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Noise induced transitions in semiclassical cosmology
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A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker
spacetime in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a
massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field,
which consists basically of a nonlocal term due to gravitational particle creation and a noise term induced by
the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the
classical potential so that if the universe starts near a zero scale factor~initial singularity!, it can make the
transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it
turns out to be comparable with the probability that the universe tunnels from ‘‘nothing’’ into an inflationary
stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the
spacetime should not be neglected in quantum cosmology.@S0556-2821~99!04108-9#

PACS number~s!: 98.80.Cq, 04.62.1v, 05.40.Ca
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I. INTRODUCTION

A possible scenario for the creation of an inflationary u
verse is provided by cosmological models in which the u
verse is created by quantum tunneling from ‘‘nothing’’ into
de Sitter space. This creation is either based on an insta
solution or in a wave function solution which describes t
tunneling in a simple minisuperspace model of quantum c
mology @1,2#.

In the inflationary context one of the simplest cosmolo
cal models one may construct is a closed Friedma
Robertson-Walker~FRW! model with a cosmological con
stant. The cosmological constant is introduced to reprod
the effect of the inflation field at a stationary point of th
inflaton potential@1#. The dynamics of this universe is de
scribed by a potential with a barrier which separates the
gion where the scale factor of the universe is zero, where
potential has a local minimum, from the region where t
universe scale factor grows exponentially, the de Sitter
inflationary phase. The classical dynamics of this homo
neous and isotropic model is thus very simple: the unive
either stays in the minimum of the potential or it inflates.

The classical dynamics of the preinflationary era in su
cosmological models may be quite complicated, howeve
one introduces anisotropies, inhomogeneities or other fie
Thus, for instance, all anisotropic Bianchi models, exc
Bianchi type IX, are bound to inflate in the presence o
cosmological constant@3#. Also in the previous model bu
with an inhomogeneous scalar radiation field the unive
may get around the barrier@4# and emerge into the inflation
ary stage even if initially it was not.

The emergence of an inflationary stage of the unive
also seems to be aided by semiclassical effects such as
ticle creation which enhances the radiation energy densit
0556-2821/99/59~8!/083513~24!/$15.00 59 0835
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the preinflationary era and thus enlarges the set of infla
initial conditions@5,6#.

In this paper we consider a semiclassical model consis
of a closed FRW cosmology with a cosmological constan
the presence of a quantum massless scalar field. This q
tum field may be seen as linear perturbations of the infla
field at its stationary point or as some other independ
linear field. Because the field is free, the semiclassical the
is one loop exact. The expectation value in a quantum s
of the stress-energy tensor of this scalar field influences
back-reaction the dynamics of the cosmological scale fac
There are here two main effects at play: on the one ha
since the field is not conformaly coupled, particle creati
will occur and, on the other hand, the quantum fluctuatio
of this stress-energy tensor induce stochastic classical
tuations in the scale factor@7,8#. Thus the cosmological scal
factor is subject to a history dependent term due to grav
tional particle creation and also to noise due to these qu
tum fluctuations. We examine the possibility that a unive
starting near the local minimum may cross the barrier a
emerge into the inflationary region by the back-reaction
the quantum field on the scale factor. This is, in some se
the semiclassical version of tunneling from nothing in qua
tum cosmology.

It is important to stress the difference between this cal
lation and the usual approach to quantum tunneling. T
usual approach@9,10,1,11,12# begins with the calculation o
an instanton or tunneling solution, which is a solution to t
Euclidean classical~or sometimes semiclassical; see@13#!
equations of motion. Because of symmetry, the scalar fiel
set to zero from the start. Its effect, if at all, is considered
a contribution to the prefactor of the tunneling amplitu
@11#, which is usually computed to one loop accuracy in t
test field approximation. The effect of dissipation@14# or
©1999 The American Physical Society13-1
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even of particle creation@15# on quantum tunneling has bee
considered in some quantum mechanical systems but it o
to be noticed that to this date the effects of stress-ene
fluctuations on the tunneling amplitude have not been c
sidered in the literature, to the best of our knowledge. E
when the instanton is sought as a solution to semiclass
equations@13# this is done under approximations that effe
tively downplay the role of particle creation, and bac
reaction fluctuations are not considered at all.

To underlie that the mechanism for barrier penetration
be investigated here is a different physical process than
computed from instantons in the test field approximation,
have chosen to ignore the quantum aspects of the gra
tional field, so that in the absense of back reaction fluct
tions the tunneling rate would be zero. From the point
view of the usual approximation, it could be said that o
calculation amounts to a nonperturbative calculation of
tunneling amplitude, since the key element is that we
beyond the test field approximation, and consider the
effect of back reaction on the universe.

At least, in principle, it ought to be possible to combi
both the usual and our approach. The whole scheme w
ressemble the derivation of the Hu-Paz-Zhang equat
@16,17#, once the subtleties of quantum cosmological p
integrals are factored in@18#.

In this paper, we follow the methodology of Langer
classic paper@19#; namely, we shall consider an ensemble
universes whose evolution is rendered stationary by the
vice that, every time a member of the ensemble escapes
barrier, it is captured and reemitted within the barrier. T
fictitious stationary solution has a nonzero flux accross
barrier, and the activation probability is derived from th
flux.

Since semiclassical cosmology distinguishes a partic
time ~that when the quantum to classical transition tak
place!, it is meaningful to ask whether the stationary soluti
is relevant to the behavior of a solution with arbitrary initi
data at the ‘‘absolute zero of time.’’ The answer is that t
stationary solution is indeed relevant, because the relaxa
time which brings an arbitrary solution to the steady one
exponentially shorter than the time it takes to escape
barrier. We discuss this issue in detail in the Appendix, s
section 6.

The fact itself of assuming a semiclassical theory, i
where no gravitational fluctuations are included, indica
that our model must be invalid very close to the cosmolo
cal singularity. Therefore, we are forced to assume that s
mechanism forces the universe to avoid this region, wh
being too weak to affect significatively the behavior of larg
universes. For example, if we take the cosmological c
stant, in natural units, to be about 10212 @which corresponds
to grand unified theory~GUT! scale inflation#, then the pres-
ence of classical radiation with an energy density of orde
~while the amount necessary to avoid recollapse in the c
sical theory is 1012) would be sufficient. A more sophisti
cated possibility would be to appeal to some quantum gr
tational effect, which could be as simple as Heisenber
uncertainty principle, to make it impossible for the univer
to linger for long times too close to the singularity.
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Even with this simple setting, it is impossible to mak
progress without further simplifications, and we would lik
to give here a summary of the most significative ones. T
most basic simplifying assumption is that the deviation fro
conformal coupling, measured by the parametern to be in-
troduced below@see Eq.~2!#, is small. This will allow us to
set up the problem as a perturbative expansion inn, whereby
we shall stick to the lowest nontrivial order, namelyO(n2).
Of course, the quantity of highest interest, the escape p
ability itself, will turn out to be nonperturbative inn; how-
ever, our procedure ought to capture its leading behavio

Even to second order inn, the closed time path~CTP!
effective action, whose variation yields the semiclassi
equations for the universe scale factor, involves the calc
tion of several kernels. We have formal exact expressions
these kernels, but the results are too involved for furt
manipulation. This suggests a second simplification, nam
to substitute the exact kernels for their analogues as c
puted in a spatially flat universe with the same scale fac
Technically, this amounts to making a continuous appro
mation in the mode decomposition of the field. This
clearly justified when the separation between the frequen
for different modes is small, for example, as compared w
the characteristic rate of the universe espansion. This co
tion holds for most orbits within the barrier, exceptin
maybe those where the universe never grows much la
than Planck’s scales, a case which we shall not discuss
the reasons given above.

The semiclassical evolution equations emerging from
CTP effective action differ from the usual Einstein equatio
in three main respects:~1! the polarization of the scalar field
vacuum induces an effective potential, beyond the us
terms associated to spatial curvature and the cosmolog
constant; also the gravitational constants are renormalize
quantum fluctuations;~2! there appears a memory depende
term, asociated to the stress-energy of particles created a
the evolution; and~3! there appears a stochastic term asso
ated to the quantum fluctuations of the scalar field. We s
focus our attention in the last two aspects, neglecting the
loop effective gravitational potential. It ought to be note
that, lacking a theory of what the bare potential is exac
like, the semiclassical theory does not uniquely determ
the renormalized potential either. Moreover, the presenc
stochasticity and memory are aspects where the semiclas
physics is qualitatively different from the classical one, n
so for the modified effective potential. In any case, the
corrections are very small unless very close to the cos
logical singularity~where in any case the one loop approx
mation is unreliable, as implied by the logarithmic dive
gence of the quantum corrections!. So assuming again tha
some mechanism will make it impossible for the universe
stay very close to the singularity, the neglect of the ren
malized potential is justified.

Even after the neglect of the renormalized potential,
equations deriving from the CTP effective action are high
than second order, and therefore do not admit a Cau
problem in the usual terms and also lead to possibly unph
cal solutions. In order to reduce them to second order eq
tions, and to ensure that the solutions obtained are phys
3-2
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it is necessary to implement an order reduction procedur
discussed by several authors@20#. This order reduction
means that higher derivatives are expressed in terms of lo
ones as required by the classical equations of motion. In
spirit, in the memory term, we substitute the history of
given state of the universe by the classical trajectory lead
up to the same endpoint. Because the classical trajecto
determined by this end point, in practice this reduces
equations of motion to a local form, although no long
Hamiltonian.

The equations of motion for the model, after all the
simplifications have been carried out, have the property
they do not become singular when the universe scale fa
vanishes. As a consequence, the universe goes accros
cosmic singularity and emerges in a new ‘‘cosmic cycle
Because the escape time is generally much larger than
recollapse time, we may expect that this will happen ma
times in the evolution of a single trajectory. For this reas
our model describes a cyclic universe, being created and
stroyed many times~but keeping the memory of the tota
amount of radiation and extrinsic curvature at the end of
previous cycle!, and eventually escaping from this fate
become an inflationary universe. It should be noted that
does not detract from the rigor of our derivations, since i
after all a feature of the mathematical model, it being a m
ter of opinion whether it affects the application of our stud
to the physical universe. For comparison we have studie
different, also mathematically consistent, model in which
universe undergoes a single cosmic cycle and obtain sim
results~see the Appendix, subsection 7!.

After this enumeration of the main simplifying assum
tions to be made below, let us briefly review what we ac
ally do. Our first concern is to derive the semiclassical eq
tions of motion for the cosmological scale factor, by mea
of the CTP effective action. The imaginary terms in th
action can be shown to carry information about the stocha
noises which simulate the effect on the geometry of quan
fluctuations of the matter field@21–27#. After these noises
have been identified, the semiclassical equation is upgra
to a Langevin equation.

We then transform this Langevin equation into a Fokk
Planck equation, and further simplify it by averaging alo
classical trajectories. In this way, we find an evolution eq
tion for the probability density of the universe being plac
within a given classical trajectory. The actual universe jum
between classical trajectories, as it is subject to the n
Hamiltonian nonlocal terms and forcing from the rando
noises. Finding the above equation of evolution require
careful analysis of both effects.

Finally, we investigate the steady solutions of this eq
tion, and derive the escape probability therein. Again we
forced to consider the problem of very small universes,
the nontrivial steady solutions are nonintegrable in this lim
However, the solutions to the Wheeler-DeWitt equation
sociated to our model, which in this limit is essentially t
Schrödinger operator for an harmonic oscillator, shows
singular behavior for small universes. Thus we shall assu
that this divergence will be cured in a more complete mod
and accept the nontrivial solution as physical.
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The main conclusion of this paper is that the probabil
that the universe will be carried over the barrier by the sh
effect of random forcing from matter stress-energy fluctu
tions is comparable to the tunneling probability comput
from gravitational instantons. This effect demonstrates
relevance of quantum fluctuations in the early evolution
the universe.

Besides its relevance to the birth of the universe a
whole, this result also may be used to estimate the proba
ity of the creation of inflationary bubbles within a large
universe. We shall report on this issue in a further comm
nication.

The plan of the paper is the following. In Sec. II w
compute the effective action for the cosmological scale f
tor and derive the stochastic semiclassical back-reac
equation for such scale factor. In Sec. III we construct
Fokker-Planck equation for the probability distribution fun
tion of the cosmological scale factor which corresponds
the stochastic equation. In Sec. IV we use the analogy w
Kramers’ problem to compute the probability that the sc
factor crosses the barrier and reaches the de Sitter phas
the concluding Sec. V we compare our results with the qu
tum tunneling probability. Some computational details a
included in the different sections of the Appendix.

