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ABSTRACT

Open clusters have long been used to study the chemodynamical evolution of the Galactic disc.
This requires a homogeneously analysed sample covering a wide range of ages and distances.
In this paper, we present the Open Clusters Chemical Abundances from Spanish Observatories
(OCCASO) second data release. This comprises a sample of high-resolution (R > 65 000) and
high signal-to-noise spectra of 115 red clump stars in 18 open clusters. We derive atmospheric
parameters (T, log g, &), and [Fe/H] abundances using two analysis techniques: equivalent
widths and spectral synthesis. A detailed comparison and a critical review of the results of the
two methods are made. Both methods are carefully tested between them, with the Gaia FGK
benchmark stars, and with an extensive sample of literature values. We perform a membership
study using radial velocities and the resulting abundances. Finally, we compare our results
with a chemodynamical model of the Milky Way thin disc concluding that the oldest open
clusters are consistent with the models only when dynamical effects are taken into account.

Key words: techniques: spectroscopic —Galaxy: disc —open clusters and associations: gen-

eral.

1 INTRODUCTION

The Open Clusters Chemical Abundances from Spanish Observato-
ries (OCCASO) survey (Casamiquela et al. 2016, hereafter Paper I)
is a high-resolution spectroscopic survey of open clusters (OCs). It
was designed to obtain accurate radial velocities and homogeneous
chemical abundances for around 30 different species in northern
OCs. A list of 25 candidate OCs was selected taking into account
ages, metallicities and positions in the Galactic disc. In Paper I,
there is a full description of the motivation, design and strategy
of the survey. Also radial velocities for 77 stars in 12 OCs were
analysed to obtain an accurate membership selection. We included
a very detailed description of the used instruments and the observa-
tional strategy. In brief, OCCASO observations are performed with
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high-resolution echelle spectrographs available at Spanish Obser-
vatories: Calar Alto Fiber-fed Echelle spectrograph (CAFE) at the
2.2-m telescope in the Centro Astrondmico Hispano-Alemdn
(CAHA), Fibre-fed Echelle Spectrograph (FIES) at the 2.5 m Nordic
Optical Telescope (NOT) in the Observatorio del Roque de los
Muchachos (ORM) and High Efficiency and Resolution Merca-
tor Echelle Spectrograph (HERMES) at the 1.2-m Mercator tele-
scope also in the ORM. These instruments have similar resolution
R > 65000 and wavelength range coverages 4000 A < A < 9000 A.
The typical obtained signal-to-noise ratios (SNR) were around 70.

In this paper, we present the analysis of atmospheric param-
eters and iron abundances for the whole sample of stars in 18
OCs: 12 OCs from Paper I (observations completed by 2015
January), plus six new OCs (38 stars) finished until 2016 Au-
gust. The analysis is done using two different methods widely
used in the literature: equivalent widths (EW) and spectral syn-
thesis (SS). A detailed analysis of the differences found using
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both methods is performed as well as a wide comparison with the
literature.

The analysed OCs cover Galactocentric distances between 6.8
and 10.7 kpc, and ages between 300 Myr and 10.2 Gyr. This cov-
erage allows a first investigation of the iron abundance gradient in
the Milky Way disc and its change with time. Our sample has the
advantage that is done from high-resolution spectra, it is large and
has been analysed homogeneously. Our data allow the study of up
to 35 chemical species, which will be analysed in a further paper in
preparation.

This paper is organized as follows. We present an overview of the
used data in Section 2, the analysis strategy is detailed in Section 3,
which includes the used line list in Section 3.1, model atmosphere in
Section 3.2 and the description of the analysis methods in Section
3.3. The calculation of the atmospheric parameters is detailed in
Section 4, where we include the comparison between the two meth-
ods (Section 4.1), the results for the benchmark stars (Section 4.2)
and an external check with photometric parameters (Section 4.3).
Results on iron abundances are presented in Section 5, where we
include an analysis of the performance of the methods (Section 5.1).
An analysis cluster-by-cluster is done in Section 6, and an extensive
comparison with the literature in Section 7. Finally, a preliminary
discussion related to the Galactic disc gradients is presented in
Section 8, and the summary is provided in Section 9.

2 OCCASO SECOND DATA RELEASE

The second data release of OCCASO includes the analysis of high-
resolution spectra of 115 stars belonging to 18 OCs. The details of
the observational material can be found in Section 2.1. The general
properties of the 18 OCs are summarized in Table 1, where the six
added clusters with respect to Paper I are marked in bold. Colour—
magnitude diagrams (CMDs) from the available photometries for
these six OCs are plotted in Fig. 1. CMDs for the previous 12 OCs
were presented in Paper I.

Radial velocity measurements for the 38 stars in the six added
OCs will be detailed in a future paper (Casamiquela et al., in prepa-
ration). We have made a membership analysis of these OCs using
the same criteria as in Paper 1. That is, rejecting those stars that
have a v, not compatible at the 3o level of the radial velocity of
the cluster. We have found three probable non-member stars or
spectroscopic binaries: NGC 6791 W3899, NGC 6939 W130 and
NGC 7245 W045.

2.1 Observational material

The current work uses observations of the runs described in
Paper I (53 nights of observations between 2013 January and 2015
January), which include data for 12 OCs. And also we incorpo-
rate five additional runs: 28 nights between 2015 April and 2016
August. This makes a total of 81 nights of observations. With the
whole set of data, we are capable to analyse 115 stars in 18 OCs.
Additionally, Arcturus («¢-Bootes) and u-Leo, two extensively stud-
ied stars, part of the Gaia FGK benchmark stars (GBS; Heiter et al.
2015b) and of the Apache Point Observatory Galactic Evolution Ex-
periment (APOGEE; Frinchaboy et al. 2013) reference stars, were
observed with the three telescopes for the sake of comparison. De-
tails of the runs (2015 April-2016 August), dates, instruments and
radial velocity accuracies will be described in Casamiquela et al.
(in preparation).

We have modified the data reduction strategy with respect to the
one explained in Paper I to improve the quality of the final spectra.

