The first integral in (2.5) is over
the hypersurface t' = 0 and it is the solution of the homogenous equation which satisfies the boundary conditions
given by the metric h,, and its first time derivative 8y h,,, at ¢’ = 0. The second integral is the solution of the
inhomogeneous equation which vanishes at ¢ = 0 (i.e., the boundary conditions are implemented with the solution of
the homogeneous equation) and has support (see Dg) on the truncated past light cone starting at (¢,&) and ending
at the hypersurface ¢/ = 0.

The solution of (2.4) for the stress tensor (2.1) is somewhat simplified if we write (2.1) as the sum of two stress

tensors, both conserved, one of them T,S,l,) static and the other T;(“z,) time dependent: i.e., T}, = ,S,l,) + T,S.z,), with

7@ b = ué(x)d(y) diag(1,0,0,0), 7 b, = uréd(z)é(y) 6(t) diag(0,0,0,1). (2.6)

This leads us to write h,, = hfll.,) + hflz.,), where hf},,) is the static metric corresponding to the source T,g,l,) and h,(,z,,)
is the time-dependent part corresponding to the source T,(uz,). The field equation (2.4) for the static part h,(},,) is now
simply

V2h() = 8nGué(x)d(y) diag(1,1,1,1), (2.7)
which, using the cylindrical symmetry of the problem, has the solution
T
h = hE) = Al = b = 4Guln (£) = alr), (28)

2

where 2 = 2% + y% and R is an arbitrary constant with dimensions of length.
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The field equation for the time-dependent metric perturbation h,(‘z.,) is now given by

Oh) = —8rGuré(x)d(y) 6(t) diag(—1,1,1,—1), (2.9)

whose solution as a Cauchy problem is given by (2.5), but we note that since the boundary conditions for these
components are obviously h‘(tz,,) (0,%) =0, Bthflz,,) (0, &) = 0 we are left with the second integral of (2.5) only. Using the
second representation for the retarded Green function given above we have after a simple integration that the (unique)

solution for h,(lz.,) is

hg) =h® = —h® = _h%) = 4GuT arccosh (;—) o0t —r) = B(t,r).

(2.10)

(2)

It is easy to check that the final metric perturbation h,, = h,(},,) + hy, satisfies the harmonic gauge condition. We can
write the gravitational field of the string in cylindrical coordinates (t,r,0, 2) as

ds? = (1+a+B)df? — (1 - a— f)dz? — (1 - a+ f) (dr* + r2ds?),

where a(r) and B(t,r) are given by (2.8) and (2.10), re-
spectively.

A few comments on the metric (2.11) are now in or-
der. First, we see that the metric is continuous but its
first derivatives are discontinuous along the light cone
t = r. This is a consequence of the use of the step
approximation: Had we used a smooth time-dependent
function instead of 6(t) the derivatives would be smooth
too. This means that we can only trust our results out-
side the spacetime region bounded by ¢t = r — T/2 and
t = r+ T/2. To this we should add that due to the
thin line approximation the results are only reliable for
r > ro, where 7¢ is the string radius.

Second, we also note that the metric perturbations di-
verge at r — oo (t fixed) and at t — oo (r fixed) but
these divergences, as we will see from the Riemann ten-
sor, are only gauge effects; they are a consequence of the
use of the harmonic gauge.

Third, one expects that when ¢ >> r (r fixed) the metric
becomes that of a static cosmic string, unperturbed if
7 = 1 or wiggly otherwise. But this again cannot be seen
directly in the harmonic gauge. The coordinate change
which puts the above metric in a suitable form to see this
is rather messy and, since it gives no further light on this
issue, we shall not write it here.

An important physical observable is the deficit angle
of the two-surfaces ¢ = const, z = const. for the met-
ric (2.11). Following Ref. [13], given a closed piecewise
smooth curve on a two-surface which encloses a regular

1
Ryvap = 5 (60850,00 + 82650,05 — 665,00 — 2650,05) hpo.

(2.11)

[

by a vector after being parallel transported once around
the curve. An application of the Gauss-Bonnet theorem
shows that this angle is given by the surface integral of
the Gaussian curvature K over S: A8 = [ KdS. If
the two-surface has circular symmetry, the deficit angle
is defined as the deficit angle associated with circles of
radius 7. It is easy to see that in a spacetime described
by a cylindrical symmetric metric the deficit angle of the
two-surfaces ¢ = const, z = const reduces to

7]
vV —3ge6| »

1
- = (2.12)

AO(t,7) = 27 [1

which in the linear approximation becomes Af(t,r) =
m (hy — b — rhg,,). Note that this definition differs
from that used in Ref. [8]. For the metric (2.11) we obtain

AO(t,r) = 4nGp [1 +7 (2.13)

s (= 1)
—0(t—7)|.
t2 — p2

It is clear that when t > r, r fixed, A0 — 47Gpu (1 +7),
which is the deficit angle for a static string.

The properties of the metric (2.11) are better deduced
from the Riemann tensor which is gauge independent.
Note also that some Riemann components give the tidal
forces on surrounding test particles. In the linear approx-
imation we have

(2.14)

Following the separation of the metric perturbation into a static part and a time-dependent part, h,, = hf,l,,) + h,(,z,,) , the

Riemann components can also be separated as RW and R

pvofB
to 7. For r # 0 they are

()

voB the last is easily identified because it is proportional



52 SEMICLASSICAL BACK REACTION IN THE FORMATION OF . .. 4323

2Gur [ b
b—-1
(b2 —1)3/2 4 )] '

thtz = _Rzyzy =

cos® 0

(cos 26 — EBE—;T)> 0(b — 1) } )

i 0]}

(cos 20 + (slli)) (b — ): } ,

Rezoz = 2G_2u {cos20—'r’Pf
™

2Gu .
Razys = Riaty = T—z" sin 26 {

|
T mlﬂjv
[ i

Rigtz = 2Gp {cos20—'r'Pf

r2
2Gur
Rz = Rtyy:n = - ’rf cosO Pf [(b2 3/2 (b - 1)] ) (215)
[
where we have introduced the new variable b = t/r, in-  when ¢ > r, which approaches zero very quickly.
stead of ¢, and where Pf denotes the Hadamard finite Our next task is to obtain the quantum correction to

part, which gives well-defined expressions, in the sense of  this curvature tensor due to the quantum fluctuations of
distributions, on the light cone b = 1 (see Appendix A). matter fields.