A short summary of this long Appendix is the following
Subsection 1 gives some details of the renormalization of
CTP effective action; subsection 2 explains how to han
the diffusion terms when the Fokker-Planck equation is c
structed; in subsection 3, we formulate and discuss Kram
problem in action-angle variables; the short subsection
gives the exact classical solutions for the cosmological sc
factor; in subsection 5, the averaged diffusion and dissipa
coefficients for the averaged Fokker-Planck equation are
rived; in subsection 6, the relaxation time is computed
detail; and finally in subsection 7, the calculation of the e
cape probability for the scale factor is made for a mo
which undergoes a single cosmic cycle.

II. SEMICLASSICAL EFFECTIVE ACTION

In this section we compute the effective action for t
scale factor of a spatially closed FRW cosmological mod
with a cosmological constant in the presence of a quan
massless field coupled non-conformally to the spacetime
vature. The semiclassical cosmological model we conside
described by the spacetime metric, the classical sou
which in this case is a cosmological constant, and the qu
tum matter sources.

A. Scalar fields in a closed universe

The metric for a closed FRW model is given by

ds25a2~ t !~2dt21g̃i j ~xk!dxidxj !, i , j ,k51, . . . ,n21,

~1!

wherea(t) is the cosmological scale factor,t is the confor-
mal time, andg̃i j (x

k) is the metric of an (n21)-sphere of
unit radius. Since we will use dimensional regularization
work, for the time being, inn-dimensions.
3-3
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Let us assume that we have a quantum scalar fieldF(xm),
where the Greek indices run from 0 ton21. The classical
action for this scalar field in the spacetime background
scribed by the above metric is

Sm52E dxnA2gFgmn]mF* ]nF

1S n22

4~n21!
1n DRF* FG , ~2!

whereg005a2, g0i50, gi j 5a2g̃i j , g is the metric determi-
nant,n is a dimensionless parameter coupling the field to
spacetime curvature (n50 corresponds to conformal cou
pling!, andR is the curvature scalar which is given by

R52~n21!
ä

a3
1~n21!~n24!

ȧ2

a4
1~n21!~n22!

1

a2
,

~3!

where an overdot means derivative with respect to confor
time t. Let us now introduce a conformally related fieldC,

C5Fa~n22!/2, ~4!

and the actionSm becomes

Sm5E dtdx1
•••dxn21Ag̃F Ċ* Ċ2

~n22!2

4
C* C

2na2RC* C1C* D~n21!C G , ~5!

whereD (n21) is the (n21)-Laplacian on the (n21)-sphere,

D~n21!C[
1

Ag̃
] i~Ag̃gi j ] jC!. ~6!

Let us introduce the time dependent functionU(t),

U~ t !52na2~ t !R~ t !, ~7!

and the d’Alambertianh52] t
21D (n21) of the static metric

d̃s25a22ds2. The action~5! may be written then as

Sm5E dtdx1
•••dxn21Ag̃

3FC* hC2
~n22!2

4
C* C1U~ t !C* CG . ~8!

When n50 this is the action of a scalar fieldC in a
background of constant curvature. The quantization of
field in that background is trivial in the sense that a uniq
natural vacuum may be introduced, the ‘‘in’’ and ‘‘out
vacuum coincide and there is no particle creation@28#. This
vacuum is, of course, conformally related to the physi
vacuum; see Eq.~4!. The time dependent functionU(t) will
be considered as an interaction term and will be treated
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turbativelly. Thus we will make perturbation theory with th
parametern which we will assume small.

To carry on the quantization we will proceede by mo
separation expanding C(xm) in terms of the
(n21)-dimensional spherical harmonicsYkW

l (xi), which sat-
isfy @29#

D~n21!YkW
l
~xi !52 l ~ l 1n22!YkW

l
~xi !, ~9!

where l 50,1,2, . . . ; l>k1>k2>•••>kn22>0;kW
5(k1 , . . . ,6kn22). These generalized spherical harmon
form an orthonormal basis of functions on th
(n21)-sphere,

E Ag̃dx1 . . . dxn21YkW
l* ~xi !YkW8

l 8 ~xi !5d l l 8dkWkW8 , ~10!

and we may write

C~xm!5(
l 50

(
kW

CkW
l
~ t !YkW

l
~xi !. ~11!

When C is a real field, the coefficientsCkW
l are not all

independent; for instance in three dimensions we sim
haveCkW

l* 5C
2kW
l . Now let us substitute Eq.~11! into Eq.~5!,

use Eq. ~9! and note that (n22)2/41 l ( l 1n22)5@ l 11
1(n24)/2#2. If we also introduce a new indexk instead of
l by k5 l 11, so thatk51,2, . . . , weobtain

Sm5E dt(
k51

`

(
kW

@ĊkW
l* ĊkW

l
2Mk

2CkW
l* CkW

l
1UCkW

l* CkW
l
#

~12!

where

Mk[k1
n24

2
. ~13!

Note that the coefficients of Eq.~11!, CkW
l (t), are just func-

tions of t (1-dimensional fields!, and for each set (l ,kW ) we
may introduce two real functionsfkW

l (t) andf̃kW
l (t) defined by

CkW
l
[

1

A2
~fkW

l
1 i f̃kW

l
!; ~14!

then the action~12! becomes the sum of the actions of tw
independent sets formed by an infinite collection of dec
pled time dependent harmonic oscillators:

Sm5
1

2E dt(
k51

`

(
kW

@~ḟkW
l
!22Mk

2~fkW
l
!21U~ t !~fkW

l
!2#1•••,

~15!

where the ellipsis stands for an identical action for the r
1-dimensional fieldsf̃kW

l (t).
We will consider, from now on, the action for th

1-dimensional fieldsfkW
l only. If our starting fieldF in Eq.
3-4
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~2! is real, the results from this ‘‘half’’ action, i.e. the writte
term in Eq. ~15!, are enough, ifF is complex, we simply
have to double the number of degrees of freedom. SinceMk

depends onk but not onkW , there is no dependence in th
action on the vectorkW and we can substitute(kW by (kW1
which gives the degeneracy of the modek. This is given by
@11#

(
kW

15
~2k1n24!~k1n24!!

~k21!! ~n22!!
. ~16!

Note that forn52, i.e. when the space section is a circ
(kW152; whenn53, which corresponds to the case of t
ordinary spherical harmonics(kW152k21 ~or 2l 11 in the
usual notation!; and for n54, which is the case of interes
here, the space section of the spacetime are 3-spheres a
have(kW15k2.

The field equation for the 1-dimensional fieldsfkW
l (t) are,

from Eq. ~15!,

f̈kW
l
1Mk

2fkW
l
5U~ t !fkW

l , ~17!

which in accordance with our previous remarks will
solved perturbatibely,U(t) being the perturbative term. Th
solutions of the unperturbed equation can be written as lin
combinations of the normalized positive and negative f
quency modes,f k and f k* respectively, where

f k~ t !5
1

A2Mk

exp~2 iM kt !. ~18!

B. Closed time path effective action

Let us now derive the semiclassical CTP effective act
GCTP for the cosmological scalar factor due to the prese
of the quantum scalar fieldF. The computation of the CTP
effective action is similar to the computation of the ordina
~in-out! effective action, except that now we have to intr
duce two fields, the plus and minus fieldsf6, and use ap-
propriate ‘‘in’’ boundary conditions. These two fields bas
cally represent the fieldf propagating forward and
backward in time. This action was introduced by Schwing
@30# to derive expectation values rather than matrix eleme
as in the ordinary effective action, and it has been used
cently in connexion with the back-reaction problem in sem
clasical gravity@31,21,32#. Here we follow the notations an
conventions of Refs.@7,8#

Note that since we are considering the interaction of
scale factora with the quantum fieldf, in the CTP effective
action we have now two scalar fieldsf6 and also two scale
factorsa6. The kinetic operators for our 1-dimensional fiel
fkW

l are given by Ak5diag„2] t
22Mk

21U1(t),] t
21Mk

2

2U2(t)…. The propagators per each modek, Gk(t,t8), are
defined as usual byAkGk5d, and are 232 matrices with
components (Gk)6 6 .

To one loop order in the quantum fieldsf6 and at three
level in the classical fieldsa6 the CTP effective action for
a6 may be written as
08351
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GCTP@a6#5Sg@a1#2Sg@a2#1Sm
cl@a1#2Sm

cl@a2#

2
i

2(
k51

(
kW

`

Tr~ ln Gk!, ~19!

whereSg is the pure gravitational action,Sm
cl is the action of

classical matter which in our case will include the cosm
logical constant term only, andGk is the propagator for the
modek which solves Eq.~17!. In principle theGCTP depends
on the expectation value in the quantum state of interest,
‘‘in’’ vacuum here, of botha6 ~the classical field! and of
f6. To get the previous expression we have substituted
solution of the dynamical equation for the expectation va
of the scalar field which iŝ0,inufu0,in&50, so that there is
no dependence on the expectation values off6 in the effec-
tive action.

Because of the interaction termU(t) in Eq. ~17!, the
propagatorGk cannot be found exactly and we treat it pe
turbatively. Thus we can write Gk5Gk

0(12UGk
0

1UGk
0UGk

01•••) where the unperturbed propagator
(Gk

0)215diag(2] t
22Mk

2 ,] t
21Mk

2). This unperturbed propa
gator has four components (Gk

0)115DkF , (Gk
0)225

2DkD , (Gk
0)1252Dk

1 and (Gk
0)215Dk

2 , where DkF ,
DkD andDk

6 are the Feynman, Dyson and Wightman prop
gators for the modek. This is a consequence of the bounda
conditions which guarantee that our quantum state is
‘‘in’’ vacuum u0,in&. These propagators are defined with t
usuali e prescription by

DkF~ t2t8!5
1

2pE2`

` exp@2 iv~ t2t8!#

v22~Mk
22 i e!

dv

52 i @ f k~ t ! f k
!~ t8!u~ t2t8!1 f k

!~ t ! f k~ t8!

3u~ t82t !#, ~20!

DkD~ t2t8!5
1

2pE2`

` exp@2 iv~ t2t8!#

v22~Mk
21 i e!

dv

5 i @ f k
!~ t ! f k~ t8!u~ t2t8!1 f k~ t ! f k

!~ t8!u~ t82t !#,

~21!

Dk
1~ t2t8!5 i f k

!~ t ! f k~ t8!, Dk
2~ t2t8!52 i f k~ t ! f k

!~ t8!.

~22!

The trace term in the effective action~19! will now be
expanded up to ordern2. The linear terms inn are tadpoles
which are zero in dimensional regularization. Thus we c
write the effective action as

GCTP@a6#.Sg@a1#2Sg@a2#1Sm
cl@a1#2Sm

cl@a2#1T1

1T21T, ~23!

where
3-5
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T652
i

4(
k51

`

(
kW

Tr@U6~Gk
0!66U6~Gk

0!66#,

T5
i

2 (
k51

`

(
kW

Tr@U1~Gk
0!12U2~Gk

0!21#. ~24!

The pure gravitational part of the action,Sg , includes the
Einstein-Hilbert action and a quadratic counterterm which
needed for regularization of the divergences of Eq.~24!,

Sg5
1

l P
2E dnxA2gR1

n2mc
n24

32p2~n24!
E dnxA2gR2,

~25!

wheremc is an arbitrary mass scale which gives the corr
dimension to the counterterm, andl P

2 516pG, the square of
the Planck length. To regularize the divergencies inT6 we
need to expand the action~25! in powers ofn24. Using our
metric ~1!, we can perform the space integration in Eq.~25!
which leads to the volume to the (n21)-sphere. Expanding
now in powers ofn24, and recalling that the volume of th
three-sphere is 2p2 we may writeSg5Sg

EH1Sg
div , where the

first term stands for the Einstein-Hilbert action in four d
mensions and the second term is the first order correctio
this expansion:

Sg@a#5
2p2

l P
2 E dt 6a2S ä

a
11D , ~26!

Sg
div@a,mc#5

1

16H 1

n24E dt U1
2~ t !1E dt@U1

2~ t !ln~amc!

12U1~ t !U2~ t !#J . ~27!

HereU1(t) andU2(t) are defined by the expansion ofU in
powers ofn24. That is, from Eqs.~7! and~3! we can write
U(t)5U1(t)1(n24)U2(t), where

U1526nS ä

a
11D , U252nS 2

ä

a
13

ȧ2

a2
15D . ~28!

The classical matter termSm
cl includes in our case the

cosmological constantL! only. It can be understood as th
term which gives the effect of the inflaton field at the s
tionary point of the inflaton potential@1#:

Sm
cl@a#522p2E dt a4L!. ~29!