Table 1. Clusters of OCCASO completed by the end of 2016 Au-
gust. Newly added clusters to those of Paper I are marked in bold.
Distance from the Sun D, Rgc, z are from Dias et al. (2002). We
list the V magnitude of the red clump and the number of stars ob-
served. The photometry used to select the target stars is indicated as

a footnote.
Cluster D Jitele z Age Vrc Num. stars
(kpc) (kpc)  (pc)  (Gyr)

IC 4756! 048 8.14 441 08¢ 9 8
NGC 188 1.71 945 4651 63% 125 6
NGC 7523 046 880 —160 1.2¢ 9 7
NGC1817* 197 1041 —446 1.1¢ 125 5
NGC 1907° 180 1024 +9  04° 9 6
NGC2099° 138 9.87 474 04 12 7
NGC 24207 248 1074 +833 22¢ 125 7
NGC2539% 136 937 +250 0.6¢ 11 6
NGC2682°  0.81 9.16 +426 43¢ 105 8
NGC 663310 038 820 +54 0.6° 85 4
NGC 6705 188 683 —90 03/ 115 8
NGC 67912 504 824 +953 10.2¢ 145 7
NGC 68193 251 817 4370 29¢ 13 6
NGC6939'* 180 886 +384 1.3% 13 6
NGC 69915 070 847 419 13" 10 6
NGC 7245 347 979 —112 04" 13 6
NGC 77624 078 886 +79 25 125 6
NGC 77897 1.80 941 —168 1.8¢ 13 7

Note. ' Alcaino (1965); Platais et al. (2003); 3Johnson (1953);
4Harris & Harris (1977); SPandey et al. (2007); ®Kiss et al. (2001);
7 Anthony-Twarog et al. (1990); Choo et al. (2003); *Montgomery,
Marschall & Janes (1993); 'Harmer et al. (2001); ''Sung et al.
(1999); 1?Stetson, Bruntt & Grundahl (2003); '*Rosvick & Vanden-
berg (1998); “Maciejewski & Niedzielski (2007); '*Kharchenko
et al. (2005); '°Subramaniam & Bhatt (2007); "McNamara &
Solomon (1981) and Mochejska & Kaluzny (1999).

“ Salaris, Weiss & Percival (2004); ?Subramaniam & Sagar (1999);
“Nilakshi & Sagar (2002); dChoo et al. (2003); “Jeffries et al.
(2002); /Cantat-Gaudin et al. (2014b); ¢Andreuzzi et al. (2004);
"Kharchenko et al. (2005); ‘Subramaniam & Bhatt (2007);/Carraro,
Semenko & Villanova (2016).

*1t has only four stars in the RC but was included for observation in
a night with non-optimal weather conditions.

We have built our own pipeline (see Appendix A) to perform sky-
line subtraction, telluric correction, normalization and order merg-
ing. These improvements do not change the radial velocities from
Paper I, but they are important for the atmospheric parameters and
the abundances determination.

2.1.1 Benchmark stars

Aside of our own observational material, we also analyse a sample
of GBS. The GBS are a set of calibration stars, covering different
regions of the Hertzsprung—Russell (HR) diagram and spanning a
wide range in metallicity. For these stars, there exist enough data to
determine effective temperature and surface gravity independently
from spectroscopy by using their angular diameter measurements
and bolometric fluxes. These determinations and related uncertain-
ties are fully described in Heiter et al. (2015b). Reference metal-
licities also exist for these stars, and are determined from a careful
spectroscopic study by Jofré et al. (2014).

We retrieved the data from the library of high-resolution op-
tical spectra of the GBS (Blanco-Cuaresma et al. 2014a). This
library includes 100 high SNR spectra of 34 stars from the
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Figure 1. (B — V), V colour-magnitude diagrams of the newly completed clusters (references are listed in Table 1). The red crosses indicate target stars, and
cyan squares indicate stars that we have found to be probably non-members or spectroscopic binaries from the radial velocity study.

spectrographs High Accuracy Radial velocity Planet Searcher
(HARPS), NARVAL, Ultraviolet and Visual Echelle Spectrograph
(UVES) and Echelle SpectroPolarimetric Device for the Observa-
tion of Stars (ESPaDOnS), which cover the visual spectral range
(4800A < A <6800 A). Taking into account our target stars, we
have selected the GBS that covered the appropriate range of the pa-
rameter space: 4000 < T < 6650 (K), 1.1 <logg <4.5, [Fe/H] >
—1.5, with 23 GBS fulfilling these criteria. We have degraded the
resolution of the spectra to a common resolution of 62 000 to analyse
them homogeneously with our OCCASO spectra.

3 ANALYSIS STRATEGY

The high-resolution and large wavelength coverage of the spectra
allows for the determination of a large number of astrophysical
quantities: effective temperature (T.¢), surface gravity (log g), mi-
croturbulence (&), overall stellar metallicity [M/H] and individual
abundances for more than 30 chemical species.

In this section, we summarize the analysis strategy: line list used,
adopted model atmospheres and analysis methods.

3.1 Line list

We used the Gaia-ESO Survey (GES) line list that is a compilation
of experimental and theoretical atomic and molecular data that are
being updated and improved regularly. It is convenient for our study
because it covers the wavelength range of our instruments, it has
been extensively used in the literature and its atomic parameters
are recent. Details of this compilation are provided in Heiter et al.
(2015a).

In the present work, we have used version 5, which covers a
wavelength range 4200 A < A < 9200 A. Collisional broadening
by hydrogen is treated considering the theory by Anstee, Barklem
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and O’Mara (Anstee & O’Mara 1991; Barklem & O’Mara 1998). It
contains atomic information for 35 different chemical species: Li,
C, N, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Zn, Rb, Sr, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy.

We have used two different analysis methods (see Section 3.3),
so0, even though the master line list is the same, each method chooses
independently the most suitable lines. The line selection by each
method is explained in Section 3.3.

3.2 Model atmospheres

We adopted the marcs grid! model atmospheres of Gustafsson et al.
(2008). It is an extensive grid of 10* spherically symmetric models
(supplemented with plane-parallel for the highest surface gravi-
ties) for stars with 2500 K <7 < 8000 K, 0 <logg < 5 (cgs)
with various masses and radii, and —5 <[M/H] < +1. Underlying
assumptions in addition to 1D stratification (spherical or plane-
parallel) include hydrostatic equilibrium, mixing-length convection
and local thermodynamic equilibrium. The standard Marcs models
assume solar abundances of Grevesse, Asplund & Sauval (2007)
and a-enhancement at low metallicities.

3.3 Analysis methods

There are two state-of-the-art methodologies currently employed
in the literature: EW and SS. We used these two approaches to
determine atmospheric parameters and abundances. The strategy of
applying multiple pipelines to determine atmospheric parameters
and abundances is applied in other surveys such as the GES (Gilmore
et al. 2012), as explained in Smiljanic et al. (2014). This strategy
has the advantage that allows the investigation of method-dependent

!http://marcs.astro.uu.se/
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effects, different sources of uncertainty, and provides an estimation
of the accuracy of the derived parameters and abundances.

Both methods ran independently on the same spectra, with a
common master line list and model atmospheres to guarantee some
internal consistency.

3.3.1 EW: DAOSPECH+GALA

DAOSPEC+GALA is our EW method. It consists in two steps performed
by two different codes.

First, EWs were measured using poop (Cantat-Gaudin et al.
2014a) that is an automatic wrapper for bAospEC (Stetson & Pancino
2008). DAOSPEC is a FORTRAN code that finds absorption lines in a
stellar spectrum, fits the continuum, measures EWs, identifies lines
from a provided line list and gives a radial velocity estimate. Doop
optimizes the most critical DAOSPEC parameters in order to obtain
the best measurements of EWSs. In brief, it fine tunes the full width
at half-maximum (FWHM) and the continuum placement among
other parameters, through a fully automatic and iterative procedure.