Ry.yz, Riyty, Rizyz, and Ryzey can be obtained from

Raiozy Riztey Rizez, and Ryyy,, respectively, by inter-

changing cos 6 and sin . III. STRESS TENSOR FOR MATTER FIELDS
It is now clear that when 7 = 1 (unperturbed string)
the Riemann tensor vanishes when t — oo (r fixed), i.e., Quantum fluctuations of matter fields interacting with

lim; ;00 Ruvap = 0, and the spacetime becomes flat. But  the gravitational field of a cosmic string give a non-null
if 7 # 1 there are tidal forces among test particles which  vacuum expectation value for the stress tensor of these
correspond to a Newtonian-like potential A4t oc In7. Note  matter fields, even if they are conformally coupled. For
that a Riemann component such as R:.,, which gives  a free massless conformally coupled scalar field in a flat
relative accelerations among particles along the direction  spacetime background with arbitrary linear gravitational
of the string, is a transient term, i.e., Rzt = 0 when  perturbations (2.2) this stress tensor has been computed
t < r (in regions not yet affected by the formation of  to one loop order by several authors [16-19] and it is
the string) and R;,s, >~ 2G;l.7' r—2 b_2[1 + g b_2+0(b_4)] given, to first order in h,“,(a:), by

(T (@) = - B (2) + 3ah [ diy Ha -y, 1) 4™ (), (3.1)

where a = (28807%)~1,
B*(z) = 20" O G,% — 2G M,

AW (z) = —20G* — %Gaa,w + gn‘“’ 0G.2, (3.2)

G* is the Einstein tensor for the metric to first order in h,,, and H(z — y, i) is a propagator defined by

H(z —y,f) = _% / (521)’4 eiP(==) [111 (L”Zj—“l) + 2mi 9(p2)9(—p0)] , (3.3)

[
where £ is an arbitrary renormalization scale. Notice to first order in h,,. In Sec. IIIA we will calculate it
that the second term in (3.1) is traceless and that it is  outside the string, that is, for 7 # 0. In Sec. IIIB we will
the term proportional to B“¥(z) which gives the trace see how a generalization to include » = 0 can be made. In

anomaly in this case: Sec. III C we give the approximation to the stress tensor
5 which will be finally used to compute the back reaction
(T (z)) = _a_ B*,(z) = ok OR, (3.4) on the string metric.
where R is the scalar curvature to first order in h,,. A. Quantum stress tensor outside the string
Using V,G*” = 0, it is easily seen from (3.2) that the
two terms in (3.1) are independently conserved. From (3.1) and (3.2) we see that all the dependence on

We can now proceed to the computation of (T*¥(x))  the metric perturbations is in the Einstein tensor G,,.
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Now since the source of such gravitational perturbations B#¥(z) and A*¥(x) have support on the string core. If we
is the classical string source T /" given in (2.1) we can  are interested in computing (T**(z)) outside the string,
use Einstein’s equations G*¥ = —8rG T in (3.2). Thus i.e., for 7 # 0, it is clear from (3.1) that the only contribu-

it is worth remarking that we do not need to know the tion comes from the second term in (3.1) and that terms
explicit gravitational field created by the forming string; in H(z —y, i) with support on z = y will not contribute.
it suffices to know the explicit form of the classical stress Let us give a more suitable representation of H(z—y, i)

tensor which produces that field. After the above sub- for  # y. For this it is useful to define the four-vector
stitution, since T ¥ is proportional to §(xz)é(y), both
J

Fale =) = - [ s e o0 [ (S0 o amioryo-) (55

This vector can, on the one hand, be simply computed as

Fo(z—y) = aza (‘2””’)’4 eip(==v) [p 5 +2mid(P*)6(—p )}
=ia;;DR(w—y) = %(w—y)afs' (= —)*] (=° —4°), (3.6)

where ¢’ means derivative with respect to the argument of § and we have used a well-known integral representation
of the retarded Green function Dpg and the form of Dg given in Sec. II.
On the other hand, integrating (3.5) by parts, we can also write F,(z — y) as

Fo(z—y)=i(xz —y)a H(x —y, ). (3.7)
Now comparing (3.6) and (3.7) we get the following useful representation for H, when z # y:
1
H(z —y,p) = - 8 [(m — y)z] 0(z° — y°). (3.8)

Thus using (3.8) we have, outside the string,

(@ @) = 220 [ aty 5 [(z - )] 0"~ 4) 4" ), (3.9)
with
AP (z) = 167an°‘B“”pa 8,03T S, (3.10)
where we have defined
NP 1y = PEHSY 3 M (0 — ). (3.11)

If we now write (see Ref. [17]), ¢’ [(:c - y)z] = limy_,o- ¢’ [(:c —y)?+ /\] = limy_,o- Ed— [(:I: —y)2+ )\] in (3.9), change
variables, and use (2.1), we have explicitly

v By O 0 .
(T* (z)) = 48aGuhin®P* , 325 BaP Al_lg)l 5 d*z’ §(z'2 + N)6(t')
x8(z — @')o(y — ') (8267 — T0(t — t') 6262 (3.12)

and the computation is now straightforward. It is clear from (3.12) that we have two types of terms in the stress

tensor, (T,,) = TE}W +T5123; the static terms T( ) ,» Which depend on the static part of T/*¥; and the time-dependent
)

terms T“(1 > Which depend on the time dependent part, that is, the terms which are proportional to 78(t — t'). The
subindex A stands for the part of the stress tensor related to the tensor A*¥ in (3.1). The static terms are easily
computed, the [dz’dy’ integration is trivial, and we use §(z'?> + A) to perform the [ dt’ integration, following Ref.
[19]. These terms are all proportional to 1/r%. The time-dependent terms, although slightly more complicated, can
be computed without difficulty. The final result for » # 0 in the Cartesian coordinate basis is

() ——%—‘f[ —Ths®)], (T =25 =7 (b)),
@) = 22 1 q0), () = ;14 {3 24 7 1201 - 1}, (3.13)
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where o = 8aGuh, the index a = 1,2 refers in 22 to ! = z, 2 = y (the string transversal coordinates), and

As above Pf denotes the Hadamard finite part, which Ise‘ctles down to the final static values. Note that when
gives well-defined distributions on the light cone b = 1 t grows keeping r fixed, b = t/r grows as t, and we can
(see Appendix A). It is easy to identify directly from  expand g(b) and fc(b) in terms of b~': g(b) ~ b™%[1 +
(3.13) the static and time-dependent parts of the stress 2572 + O(b™*)], fc(b) ~ 2[1 + O(b™*)]. This means
tensor: i.e., Tftl;)w and Tflu, respectively. Note that  that fe (b) differs from the static value, 2, by terms of
order b—* and that g(b) goes like b=°. Thus (T*"(z)) is
effectively time dependent only when ¢t ~ r; it reaches
the static values very quickly.