C. Computation of T an T6

Let us first computeT in Eq. ~24!, which may be written
as
08351
s

t

in

-

T52
i

2 (
k51

`

(
kW
E dtdt8U1~ t !Dk

1~ t2t8!U2~ t8!Dk
2~ t8

2t !. ~30!

Since this term will not diverge, we can perform the comp
tation directly inn54 dimensions. In this case(kW15k2 and
Mk5k; thus using Eqs.~22! and ~18! we have

T52
i

2E dtdt8(
k51

`

U1~ t !k2f k*
2~ t ! f k

2~ t8!U2~ t8!

52E dtdt8U1~ t !D~ t2t8!U2~ t8!

2 i E dtdt8U1~ t !N~ t2t8!U2~ t8!, ~31!

where we have introduced the kernelsD andN as

D~ t2t8![2
1

8 (
k51

`

sin 2k~ t2t8!52
1

16
PVFcos~ t2t8!

sin~ t2t8!
G

~32!

N~ t2t8![
1

8 (
k51

`

cos 2k~ t2t8!

5
1

16H pF (
n5`

`

d~ t2t82np!G21J , ~33!

and we have computed the corresponding series. The ke
D andN are called dissipation and noise kernel, respective
using the definitions of@8#. It is interesting to compare with
Refs. @7,8# where a spatially flat universe was considere
Our results may be formaly obtained from that reference
we change vol*0

`dk there, where ‘‘vol’’ is the volume of the
space section~assume for instance a finite box!, by
2p2(k51

` . In the spatially flat case the noise is a simp
delta function~white noise!, whereas here we have a train
deltas. Note also that we have, in practice, considered a
scalar field only since we considered only half of the actio
i.e. the written part of Eq.~15!. Thus for the complex scala
field we need to multiply these kernels by 2, i.e., the dis
pation kernel is 2D and the noise kernel is 2N. Note also
that the definition of the dissipation kernel here and in R
@21# differ by a sign.

Let us now perform the more complicated calculation
T6. Since these integrals diverge inn54, we work here in
arbitrary n ~dimensional regularization!. From Eq.~24! and
the symmetries ofDkF andDkD we have

T652
i

4E dtdt8U6~ t !DF/D
2 ~ t2t8!U6~ t8!, ~34!

where we have introduced
3-6
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DF/D
2 ~ t2t8![(

k51

` S (
kW

1DDkF/D
2 ~ t2t8!

5E
2`

` dv

2p
e2 iv~ t2t8!I ~v!, ~35!

where I (v) is defined after having made an integral inv
with appropriate contour; recall the definitions~20! and~21!.
After using Eq.~16! and the definition~13! of Mk , I (v) is
given by

I ~v!56
i

2~n22!!

3 (
k51

`
~k1n24!!

~k21!! $@k1~n24!/2#22~v/2!26 i01%

[6
i

2~n22!! (k51

`

ak~v!, ~36!

where we have introduced the coefficientsak in the last se-
ries expression. In the Appendix, subsection 1, we prove
this series diverges like 1/(n24), and thus we can regulariz
it using Eq.~27!. Furthermore, its imaginary part is finite an
leads to the noise kernelN defined above.

Thus according to Eqs.~A1!, ~A3! and ~A8! from the
Appendix we can write Eq.~35! as

DF/D
2 ~ t2t8!57S i

4D Fd~ t2t8!

n24
2

1

2p2
K6~ t2t8!G ,

~37!

where we have defined

K6~ t2t8![16p2@A~ t2t8!6 iN~ t2t8!#. ~38!

HereA(t2t8) is a finite kernel which will be discussed be
low. We can now substitute Eq.~37! into Eq. ~34! and use
the expansion ofU(t) in powers ofn24 given in Eq.~28! to
get

T657F 1

n24E dt~U1
6!212E dt U1

6U2
6

2
1

2p2E dtdt8U1
6~ t !K6~ t2t8!U1

6~ t8!G . ~39!

D. The regularized CTP effective action

We are now in the position to compute the regulariz
semiclassical CTP effective action. Let us substitute in
~23! the actions~26!, ~27! and~29!, and the results~31! for T
and ~39! for T6. It is clear that the divergent term in Eq
~39!, i.e. the term proportional to 1/(n24), will be cancelled
by the divergent counterterm in Eq.~27!. Also the terms
*dt U1U2 in these equations will cancel. Thus, we finally g
the regularized semiclassical action
08351
at

d
.

t

GCTP@a6#5Sg,m
R @a1#2Sg,m

R @a2#1SIF
R @a6#, ~40!

where the regularized gravitational and classical matter
tions are

Sg,m
R @a#5

2p2

l P
2 E dt 6a2S ä

a
11D 22p2E dt a4L!

1
1

16E dt U1
2~ t !ln~amc!. ~41!

To write the remaining part,SIF
R , we note that the kernels

A andN in ~38!, satisfy the symmetriesA(t2t8)5A(t82t)
and N(t2t8)5N(t82t). Taking into account also thatD(t
2t8)52D(t82t) we obtain

SIF
R @a6#5

1

2E dtdt8DU~ t !H~ t2t8!$U~ t8!%

1
i

2E dtdt8DU~ t !N~ t2t8!DU~ t8!, ~42!

where we have defined

H~ t2t8!5A~ t2t8;mc!2D~ t2t8!, ~43!

DU5U12U2, $U%5U11U2. ~44!

In Eq. ~43! we have explicitly written that the kernelA de-
pends on the renormalization parametermc . We note that
this effective action has an imaginary part which involves
noise kernelN. However, because of the quadratic depe
dence of this term inDU, it will not contribute to the field
equations if we derive such equations fro
dGCTP /da1ua65a50. This, in fact, gives the dynamica
equations for expectation values of the fielda(t).

However, we recall that we are dealing with the intera
cion of a ‘‘system,’’ our classical~one dimensional! field
a(t), with an ‘‘environment’’ formed by the degrees of free
dom of the quantum system and that we have integrated
the degrees of freedom of the environment~note that in the
effective action we have substituted the solutions of the fi
equations for the expectation value of the quantum field!. In
this case the regularized actionSIF

R can be understood as th
influence action of the system-environment interactio
which describes the effect of the environment on the sys
of interest@33,34#. The imaginary part of the influence actio
is known @21–27# to give the effect of a stochastic force o
the system, and we can introduce an improved semiclass
effective action,

Se f f@a6;j#5Sg,m
R @a1#2Sg,m

R @a2#

1
1

2E dtdt8DU~ t !H~ t2t8!$U~ t8!%

1E dtj~ t !DU~ t !, ~45!
3-7



ol

ct

f

n
m

a

fo
a

ls

lt,
h
b

k-
ve
-

n

e
s
f

ing
r of

ec-

n-
in-
pu-

the
ces

-
r-

the

al

On

ESTEBAN CALZETTA AND ENRIC VERDAGUER PHYSICAL REVIEW D59 083513
wherej(t) is a Gaussian stochastic field defined by the f
lowing statistical averages:

^j~ t !&50, ^j~ t !j~ t8!&5N~ t2t8!. ~46!

The kernelH in the effective action gives a nonlocal effe
~due to particle creation!, whereas the sourcej gives the
reaction of the environment into the system in terms o
stochastic force.

The formal derivation of the last term of Eq.~45! can be
seen as follows. The Feynman-Vernon influence functio
@33# of the system-environment interaction is defined fro
the influence actionSIF by FIF5exp(iSIF). Note now that by
using a simple path integral Gaussian identity, the imagin
part of Eq.~42! can be formally recovered inFIF with the
following functional Fourier transform FIF
5*DjP@j#exp$i@Re(SIF)1*dtj(t)DU(t)#%, where

P@j#5

expF2
1

2E dtdt8j~ t !N21~ t2t8!j~ t8!G
E Dj expF2

1

2E dtdt8j~ t !N21~ t2t8!j~ t8!G ,

can be interpreted as a Gaussian probability distribution
the field j. That is, the influence funcional may be seen
the statistical average ofj dependent influence functiona
constructed with the ‘‘effective’’ influence action Re(SIF)
1*dtj(t)DU(t). The physical interpretation of this resu
namely, that the semiclassical equations are now the stoc
tic equations derived from such effective action, may
seen, for instance, in Ref.@22#.

E. Stochastic semiclassical back-reaction equation

The dynamical equation for the scale factora(t) can now
be found from the effective action~45! in the usual way, that
is by functional derivation with respect toa1(t) and then
equating a15a2[a. These equations include the bac
reaction of the quantum field on the scale factor. It is con
nient to use a rescaled scale factorb and cosmological con
stantL defined by

b~ t ![
A24p

l P
a~ t !, L[

l P
4

12p2
L!. ~47!

The regularized actionSg,m
R becomes, after one integratio

by parts,

Sg,m
R @b#52

1

2E dtF ḃ22b21
1

12
Lb4

2
9

2
n2S b̈

b
11D 2

ln~bm̄ !G , ~48!

where we have also rescaled the renormalization param
m̄. The remaining term in Eq.~45! does not change with thi
rescaling except that nowU(t) should be written in terms o
b; thus according to Eq.~28! we have
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U~ t !526nS b̈

b
11D . ~49!

The dynamical equation forb(t) is

dSe f f@b6;j#

db1 U
b65b

50. ~50!

This equation improves the semiclassical equation by tak
into account the fluctuations of the stress-energy tenso
the quantum field@35–37#. When averaged overj the equa-
tion leads to the usual semiclassical equation for the exp
tation value ofb(t).

Now this equation leads to the typical nonphysical ru
away solutions due to the higher order time derivatives
volved in the quantum correction terms. To avoid such s
rious solutions we use the method of order reduction@20#
into Eq. ~50!. In this method one asumes that Eq.~50! is a
perturbative equation in which the perturbations are
quantum corrections. To leading order the equation redu
to the classical equation

b̈1bS 12
1

6
Lb2D5O~n!. ~51!

The terms withb̈ or with higher time derivatives in the quan
tum corrections of Eq.~50! are then substituted using recu
rently the classical equation~51!. In this form the solutions
to the semiclassical equations are also perturbations of
classical solutions. Thus by functional derivation of Eq.~45!,
using Eq. ~48!, we can write the stochastic semiclassic
back-reaction equation~50! as

ṗ52V8~b!2dV8~b!1F~b,p,t !1J~j,b,p!, ~52!

where a prime means a derivative with respect tob, and we
have introducedp[ḃ. The classical potentialV(b) is

V~b!5
1

2
b22

L

24
b4, ~53!

and its local quantum correction is

dV~b!52
3n2L

4 F1

2
b22

L

48
b42p2 ln~bm̄ !G , ~54!

where we have implemented order reduction in this term.
the other hand the termF(b,p,t) involves nonlocal contri-
butions and may be written as

F~b,p,t !52
]U

]b
I 2

d2

dt2
S ]U

]b̈
I D 56nS d2

dt2
1

b
2

b̈

b2D I ,

~55!

whereI (b,p,t) is defined by

I ~b,p,t ![E
2`

`

dt8H~ t2t8!U~ t8!. ~56!
3-8
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After order reduction,U(t8) must be evaluated on the cla
sical orbit with Cauchy datab(t)5b, p(t)5p, whereby it
reduces toU52Lnb2. The functionJ is the noise given by

J~j,b!56nF d2

dt2
S j

bD2
bj̈

b2G
and, after order reduction, by

J~j,b,p!56nF j̈

b
2

2j̇p

b2
1

2jV8~b!

b2
1

2jp2

b3 G , ~57!

with j(t) defined in Eq.~46! in terms of the noise kernel.

F. Approximate kernels N and H

To simplify the nonlocal termF(b,p,t) and the noise
J(j,b,p) we will approximate the kernelH and the noise
kernelN, keeping only the first delta function, i.e.n50, in
the train of deltas which define the noise kernelN. This
amounts to take the continuous limit ink in the definition
~33! of N. In fact, we take the sum ink as an integral and we
get

N~u!5E
0

`

dk cos 2ku5
p

16
d~u!. ~58!

This is equivalent to assuming that the spacetime spa
sections are flat and of volume 2p2; see Ref.@7#. Similarly
the dissipation kernelD defined in Eq.~32! becomes

D~u!52
1

8E0

`

dk sin 2ku52
1

16
PVS 1

uD . ~59!

The same approximation may be used to compute the
nel A defined in Eqs.~36!–~38!. The computation of this
kernel can be read directly from Eq.~A7! ~see also Ref.@7#!:

A~u!52
1

8E2`

` dv

2p
e2 ivu ln

uvu
umcu

5
1

16
PfS 1

uuu D
1

1

8
~g1 ln mc!d~u!, ~60!

where g is Euler’s number and Pf means the Had
mard principal function whose meaning will be recall
shortly. To perform this last Fourier tranform w
write lnuvu5lime→01@exp(2euvu)lnuvu#, use the integrals
*0

`dv ln v cos(vu)exp(2ev) and *0
`dv cos(vu)exp(2ev)

which can be found in@40#, and take into account that

@2x tan21~u/e!1e ln~u21e2!#/~u21e2!