The determination of the atmospheric parameters was done with
the GaLA code (Mucciarelli et al. 2013). It is based on the set of
Kurucz abundance calculation codes (WipTH9; Sbordone et al. 2004,
Kurucz 2005). GaLa optimizes atmospheric parameters (7, log g,
&, [M/H]) using the classical spectroscopic method based on iron
lines. The T.i is optimized by minimizing the slope of the iron
abundance versus excitation potential. The difference of abundances
between neutral iron Fe 1 and ionized iron Fe 1 lines is used to
constrain the surface gravity. The angular coefficient in the iron
abundance EW is used to optimize the microturbulence and the
average Fe abundance to constrain the global metallicity of the
model. aLa measures the line abundances and performs a rejection
of lines of the same chemical species using a threshold on too weak
or too strong lines [we use —5.9 < log(5Y) < —4.7], a limit in the
EW error measured by paospec (we choose ~15 per cent depending
on the SNR of the star) and finally performing a o clipping rejection
in abundance (we choose 2.50°).

To select the lines for this method we use pre-selection of the
Gaia-ESO v5 master line list. This compilation is done by one of
the GES nodes (Donati, private communication), and it is suitable
for an EW analysis since lines are checked for blends with synthesis.
We further perform a cleaning process to select lines that provide
consistent abundances, and to get rid of blends or lines with bad
atomic parameters. This process is divided in two steps. First, Fe 1
and Fe 1 lines detected by paospec in less than three stars were
rejected. This provides a better determination of the FWHM and
the continuum placement. Afterwards, Fe 1 and Fe 1 lines that were
rejected by GaLA in all the stars or that gave systematically discrepant
abundances with respect to the mean Fe abundance were discarded.
The cleaned line list fed to paosPEC is detailed in Table 2.

3.3.2 8S: ISPEC

1sPEC (Blanco-Cuaresma et al. 2014b) is a tool that can be used
to perform spectroscopic manipulations such as determine/correct
radial velocities, normalize and degrade the spectral resolution. And
more importantly, it also offers the possibility to derive atmospheric
parameters and chemical abundances by using the EW method and
the SS fitting technique with many different atomic line lists, model
atmosphere and radiative transfer codes.

In this work, 1spEC was used to prepare the custom library of
GBS (as described in Section 2.1.1) and a customized pipeline was

Table 2. Fe1and Fe 1 lines within our line list, used by the EW
analysis method. References for the log gf are listed in the last
column. When two references separated by comma are listed,
it means that the mean value of the log gf is taken. When two
references separated by ‘| are listed, it means that the log gf from
the first source was brought on to the same scale as the second.
The complete version of the table is available as online data.
Here, only few lines are shown.

2 (A) Element x (eV) log gf Ref
5012.695 Fe1 4.283 —1.690 MRW
5044.211 Fe1 2.851 —2.038 BK, BWL
5058.496 Fe1 3.642 —2.830 RW70/[FMW
5088.153 Fe1 4.154 —1.680 MRW

Note. References — MRW: May, Richter & Wichelmann (1974),
R14: Ruffoni et al. (2014), KO7: Kurucz (2007), BWL: O’Brian
et al. (1991), BK: Bard & Kock (1994), GESHRL14: Den Har-
tog et al. (2014), RW70: Richter & Wulff (1970), FMW: Fuhr,
Martin & Wiese (1988), GESB82c: Blackwell et al. (1982a),
GESB79c: Blackwell, Petford & Shallis (1979b), BKK: Bard
etal. (1991), WBW: Wolnik, Berthel & Wares (1971), WBW70:
Wolnik, Berthel & Wares (1970), BIPS: Blackwell et al. (1979a),
GESHRL14: Den Hartog et al. (2014), GESB82d: Blackwell,
Petford & Simmons (1982b), GESB86: Blackwell et al. (1986),
FWO06: Fuhr & Wiese (2006), KKS84: Kock, Kroll & Schne-
hage (1984), RU: Raassen & Uylings (1998), MB09: Meléndez
& Barbuy (2009).

developed to analyse OCCASO targets using the SS technique.
ISPEC compares regions of the observed spectrum with synthetic
ones generated on-the-fly using spEcTruM (Gray & Corbally 1994).
A least-square algorithm minimizes the differences between the
synthetic and observed spectra until it converges into a final set of
atmospheric parameters.

In the analysis by Ispec, the line selection was done based on
the automatic detection of absorption lines in the NARVAL solar
spectrum included in the GBS library. Each line was cross-matched
with the atomic line list and we derived solar line-by-line chemical
abundances using the reference atmospheric parameters for the Sun.
Good lines lead to abundances similar to the solar ones (i.e. Grevesse
et al. 2007); thus, we selected all lines with an abundance that falls
in the range £0.05 dex. Additionally, in our analysis we used the
wings of H o/ and Mg triplet, which helps us to break degeneracies.

4 ATMOSPHERIC PARAMETERS

Our final goal is to calculate detailed abundances from the spectra.
To do so, one has to first determine atmospheric parameters 7T,
logg, &€ and [M/H] to then derive individual abundances from a
fixed model atmosphere for each line/species.

4.1 Results from GALA and iSpec

Both methods analysed the same data set of 115 stars correspond-
ing to 18 OCs, as well as the reference stars Arcturus and p-Leo
observed with every instrument. For 17 out of these 117 stars we
repeated observations with more than one instrument, for compar-
ison purposes. In total, we analysed 154 spectra, 62 corresponding
to FIES, 81 to HERMES and 11 to CAFE.

The two pipelines have run letting all the atmospheric parameters
free for the 154 spectra. Fig. 2 shows the comparison of the result-
ing T and log g with GaLA and 1spEc. The dispersion in effective
temperature (57 K) is compatible with the errors estimated by the
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Figure 2. Comparison of the effective temperature and surface gravity
from GaLA and 1spEC analysis. Red symbols indicate the values of Arcturus
(squares) and p-Leo (triangles). The solid line stands for the mean differ-
ence, and the dashed lines indicate the 1o level. The dotted line is the 1:1
relation. In the top left corner of each panel, we plot the mean errors in
X- and Y-axis.

GALA, 68 K in average, but not with 1spec ones, 14 K (mean errors
are drawn in the plot). The dispersion in surface gravity (0.2 dex)
is large considering the mean errors (0.11 and 0.04, respectively,
drawn in the plot). It is well known that surface gravity is the most
difficult quantity to derive from spectroscopy. Comparing the results
of GgaLA and 1SPEC, we obtain differences similar with other studies
in the literature, like GES iDR1 and iDR2 node-to-node dispersions
(Smiljanic et al. 2014).

In Table 3, we list the T, log g and £ and their errors, derived
by the two methods. If we compare between methods we see that
the T, dispersion is consistent with the uncertainties. For log g, at
least one of the error estimations is too optimistic.

4.1.1 Arcturus and -Leo

Among the OCCASO data, we have observations of two GBS (Arc-
turus and p-Leo) representative of the parameter space covered by
the targeted OCs. Both stars were observed with the three instru-
ments as well. As explained in Section 2.1.1, the GBS have de-
terminations of atmospheric parameters independently from spec-
troscopy and reference metallicities. We compare the results ob-
tained from the two methods with the reference values in Table 4.
We computed the mean value and standard deviation for each pa-
rameter from all the observed spectra. We also list in parentheses
the mean error reported by each method. These two determinations
of the internal error of the method are roughly of the same order.
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For both stars, GALA is reporting larger errors and also finds larger
dispersions than 1spic in T and log g, but not in metallicity.