The final static values of (T,), i.e., when ¢t — oo,
are read off from (3.13). In the polar coordinate basis
(0%, Or, Og, 0;) they are

Tf(tl,)w corresponds to the vacuum expectation value of
the stress tensor due to a dust rod along the z axis with
mass per unit length u. It can be checked, computing the
derivatives of the distributions (3.14) using the methods
of Appendix A, that the (T),,) just derived is conserved.

The most salient feature of (T,,) is that it quickly

. 16aGuh .
lim (T%)) = -———;AL diag(4 — 27,14+ 7,—3 — 37, -2 + 47). (3.15)

t—oco

In particular when 7 = 1, i.e., the string is not wiggly, we get the well known results of Refs. [14,15].

B. Quantum stress tensor including » = 0

Since the quantum stress tensor is a source in the semiclassical Einstein’s equations, we need to know (T),,) in
all the space-time. One way to do this is to try to generalize the previous calculation to include » = 0. Such a
generalization should have the form

(TH (z)) = TE (z) + T (z) + TOM (2), (3.16)

where T4 = —(ah/6) B* and TS)" ¥ and ff’f)” Y are the traceless tensors corresponding to the static and time-
dependent parts, respectively, in the second term of (3.1). These should be some well-defined distributions which
reduce to the expressions (3.13) for » # 0. Using Einstein’s equations G*¥ = —8rGTH¥ in (3.2), Té“’ can be
expressed in terms of the classical stress tensor, and so its computation is straightforward. One finds the following
non-null components in the Cartesian coordinate basis:

Tpt = -5 oL+ 76(1)V*(6(2)5(v)), 58 = 5 0T 6(t) 0a(6(2)3(y)),
Tp: = -5 0 [(1+701)V?(5(=)3(w)) —78'(t) §(=)6(v)] ,

Tpg=—3 {85 [(1+70(E) V2 (5(2)6()) — 78'(¢) 5(x)d ()]

~(+7 0(t))8a61,(6(z)5(y))}. (3.17)

t
t

It is easy to see that the tensor 74" just found is conserved. From the expressions (3.17) it is clear that we can write

Té“’ = f‘él)’w + Téz)'w where, as always, Tél)’w refers to the static terms and Téz)'w to the time-dependent terms.
To generalize the calculation of the second term in (3.1) to include r = 0, we need to extend the representation

(3.8) of the propagator H(z — y, i) to all values of (x — y)*. Such an extension, which is derived in Appendix A, is

Ha—y.) = lim {18 (0= 0] 06" 4701 77| -0 + Inpe+y—1]5'(e -0}, (3.18)

i
—0t
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where v is Euler’s constant. For the static terms Tﬁl)“ v
we find

ifll)tt = —4m Usz(x, Y), T‘,(‘l) : =27 UVZI(Q:, Y),
T‘gl): =20 (8a6V? — 8.0s) I(x,y), (3.19)

where I(z,y) = [d*’ H(—2', ) §(z + 2')6(y + ¥'). This
integral is computed in Appendix A with the result

I= %Pf (%) + (lng + 7) 8(2)é(y)

= lim {51; %9@ —o+ (L5 +9) 6(w)5(y)} -
(3.20)

Using the result given in Ref. [27], V2Pf (7-‘2) =
4Pf (r—*)—2wV2(8(z)d(y)), one can substitute, in these
expressions

V2= %’Pf (T%) + (m% +7 - 1) V(5(2)é(y)-
(3.21)

These results for 7' él)" ¥ agree with the static components
of (3.13) when r # 0.

For the time-dependent terms the calculation is
considerably more complicated. Thus, instead of com-

TISZ)”V

2
~ (2 20T -1
Té)”u=r—4 6(t—r) 3

—4
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puting these exactly, we will introduce the following ap-
proximations.

C. Approximated quantum stress tensor fi‘éz)" v
We introduce here some approximations in Tf)"".
First, instead of working out the exact expresions for
these terms to include r = 0, we will introduce a cutoff
radius 79 (which can be viewed as the physical string ra-

dius) and assume that the tensor T“(lz)” ¥ derived in (3.13)
is only valid for » > ro. We will make some assumptions
for the values of this tensor at » < 7ro. At the end of
the calculations we will take the limit ro — 0. In ad-
dition to this, in the terms of (3.13) which correspond

to T)* we will substitute the distributions fo(b) and
g(b) by 26(t — r) and zero, respectively. That is, we
make a sudden approximation assuming that the values

of T fgzu)u change suddenly at the light cone ¢t = r. This
seems justified in view of the fact that such terms, as

we have seen before, settle quickly to the final static val-

ues. But now, to ensure the conservation of 7' ézﬂ)u on the
light cone t = r, we need to add terms proportional to
6(t — r), which have the same singular behavior on the

light cone as the stress tensor (3.13). Imposing also that

T 22)” x = 0 we obtain the following approximated stress
tensor for 7 > rg:

1 -1
1 -1

Frd(t—r) (3.22)

3 ’
-3

in polar coordinates. Now we have to make an assumption for the values of T [gzu)v at r < ro. We take a stress tensor
with terms proportional to 6(t — r) and rd(t — r) as before, but which is constant for ¢ > r. Imposing that it is

conserved, V,‘f’éz)“" = 0, and traceless, sz) ¥, =0, we find, for r < ro,

2
~ 2
TP, = -2 oe-n |

-4

Note that when we take the divergence of the complete
T‘f) ¥ we have the step functions 8(ro — r) and 0(r —
ro) multiplying the above expressions which have to be
derived too. _

It can be seen also that the values of T' éz) k forr <rg
and t > r obtained in (3.23) correspond to the values at
r = 0 of the quantum stress tensor for a model based
on the classical stress tensor for the string given in Ref.
[11]. In such a model the string has a finite radius ro
inside which the classical stress tensor is assumed to be
constant; this tensor is given by

T!, =ef(ro — r) diag(1,0,0,7), (3.24)

where we have introduced the 7 parameter in order to

-11

Fro(t—r) (3.23)

[
allow for the possibility of a straight wiggly string. The
string energy density ¢ is related to its energy per unit

length p (see Ref. [11]) by 4Gp = 1 — cos (7’0\/87TGE).