5d@ ln~u21e2!tan21~u/e!#/du.

When e→01 the last expression gives a representation
pPf(1/uuu). Finally, using Eqs.~59! and ~60! the kernel of
interestH(u)5A(u)2D(u) can be written as
08351
al
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f

H~u!5
1

8
PfFu~u!

u G1
g1 ln mc

8
d~u!. ~61!

The distribution Pf„u(u)/u… should be understood as fo
lows. Let f (u) be an arbitrary tempered function; then,

E
2`

`

duPfFu~u!

u G f ~u!5 lim
e→01

S E
e

`

du
f ~u!

u
1 f ~0!ln e D .

~62!

The approximation of substituting the exact kernels
their flat space counterparts is clearly justified when the
dius of the universe is large, which is when the semiclass
approximation works best. Once the local approximation
the noise kernel follows, the corresponding expression foD
can be obtained by demanding that their Fourier transfo
be related by the same fluctuation-dissipation relation a
the exact formula.

III. FOKKER-PLANCK EQUATION

Now we want to determine the probability that a univer
starting at the potential well goes over the potential bar
into the inflationary stage. In statistical mechanics this pr
lem is known as Kramers’ problem. To describe such proc
we have the semiclassical back-reaction equation~52!, which
is a stochastic differential equation~a Langevin type of equa
tion!. As is well known@38# to study this problem it is bette
to construct a Fokker-Planck equation, which is an ordin
differential equation for a distribution function. Thus, th
first step will be to derive the Fokker-Planck equation cor
sponding to the stochastic equation~52!. The key features of
this stochastic equation are a potential given by the lo
potentials~53! and ~54!, a nonlocal term given by the func
tion F and a noise termJ. The classical part of the potentia
has a local minimum atb50, then reaches a maximum an
decreases continuously after that. The inflationary stage
responds to the classical values ofb beyond this potential
barrier. If we start nearb50, the noise term will take the
scale factor eventually over the barrier, but if we want
compute the escape probability, we need to consider b
noise and nonlocality.

It should do no harm if we disregard the local quantu
correction to the potential,dV(b); the reason is the follow-
ing. This term is a consequence of renormalization, but
semiclassical gravity there is a two parameter ambiguity
terms which are quadratic in the curvature in the grav
tional part of the action. This ambiguity is seen here only
the parameterm̄ because we have simply ignored the oth
possible parameter which was not essential in the renorm
ization scheme. Furthermore, we should not trust the se
classical results too close tob50, since the semiclassica
theory should break down here. Thus the possible diverge
at b50 may be disregarded and we should think of th
renormalized term as just a small correction to the class
potential, as it is indeed for all radii of the universe unle
b!1. Thus the classical potentialV(b) should contain the
main qualitative features of the local renormalized potent
3-9
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To construct the Fokker-Planck equation let us introdu
the distribution function

f ~b,p,t !5^d„b~ t !2b…d„p~ t !2p…&, ~63!

where b(t) and p(t) are solutions of Eq.~52! for a given
realization ofj(t), b andp are points in the phase space, a
the average is taken both with respect to the initial conditi
and to the history of the noise as follows. One starts
considering the ensemble of systems in phase space obe
Eq. ~52! for a given realization ofj(t) and different initial
conditions. This ensemble is described by the den
r(b,p,t)5^d„b(t)2b…d„p(t)2p…&, where the average i
over initial conditions. Next one defines the probability de
sity f (b,p,t) as the statistical average over the realizations
j(t), that is f (b,p,t)5^r(b,p,t)&j

The next manipulations are standard@39#; we take the
time derivative off ,

] t f 5^ḃ~ t !]b~ t !d„b~ t !2b…d„p~ t !2p…

1d„b~ t !2b…ṗ~ t !]p~ t !d„p~ t !2p…&,

and note that]b(t)d„b(t)2b…52]bd„b(t)2b…, and that
^p(t)d„b(t)2b…d„p(t)2p…&5p f(b,p,t).

Performing similar manipulations for the other terms a
using the equations of motion~52! we find

] f

]t
5$H, f %2

]

]p
@F~b,p,t ! f #2

]

]p
F, ~64!

where we have defined

H~b,p!5
1

2
p21V~b!; ~65!

thus disregarding the potentialdV(b) in Eq. ~52!, the curly
brackets are Poisson brackets, i.e.

$H, f %52p~] f /]b!1V8~b!~] f /]p!,

and

F5^J~j,b,p!d„b~ t !2b…d„p~ t !2p…&. ~66!

Equation ~64! is not yet a Fokker-Planck equation;
make it one we need to writeF in terms of the distribution
function f . This term will be called the diffusion term sinc
it depends on the stochastic fieldj(t).

From Eqs.~66! and ~57! we may write

F56nFC2

b
2

2C1p

b2
1S 2V8

b2
1

2p2

b3 D C0G ~67!

where

Cn5K S dn

dtn
j~ t !D d„b~ t !2b…d„p~ t !2p…L , ~68!
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for n50,1,2. To manipulate the difussion term of Eq.~64!
we will make use of the functional formula for Gaussia
averages@41#,

^j~ t !R@b~ t !,p~ t !#&5E dt8N~ t2t8!

3K d

dj~ t8!
R@b~ t !,p~ t !#L , ~69!

whereR is an arbitrary functional ofj(t). Under the approxi-
mation ~58! for the noise kernel

C05
p

16K d

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L U

t8→t

52
pnL

8
b

]

]p
f ~b,p,t !, ~70!

where we have used Eq.~A11! in the last step. The expres
sions forC1 andC2 are similarly obtained; first one uses th
time translation invariance of the noise kernel to perfo
integration by parts, and then the problem reduces to tak
time derivatives of Eq.~70!. The results are~see the Appen-
dix, subsection 2, for details!

C15~pnL/8!~b]bf 2p]pf !, ~71!

C25~pnL/8!~2p]bf 1V8]pf 1bV9]pf !. ~72!

Finally, after substitution in Eq.~67! and using the equa
tion of motion to lowest order we have

F52
pn2L2

4
b2

] f

]p
, ~73!

which by Eq. ~64! leads to the final form of the Fokker
Planck equation

] f

]t
5$H, f %2

]

]p
@F~b,p,t ! f #1

pn2L2

4
b2

]2f

]p2
. ~74!

We also notice that in the absense of a cosmological c
stant, we get no diffusion. This makes sense, because in
case the classical trajectories describe a radiation filled
verse. Such a universe would have no scalar curvature,
so it should be insensitive to the value ofn as well.

A. Averaging over angles

We want to compute the probability that a classical u
verse trapped in the potential well ofV(b) goes over the
potential barrier as a consequence of the noise and nonlo
ity produced by the interaction with the quantum field, a
ends up in the de Sitter phase. A universe that crosses
potential barrier will reach the de Sitter phase with so
energy which one would expect will correspond to the e
ergy of the quantum particles created in the previous sta
Note that this differs from the quantum tunneling from not
ing approach in which the universe gets to the de Sitter st
3-10
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tunneling from the potential minimumb50 with zero en-
ergy. In practice, this difference will not be so importa
because as the universe inflates any amount of energy
sity will be diluted away.

For this computation we will follow closely the solutio
of Kramers’ problem@42# reviewed in the Appendix, subsec
tion 3. The three key features of such computation are, fi
the introduction of action-angle canonical variables (J,u);
second, the asumption thatf depends onJ only, i.e. f (J);
and, third, the use of the averaged Fokker-Planck equa
over the angle variableu. Of course, the Fokker-Planc
equation in Kramers’ problem, Eq.~A16!, is much simpler
than our equation~74! due to the nonlocal character of th
latter; thus we need to take care of this problem, and i
quite remarkable that a relatively simple solution can
found.

Thus, let us consider Eq.~74!, introduce (J,u) and as-
sume thatf (J), then in the Appendix we see that the dis
pation term which involves]2f /]p2 can be written in terms
of derivatives with respect toJ @see Eq.~A19!#. Since we
now have$H, f %50 we can write

] f

]t
5

pn2L2

4
b2F 1

V

] f

]J
1

p2

V

]

]JS 1

V

] f

]JD G
2F ]

]p
F~b,p,t !G f 2

pF

V

] f

]J
. ~75!

Next we take the average of Eq.~75! with respect to the
angle u. The averaged equation involves the two pairs
integrals*dub2p2, *dub2 and*dupF, *du]pF. The com-
ponents of each pair are related by a derivative with resp
to J. In fact, let us introduce

D~J!5
1

2pVE
0

2p

dub2p2, ~76!

changing the integration variable tob ~see the Appendix,
subsection 3! this integral may be written asVrdbb2p, and
using that]Jpub5V/p we have

dD

dJ
5

1

2pE dub2. ~77!

Similarly, let us introduce

S~J!5
1

2pVE
0

2p

dupF~b,p,t !; ~78!

again by a change of integration variable this integral may
written asVrdbF and by derivation with respect toJ we get

dS

dJ
5

1

2pE0

2p

du
]

]p
F~b,p,t !. ~79!

Finally, the average of the Fokker-Planck equation~75!
becomes
08351
n-

t,

n

is
e

f

ct

e

] f

]t
5

pn2L2

4

]

]JFD~J!

V

] f

]JG2
]

]J
~S f!. ~80!

This equation may be written as a continuity equation] t f
1]JK50, where the probability fluxK may be identified
directly from Eq.~80!. We see that, as in Kramers’ problem
stationary solutions with positive fluxK0 should satisfy

pn2L2

4

D~J!

V

] f

]J
2S~J! f 52K0 . ~81!

B. Nonlocal contribution S„J…

We need to handle now the termS(J), defined in Eq.
~78!. The problem here lies in the nonlocal termF(b,p,t)
defined in Eqs.~55!,~56!, with U(t) given by Eq.~49!. Since
this term gives a quantum correction to a classical equat
we will adopt the order reduction prescription. Thus let
assume thatb(t8) andp(t8) in the integral which definesF
are solutions to the classical equations of motion w
Cauchy datab(t)5b and p(t)5p; then the integrand in
F(b,p,t) will depend explicitly on time only throughb and
p. This means that the time dependence ofU(t8) may be
written asU(b,p,t82t). If we now write the Cauchy data in
terms of the action-angle variables (J,u), since the equation
of motion for the angle variable is simplyu̇5V, we may
write b@B(u,J),P(u,J),t#5b(u1Vt,J) and similarly forp.
This means that we may substitute the time derivative op
tor d/dt by V]/]u in F(b,p,t).

Thus substituting Eqs.~55! and ~56! into Eq. ~78!, using
Vd/du instead ofd/dt, integrating by parts and using th
expression forU(t) given by Eq.~49! we get

S5
6n

2pVE
0

2p

duF d

dt
S ṗ

b
D G I ~ t !. ~82!

This may be simplified using the equation of motion~51!
to lowest order; then changingdu by Vdt we have

S52
n2L2

2p E
0

2p/V

dtS d

dt
b2~ t ! D E

2`

`

dt8H~ t2t8!b2~ t8!.

~83!

Note that this term is of ordern2L2 as the diffusion term
~75!. Thus it is convenient to introduceS by

S~J!5
pn2L2

4
S~J!. ~84!

Now we can make use of Eq.~61! for the kernelH ~note that
the local delta term does not contribute!, and introduce a new
variableu5t2t8, instead oft8 to write S as

S~J!5
21

4p2E0

2p/V

dtS d

dt
b2~ t ! DPfE

0

` du

u
b2~ t2u!.

~85!

The equation for the stationary flux, Eq.~81!, becomes
3-11
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D~J!

V

] f

]J
2S~J! f 52

4

pn2L2
K0 . ~86!

All that remains now is to find appropriate expressions foD
and S in this equation and follow Kramers’ problem in th
Appendix to computeK0. From now on, however, it is more
convenient to use the energyE as a variable instead ofJ,
whereE5H(J) and thus we will computeD(E) andS(E) in
what follows.