From the comparison with the reference values from Heiter et al.
(2015b), we obtain an excellent agreement in effective tempera-
ture. Differences in gravity are of the same order in both methods:
for n-Leo both methods underestimate by approximately the same
amount; for Arcturus, ISPEC underestimates it but GALA overestimates
it. However, Arcturus has a large uncertainty in log g as a GBS, and
as quoted by the authors (Heiter et al. 2015b) it can be used for
validation purposes only if the large error is taken into account. The
differences found in atmospheric parameters are compatible with
the quoted errors.

The differences in iron abundances are compatible within 30
with the dispersions found between the three instruments but not
compatible with the mean errors quoted by the methods. In the case
of Arcturus, both methods slightly underestimate the abundance.
For p-Leo GaLa slightly overestimates the abundance and 1SPEC
underestimates it by 0.12 dex. It is a metal-rich star with many
blended lines; thus, EW methods that are not able to reproduce
blends as well as SS methods tend to provide higher abundances.
Still, the EW method matches the reference value while the SS
method gives a lower abundance than the reference. It is worth
noting that the GBS reference metallicities were obtained based
on a spectroscopic analysis where several methods were averaged,
which can bias the reference result to one analysis methodology.

4.2 Benchmark stars

As a sanity check to ensure the validity of our analysis, we analysed
67 spectra from 23 GBS using the same line list, atmosphere models
and strategy as in the case of OCCASO stars.

We compare the results of our analysis with the reference ones
described in Heiter et al. (2015b) in Fig. 3. We remark with vertical
green lines the Arcturus and p-Leo spectra, the two GBS also ob-
served in OCCASO. We obtain overall offsets that are compatible at
1o level with the dispersions in both T, and log g. The results are
available in Table 5. The highest differences are found for 8-Ara and
n-Boo. For B-Ara, its reference parameters are uncertain and should
not be used as a reference for calibration or validation purposes (see
table 10 in Heiter et al. 2015b). n-Boo has the highest rotational
velocity of all GBS (12.7 km s™1), see table 1 in Jofré et al. (2014),
which makes the spectroscopic analysis more uncertain.

We also tested the iron abundances derived by the two methods
with the GBS sample. Each pipeline analysed the spectra of the
selected GBS using its own atmospheric parameters. In Fig. 4,
we compare the Fe abundance results from caLa and 1spec, with
the reference values in Jofré et al. (2014). We assign the internal
dispersion given by all the lines divided by the square root of the
number of lines, plus a fixed quantity that comes from the dispersion
between both methods. Both methods show good agreement.

We calculated the dispersion in each parameter of the different ob-
servations of the stars that have more than one spectrum. The mean
value of these dispersions are Tes: 9, 24 K; log g: 0.02, 0.06 dex; and
[Fe/H]: 0.01, 0.01 dex (1sPEC and GALA, respectively). All are smaller
than the dispersions of the comparison with reference values.

4.3 Photometric parameters

We did an additional independent check of the spectroscopic re-
sults by performing a comparison with photometric T.g and log g.
We used precise BVI Johnson photometry (Stetson 2000; Stetson,
private communication) for two clusters in the sample, NGC 2420

MNRAS 470, 4363-4381 (2017)
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Physical parameters and Fe abundances for OCs 4371

Table 4. Effective temperature, surface gravity and metallicity for Arcturus and p-Leo obtained from OCCASO data using GaLA and ispec. The errors indicate
the dispersion found between the three instruments, and in parenthesis the mean of the errors reported by the methods. Reference values are from Heiter et al.
(2015b) and Jofré et al. (2014). The differences (ours — reference) are in the last three columns.

Star Tetr, ref (K) log gref [Fe/H]rer Method Tetr (K) logg [Fe/H] ATer (K) Alogg A[Fe/H]

Arcturus 4286 =35 1.64 £0.20 —0.524+0.08  1spEC 4234 £8(5) 1.46+0.02(0.02) —0.55=0.04 (0.05) —-52 —-0.18 —0.03
GALA 4325 +47(54) 1.81 £0.08 (0.14) —0.54 £ 0.03 (0.05) 39 0.17 —0.02

p-Leo 4474+ 60 251+0.11 0.25+0.15 ISPEC 4448 £6(5) 2.3440.03(0.02) 0.13 4+ 0.05 (0.06) —26 -0.17  —0.12
GALA 4508 £20(98) 2.36 £0.16 (0.20)  0.27 £ 0.06 (0.05) 34 —0.15 0.02
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Figure 3. Differences in effective temperature (top panel) and surface grav-
ity (bottom panel), between GaLa and reference value (black dots), and 1SPEC
and reference value (red triangles), for GBS library spectra described in
Section 2.1.1. The two vertical green lines indicate Arcturus and p-Leo.
Mean error bars are plotted on the bottom-left of each panel. Differences are
calculated in the sense: this study — reference. Reference values are taken
from Heiter et al. (2015b).

and NGC 6791. These are one of the most metal-rich and one of the
most metal-poor clusters in the sample.

Photometric 7.¢ was obtained using Alonso, Arribas & Martinez-
Roger (1999) colour—temperature empirical relations as a function
of the dereddened colour (B — V), and the metallicity (equation 4
from their table 2). Photometric surface gravity is derived from 7T
using fundamental relations:

log (i> = 0.4(Myot — Myoy o) + log (i>
140 mo

Ter
+4log (—“) : (1)
Teff,@

where log g, My, me and Ty o are the surface gravity,
bolometric magnitude, mass and effective temperature of the Sun,
respectively,> and m is the mass of the star derived from the
isochrone fitting.? The bolometric magnitude of the star was calcu-
lated from the bolometric correction for giants using Alonso et al.
(1999) prescriptions My, = Vo 4+ BCy.

We also derived parameters from (V — I) colour. To do so, we cal-
culated extinction in V — [ assuming /% = 0.479 (Cardelli, Clayton
& Mathis 1989). A similar relation as for (B — V), is provided for
(V — 1)y by Alonso et al. (1999) to derive T.. Surface gravity was
derived in the same way using these temperatures.

We compare the photometric results with the spectroscopic ones
in Fig. 5. The adopted input parameters for the two clusters: red-
dening E(B — V), distance modulus (V, — My), age and metallicity
are indicated in Table 6. For the two clusters, we compute the mean
T and log g, from the spectroscopic and photometric analysis in
Table 7. The dispersion of the spectroscopic parameters within each
cluster is around 1.7 and 5.7 times higher (in 7.5 and log g, respec-
tively) than the photometric one. This is compatible within 1o and
2-30, respectively, with the mean uncertainties of the methods.