At first order in Gu this relation gives 7GerZ = Gu +
O(G?p?). Using the previous expressions (3.1) and (3.2),
we can calculate the stress tensor (T),,) to first order in
Gu for a free massless conformally coupled scalar field
with the classical source (3.24). The values of such tensor
at 7 = 0 agree with these of the §(t — r) terms in (3.23)
and this gives further justification to the approximation
taken.

IV. BACK-REACTION METRIC

In this section we compute the correction to the grav-
itational field due to the vacuum polarization of matter
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fields at one-loop order given in the previous section. For
this we solve the semiclassical correction to Einstein’s
equations,

G*(x) = —8nG [T} (x) + (T*(z))], (4.1)
in the linear approximation. Within this approximation
the metric tensor can be written as

gMV = "qu + hpu + B/‘u, (4.2)

where h,,, is the metric perturbation due to the classical
string stress tensor T,#” and h,,, is the quantum correc-
tion to the metric which is of order A. The classical part
h,, has already been computed in Sec. II, and we note
here that (T#¥(z)) depends on that part only, since in-
cluding h,, in (T**(x)) would lead to terms of order %2
which we neglect Thus Eq. (4.1) leads in the harmonic
gauge (h#” — 1 p#*he ), = 0 to the equation

Ohy, = —167GS,,, (4.3)

where S, = (Tww) — 3 7., (T%). A formal solution of
this equation is given as an initial value problem by (2.5),
where one substitutes h,, by 71,‘“, and S,, by 5’,‘,,. Now
from the decomposition (3.16) for the stress tensor and
the separation of T'g uv into a static and a time-dependent

parts Télp)u and Tézzu, it is clear that a similar separation

can be performed in S;w- ie.,

S =T, + 88, + T3, + 89

A pv B uv» (44)

where we use that T'4 uv is traceless. Then (4.3) leads to

likewise separate quantum perturbations 7&,‘,, = izl(‘l‘)w +

1(5.1‘)“,+h 2 +h(2) = h(1)+h(2) The main advantage of
this separatlon is that the initial conditions at the surface

t =0 for h,‘,,) are simply

RB =0, h(z)

t=0 =0

= 0; (4.5)

consequently, the explicit form of ﬁ‘gz;v(t, Z) is given by

|

RV = —3276G L +0GAln (R%)
71.,(,1) = 16m0G 5,

where the constants of integration R;, Rz, and R have
dimensions of length and A has dimensions of (length) 2.
Notice that there is a gauge freedom within the harmonic
gauge to set the constants R;, R;, and R to a fixed value,
i.e., a change in the values of these constants is equiva-
lent to an harmonic gauge transformation. The values of
these constants in the solution for » # 0 can be deter-
mined if we solve Egs. (4.7) including r = 0. However,
without working out the explicit solution, we can use di-
mensional arguments to see that A must be zero. Note

ilgl) = 167G ;1,:
ﬁgl) = 327G ;1-; In (%),
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B )

Auu

t
- —-1671'G/ dt'/ &z’ Dr(e — ') T2, (¢, ).
0 RS

A pv
(4.6)
Similarly A S B uv is given by this expression changing T’ ‘i ,‘),,
(2
by S é ‘)w

We are only interested in finding these semiclassical
perturbations h,,,, outside the string, that is, for r # 0.

A. Static part

For the static correction A%, Eq. (4.3) reduces to

V() = 167G S(), (4.7)
where 5'(1) = Tlgl) + S(l) . It is very simple to solve
these equations for r # 0 makmg use of the cylindrical
symmetry of the problem. Notice that S 1(3 has support
on r = 0, and so from (3.13), we have in the polar coor-
dinate basis § })” = T(l)" —20 r—* diag(4,1,-3,-2)
for r # 0. It is now easy to see that the functlons
(which are defined in terms of the metric perturbations)
RV = R®f M = ROz R = AW + Yy, and
ﬂil) =AM - 71.(1)3 depend on r only and satisfy the
equations, for r # 0,

d? 1d 5k4 W _ 64roG
(F ty rdr 7'2 h A Tk (4.8)
where 71 = 44 = —2 and 42 = 73 = 1. The harmonic

gauge condition in terms of these functions can be writ-
ten as (hgl) R — h(l))‘,. _1h(1). The general
solution of these differential equatlons can be expressed
as a linear combination of terms such as r2, Inr, r—2 and
7~ 21nr. Finally, after a gauge transformation, within the
harmonic gauge, the solution can be written as

—oGAln (RL=) (4.9)

r
that the only dimensional constant parameter which can
be used to make 7;,(,1,,) /oG is fi, but since the dependence
in this parameter must be logarithmic we are forced to
take A = 0; on the other hand, R will be proportional
to 1/p. In fact, we can set R = 1/ji after an harmonic
gauge transformation for 7 # 0.