C. Evaluating S and D

Let us begin by recalling the basic features of the class
orbits. The most important feature of the classical dynam
is the presence of two unstable fixed points atp50, b5
62AEs, whereEs53/(2L) is also the corresponding valu
of the ‘‘energy’’ E5p2/21V(b). These fixed points are
joined by a heteroclinic orbit or separatrix. Motion for ene
gies greater thanEs is unbounded. ForE<Es , we have outer
unbound orbits and inner orbits confined within the poten
well. These periodical orbits shall be our present concer

As it happens, the orbits describing periodic motion m
be described in terms of elliptic functions~see the Appendix,
subsection 4!. The exact expression for the orbits leads
corresponding expressions forD and S ~see the Appendix,
subsection 5!. Introducing a variablek,

k25
12A12E/Es

11A12E/Es

, ~87!

so thatk2;E/4Es for low energy, whilek2→1 as we ap-
proach the separatrix, we find

D~E!5S 8E2

15p D ~11k2!3/2

k4

3$2~12k21k4!E@k#2~223k21k4!K@k#%,

~88!

whereK andE are the complete elliptic integrals of the fir
and second kinds~see@44,45#!:

K@k#5E
0

1 dx

A~12x2!~12k2x2!
,

E@k#5E
0

1

dxA~12k2x2!

~12x2!
. ~89!

The corresponding expression forS is

S~E!5S 8E2

p2 D ~11k2!2

k4
$a@k#E@k#2g@k#K@k#%, ~90!

where
08351
al
s

l

y

a@k#5E
0

` du

u2 sn2 u
H 12S 11k2

3 D sn2 u

2S u

snuD @12~11k2!sn2 u1k2 sn4 u#1/2J , ~91!

snu being the Jacobi elliptic function, and

g@k#5E
0

` du

u2 sn2 u
H 12S 112k2

3 D sn2 u2S E@u,k#

snu D
3@12~11k2!sn2 u1k2 sn4 u#1/2J , ~92!

whereE@u,k# is an incomplete elliptic integral of the secon
kind:

E@u,k#5E
0

snu

dxA~12k2x2!

~12x2!
. ~93!

The conclusion of all this is that, whileD andS individu-
ally behave asE2 times a smooth function ofE/Es , their
ratio is relatively slowly varying. At low energy, we find
D;E2/2 and S;E2/4. As we approach the separatri
D˜0.96Es

2 andS̃ 1.18Es
2 . Meanwhile, the ratio of the two

goes from 0.5 to 1.23.
This means that we can write the equation for station

distributions as

] f

]E
2b~E! f 52

4

pn2L2g~E!
S K0

E2D , ~94!

whereb andg are smooth order-1 functions. There is a fu
damental difference with respect to Kramers’ proble
namely the sign of the second term on the left hand side
the cosmological problem, the effect of nonlocality is to f
vor diffussion rather than hindering it. We may understa
this as arising from a feedback effect associated with part
creation~see@46#!.

IV. TUNNELING AMPLITUDE

Having found the reduced Fokker-Planck equation~94!,
we must analyze its solutions in order to identify the range
the flux K0. We shall first consider the behavior of the sol
tions for E<Es , and then discuss the distribution functio
beyond the separatrix. Since our derivation is not valid the
for this latter part we will have to return to an analysis fro
the equations of motion. For concreteness, in what follow
is convenient to choose the order of magnitude of the c
mological constant. We shall assume a model geared to
duce GUT scale inflation, thusL;10212, and correspond-
ingly Es;1012 is very large in natural units.

A. Distribution function inside the potential well

As we have already discussed, the approximations use
building our model break down at the cosmological singul
3-12
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ity, and therefore Eq.~94! cannot be assumed to hold in
neighborhood ofE50. Thus it is best to express the solutio
for f in terms of its value atE5Es ,

f ~E!5
4K0

pn2L2Fs expS EE

dE8b~E8! D1 f p~E!G , ~95!

wheres is an arbitrary constant and the particular soluti
f p(E) is chosen to vanish atE5Es ,

f p~E!5expS EE

dE8b~E8! D E
E

Es dE8

g~E8!E82

3expS 2EE8
dE9b~E9! D , ~96!

so that

f ~Es!;
4K0

pn2L2
seb~Es!Es. ~97!

Because of the exponential suppression, the particular
lution is dominated by the lower limit in the integral, leadin
to

f p~E!;
1

g~E!E2@b~E!12/E#
2

e2b~Es!~Es2E!

g~Es!Es
2@b~Es!12/Es#

.

~98!

For E!1 we see thatf p;E21, but this behavior canno
be extrapolated all the way to zero as it would makef non-
integrable. However, we must notice that neither our tre
ment ~i.e., the neglect of logarithmic potential correction!
nor semiclassical theory generally is supposed to be v
arbitrarily close to the singularity. Thus we shall assume t
the pathological behavior of Eq.~94! near the origin will be
absent in a more complete theory, and apply it only fro
some lowest energyEd;1 on. There are still 12 orders o
magnitude betweenEd andEs .

Since we lack a theory to fix the value of the constants,
we shall require it to be generic in the following sens
We already know thatf p vanishes atEs , by design,
and then from the transport equation~94! we derive
d fp /dE52@g(Es)Es

2#21 there. So unless s
<@b(Es)g(Es)Es

2#21 exp@2b(Es)Es#;10224exp(21012), f
has a positive slope as it approaches the separatrix from
low. We shall assume a generics as one much above thi
borderline value, so that forE>1 the right hand side of the
reduced Fokker-Planck equation may be neglected, af
grows exponentially:

f ~E!;
4K0s

pn2L2
eb~E!E. ~99!

B. Outside the well

Beyond the separatrix, all motion is unbounded and th
is no analogue of action-angle variables; so we must re
08351
o-

t-

id
t

.
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to the original variablesb, p. Also note that we are only
interested in the regime whenE>Es ; that is, we shall not
consider unbound motion below the top of the potential.

Let us first consider the behavior of classical orbits in t
(b,p) plane. Our first observation is that as the universe g
unboundedly large, the effects of spatial curvature beco
irrelevant. This means that we may approximateU;

26nb̈/b, and accordingly the classical equation of motion

b̈;Lb3/6.
In this regime, classical orbits are quickly drawn to a

Sitter type expansion, whereby they can be parametrized

b~ t8!5
b~ t !

11A~L/12!b~ t !~ t2t8!
. ~100!

After substitutingU}b2, it is easily seen that the nonloca
term I is proportional tob2(t), and that therefore the nonlo
cal forceF vanishes@see Eq.~55!#. Therefore what we are
dealing with are the local quantum fluctuations of the met
which one would not expect to act in a definite direction, b
rather to provide a sort of diffussive effect. To see this, let
observe that if we look at the Fokker-Planck equation a
continuity equation; then we may write it as

] f

]t
52¹W KW ,

and this allows us to identify the flux. For example, if th
Fokker-Planck equation reads

] f

]t
5

]A

]b
1

]B

]p
,

then whateverA and B are, KW 52Ab̂2Bp̂, where a caret
denotes a unit vector in the corresponding direction. Rat
than b̂ and p̂, however, it is convenient to use the comp
nents of K̂ along and orthogonal to a classical trajecto
Since the energyE is constant along trajectories,¹W E lies in
the orthogonal direction; so the orthogonal component
simply KE or, sinceE5H(J), KJ .

Our whole calculation so far amounts to computing t
mean value ofKJ @see Eq.~80!#; indeed the first term acts a
diffussion, opposing the gradients off . The big surprise is
the second term being positive, forcing a positive flux
wards larger energies. Observe that, in particular, the m
flux across the separatrix is positive. Since for a station
solution the flux is conserved, the flux must be positive
cross any trajectory. Now beyond the separatrix the termSof
Eq. ~80! is absent becauseF vanishes and, as we shall see,D
remains positive. So to obtain a positive flux, it is necess
that ] f /]E,0, as we will now show.

To computeD beyond the separatrix, we observe th
although there are no longer action-angle variables, we m
still introduce a new pair of canonical variables (E,t), where
E labels the different trajectories andt increases along clas
3-13
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sical trajectories, withṫ51. It works as follows. The rela
tionship betweenp andb, p5A2E1(L/12)b4, becomes, for
low energy,

p5AL

12
b21A12

L

E

b2
. ~101!

This same relationship corresponds to a canonical trans
mation with generating functionalW,

W~b,E!5AL

12

b3

3
2A12

L

E

b
,

and the new canonical coordinatet follows from

t5
]W

]E
52A12

L

1

b
. ~102!

Comparing with Eq.~100!, this is just

t52A12

L

1

b~ t0!
F11AL

12
b~ t0!~ t02t !G ,

for some constant of integrationt0. Indeedṫ51, as it must.
Writing the Fokker-Planck equation~74! in the new vari-

ables (E,t) is an exercise in Poisson brackets, simplified
the approximation]b/]E;0 @to see that this approximatio
is justified we may go to one more order inE in the expres-
sions forp, W and t and we find that for largeb, ]b/]E
;212/(5Lb3)]. Thus from Eq.~74! with F50, we get

] f

]t
52

] f

]t
1

pn2L3

48
b6

]2f

]E2
, ~103!

so thatKt5 f ~that is, the universe moves along the classi
trajectory withṫ51), and

KE52
pn2L3

48
b6

] f

]E

with only the normal diffussive term present, as was e
pected. SinceKE must be positive~at least in the average!, f
must decrease beyond the separatrix, as we wanted to s

This result, in fact, can be made more quantitative if
note that Eq.~103! for a stationary distribution functionf is
essentially a heat equation which can be solved in the u
way. For this it is convenient to change to a new variabls
521/(5t5) which is positive semidefinite since the confo
mal timet is negative in the de Sitter region. The equati
then can be written as

] f

]s
5d

]2f

]E2
, ~104!

whered[36pn2. Its solution can be written as

f ~E!5
1

A4pds
E dE8e~E2E8!2/4sdh~E8!, ~105!
08351
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whereh(E8) is a function which determines the value off at
t52`. It is easy to compute that

E
2`

0

dt f ~E,t!}E
0

`

dE8
h~E8!

~E2E8!7/5
, ~106!

which shows that, for largeE, f in fact decreases asE27/5.

C. Tunneling amplitude

After the two previous subsections, we gather that
stationary solutions to the Fokker-Planck equation displa
marked peak atE5Es . We may now estimate the flux b
requesting, as we do for Kramers’ problem in the Append
that the total area below the distribution function should n
exceed unity. Unless the lower cutoffEd is very small~it
ought to be exponentially small onEs to invalidate our ar-
gument! the integral is dominated by that peak, and we o
tain

K0<~prefactor!exp@2b~Es!Es#. ~107!

The prefactor depends onL, n, g(1), b(1), s and the de-
tails of the peak shape. UsingEs53/(2L), b(Es)51.23, we
get

K0<~prefactor!expS 2
1.84

L D . ~108!

In the last section of the Appendix we have computed
flux when one considers a cosmological model with a sin
cosmic cycle. The result~A82! is qualitatively similar to this
one; it just gives a sligthly lower probability. This semicla
sical result must now be compared against the instanton
culations.

V. CONCLUSIONS

In this paper we have studied the possibility that a clos
isotropic universe trapped in the potential well produced b
cosmological constant may go over the potential barrier a
consequence of back-reaction to the quantum effects o
nonconformally coupled quantum scalar field. The quant
fluctuations of this field act on geometry through the stre
energy tensor, which has a deterministic part, associated
vacuum polarization and particle creation, and also a fluc
ating part, related to the fluctuation of the stress-energy
self. The result is that the scale factor of the classical u
verse is subject to a force due to particle creation and als
a stochastic force due to these fluctuations. We compute
Fokker-Planck equation for the probability distribution of th
cosmological scale factor and compute the probability t
the scale factor crosses the barrier and ends up in
de Sitter stage whereb;A12/L cosh(AL/12t8), wheret8 is
cosmological timebdt5dt8, if it was initially near b;0.
The result displayed in Eq.~108! is that such probability is

K0;expS 2
1.8

L D , ~109!
3-14
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or a similar result, displayed in Eq.~A82!, if we consider a
cosmological model undergoing a single cosmic cycle. T
result is comparable with the probability that the unive
tunnels quantum mechanically into the de Sitter phase f
nothing @1#. In this case from the classical action~48!
Sg,m

R @b#; i.e., neglecting the terms of ordern, one constructs
the Euclidean actionSE , after changing the timet5 i t,

SE@b#5
1

2E dtF ḃ21b22
1

12
Lb4G . ~110!

The Euclidean trajectory isb5A12/L cos(AL/12t8), where
t8 is Euclidean cosmological time~this is the instanton so
lution!. This trajectory gives an Euclidean actionSE54/L.
The tunneling probability is then

p;expS 2
8

L D . ~111!