Both determinations are compatible within 1-20, though we find
systematic differences that are not the same for the two analysed
clusters. Photometric results are very sensitive to the assumed clus-
ter parameters. Any variation in reddening, distance or age within
the given errors changes the overall offset with respect to spectro-
scopic parameters. However, the internal dispersion among the stars
of the same cluster remains constant. We have assigned as error the
dispersion in photometric parameters when changing E(B — V),
(Vo — My) and [Fe/H] by +o0;.

4.4 Adopted T and log g

We checked the consistency of the stars repeated with the three
instruments and we do not find any significant systematic offset.

Since the results are compatible and the differences are at the
level of the expected uncertainties of the analysis, we decided to fix
T.ir and log g to the average results from both methods to do the
chemical analysis. This approach is a statistically consistent way
to combine two results of the same physical quantity that do not
show any systematic offset. Moreover, this helps to disentangle the
discrepancies in the determination of chemical abundances from
the discrepancies due to the propagation of errors from different
T.x or log g. Additionally, this strategy allows us to provide an
estimation of the external uncertainty (method dependent) for each
star, aside of the error quoted by each pipeline in the derivation of
the parameters.

2 We assume log 8o =4438, My, o =4.74and T,y o =5772 K following
the IAU recommendations (Prsa et al. 2016).
3 We have used parSEC isochrones (Bressan et al. 2012).
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Table 5. Results of effective temperature, surface gravity and metallicity for the set of GBS calculated by GaLa and 1spec. The reference values are from Heiter

et al. (2015b) and Jofré et al. (2014).

Star ID Teff,ref 108 grer  [Fe/Hlrer Tefr, EW log gew [Fe/Hlgw Tefr, 55 log gss [Fe/H]ss