By doing a little more work, we can also arrive at the
above solutions solving explicitly Egs. (4.7) with the in-
clusion of 7 = 0. In fact, from (3.17), and (3.19) it is easy
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to see that the equations for ﬁgl), izgl), and AV 4 fz(l);,’
are

% Bﬁ” + 167%0G (41 — %J(m)J(y))} =0,

V2[R — 167%0G (21 + éé(x)ts(y))] =

v2 |RMz + Y — 320206 (I + %J(w)é(y))] =0,

(4.10)

where I is given by (3.20). These give the solutions
RV = ~167°0G(41 ~ § §(2)d(y)), R = 16720G (21 +
15(2)8(y)), and A2 + MY = 32n20G (I + L 6(2)5(v)),
which for 7 # 0 reduce to (4.9) with A = 0. If we write
the remaining two equatlons for RVZ — h(l),f,' and h(l)ym ,
using that §(z)é(y) = 5= VZInr, we see that for 7 # 0

one has fz‘(il) = 327rchr "2 In (kfr), where  is some nu-
merical factor. So we finally have, for r # 0,
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RY = IGWUG (2cos20 +1), RY)
R(t;)t,_. = 32:UG (2cos 26 + 1), RY

and also R(ylz)yz and R(ty)tyv

zzyz
tety —

which are obtained from Rznz and R

h( ) = 1610G L =5
ré? 4.11
h(l) = 3270G 5 L Ing ( )

ﬁgl) = —-3270G %,
hz(,l) =16m0G 5,

This solution can also be obtained by the procedure
which we will use next to obtain the time-dependent met-
ric perturbations. Namely, we introduce a cutoff radius
ro and take the limit 7o — 0 at the end of the calculation.
For this we use an approximated stress tensor T ‘il‘fu for
r < 7o as in Sec. IIIC. _

Let us now consider the contribution AA() to the
deficit angle of the two-surfaces ¢ = const, z = const due
to these static corrections to the metric. Substituting in

(2.12) the values of k) given by (4.11) we find

32720G

n(1
AGD) = =

(4.12)

We can now calculate the static quantum correction
to the Riemann tensor. Using the expressions derived in
Appendix B we find the following nonvanishing compo-
nents for 7 # 0

32woG . 1 270G
= sin 26, R(zgmy a0
_ 84m9G 0, (4.13)

tztw interchanging cos 8 by sin6.

B. Time-dependent part

Let us first consider the contribution to the quantum perturbations to the metric ;’512,)“/ coming from 7 ,2 given
by (3.22) and (3.23). This solution is given by (4.6). Defining, as we have done before, 715121) = ﬁf)i, hf: = hf)i,

2_ 2)r 2)6 2) _ 17(2)r 7(2)0
R =P + RYO Y = YT - R,

and 715425) = 71(:):; this leads for (¢ —r) > 27¢ and r > 7¢ to the solution

@ _ 3207G [T 1 [ (b cosﬂ) dz
hae=—""123 Ldb’gk(m {z—g A dr z Ck+C'kE% 5 = Dk+Dk$ f(b;z,0), (4.14)

where b = t/r, xg = 7¢/r, and

Cr = —26p1 + 46k2 — 20k3,
Dy, = 26k1 — 40k2 + 20k3 — 464,

Ci = 0p1 + k2 — 2 0p3 + Oks,
Dy = 81 — 30k2 + 20k3 — 4 0a + Ois,

1, k=1,2,3
gr(f0) = { cos20, k=4

cosf, k=25,
f(b;z,0) =1n

[b—w+ V/2x(cos 6 — b) + b2 — 1] - % In(z® — 2z cos + 1).

(4.15)

We now expand the solution (4.14) in terms of z¢ = ro/r, neglecting terms of order zo which will vanish in the

limit ro — 0. We find

7 (2) 32woTG
haw=""7

where

[lnzo ®3/(b) + 4 (b) + O(x0)] ,

(4.16)
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b b

= -al = e L 5 o @ -9,
e
ol = % {—1 NG 1_ 0 + & _b1)3/2 z- + arccosh b — In4(b* — 1)] },
=1+ % (b—z_bl—)s/;,
ol = % {—1 + (bzl‘_ G _b1)a/z LII?’ + arccoshb — In 4(b% — 1)] }
3l=3_ (2bﬁ(b_2 2—5"’1)— 3) + 3: P _51)3/2 (2% — 1) (4b* — 11) + arccosh b
+% (bz—_b1)?% (26* - 3) [31n2b — 2 arccoshb — In4(b* — 1) — g biz 3Fy (1, 1, ;;2,4; 51-2-)],

o1 b 1 5
® =\ T w4 T arccoshh —Ind(b —1)] ¢ (4.17)

It is easy to see that we can change in (4.16) Inzo by In(R/r), where R is an arbitrary constant with dimensions of
length. For this we make the harmonic gauge transformation

To

1
= — —_— - =0,
& 87ra'7'Gr = In R’ 3
bcosb To bsiné To
£z = 8moTG T—‘\/ﬁ In ’E, fy = 87I'O'7'Gr—‘ﬁ In E. (4.18)

We can also set R = 1/ and, after this, we can take the limit 7¢ — 0 in 71‘222.
Let us now consider the terms A 1(32;)w' Substituting 7' ézu)y by S }(32‘)‘,, in (4.6) and defining h )(322 as before we find, for

r #0,

= 32707G 1
hE) = -5 S PR [@Y®) 00 - 1), (4.19)

where the functions ®}!(b) are defined in (4.17). It is easy to see that these terms can be eliminated with a gauge
transformation of type (4.18). Thus we finally have, for r # 0 and b > 1,

~ 27orG B

R = -5 [8L(0) ~lnjr 2 (0)] . (4.20)
We can now compute the time-dependent quantum contribution A8(®) to the deficit angle of the two-surfaces
= const, z = const. Substituting in (2.12) the previous values of fzflz,,) we get

~ 8m2071G 1 3b 1
(2) — _ 4 2 _ 27 2 (8p2 2 _
Ya\’} 2 {2 1) (4b* + 13b* — 2) + BT = 1)52 [4 (8b* + 8b* — 15)
+3 (In2b — arccosh b) — % biz Y 2 (1, 1, g; 2,4; ——blz)] } (4.21)

Expanding this expression in t~! with r fixed one finds

. 2
AG?) = 16m707G [2 _3 +0 (_1_)] ; (4.22)

r2 b4 b6

that is, AG(®) reaches its static value 327207G 72 very quickly. Note that this contribution due to the time-dependent
terms is exactly the same as the contribution A() of (4.12) when the string is unperturbed (7 = 1).