This result, which in itself is a semiclassical result,
comparable to ours, Eq.~109!, but it is of a very different
nature. We have ignored the quantum effects of the cos
logical scale factor but we have included the back-reaction
the quantum fields on this scale factor. Also our unive
reaches the de Sitter stage with some energy due to the
ticles that have been created. In the instanton solution o
the tunneling amplitude of the scale factor is considered
the universe reaches the de Sitter phase with zero energ

Taken at face value, our results seem to imply that
nonlocality and randomness induced by particle creation
actually as important as the purely quantum effects. T
conclusion may be premature since after all Eq.~109! is only
an upper bound on the flux. Nevertheless, our results s
that ignoring the back-reaction of matter fields in quant
cosmology may not be entirely justified. We expect to de
further into this subject in future contributions.

ACKNOWLEDGMENTS

We are grateful to Leticia Cugliandolo, Miquel Dorc
Larry Ford, Jaume Garriga, Bei-Lok Hu, Jorge Kurchan, R
sario Martı´n, Diego Mazzitelli, Pasquale Nardone, Ju
Pablo Paz, Josep Porra`, Albert Roura and Alex Vilenkin for
very helpful suggestions and discussions. This work has b
partially supported by the European project CI1-CT94-00
and by the CICYT contracts AEN95-0590, Universidad
Buenos Aires, CONICET and Fundacio´n Antorchas.

APPENDIX

To facilitate the reading of this appendix we repeat h
the summary of its contents given in the Introduction: Su
section 1 gives some details of the renormalization of
CTP effective action; subsection 2 explains how to han
the diffusion terms when the Fokker-Planck equation is c
structed; in subsection 3, we formulate and discuss Kram
problem in action-angle variables; the subsection 4 gives
exact classical solutions for the cosmological scale factor
subsection 5, the averaged diffusion and dissipation co
cients for the averaged Fokker-Planck equation are deri
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in subsection 6, the relaxation time is computed in detail; a
finally in subsection 7, the calculation of the escape proba
ity for the scale factor is made for a model which undergo
a single cosmic cycle.

1. Divergences ofT

Here we compute the finite imaginary part of the ser
defined in Eq.~36! and prove that the real part diverges lik
1/(n24). The finite real part of the series will not be foun
explicitly; its exact form is not needed in the calculation
this paper. Let us now call«[n24, and callF(v) the series
~36! which we can write in terms of the gamma functions

F~v![(
k51

`

ak~v!

5 (
k51

`
G~k1«11!

G~k!

1

~k1«/2!22~v/2!21 i01

5 (
k51

`
G~k1«11!

G~k! H PV
1

~k1«/2!22~v/2!2

2 ipd@~k1«/2!22~v/2!2#J
[FR1 iF I , ~A1!

where we have used that (x6 i01)215PV(1/x)7 ipd(x).
Let us first concentrate on the imaginary partFI and com-
pute, according to Eq.~35!, its Fourier transform

F̃ I[E
2`

` dv

2p
e2 iv~ t2t8!FI

5
1

2 (
k51

`
G~k1«11!

G~k!

cos~k1«/2!~ t2t8!

k1«/2
, ~A2!

where we have used that 2(k1«/2)d@(k1«/2)22(v/2)2#
5d(k1«/21v/2)1d(k1«/22v/2). Now the last expres-
sion is clearly convergent when«50; thus we get

F̃ I5
1

2 (
k51

`

cosk~ t2t8!. ~A3!

this series can be summed up and we get the train of delta
Eq. ~33!, thus recovering the noise kernel, fromF̃ I58N(t
2t8).

Let us now see that the real part of the series diverges
1/«. Using thatG(x11)5xG(x) the principal part ofak can
also be written as

ak~v!5
G~k1«!

G~k!

k1«

~k1«/2!22~v/2!2
. ~A4!

It is clear from this expression that the divergences wh
«50 come from the ratio of gamma functions in Eq.~A4!
when k is large. Let us now separate the sum(k51

` ak
3-15
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5(k51
N21ak1(k5N

` ak where N@1. We can use now that fo
large x, G(x)5A2pxx21/2e2x@11O(1/x)# and the defini-
tion of e, e5 limn→`(111/n)n, to prove that G(k
1«)/G(k)5k«@11O(1/k)#. Substitutingak by āk , defined
by

āk5k«F11OS 1

kD G k1«

~k1«/2!22~v/2!2
, ~A5!

in the second sum of the previous separation, we can w
(k51

` ak5(k51
N21ak1(k5N

` āk . Now we can use the Euler

Maclaurin summation formula@40# to write (k5N
` āk

5*N
`dkāk1•••, where the ellipsis stands for terms whic

are finite since they depend on succesive derivatives ofāk at
the integration limits. Thus we may write(k51

` ak

5(k51
N21ak2*0

Ndk āk1*0
`dk āk . The first sum and first inte

gral of this last equation are finite for all«; thus we can take
«50, in which caseak5āk5k/@k22(v/2)2#. The sum and
integral may then be performed@writing 2ak51/(k1v/2)
11/(k2v/2)] and the lnN which appears in both expres
sions cancel; the next to leading order terms differ by or
O(1/N). Therefore the divergence is in the last integral

E
0

`

dkāk5E
0

`

dk
k«11

~k1«/2!22~v/2!2
, ~A6!

where here« is an arbitrary parameter. This integral is eas
computed@40#, and when it is expanded in powers of« we
get

E
0

`

dkāk52F 1

n24
1

1

2
ln~v/2!2G . ~A7!

Thus, according to Eqs.~35!, ~36! and ~A1! we compute
the Fourier transform ofFR ,

F̃R52
d~ t2t8!

n24
28A~ t2t8!, ~A8!

whereA(t2t8) stands for a finite kernel@see Eq.~60!#.

2. Diffussion terms

We want to compute Eq.~66! which can be written as Eq
~67! in terms of the functionsCn(n50,1,2) of Eq.~68!. The
simplest functionC0 can be written after using Eq.~69! as

C05E dt8N~ t2t8!K d

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L ,

whereas to write the other two functions we observe that
noise kernel is translation invariant; so integrating by pa
~in a distribution sense!,

Cn5E dt8N~ t2t8!
]n

]t8n
K d

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L .
08351
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We now use the local approximation for the noise ker
to get

C05
p

16K d

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L U

t8→t

,

and similarlyC1 andC2. As we know, this reduces to

C05
2p

16 S ]

]bK db~ t !

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L

1
]

]pK dp~ t !

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L D .

A functional derivative of the equations of motion lea
to

d

dt

db~ t !

dj~ t8!
5

dp~ t !

dj~ t8!
,

d

dt

dp~ t !

dj~ t8!
52V9@b~ t !#

db~ t !

dj~ t8!
16nF 1

b~ t8!

d2

dt2
d~ t2t8!

1
V8@b~ t8!#

b2~ t8!
d~ t2t8!G ,

where actually we are computing the right hand side only
lowest order inn. This suggests writing

dp~ t !

dj~ t8!
5G~ t2t8!u~ t2t8!1

6n

b~ t8!

d

dt
d~ t2t8!,

db~ t !

dj~ t8!
5R~ t2t8!u~ t2t8!1

6n

b~ t8!
d~ t2t8!,

~A9!

which works provided

dR

dt
5G, R~0!50,

dG

dt
52V9@b~ t !#R,

G~0!56nFV8@b~ t8!#

b2~ t8!
2

V9@b~ t8!#

b~ t8!
G52nLb~ t8!.

In the coincidence limit

db~ t !

dj~ t8!
U

t8→t

50,
dp~ t !

dj~ t8!
U

t8→t

52nLb, ~A10!

which leads to
3-16
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K d

dj~ t8!
d„b~ t !2b…d„p~ t !2p…L U

t8→t

522nLb
]

]p
f ~b,p,t !. ~A11!

The diffusive terms also involve the first and second
rivatives of the propagators with respect tot8. To find them,
we make the following reasoning. We have just seen that,
example,R(t,t)[0; therefore,

]

]t8
R~ t,t8!U

t8→t

52
]

]t
R~ t,t8!U

t8→t

52G~ t,t !522nLb.

~A12!

With a slight adaptation, we also get

]

]t8
G~ t,t8!U

t8→t

5
]

]t
[G~ t,t8!u t8→t] 2

]

]t
G~ t,t8!U

t8→t

,

so that we have

]

]t8
G~ t,t8!u t8→t52nLp. ~A13!

Iterating this argument, we find

]2

]t82
R~ t,t8!U

t8→t

52
]

]t
G~ t,t !2

]

]t8
G~ t,t8!U

t8→t

,

where we have permutted at and at8 derivative and used the
equations of motion. From this we thus get

]2

]t82
R~ t,t8!U

t8→t

524nLp. ~A14!

The last formula of this type that we need is

]2

]t82
G~ t,t8!U

t8→t

5
]

]t F ]

]t8
G~ t,t8!U

t8→t
G

2
]

]t8

]

]t
G~ t,t8!U

t8→t

,

which from the equations of motion leads to

]2

]t82
G~ t,t8!U

t8→t

522nLV8~b!1
]

]t8
V9@b~ t !#R~ t,t8!

522nLV8~b!2V9@b#2nLb

522nL
]

]b
~bV8@b# !. ~A15!
08351
-

or

3. Kramer’s problem

For our purposes in this paper we call Kramer’s proble
@42# the computation of the ‘‘tunneling amplitude’’ or, mor
properly, the escape probability of a particle confined in
potentialV(b), such as Eq.~53! for instance, which has a
maximum and a separatrix with an energyEs . The particle is
subject to a damping forcegp(p5ḃ) and white noise with
amplitudegkT, according to the fluctuation-dissipation rel
tion, whereg is a friction coefficient,k Boltzmann constant
and T the temperature. The Fokker-Planck equation in t
case is@38#

] f

]t
5$H, f %1g

]

]pFp f1kT
] f

]pG , ~A16!

whereH is given by Eq.~65!. Since the particle is trapped i
the potential, it undergoes periodic motion; in this case i
convenient to introduce action-angle variables@43# (J,u) as
canonical variables instead of (b,p), thus making a canoni-
cal transformationb5B(u,J), p5P(u,J). The action vari-
ableJ is defined by

J5
1

2p R pdb. ~A17!

Sincep can be written in terms ofb andH, substitution in
Eq. ~A17! and inversion implies thatH5H(J), and

]H

]J
5V~J! ~A18!

is the frequency of the motion. The other canonical variab
the angle variableu, satisfies a very simple equation of mo
tion u̇5V and changes from 0 to 2p. At high energies, that
is, near the separatrix whenJ→Js , the motion ceases to b
periodic andV→0. At low energies, let us assume thatb
50 is a stable minimum of the potential; near this minimu
the potential approaches the potential of a harmonic osc
tor with frequencyv, V(b);vb2/2 ~in our case we simply
havev51), and thenJ→0, H;vJ andV;v.

If g50, then the solution to the Fokker-Planck equati
is an arbitrary function ofJ andu2Vt. Stationary solutions
are therefore functions ofJ alone. We may seek a gener
solution as

f ~J,t !1g (
nÞ0

cn~J,t !ein~u2Vt !;

in this case we have]pf 5]pJub]Jf . From Eq.~65! we have
that p5@2(H2V(b))#1/2 and, consequently,]Jpub5V/p
whose inverse is]pJub5p/V. This can be used to write
]2f /]p2 in terms of derivatives with respect toJ, and since
now $H, f (J)%50 we can write the Fokker-Planck equatio
~A16! in the new variables as, keeping only first order term
3-17
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] f

]t
1g (

nÞ0

]cn

]t
~J,t !ein~u2Vt !

5gH f 1
p2

V

] f

]J
1kTF 1

V

] f

]J
1

p2

V

]

]JS 1

V

] f

]JD G J . ~A19!

Fourier expanding the coefficients on the right hand s
we obtain a set of equations for thecn coefficients. The
equation forf itself follows from the average of this equatio
over the angle variableu. Let us change the integration var
able in the definition~A17! of J, db5]ubuJdu, taking into
account that over a classical trajectoryJ is constant, and tha
u̇5V we have ]ubuJ5p/V(J). Thus, we can write Eq
~A17! as

1

2pE0

2p

dup25JV~J!. ~A20!

Using this result we can now take the average of E
~A19! over u. This average reads, simply,

] f

]t
5g

]

]JS JF f 1
kT

V

] f

]JG D . ~A21!

As one would expect exp(2E/kT) is a solution of this
equation. Let us now see whether this equation, which
transport equation, admits stationary solutions with posit
probability flux@19#. Note that we may write this equation a
a continuity equation] t f 1]JK50, where the fluxK can be
read directly from Eq.~A21!. Therefore a stationary solutio
with positive fluxK0 should satisfy

kT

V

] f

]J
1 f 52

K0

gJ
, ~A22!

which can be integrated to give

f 5
K0

gkT
e2E/kTE

J

J0dj

j
V~j!eE~j!/kT. ~A23!