HARPS_HD22879 5868 4.27 —0.86 5669 + 23 384 + 0.06 —0.960 £ 0.045 5861 &+ 15 4.21 £ 0.02 —0.850 + 0.045
NARVAL_HD22879 5868 4.27 —0.86 5698 26 391 + 0.04 —0.940 £ 0.046 5895 + 16 4.28 £ 0.03 —0.830 = 0.044
NARVAL_uCas 5308 441 —0.81 5241 £40 4.19 &+ 0.05 —0.840 £ 0.047 5334 + 15 447 £ 0.02 —0.810 &+ 0.044
HARPS_HD220009 4217 1.43 —0.74 4338 + 29 191 £ 0.05 —0.640 & 0.046 4288 + 5 1.58 £ 0.02 —0.710 & 0.048
NARVAL_HD220009 4217 1.43 —0.74 4360 + 38 1.80 £ 0.06 —0.610 4+ 0.047 4274 + 6 1.54 + 0.02 —0.720 £+ 0.047
HARPS_eFor 5123 3.52 —0.60 5124 £+ 26 3.47 + 0.06 —0.540 + 0.045 5001 + 8 345 + 0.02 —0.650 + 0.044
ATLAS_ Arcturus 4286 1.64 —0.52 4354 + 43 1.90 £ 0.06 —0.430 4+ 0.047 4240 + 7 1.50 + 0.02 —0.550 4+ 0.051
HARPS_Arcturus 4286 1.64 —0.52 4345 + 41 1.89 £ 0.07 —0.440 4 0.047 4234 + 3 142 £ 0.02 —0.570 & 0.049
NARVAL_ Arcturus 4286 1.64 —0.52 4373 £ 42 1.79 £ 0.09 —0.500 4+ 0.047 4248 + 5 1.45 + 0.02 —0.590 4+ 0.050
UVES_Arcturus-1 4286 1.64 —0.52 4387 £ 52 1.84 £ 0.07 —0.500 & 0.047 4245 + 6 1.52 £ 0.02 —0.590 £ 0.049
UVES_Arcturus 4286 1.64 —0.52 4358 + 52 1.88 +£ 0.08 —0.490 4+ 0.047 4240 + 3 1.50 + 0.01 —0.590 4+ 0.049
ESPADONS_7Cet-1 5414 4.49 —0.49 5380 £+ 40 443 £ 0.04 —0.460 £ 0.047 5307 £ 5 446 £ 0.01 —0.490 + 0.044
HARPS_tCet 5414 4.49 —0.49 5401 £ 39 448 + 0.05 —0.440 £ 0.047 5307 &+ 10 445 £ 0.02 —0.500 + 0.044
NARVAL_tCet 5414 4.49 —0.49 5401 £ 47 436 £ 0.06 —0.450 £ 0.047 5314 £ 10 4.45 £+ 0.02 —0.490 £+ 0.044
ESPADONS_HD49933-1 6635 4.20 —0.41 6551 £ 48 3.83 £ 0.08 —0.450 £ 0.046 6589 + 10 3.97 £ 0.02 —0.440 + 0.045
HARPS_HD49933 6635 4.20 —041 6495 £ 77 379 &+ 0.09 —0.460 £ 0.048 6573 &+ 15 3.93 £ 0.04 —0.470 + 0.045
HARPS_HD107328 4496 2.09 —0.33 4417 +£ 41 1.85 £ 0.07 —0.410 + 0.046 4377 + 3 1.69 + 0.02 —0.490 £+ 0.050
NARVAL_HD107328 4496 2.09 —0.33 4430 £+ 36 1.90 &+ 0.08 —0.410 £ 0.047 4385 + 4 1.70 £ 0.02 —0.490 £ 0.050
HARPS_pBHyi-w 5873 3.98 —0.04 5730 £+ 41 3.67 £ 0.06 —0.120 + 0.046 5902 + 10 4.00 + 0.02 —0.050 £ 0.043
UVES_BHyi-1 5873 3.98 —0.04 5892 &+ 42 4.06 &+ 0.05 —0.090 & 0.047 5915 £ 11 4.02 &£ 0.02 —0.050 £+ 0.044
UVES_pSHyi-2 5873 3.98 —0.04 5886 43 4.06 + 0.04 —0.080 £+ 0.047 5886 + 18 4.01 £ 0.02 —0.070 + 0.043
UVES_BHyi 5873 3.98 —0.04 5854 37 394 4+ 0.04 —0.090 & 0.047 5931 £8 4.05 &£ 0.01 —0.040 £+ 0.044
HARPS_SAra 4197 1.05 —0.05 4471 £ 145 1.63 + 0.26 0.040 4+ 0.050 4419 + 4 1.13 £ 0.02 —0.110 =+ 0.056
ESPADONS_Procyon-1 6554 4.00 0.01 6626 &£ 55 3.80 £+ 0.06 0.000 &+ 0.046 6439 £ 4 3.67 &£ 0.02 —0.110 & 0.044
HARPS_Procyon 6554 4.00 0.01 6632 + 66 3.82 + 0.06 0.030 + 0.046 6404 =+ 7 3.60 + 0.02 —0.130 £ 0.045
NARVAL_Procyon 6554 4.00 0.01 6640 £ 61 3.74 + 0.10 0.050 & 0.047 6441 £ 5 3.68 = 0.02 —0.100 & 0.045
UVES_Procyon 6554 4.00 0.01 6572 £ 56 3.76 + 0.06 —0.010 £+ 0.046 6399 + 3 3.61 + 0.01 —0.130 &+ 0.045
UVES_Procyon-1 6554 4.00 0.01 6608 £ 50 3.81 &£ 0.05 —0.030 & 0.046 6389 + 5 3.57 £ 0.02 —0.140 & 0.045
UVES_Procyon-2 6554 4.00 0.01 6513 £ 56 3.61 &+ 0.08 —0.040 £ 0.047 6372 +7 3.55 £ 0.03 —0.150 + 0.045
ESPADONS_18Sco-1 5810 4.44 0.03 5858 444 4.57 &£ 0.05 0.080 4+ 0.047 5814 £+ 12 4.48 £ 0.02 0.080 £ 0.043
HARPS_18Sco 5810 4.44 0.03 5812 + 37 445 4+ 0.05 0.050 4+ 0.046 5805 + 16 4.45 £+ 0.02 0.060 £+ 0.043
NARVAL_18Sco 5810 4.44 0.03 5810 43 4.43 £+ 0.05 0.060 4+ 0.047 5807 £ 12 4.47 £+ 0.02 0.080 £ 0.042
ATLAS_Sun 5771 4.44 0.03 5826 + 41 4.51 £ 0.04 0.010 & 0.047 5793 £+ 8 4.48 4+ 0.01 0.050 £+ 0.043
HARPS_Sun-1 5771 4.44 0.03 5766 &£ 45 4.42 £+ 0.05 0.000 & 0.046 5778 £ 11 4.43 £ 0.02 0.020 £ 0.043
HARPS_Sun-2 5771 4.44 0.03 5740 £ 45 445 + 0.04 0.000 + 0.046 5786 + 10 4.45 4+ 0.02 0.020 £+ 0.043
HARPS_Sun-3 5771 4.44 0.03 5767 £ 41 4.40 £ 0.06 0.010 & 0.046 5781 £ 13 4.43 £+ 0.02 0.020 £+ 0.044
HARPS_Sun-4 5771 4.44 0.03 5759 &+ 44 443 £+ 0.05 0.000 + 0.046 5776 £+ 8 4.43 £+ 0.01 0.020 £+ 0.043
NARVAL_Sun-1 5771 4.44 0.03 5788 £+ 43  4.50 & 0.05 0.030 & 0.047 5783 £ 8 4.46 £+ 0.01 0.030 £ 0.042
NARVAL_Sun 5771 4.44 0.03 5757 £+ 51 444 £ 0.06 —0.020 £+ 0.047 5787 £ 32 4.45 + 0.05 0.010 £+ 0.044
UVES_Sun-1 5771 4.44 0.03 5770 &£ 84 4.47 £ 0.05 0.010 & 0.047 5774 £ 9 4.45 £ 0.01 0.020 £ 0.043
UVES_Sun-2 5771 4.44 0.03 5773 £ 84 439 + 0.05 —0.010 £ 0.047 5774 &+ 20 4.46 £+ 0.03 0.020 £+ 0.043
HARPS_SEri-w 4954 3.76 0.06 4966 &+ 75 3.73 £+ 0.04 0.130 & 0.047 5018 £ 5 3.70 + 0.01 0.100 £ 0.047
NARVAL_§SEri 4954 3.76 0.06 4989 + 46 3.74 + 0.07 0.100 & 0.047 5019 =7 3.71 & 0.02 0.110 £ 0.045
UVES_6SEri-1 4954 3.76 0.06 4983 + 51 3.76 + 0.05 0.090 4+ 0.048 5004 + 10 3.70 £ 0.02 0.090 £ 0.046
UVES_6SEri-2 4954 3.76 0.06 4959 + 54 372 + 0.04 0.110 & 0.049 5005 + 17 3.70 £+ 0.03 0.090 £+ 0.045
UVES_6SEri 4954 3.76 0.06 5008 + 48 3.63 4+ 0.05 0.120 4+ 0.048 5016 £+ 6  3.71 4+ 0.01 0.100 £+ 0.047
HARPS_SGem 4858 2.90 0.13 4878 &= 37 2.82 4+ 0.05 0.140 4+ 0.047 4878 £ 5 2.89 £+ 0.02 0.070 £+ 0.047
UVES_BGem 4858 2.90 0.13 4866 &+ 55 2.93 4+ 0.07 0.050 4+ 0.047 4869 + 11 298 + 0.02 0.070 £+ 0.047
ESPADONS_e€Vir 4983 2.77 0.15 5096 + 51 2.90 + 0.06 0.200 4+ 0.047 5113 £ 7 293 + 0.02 0.160 £+ 0.046
HARPS_eVir 4983 2.77 0.15 5099 + 44 291 4+ 0.05 0.230 4+ 0.047 5094 + 5 2.85 + 0.02 0.130 4+ 0.046
NARVAL_eVir 4983 2.77 0.15 5076 &+ 54 291 + 0.07 0.210 4+ 0.047 5109 = 7 293 £+ 0.02 0.150 £ 0.045
ESPADONS_&Hya-1 5044 2.87 0.16 5005 + 39 2.84 + 0.07 0.090 4+ 0.047 5088 + 8 3.06 + 0.01 0.120 £+ 0.046
HARPS_&Hya 5044 2.87 0.16 5055 & 38 2.88 + 0.05 0.140 4+ 0.047 5081 + 8 3.03 &+ 0.02 0.110 £ 0.046
ESPADONS_BVir-1 6083 4.10 0.24 6187 £ 85 4.15 + 0.05 0.210 + 0.047 6199 + 9 4.17 + 0.01 0.200 4+ 0.043
HARPS_BVir 6083 4.10 0.24 6067 &= 109 3.86 + 0.06 0.150 4+ 0.047 6144 + 12 4.11 £+ 0.02 0.160 £ 0.044
NARVAL_BVir 6083 4.10 0.24 6183 =98 4.09 4+ 0.05 0.230 4+ 0.047 6186 + 11 4.17 4+ 0.02 0.200 4+ 0.043
HARPS_aCenB-w 5231 4.53 0.22 5211 £ 109 4.49 £ 0.05 0.210 &= 0.047 5172 £ 7 4.50 £ 0.01 0.240 £ 0.045
HARPS_aCenA 5792 4.31 0.26 5811 4+ 48 4.44 4+ 0.05 0.230 4+ 0.047 5804 + 8 4.32 4+ 0.01 0.260 4+ 0.044
HARPS_aCenA-w 5792 4.31 0.26 5721 &+ 48 3.86 &+ 0.06 0.150 & 0.047 5800 £ 9 4.31 £ 0.01 0.260 £ 0.044
UVES_aCenA-1 5792 4.31 0.26 5721 =90 4.08 + 0.08 0.180 4+ 0.049 5773 + 10 4.30 £+ 0.02 0.230 4+ 0.044
ESPADONS_uLeo-1 4474 2.51 0.25 4426 £ 58 241 + 0.13 0.300 & 0.050 4488 + 4 2.52 + 0.01 0.200 £ 0.053
NARVAL_uLeo 4474 2.51 0.25 4486 + 98 2.35 + 0.16 0.320 4+ 0.050 4496 + 7 2.54 4+ 0.01 0.220 4+ 0.053
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Table 5 — continued