Finally we can calculate the time-dependent part of the Riemann tensor R(:)aﬁ. The substitution of the terms hy

of Appendix B by the terms 71.53) of (4.20) gives, for r #0 and b > 1,
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CEN S )
R®) = —4":IG [8 & fi)m (2b% + 3) + cos 20 (16 + (—b‘f%)] )
R(fz)yz = —4W::G sin 26 (16 + (112_1_5_11_))7?) ,
Riie = _4ﬂ:47 : (4 NG - I;)m (26% + 8) + cos 26 {8 + % (2b% + 3)
—ﬁ [% (8b* + 8b% — 11) + 3 (In2b — arccosh b)
Z b12 3F> (1 1, ; 2, 4;%)] }),
B, = -7 inag {s + (b%bi)—,; (267 +3) — @2—131’-’)77 [i (8b% + 8b% — 11)
+3 (In2b — arccosh b) — Z 9 3, ( 7;2,4; b—12>] },
RY = 24”;76" 080 133 _11)7 75 (467 + 1),
LA { CE b 75 (804 + 1487 +3) - (—I()‘jbj—;% E (85* + 8%  15)
+3 (In2b — arccosh b) — Z 3 3Fy (1, 1, g; 2,4; biz):l },
R®), = -1m7C {—4 — L (160® + 246 + 3967 — 4)
r b -1)
+@%)7/5 (2b* + 3) [ (8b* + 8b% — 15) + 3 (In2b — arccosh b)
i b12 £V ( ;{;2,4; bl2>] }, (4.23)
where 3F, denotes a generalized hypergeometric function. As before Ryzyz, R(ti)ty, R(ti)yz, and R(ty)yz are obtained

interchanging cos @ by sin@ in R(fz)m, R(tzm)tm, R(tzz)n, and R®

texzy?

respectively. Notice that R(i,)m does not depend on

the arbitrary parameter . This is due to the fact that, as we have seen before, the value of ﬁ can be changed by a

gauge transformation. The static limit of these components, i.e., limt_,ooR(

27oTG
Rgzzz ﬂ:r— (2 cos 26 + 1)? R{:l:zyz
16moTG
R%zt:c = _727—-—— (2 cos 26 + 1)’ R%:cty
and Rizyz and Rtyty are found interchanging cos 6 by
sinf in RL,_ and R%,,,, respectively. From (4.23) we

see that these final static values are quickly reached since
the corrections for large times go at least as b=* = r4/¢4.
The final semiclassical Riemann components are obtained
by adding to the classical values (2.15) the back-reaction
corrections (4.13) and (4.23).

ﬁ_R

proy y.vaﬂ’
64woTG 3R27moTG
= __——7‘:1_ sin 20, RL:cy:c'y —TZ——',
270G .
= —T s 29, (424)

V. CONCLUSIONS

In this paper we have derived the back reaction, due
to quantum fluctuations of matter fields, on the gravita-
tional field of a cosmic string during and after its forma-
tion. As matter fields we have just considered a massless
conformally coupled scalar field but the results are easily
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extrapolated to N of such fields. As a model of cosmic
string formation we take an initial thin straight rod whose
tension grows suddenly (step approximation) from zero
to a maximum value which corresponds to the mass per
unit length if the string is unperturbed, or to a smaller
tension if the string is wiggly.

Within the linear approximation of Einstein’s equa-
tions we have first computed the metric perturbations
and the corresponding curvature tensor for both unper-
turbed and wiggly strings. If the final string is unper-
turbed, the Newtonian potential vanishes and the space-
time becomes flat with a deficit angle, but if the string
is wiggly there is a Newtonian force per unit mass which
goes like Gu(1 — 7)r~1. This force may play an impor-
tant role in the formation of wakes behind long strings
[3].

We have then computed the vacuum expectation value
of the stress tensor of matter coupled linearly to the
string gravitational field. We have seen that after forma-
tion the stress tensor settles quickly to that of the final
unperturbed or wiggly static string. The stress tensor
has an energy density which goes like NAGur—* (as typ-
ical of Casimir-type energies), where we have assumed N
matter fields which correspond to massless fields or with
masses less than m g, where my is the Higgs boson mass
responsible for symmetry breaking.

With such a stress tensor as a source we have com-
puted the perturbation induced on the gravitational field.
We have also computed the Riemann tensor components,
which give essentially the tidal forces, corresponding to
such quantum corrections. The static part of this ten-
sor correspond to a Newtonian force per unit mass which
goes like NAG?ur—3. The time-dependent part of the
semiclassical perturbations to the metric and the Rie-
mann tensor, on the other hand, are quite complicated.
But, for a given radius, after a short time ¢t > r the curva-
ture tensor becomes static. Unlike for the classical part
the quantum correction to the gravitational field does
not differ substantially if the final string is unperturbed
or wiggly.

Let us now discuss the importance of the quantum
corrections in the case of a wiggly string and the un-
perturbed string after their formation. In the case of a
wiggly string, i.e., 7 < 1 (typically 7 ~ 0.5) [3], the ratio
between the quantum F; and classical F, forces on sur-
rounding nonrelativistic particles can be estimated in the
static limit as Fy/F. ~ 64na NAG (2 — 1)/ [(1 — 7)7?];
ie., if lp is the Planck length, F,/F, ~ 1072N (ip/r)>.
This means that, unless N is unreasonably large, the
quantum effects are always negligible if » > __ 10/p. Note
that for a cosmic string the smallest value that r can
take is ro ~ K/mpg and, since p ~ m¥% /A, we have
Fy/F.(r) < Fy4/F.(ro) ~ 1072NGp which for GUT
strings is of order 1075-107¢.

For an unperturbed string 7 = 1 there is no classical
force F.. Thus the quantum correction will be respon-
sible for a Newtonian force on the classical matter sur-
rounding the string. However, that force decreases like
r~3 which means that it becomes negligible very quickly
at macroscopic distances from the string. In this case
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it is better to consider the deficit angle which is an im-
portant physical observable. The deficit angle can be
written as a sum of a classical term plus a term of quan-
tum origin A@ + A, using the notation of the last sec-
tion. As we have seen, for the classical part A0 ~ Gpu
whereas for the quantum part Af ~ 10"2NAG?ur—2, so
that AG/AO ~ 102N (l‘[,/r)2 which is of the same order
as the ratio between the quantum and classical forces
given before. The ratio of the transverse velocities on
the string wakes due to the quantum effect and the clas-
sical deficit angle are also of this order. These results
hint that whereas one should not expect any quantum
effect at macroscopic distances on surrounding matter,
quantum effects might start to become important near
the string at microscopic distances. In particular, when
two strings cross, there might be a correction, perhaps in
the form of a Casimir-like force, due to quantum effects.
However, in this case our classical picture breaks down
and one must consider the dynamics of the Higgs fields
themselves at microscopical level.
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APPENDIX A