For anyK0 , f diverges logarithmically whenJ→0; how-
ever, this is an integrable singularity inJ and this is not a
problem as we will see shortly. In our problem the acti
variableJ satisfies thatJ<Js and Eq.~A23! proves that there
is a real and positive solution for anyJ in such a range,
which corresponds to choosingJ05Js .

Given a solution we may determine the fluxK0, imposing
the condition that the probability of finding the partic
trapped in the potential well should not be greater than u
@19#, i.e. *0

Jsf (J)dJ<1. This is equivalent to

1>
K0

gkTS E
0

Jsdj

j
V~j!eE~j!/kTE

0

j

dJe2E/kTD . ~A24!

Since the integral is regular at zero, it is dominated by
contribution from the upper limit, and the integral may
evaluated approximately. One gets
08351
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K0<g
vJs

kT
expS 2

Es

kTD , ~A25!

where we have used that near the separatrixH;vJs . Typi-
cally the flux is very small so that the probability of findin
the particle in the potential well is nearly 1; therefore t
value ofK0 approaches the right hand side of Eq.~A25!.

We should remark here that in the order reduction sche
that we are following, to compute the noise and the nonlo
terms we use the classical equations of motion. In fact, th
terms have a quantum origin in our case and its computa
is one of the tasks we have to perform in order to define
particular Kramer’s problem. Thus the use of the actio
angle variables, which is convenient for the classical eq
tions of motion, is also convenient~after order reduction! in
our approach to the Kramer’s problem.

4. A look at the orbits

In what follows, we shall quote extensively from
Abramowitz and Stegun@44# ~AS! and Whittaker and Wat-
son @45# ~WW!.

The motion is described by the Hamiltonian

H5
1

2
~p21b2!2

L

24
b4. ~A26!

The energy is conserved, and on an energy surfaceH5E,
the momentum isp252E2b21Lb4/12. The classical turn-
ing points correspond top50. Introducing the separatrix
energyEs53/(2L),we can write the four turning points as

b6
2 54EsF16A12

E

Es
G ; ~A27!

two of them6b2 are inside the barrier, and two6b1 are
outside it. The momentum can now be written as

p252ES 12k2
b2

b2
2 D S 12

b2

b2
2 D , ~A28!

where we have introducedk25(b2 /b1)2; see Eq.~87!. The
equation for the orbit isb5b2x(t), where

x5snF b1t

A8Es

,kG , ~A29!

where sn is the Jacobi Elliptic Function~we follow the no-
tation from WW 22.11; to convert to AS, putm5k2, and see
AS 16.1.5!.

The Jacobi elliptic function is periodic with perio
4K@k#, whereK is the complete elliptic integral of the firs
kind ~AS 16.1.1 and 17.3.1! @see Eq.~89!#. The period in
physical time isT5A8Es4Kb1

21 , and the frequency

V5
pb1

2A8EsK@k#
. ~A30!
3-18
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5. D and S functions

The functionD is given by

D~J!5
1

2pE0

2p/V

dt b2p2,

which by introducingb5b2x can be written as

D~J!5
1

2p
4E

0

1

~b2dx!~b2
2 x2!A2E~12k2x2!~12x2!

5
2

p
A2Eb2

3 s@k#, ~A31!

where

s@k#5E
0

1

dx x2A~12k2x2!~12x2!. ~A32!

Following a suggestion in WW 22.72, this can be reduc
to complete elliptic integrals of the first and second kin
~we will need the third kind for theS function!, to get the
result quoted in the main text.

The functionS is given by

S5
21

4p2E0

T

dtF d

dt
b2~ t !GPfE

0

`du

u
b2~ t2u!.

Let us consider an orbit beginning atb(0)50, and divide the
time interval in four quarters:~I! 0<t<T/4; ~II ! T/4<t
<T/2; ~III ! T/2<t<3T/4; ~IV ! 3T/4<t<T. We have the
following relationships:~I! in the first quarter,bI5b(t), pI
5p(t), ~II ! in the second quarter,bII (t)5bI(T/22t), pII 5
2pI(T/22t), ~III ! in the third quarter,bIII (t)52bI(t
2T/2), pIII 52pI(t2T/2), ~IV ! in the fourth quarter,
bIV(t)52bI(T2t), pII 5pI(T2t). This suggests param
etrizing time in terms of a unique variablet, 0<t<T/4, as
follows: ~I! In the first quarter,t5t; ~II ! in the second quar
ter, t5T/22t; ~III ! in the third quarter,t5T/21t; ~IV ! in
the fourth quarter,t5T2t.

We can then write

S5
21

2p2E0

T/4

dt b~t!p~t!PfE
0

` du

u Fb2~t2u!

2b2S T

2
2t2uD1b2S T

2
1t2uD2b2~T2t2u!G .

Sinceb2 is an even function oft with periodT/2, we have

S5
21

p2 E0

T/4

dt b~t!p~t!PfE
0

` du

u
@b2~t2u!2b2~t1u!#,

and since the second integrand is obviously even,

S5
1

p2E0

T/4

dt b~t!p~t!PfE
2`

` du

u
b2~t1u!. ~A33!
08351
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To proceed, we must appeal to the addition theorem
elliptic functions~AS 16.17.1!. Next we use the differentia
equation for Jacobi elliptic functions~AS 16.16.1! and inte-
grate by parts to get

S5
32EEs

p2
k2 PfE

0

` du

u2
sn2~u!r@k2 sn2~u!#, ~A34!

where

r@n#5E
0

1

dx
x2A~12k2x2!~12x2!

@12nx2#
, ~A35!

which can be expressed in terms of complete elliptic in
grals

r5~2k2!H Fc81
a

k2GK@k#2
a

k2
E@k#2cP@n,k#J ,

~A36!

where the last term is the complete elliptic integral of t
third kind ~AS 17.7.2!, with sina5k,

a5
1

nF1

n
2

~11k2!

3k2 G ,

c85
1

nF 2

3k2
1

1

nS 1

n
2

~11k2!

k2 D G ,

c5
1

nF 1

k2
1

1

nS 1

n
2

~11k2!

k2 D G .

Since in our application we allways haven<k2, we may use
formulas AS~17.7.6! and ~17. 4.28! to get the result in the
text @recall thatE/Es54k2/(11k2)2].

6. Relaxation time

The aim of this section is to estimate the time on which
solution to the transport equation with arbitrary initial co
ditions relaxes to a steady solution as discussed in the m
body of the paper, in Sec. IV. The way this kind of proble
is usually handled@47# is to write the Fokker-Planck equa
tion ~74! in a way ressembling a~Euclidean! Schrödinger
equation

] f

]t
5L f . ~A37!

Then if a complete basis of eigenfunctions of theL operator
can be found,

L f n~p,q!5Enf n~p,q!, ~A38!

a generic solution to Eq.~A37! reads

f ~p,q,t !5( cnf n~p,q!eEnt. ~A39!
3-19
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Therefore, provided no eigenvalue has a positive real p
the relaxation time is the inverse of the real part of the larg
nonzero eigenvalue. TheL operator may have purely imag
nary eigenvalues, in which case it does not relax towards
steady solution.

This problem differs from the ordinary quantum mecha
cal one in several aspects, the most important being tha
L operator does not have to be either Hermitian or a
Hermitian. That is why the eigenvalues will be genera
complex, rather than just real or imaginary. Also, it is impo
tant to notice that the ‘‘right’’ eigenvalue problem, E
~A38!, is different from the ‘‘left’’ eigenvalue problem
gnLQ 5En8gn . For example, for anyL of the form L5] iK

i ,
where theK ’s are themselves operators,g0[1 is a solution
to this ~left! equation~with zero eigenvalue!, while it may
not be a solution to Eq.~A38! at all.

a. Our problem

In our case, theL operator can be read from Eq.~74!.
Since we are takingn as a small parameter, it is natural
write L5L01L1, where

L0f 5$H, f %, ~A40!

L1f 52
]

]p
@F f #1

pn2L2

4
b2

]2f

]p2
. ~A41!

The spectral decomposition ofL0 is very simple. In
action-angle variables,

L0f 52V~J!
] f

]u
. ~A42!

Imposing periodicity inu we find the following eigenvalues
0 and

En,x
0 52 inV~x!, ~A43!

with n integer ~note thatL0 is anti-Hermitian!. The eigen-
value 0 is infinitely degenerate: any function ofJ alone is an
eigenvector with zero eigenvalue. TheEn,x

0 have eigenfunc-
tions

f n,x
0 ~J,u!5

einu

A2p
d~J2x!, ~A44!

and, barring accidental degeneracy~the ratio of frequencies
for two different actions being rational!, are nondegenerate
These eigenfunctions are normalized with the Hilbert pr
uct (gu f )5*0

Js*0
2pdJdu g* f as (0nju0nx)5d(j2x),

where here and in the rest of this section we use Dira
notation.

Having solved the eigenvalue problem forL0, it is only
natural to see that ofL as an exercise in time independe
perturbation theory. There are three differences with the
dinary textbook problem:~1! L1 is neither Hermitian nor
anti-Hermitian;~2! one of the eigenvalues ofL0 is degener-
08351
rt,
st

ny

-
he
i-

-

-

’s

r-

ate; ~3! the eigenfunctions ofL0 are not normalizable. In
spite of this, the basic routine from quantum mechanics te
books still works.

b. Perturbations to nonzero eigenvalues

Let us seek the first order correction toEn,x
0 . We write the

exact eigenvalue asEn,x5En,x
0 1En,x

1 1••• corresponding to
the exact eigenfunctionf n,x5 f n,x

0 1 f n,x
1 1•••, and obtain

L1f n,x
0 1L0f n,x

1 5En,x
1 f n,x

0 1En,x
0 f n,x

1 . ~A45!

For mÞn we multiply both sides of the equation byf m,j
0* ,

use thatL0 is anti-Hermitian and integrate overJ andu, to
get

~0mju1nx!5
~0mjuL1u0nx!

En,x
0 2Em,j

0
. ~A46!

In the m5nÞ0 case, the same operation yields

En,x
1 ~0nju0nx!5~0njuL1u0nx!2@En,x

0 2En,j
0 #~0nju1nx!,

~A47!

and we may write

L1f n,x
0 5

einu

A2p
@R1 i I #, ~A48!

where

R5L1d~J2j!2n2
pn2L2

4
b2S ]u

]p UbD 2

d~J2j!.

~A49!

Whatever the imaginary partI is, it is not relevant to the
relaxation time; in a similar way, the average of the first te
in Eq. ~A49! yields no term proportional to (0nju0nx)
Therefore, we conclude that

Re@En,x
1 #52n2

pn2L2

8p E
0

2p

du b2S ]u

]p UbD 2U
J5x

.

~A50!

We see on dimensional grounds alone that the relaxa
time ~the inverse of this equation! will be of orderEs

2 @recall
that Es53/(2L)], much shorter than the average tunneli
time, which is proportional to the inverse of Eq.~108!.

The expression~A50! may be slightly simplified by using
the identity (]u/]p)ub52(]b/]J)uu , which follows from
the transformation from one set of variables to the other
ing canonical. We may write

Re@En,x
1 #52n2

pn2L2

32p E
0

2p

du S ]b2

]J U
u
D 2U

J5x

. ~A51!

We may Fourier transformb2 as a function ofu, derive term
by term, and use Parseval’s identity, to conclude that, in
case,
3-20



th

im

la

st
a
t
f
ac

la

hi

in

e
w
d

n

l
of

te

p-

V.

or
with
e
m

gi-

le,
low
cond
ith

ap-

NOISE INDUCED TRANSITIONS IN SEMICLASSICAL . . . PHYSICAL REVIEW D59 083513
uRe@En,x
1 #u>n2

pn2L2

~8p!2 F d

dJE0

2p

du b2G2U
J5x

. ~A52!

The integral in this expression can be performed; recall
b5b2x(t) wherex(t) is given in Eq.~A29!. We recall also
that V5ut with V given in Eq. ~A30!, and then use as
integration variable 2uK@k#/p, where K@k# is the elliptic
integral defined in Eq.~89!, to get finally

uRe@En,x
1 #u>n2

pn2L2

~4p! H d

dJFb2
2

k2 S 12
E@k#

K@k# D G J 2

.

~A53!

Rather than a general formula, let us investigate the l
iting cases. ForJ→0, we haveJ;E, k2;E/(4Es), b2

2

;2E, E@k#;(p/2)(12k2/4), andK@k#;(p/2)(11k2/4).
In this limit we thus get

uRe@En,x
1 #u>n2

n2L2

4
. ~A54!