Star ID Teft,ret  loggret  [Fe/Hlret Tett, EW log gew [Fe/H]gw Teft, ss log gss [Fe/H]ss
HARPS_nBoo 6099 3.79 0.32 5926 £ 119 323 £ 0.09 0.220 &+ 0.047 6114 £ 9 3.89 £ 0.02  0.340 £ 0.047
NARVAL_nBoo 6099 3.79 0.32 5946 + 87 342 £ 0.09 0260 £+ 0.047 6104 £ 14 397 £ 0.02  0.250 & 0.047
HARPS_pAra 5902 4.30 0.35 5718 + 44 423 £ 0.04 0260 £ 0.047 5748 £ 12 421 £ 0.02 0300 £ 0.044
UVES_pAra-1 5902 4.30 0.35 5718 += 79 4.14 £ 0.06 0260 £ 0.048 5744 £ 11 425 4+ 0.02  0.300 £ 0.044
UVES_ptAra-2 5902 4.30 0.35 5804 + 60 4.12 £ 0.04 0300 £ 0.048 5737 £ 12 424 £ 0.02 0300 £ 0.044
T T T T T T Table 6. Adopted input cluster parameters to calculate photometric tem-
peratures and surface gravities.
4+  iSpec
0.2+ g
Cluster EB-YV) (Vo — My) log Age (Gyr) [Fe/H]
0.1r T - 1 NGC 2420 0.04 +0.03 11884027 947+£0.17 —0.20 £ 0.06
E N i S B NGC 6791 0.1240.03 13254035 9.92+0.02 +0.29+0.08
T 00F--t----Hy------ 4% - — _
= . N I FEL I “Reddening, distance modulus and age from Pancino et al. (2010), calculated
< . t . (TS B as average measurements of different authors, metallicity from Jacobson,
—0.1r i * 7 Pilachowski & Friel (2011), calculated as average of nine stars.
. bReddening as a mean of all previous determinations (Sandage, Lubin &
—0.2F GALA :A[Fe[H] —0.0140.05 E VandenBerg 2003; Stetson et al. 2003; Anthony-Twarog, Twarog & Mayer
" 2007; Brogaard et al. 2012; Geisler et al. 2012), distance modulus from
iSpec :A[Fe/H] =-0.01+0.05 ..
. . . . Sandage et al. (2003), age and metallicity from Brogaard et al. (2012).

-1.0 -08 —-06 -04 -02 00 0.2 0.4
[Fe/H]r(if

Figure 4. Differences in iron abundances between GaLa and reference value
(black dots), and 1spec and reference value (red triangles), for GBS library
spectra described in Section 2.1.1. The two vertical green lines correspond
to Arcturus and p-Leo. Mean error bars are plotted on the left of the panel.
Differences are calculated in the sense: this study — reference. Reference
values are taken from Jofré et al. (2014).
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Figure 5. Differences in effective temperature and surface gravity from
spectroscopy (mean of GALA and 1spec results) and from photometry for
the individual stars in NGC 2420 and NGC 6791. Mean differences and
dispersions for the two OCs and the two photometries are in the bottom
right.

Table 7. Means and standard deviations of effective temperatures and gravi-
ties for the two clusters analysed with photometry. Results from spectroscopy
of GaLA and 1spEc, and from B — V and V — I photometry.

Cluster Teff, spectr 10g gspectr Teff, phot 10g gphot
(K) (dex) (K) (dex)

NGC 2420 caLa: 4899 £87 2.69 + 0.20
1SPEC: 4931 £ 64 2.66 £+ 0.12

B

14
NGC 6791 caLa: 4507 £94 2.07+0.34 B-—
IspEC: 4502 +£81 234+0.12 V

4814 £45 2.55+0.04
4795 £50 2.54+0.05

4436 £53 243 +0.03
4391 £43  2.40+0.03

In Table 3, we list the average results of the two parameters. We
indicate two sources of errors: the mean of the errors quoted by
the methods 8, and the standard deviation between the two values
8. In general, the dispersion between the methods is similar to the
mean of the errors, with mean values of §; and §, of: 38 and 31 K
(Tefr), and 0.07 and 0.11 (log g).

5 IRON ABUNDANCES

We used the average values of 7.y and logg shown in Table 3
to calculate the chemical abundances of the whole sample of 154
spectra in a second step.

We have followed a global differential approach relative to the
Sun with the two methods. That is, subtracting the mean abun-
dance of all lines measured in the Sun from the mean abun-
dance of all lines observed in the star spectrum (not line-to-line).
As solar abundance we derived A (Fe1) gapa = 7.46 = 0.01 and
A (FeD jsprc = 7.39 £ 0.02 using the solar spectra provided in
the GBS library (Blanco-Cuaresma et al. 2014a). In this way, we
are sure that the two methods have the same internal scale.

The iron abundances derived from each method are listed in
Table 3. The error assigned by the methods is the standard devia-
tion of the abundances from each line divided by the square root of
the number of used lines. We also include in Table 3 the standard
deviation of the abundance derived by the two methods o[Fe/H].
This last value provides a less model-dependent estimation of the
error, and its mean is 0.04 dex. We consider that a good approxi-
mation of the error in [Fe/H] derived by each method is the squared
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Table 8. Variation in the [Fe/H] calculated by both methods
when altering atmospheric parameters by o

Parameter GALA ISPEC
d[Fe/H] +0.027 +0.022
ATy ~0.023 —~0.018
d[Fe/H] +0.019 +0.012
d log 2 —0.024 —0.010
d[Fe/H] ~0.036 +0.004
e +0.034 ~0.010

0.2t
< 00t
<
o
% —02}
&=
—0.4+
o6l " (A[Fe/H]) = 0.07 +0.05 |

06 04 02 00 02
[Fe/H]

iSpec

Figure 6. Results of iron abundance from GaLa and 1SPEC analysis. Red
squares and red triangles indicate the values of Arcturus and p-Leo (three
spectra each), respectively. The solid line indicates the mean differences,
and the dashed lines indicate the 1o level. The dotted line is the 1:1 relation.
In the top left corner, we plot the mean errors in X- and Y-axis.

sum of the spread of line-by-line abundance divided by the square
root of the number of lines, and this value of 0.04 dex. Therefore,
the mean errors are 0.047 in EW, and 0.052 in SS.

We calculated the errors in the [Fe/H] due to the choice of the
parameters: T, log g and €. To do so, we varied the three parameters
by +o; and recomputed the abundance for five representative stars.
We used as errors of T and log g the quadratic sum of §; and §,
in Table 3. We did this process with the two methods. The results
are summarized in Table 8. These uncertainties range from —0.04
to 0.03 dex in GaLA, and —0.02 to 0.02 dex in 1spEc well within the
mean uncertainties of the methods.

The comparison of the iron abundances obtained by the two
methods is plotted in Fig. 6. The plotted error bars are the mean of the
errors quoted by the methods, plus the mean of the o [Fe/H] = 0.04
from Table 3. There exists an offset between the two determinations
of 0.07 & 0.05.