1. Hadamard finite part

We have introduced in this paper some singular distri-
butions denoted by the symbol Pf. They are generated
by the Hadamard finite part of a divergent integral. See
Refs. [27,28] for more details on these distributions. The
idea is the following: Suppose that we have a function
h(z) which is Lebesgue integrable on all the intervals
(a + €,b), with € > 0, but which is not integrable on
(a,b) (a, b are some real constants). Let us consider the
integral

b
J(e) = / dz h(z), (A1)
a+t€
which diverges in the limit € — 07, and assume that it is
possible to separate it in two parts:

J(€) = I(e) + F(e), (A2)

where I(e) is a finite linear combination of negative pow-
ers of € and positive powers of Ine and F'(e) has a finite
well-defined limit as € — 0% (in the sense that is in-
dependent of the way by which is obtained). Then the

Hadamard finite part of the divergent integral f: dz h(z)
is defined by

Fp /a ’ da h(z) = lim F(e) = lim { /a i dz h(z)
~1()}; (A3)
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that is, we throw away the divergent terms in (A2) and
then take the limit ¢ — 0%. The definition is readily ex-
tended to functions h(z) defined on all the real line which
have singular points. All we have to do is to decompose
the integral over R as a sum of integrals of the kind con-
sidered above. Then one can define distributions denoted

by Pf[h(z)] as

/—Z dz Pf [h(z)] o(z) = ]-'p/

—O00

oo

dz h(z) p(z), (Ad)

where (z) is an arbitrary tempered test function. The

definition can be easily generalized to the case of several

variables whenever the divergent integrals can be reduced
J
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to one-dimensional divergent integrals.

As an example we calculate the derivative of the dis-
tribution (b — 1)~/26(b — 1) in detail. Notice that it is
a distribution in a one-dimensional space (and also in a
four-dimensional space if we set b = t/r) since the in-

/: db [~ (5 — 1)7/%] ()= /: ab (12~ 1)772] o0)

= —(b?

where we have integrated by parts in the last step. This shows that

/_m dbPf [~b (6 ~1)%/20(b— 1)] p(b)= Fp /m db

tegral [ db (b — 1)7Y/20(b — 1) p(b) = [ db (b —
1)~Y2 p(b) is convergent. To start with, it is easy to
show that
2167~ 17200 1)) = PA-b (1 — 1)
«6(b — 1)]. (A5)
For this, let us consider the integral
—) ), - [ s @ -7, (A6)
b=1+e€ 1+e
[—b (62 = 1)7%2] (b)
/ db (b2 —1)"Y2 ' (b)
- / db E (8 = )72 006 - 1)] (@), (A7)

where the definition of the derivative of a distribution has been used, and this proves (A5). An explicit expression for

the distribution P f [—-b (b —

1)73/26(b — 1)] can be derived as a distributional limit. In fact, from (A6) we have

/_oo dbPf [—b (% —1)"3/20(b — 1)] o(b)

_ 5%{ S -5 =07 o) + o(t) 02 1) 2|b=1+e}

= lim {/: db [~ (5~ 1)7/2] o(5) + T

lim [ db [—b(bz 1) —1—€) + ——5(b— 1)] o(b),

Il

e—0t

which gives the sought expression

ib [(b2 —1)"29(b — 1)] =

e—0+t

o)}

Pf-b( - 1)"/200 - 1)

where this distributional limit has to be understood in the sense of (A8).

In a similar way it is easy to show that

2
%3 (62 —1~/200 -

1)] =Pf [(2b2 +1) (b2 —

e (A8)
= lim [—b(bz— 1)~ 3/20(b—1—e)+\/_6(b—1)] (A9)
1)~5/29(b — 1)}
= lim [(sz +1) (2 —1)"%20(b—-1—¢)
1 3 1 .
\/—2_6-) sb—1)+ = \/—_6(b 1)}. (A10)

‘(ﬁ%
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Other Hadamard finite part distributions appearing in this paper are given by the distributional limits

Pf [(b2 —1)73/20(b — 1)] lim [(b2 —1)320(b—1—€) — ——b(b— 1)] ,

e—0t \/%
£ [rp(®) 82 = 1)7*/20( — 1)] = wp(b) PS [(6* — 1)"*/26(b - 1)]

= lim [/cp(b) (b?—1)7329(b—-1-¢) — & \/(_) 8(b— 1)]

=Pf [(b2 —1)"%/29(b - 1)] = lim [(zﬁ —1)"%29(b—1—¢)

1 1 5 1 1 ,
(s ) om0 g e,
fo(b) = PF [b (6% — 1)~5/2 (2b* — 5b2 + C/4) O(b — 1)]

g(b

~

e—0t

(68 dme (+5) -3 8) o)

(A11)

= lim {b (6% —1)7%/2 (2b* — 5% + C/4) (b — 1 —¢)

where k # 0 is a constant and p(b) is a polynomial in b with p(1) # 0

2. Propagator H(=x, ji)

Let us consider the expression

hm a4 [6(z°) 6(=® + N)], (A12)

‘9(””0) d( 50t =1 im 3

which is not a distribution in a four-dimensional space. To see this we consider the effect of integrating an arbitrary
tempered test function ¢(z) with such an expression:

/d4:1:—0(z0) T3 5@) 9(z) = /d2 / —¢|t T—ZI;/dZQ/:Od

where r =| £ |. The integral in the first term is, in general, divergent. The Hadamard finite part of the divergent
. oo _1 . . .
integral [;° drr~!¢(r), where ¢(r) is a tempered test function, is

%, (A13)
t=r

o+

o [T o) = im [ [T % o) +1nep(0)]. (A19)

Taking ¢(r) = [ dZQq&' +—» one can define the finite part of the integral (A13). In this way we can define a distribution,
which we call Pf [1 6(2°) gz 6(z? )]

/d‘*sz[ 0(a:°)d( . (zZ)] ¢(z)zfp/d4z10(w°) T3 06 9(a)

anf ool e

= Im [/lflzed o o) d(wz) =) #le) + 1n6¢(0)}

e—0t

~ lim d‘*z[% 6(c°) 0(| Z | —e)d—(i—zjé(zz)+ln654(m)]¢(z), (A15)

from which we see that Pf [% 6(z°) d(d,) 2)] = lim._,o+ [117 0(z®)0(] £ | —e) d(cz) 5(z2) + Ine 54(:1:)]. From Egs.
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(3.6) and (3.7) we see that this distribution satisfies