For J→Js ~near the separatrix! we can use the following
approximations: b2

2 ;4Es@12A12E/Es#, k2;@1
22A12E/Es#, K@k#;(1/2)ln@16/(12k2)#;(1/4)ln@64/(1
2E/Es)#, E@k#;11(1/4)A12E/Es$ ln@64/(12E/Es)#
21%, and dE/dJ5V;p/(2K@k#). Thus the correction to
the eigenvalue diverges. In both cases, we get that the re
ation time is much smaller than the tunneling time.

c. Perturbation of the zero eigenvalue

We now confront the harder problem of finding the fir
order correction to the zero eigenvalue. The idea, as in qu
tum mechanics, is that the first order eigenvalues shall be
eigenvalues of the restriction ofL1 to the proper subspace o
the zero eigenvalue, namely, the infinite dimensional sp
of all u independent functions. Iff 0,x corresponds to an
eigenfunction with null eigenvalue, the first order secu
equation becomes

L1f 0,x
0 1L0f 0,x

1 5E0,x
1 f 0,x

0 . ~A55!

We eliminate the second term in the left hand side of t
equation by projecting back onu independent functions, by
averaging overu. Fortunately the average overu of L1 act-
ing on au independent function is precisely what we did
Sec. III; so using Eqs.~80! and ~84! we can write down the
eigenvalue problem

pn2L2

4

d

dJF D

V

d

dJ
2SG f 5l f , ~A56!

where we calll the eigenvalue, to avoid confussion with th
energy. The left hand side of this equation is a sum of t
terms, the first one being Hermitian, and the second un
fined. However, if we introduce a new functionC by f

5C exp@ 1
2*

EdE8 b(E8)# whereb5S/D, we can write
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4 H d

dJ

D

V

d

dJ
2

1

2

dS

dJ
2

VS2

4D J C5lC. ~A57!

Recall that we have seen in Sec. III thatS is an increasing
function of E ~or J). Therefore, multiplying byC* and in-
tegrating, we see thatl must be real and negative. This is a
important result.

Let us introduce a new non-negative parametera,

l52
pn2L2

8
a, ~A58!

write Eq.~A57! usingE as independent variable instead ofJ
(dE/dJ5V), and then introduce a new functionc by C
5c/AD. Finally Eq. ~A57! becomes

2
1

2
c91Va~E!c50 ~A59!

where

Va~E!5
1

4D
H dS

dE
1

S2

2D
1D92

D82

2D
2

a

V
J , ~A60!

which looks like a Schro¨dinger equation with an unusua
potential. We have therefore transformed the problem
finding the eigenvalues of Eq.~A57! into the question of for
which values ofa a particle of zero energy has a bound sta
in the potentialVa(E).

To get an idea of what is going on, let us make the a
proximationD;cE2, S;bD, wherec and b are constant;
then,

Va~E!5
b

4E2F2E1
b

2
E22

a

cbVG . ~A61!

Whena50, we should get back some results of Sec. I
Indeed, in this case the solutions for largeE go like
exp(6bE/2), which, after the equation relatingf with C,
means that the solutions either are exponentially growing
bounded. The first ones correspond to steady solutions
nonzero flux~those in Sec. IV!, while the second ones are th
stationary solutions with no flux. Note that the change fro
C to c, which we made previously, enforces the patholo
cal E21 low energy behavior we found in Sec. IV.

For aÞ0, the effective potentialVa has two classical
turning points, i.e. points whereVa(E)50. For smallE we
find E1;a/(2cb) @we use thatV(E1);1], and for largeE
we find E2 given byV21(E2);cb2Es

2/(2a), which, under
the asymptotic formV21(E); ln@64/(12E/Es)#/(A2p), is
E2;Es$1264 exp@2pcb2Es

2/(A2a)#%. The first classically
allowed region sits precisely where the theory is unreliab
and we ought to disregard it as an artifact. Therefore the
a eigenstates must be related to the presence of the se
allowed region, near the separatrix. This is consistent w
the fact that the zeroth order eigenvalues are2 inV @see Eq.
~A43!#, and so they tend to accumulate around 0 as we
proach the separatrix.
3-21
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In the second classically allowed region~largeE) we may
approximate

Va~E!;
a

4cEs
2F 1

V~E2!
2

1

V~E!G . ~A62!

As an estimate, we may look for values ofa such thatVa
satisfy a Bohr-Sommerfeld condition

E
E2

Es
dEA22Va~E!;np ~A63!

~this only makes sense if we treat the separatrix as a tur
point!. To perform the integral, we introduce a new variab
x5 ln@(12E2 /Es)/(12E/Es)#. The integral turns out to be

np;Aa(12E2 /Es)*0
`dxAxe2x/A2A2pc, and so the ei-

genvalues are the roots of

an expS 2
A2pcb2Es

2

an
D 5

n2p2c

128
. ~A64!

The relevant value ofc being 0.96 near the separatrix~see
the end of Sec. III!, thusb;1.23. Taking the logarithm o
Eq. ~A64!, we find the lowest eigenvalue

a15
A2pcb2Es

2

ln~128A2b2Es
2/p!

F11OS ln ln Es

ln Es
D G . ~A65!

This is the result we were looking for. Going back to t
beginning, we translate this into eigenvalues of the Fokk
Planck operator@see Eqs.~A38!# and ~A56!,

l;2
9pn2

32

A2pcb2

ln~128A2b2Es
2/p!

, ~A66!

where we have used Eq.~A58! and thatEs53/(2L). Thus
we conclude that the relaxation time grows logarithmica
with Es , while the tunneling time grows exponentially. I
fact, the tunneling time is proportional to the inverse of E
~108!, and so it goes like;exp(1.23Es). Therefore it is to-
tally justified to analyze tunneling under the assumption t
all transient solutions have died out, and we only have
steady solutions discussed in Sec. IV.

7. Single cosmic cycle

The purpose of this section is to discuss whether it
possible to generalize the discussion of the paper to mo
with a single cosmic cycle. The basic problem is that
universe emerging from the singularity with a finite expa
sion rate is bound to lead to infinite particle production@48#.
Therefore, in order to make sense, it is unavoidable
modify the behavior of the model close to the singulari
and there is no unique way to do this. Of course, a possib
is to assume that the singularity behaves as a perfectly
flecting boundary, which is equivalent to what we have do
so far. Another possibility, to be discussed here, is that
evolution is modified for very smal universes, so thatp van-
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ishes asb→0. For example, if the initial stages of expansio
~and the final stages of collapse! are replaced by an inflation
ary ~deflationary! period, thenp;b2, ṗ;b3, etc. We shall
assume such an evolution in what follows. In these mod
the singularity is literally pushed to the edge of time.

a. D and S functions

The D function is given by Eq.~76!, where now we av-
erage over a half period only. However, the periodicity of t
integrand is preciselyT/2; so the average over a half perio
is the same as the full average. Therefore,D;E2/2 at low
energy, and 0.96E2 close to the separatrix as we had in t
many cycles model.

For the functionS, let us begin from Eq.~78!, modified to
represent average over a half period,

S~J!5
1

pE0

T/2

dt pF~b,p,t !, ~A67!

and then use Eq.~55! for F and integrate by parts twice t
get

S~J!5
6n

p Fp
d

dt

I

bG
0

T/2

2
6n

p F ṗ
I

bG
0

T/2

1
6n

p E
0

T/2

dtS p̈

b
2

pb̈

b2 D I ~b,p,t !. ~A68!

The discussion above on the approach to the singula
means that the integrated terms vanish. In the remaining t

we use the equations of motionb̈5 ṗ52V8(b) and get

S~J!5
nL

p E
0

T/2

dt
db2

dt
I ~b,p,t !. ~A69!

Next use Eqs.~56!, ~61!, ~49!, ~51! and the redefinition~84!
to write

S52
1

2p2E0

T/2

dt
db2

dt
PfE

0

tdu

u
b2~ t2u!, ~A70!

where we have truncated theu integral to restrict it to the
range where the equations of motion hold.

Instead of looking for a general expression, we shall o
consider the low energy limit and the behavior close to
separatrix.

b. Low energy limit

For low energy,b5(A2E/V)sinVt. Substituting this into
Eq. ~A70!, changing the order of integration and performin
some simple integrations we obtain
3-22
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S5
E2

2p2V4
PfE

0

T/2du

u
@12cos 2Vu1p sin 2Vu#

56.89
E2

2p2V4
, ~A71!

where the last integration has been performed numerica
Thus,S retains the main features as in the previous case,
most important being the sign and energy dependence.

c. Close to the separatrix

Close to the separatrix, we must make allowance for
fact that the orbit spends an increasing amount of time n
the turning pointb2 . It is thus convenient to isolate th
central portion of the orbit. Let us rewrite Eq.~A70! as

S52
1

2p2F E0

T/4

dt
db2

dt E0

tdu

u
b2~ t2u!

1E
T/4

T/2

dt
db2

dt E0

t du

u
b2~ t2u!G . ~A72!

Divide the u integral by quarter orbits, writet5T/22t8 in
some of these integrals, and use the periodicity and parit
b2 anddb2/dt. We can then rewriteS as

S5A1B ~A73!

where

A52
1

2p2F E0

T/4

dt
db2

dt E0

T/41t du

u
b2~ t2u!

2E
0

T/4

dt
db2

dt E0

T/42t du

u
b2~ t1u!G ,

B5
1

2p2F E0

T/4

dt
db2

dt Et

T/41t du

u
b2~ t2u!

1E
0

T/4

dt
db2

dt ET/42t

T/22t du

u
b2~ t1u!G .

Observe that the factordb2/dt effectively cuts off thet in-
tegrals at times much shorter thanT/4. So we can take the
limit T→`, wherebyA converges to the expression forS of
the previous case, i.e. Eq.~A33!. Here, our problem is to
estimateB.

Let us writeB5C1D, where

C5
1

2p2E0

T/4

dt
db2

dt E0

T/4 dv
t1v

b2~v !,

D5
1

2p2E0

T/4

dt
db2

dt E0

T/4 dv
T/22v2t

b2~v !.
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To evaluateC, we integrate by parts and take the limitT
→`,

C5
b2

4

2p2
lnS T

4D2
1

2p2E0

`

dt
db2

dt E0

`

dv ln~ t1v !
db2

dv

1OS 1

TD . ~A74!

Let us use the same argument inD, take the limit and addC
to getB. The final result is

S5
1

2p2H E0

`

dt
db2

dt E0

`

duF1

u
$b2~ t1u!2b2~ t2u!%

2 ln~ t1u!
db2

du G1b2
4 lnS T

2D J . ~A75!

Using that at the separatrixb5A4Es tanh(t/A2), the double
integral in the above expression gives 13.89Es

2/(2p2), and
we finally have

S50.70Es
21

8Es
2

p2
lnS T

2D . ~A76!

For T we have the result@cf. Eq. ~A30!# T54A2K@k#/(1
1A12E/Es), and when k→1, K@k#;(1/4)ln@64/(1
2E/Es)#, andS can then be written as

S50.42Es
21

8Es
2

p2
lnS ln

64

12E/Es
D . ~A77!

d. Flux

We shall now show that, in spite of the divergence inS, f
itself remains finite as we approach the separatrix. Basica
the arguments in Sec. IV still hold; so the equation to solve

d f

dE
2Fb1a lnS ln

64

12E/Es
D G f 50, ~A78!

where b50.44(0.42/0.96) anda50.84(8/0.96p2). Let us
now call 64e2x512E/Es ; then dE564Ese

2xdx and the
equation becomes

d f

dx
264Es@b1a ln x#e2xf 50, ~A79!

which is well behaved asx→`.
In order to estimate the flux, we now need the integral

f in a neighborhood of the separatrix, namelyK21;*dE f.
With the same change of variables as above, we get

K21;64EsE`

dx expF64EsEx

dx8~b1a ln x8!e2x82xG .
~A80!

The integral peaks when 64Es(b1a ln x)e2x51, which de-
finesx05 ln(64Es)1 ln(b1a ln x0), and thus
3-23
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K21;
1

b1a ln x0
expF64EsEx0

dx8~b1a ln x8!e2x8G .
~A81!

In order to get back the old result whena50, we must
assume a lower limit for the integral atx; ln64;4.16, which
corresponds toE;0. This limit is high enough that the in
tegral is dominated by the lower limit (e2x ln x peaks below
e); so we finally obtain
,

,

08351
K;~b1a ln x0!exp@2~b11.62a!Es#

;~prefactor!expS 2
2.71

L D . ~A82!

This result should be compared to our previous res
~108! or ~109!. In spite of everything, we are still above th
quantum tunneling probability~111!. Thus, considering a
cosmological model which undergoes a single cosmic cy
does not qualitatively change our conclusions.
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