2o Pf [%0(:1:0) 5(.1-2)]_% 8(z%) §(a?) = 2o H(z, ). (A16)

d(z?) d( ?)
Notice that (A16) is an equality between distributions: In the second member, the factor z, destroys the divergences.
This equality shows that the propagator H(z, i) must be equal to the distribution P f [% 0(z%) # 15(:1:2)] plus a

distribution H (x, i) which satisfies o H(z, z) = 0. It is easy to prove that such a distribution can only be a constant
times the § distribution, and so we have

H(z.8) = P1 [ 106") 755

)] 1 0(5) 54 (a), (A17)

where C(fz) is a constant mvolvmg the arbitrary mass scale i. Note that we could not have applied this argument
to Eq. (3.7) because 1 6(z°) 5 7— §(z?) is not a distribution. The constant C(fi) can be computed by evaluation of

the integral [d*c H(z,)9(R— | & |), with R constant, using, on the one hand, expression (A17) and, on the other
hand, the Fourier transform representation

H(z, ) = —% (;i:f; e~ [ln (' Zz |) — in(p?) sgn(p‘))] . (A18)

This can be easily shown to be equivalent to the definition of H(z, ) in Eq. (3.3) using lim, ,o+ In [—(p2 + ze)] =
In|p? | —in0(p?) and 26(—p°) — 1 = —sgn(p®). We obtain C(&) =Inf + v — 1, and so we finally have

H(z,p) = Pf [% 0(z°) d(iz)

2)] g+ —1]8),

1 -
= Jim {20600 71 ~¢) 555 8" + e+ - 1] 64(m>} (A19)
This expression can be shown to be equivalent to
N 1, 0y d g _ 1l 42
#(e,) = Jim {206 5o 40 + |5 (-3@) £y - 1] 5@}, (420)

which is, in fact, the definition for the propagator H used by Horowitz in Ref. [16].

3. Calculation of the integral I(z,y)

We show here the calculation of the integral
1@,y = [t B\ m)8(z + )3 +1), (a21)

which appeared in Sec. III. One can calculate this integral in two ways: using the representation (A18) for the
propagator H as a Fourier transform or using expression (A19). With the representation (A18) for H we have

&Pp iz | P
I(z,y) =— / —(2;))2 e In %, (A22)

where p = (p*,pY), £ = (z,y) are vectors in a two-dimensional space. That is, I is the Fourier transform of a logarithm
in a two-dimensional space. The result, which can be found in Ref. [27], is

I(z,y) = % Pf (—12—) + (5 +7) 8@)5(w)
= lLim {i —0(r—€) + (ln § + 7) 5(3:)5(3/)} , (A23)

e—0+ | 27 r2

where r = {/z2 + y2.

For completeness let us check that we can get this result using the representation (A19) for H:



52 SEMICLASSICAL BACK REACTION IN THE FORMATION OF . . . 4335

o _ _ 1 [ 1 2, 2_ 2
I(z,y) —EEI(%{(lnue—}-'y 1)5(w)(5(y)+2—ﬂ_/0 dz WO(T +2°—¢€ )} (A24)
Introducing 1 = 6(r — €) + 6(e — r) in the second term one has
. _ 1 > 1
I(z,y) = E11»1011{(111#6 +7=1)8(2)d(y) + 5-0(r —¢) /0 dz Gzt (1-1n2)G(z,y; 6)}
. 1
N s}}bl(j]l+ {2ﬂ. r2 0("‘ - 6) + (lnlu'e +v- 1) 5(:12)5(:1/) + (1 —In 2) g( ' Y5 E)} ’ (A25)
where
oy = L 2, ,2_ 2
G(z,y:¢) = o (1 ln2 T)/ (224 1'2)3/2 0(r" + 2% —€%)
1 1 1 € —r2

Now to prove (A23) it remains to be seen that lim. ,o+ G(z,y;€) = §(x)d(y). For this we use the following theorem
(see, for example, Ref. [29]). Suppose we have a function f(z;€), with € R™, that satisfies the following conditions:
(1) f(z;€) > 0 for |z|| < , with x > 0 some fixed constant; (2) in all the sets a < ||z|| < %, being a > 0 an arbitrary
finite constant, f(z;e€) converges uniformly to zero as € — 0%; and (3) lim,_,o+ flla:llSa, ase @™z f(z;€) = 1. Then it
can be shown that lim. o+ f(x;€) = 6”(x). On the one hand we see that G(x,y;€) > 0 and that G(z,y;¢e) = 0 for
r > a > €, and so, in the limit € & 0%, G(z,y; €) converges uniformly to zero for 7 > a > 0. On the other hand it is
easy to prove that fr<a, ase 4T dy G(z,y;€) = 1; thus, we have that lim._,o+ G(z,y;€) = §(z)d(y).

APPENDIX B: RIEMANN TENSOR IN THE LINEAR APPROXIMATION FOR h,,
WITH CYLINDRICAL SYMMETRY

It is easy to check that the Riemann components (2.14) for h,, with cylindrical symmetry can be written in terms
of hy = ht, ha = h%, hs = hT + hg, hy =h, — hg, and hs = h] = —h! in the form

1 1 ha.,
Ry, = = h2,tta R:zz:cz = 5 <00520 h2,'r'r + Sin2 0 %) 3

1 hor
Rzzyz Z sin 20 (hZ,r'r - :, ) )
1 hir hs:
Rt;,t,.,;:Z hgtt+cos20h4¢t—2cos 0h1,.,—2s1n 0 —T — 4cos? 0h5t,.—4sm 6 —= . ,
1 h h 1
thty = Z sin 26 (h4,tt hl rr+ L -2 h5,tr +2 “:T’E) ’ tha:z = 5 cosf h2,tra
1 h hs . h
Rt:n: = —sind —hS,tr + h4,t'r + 2 _il"‘t' ) R:v Ty — h3 T + 3 - h4,r1- -3 ;47_1‘ .
Y= g r Y T

R, .yzy Riyty, Rizyz, and Riyy, can be obtained from the previous expressions interchanging cos@ by sinf in R,,.,,
Riztzy Rizzz, and Ryqqy, respectively.
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