5.1 Performance of the methods

The scale of the difference found between our spectroscopic meth-
ods is compatible with previous works that already studied this in
detail (Blanco-Cuaresma et al. 2016, 2017; Hinkel et al. 2016; Jofré
etal. 2017).

To better illustrate the differences between the methods for our
particular case, we used IsPEC capabilities to perform SS and EW
analysis. We configured isPEC to use SPECTRUM (Gray & Corbally
1994) for SS (the same radiative transfer code used in this study)
and wipTH9 (Kurucz 1993; Sbordone et al. 2004) for the EW method
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Figure 7. Differences in iron abundance obtained for the GBS analysis
between spEcTRUM and wIDTH9. The four panels stand for the four cases
mentioned in the text. The colours represent the reference temperature where
blue is cold and red is hot. The Sun is indicated with a vertical grey line.

(which is the one used by GaLa). Then we derived the [Fe/H] for the
GBS considering four different scenarios as shown in Fig. 7.

(a) We fix T and log g to their reference value (Heiter et al.
2015b) and we derive the rest of parameters with each method
independently.

(b) Like in the previous case but we also fix the microturbulence.

(c) Like in the previous case but we use only lines in common
between both methods.

(d) Like in the previous case and we force the synthesis method
not to synthesize blends.

The first case coincides with the strategy followed in our study
and its average difference is comparable to our results. If we fix the
microturbulence parameter, the dispersion per star does not improve
and the overall mean difference worsen. The microturbulence is a
parameter used to compensate errors and assumptions in the models
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and this compensation depends on the method; thus, fixing it does
not improve the agreement between both methods.

When we use only lines in common, there are three stars that
get excluded from the analysis because no overlapping lines were
found. Lines that are good enough for methods based on SS might
not be convenient for EW (e.g. blended lines), thus the line selec-
tion is different for each method and it can be challenging to find
lines in common (specially for metal-pool stars). Nevertheless, the
agreement between both methods improves when using the same
absorption lines.

In the fourth case, we forced the synthetic method to only syn-
thesize the lines being analysed (ignoring the atomic lines around
it) to make it more similar to the EW method. This is the case with
a higher level of agreement.

This analysis shows that the differences between methods are
intrinsic to how each technique works. A further quantitative study
of this can be found in Jofré et al. (2017). In this paper, it is shown
that EW and SS methods can be affected differently by the different
assumptions (e.g. blends, wavelength shifts and continuum).

Based on our analysis, we argue that the derivation of abundances
must be properly documented, where input parameters and method
assumptions have to be provided to the community for better repro-
ducibility of results, understanding of uncertainties and correct use
of the data. Among the scientific community, there is no consensus
on which methods are better or worse to derive spectroscopic abun-
dances. Thus, we include the results derived by the two methods,
and we are fully transparent in how our calculations are done. The
reader can choose whichever he or she trusts more.

6 CLUSTER-BY-CLUSTER ANALYSIS

For each OC, we took into account the membership selection from
the radial velocities done in Paper I and Casamiquela et al. (in
preparation). The membership was re-analysed taking into account
the metallicities derived in this work (Table 3).

We plotin Fig. 8 the two determinations (GALA and 1speC) of [Fe/H]
obtained for the stars in each OC. For the stars that have determi-
nations with the different instruments, we plot the mean value. The
cluster averaged [Fe/H] was calculated using only trustful member
stars. This means that we exclude those stars with discrepant radial
velocities, possible non-members or spectroscopic binaries, or stars
that have not converged in the analysis. These stars are marked in
red in Fig. 8.

We draw special attention to the following stars.

(i) NGC 188 W2051 has a radial velocity above the mean of the
cluster, but compatible within 3¢ (this cluster was not analysed in
Paper ). gaLa derives a higher [Fe/H] compared with the rest of the
stars in the OC. However, 1sPEC finds it compatible with the rest of
the stars. We reject it for safety.

(i) NGC 1907 W2087 was flagged as non-member in Paper I for
having a significant difference in radial velocity with respect to the
other stars in the cluster. Moreover, both GaLA and ISPEC obtain a
[Fe/H] that differs in more than 0.5 dex from the other stars of the
cluster. We confirm that it is a non-member.

(iii) NGC 2539 W233 was flagged as spectroscopic binary in
Paper I, and previously in the literature. It gave inconsistent results in
the analysis by the two methods: very high gravity and temperature
(4.5 dex and 6500 K) in 1sPEC, and very low microturbulence in GALA
compared to the other stars. This is probably because the spectral
lines have a distorted shape due to the companion star. Therefore,

we do not consider it in the cluster analysis and it is not included in
Fig. 8.

(iv) NGC 2682 W224 has a discrepant radial velocity in Paper I.
It was flagged as member spectroscopic binary by Jacobson et al.
(2011) and Geller, Latham & Mathieu (2015). The spectral analysis
with both GaLa and isPEC gives results in agreement. Therefore, we
consider its results of abundances in the analysis.

(v) NGC 6791 W2604 has a compatible radial velocity with the
other stars in this cluster. However, baospec finds a large line-by-
line dispersion when calculating the radial velocity: 3.2 km s~
compared with 1-2.3 km s~! obtained with the other cluster stars.
Also, the mean FWHM measured for its lines is significantly higher
(13 pixels approximately), compared with the other stars 8.5-10 pix-
els. A cross-correlation done with 1sPEC, using a template shows two
clear peaks, which indicates that it is probably a spectroscopic bi-
nary. Its results of the abundances have large errors and are quite
discrepant with the other stars of the cluster. We discard its abun-
dance to calculate the cluster mean.

(vi) NGC 6791 W3899 has a compatible radial velocity with
the other stars in this cluster but it also shows two peaks in a cross-
correlation, which indicates that it is a possible spectroscopic binary.
We discard its abundance to calculate the cluster mean and we do
not plot it in Fig. 8.

(vii) NGC 6819 W983 was flagged as spectroscopic binary in
Paper I for having variable radial velocity. We could analyse this star
by shifting the individual exposures to a common reference frame.
It gives satisfactory results with both methods, and compatible Fe
abundance. For this reason, we consider it in the cluster abundance
analysis.

(viii) NGC 6939 W130 has a more than 30 discrepant radial
velocity with respect to the other cluster members. It gives an around
20 discrepant value of the [Fe/H] so it is probably a non-member.
We discard it to calculate the mean abundance.

(ix) NGC 7245 WO045 has a more than 3o discrepant radial ve-
locity, and has a quite different [Fe/H] from the rest of cluster stars.
Its abundance is higher than the rest of the stars by more than 3c.
So this star is possibly a non-member.

(x) NGC 7762 W0084 had a more than 30 discrepant radial
velocity in Paper I, pointing out that it could be a non-member. We
do not consider it to compute the cluster abundance.

The sample of bona fide member stars was used to compute
the cluster mean iron abundance. This value and its dispersion are
indicated in Table 9. The internal dispersions within each cluster
are found in the range 0.01-0.08 dex from the EW analysis, and
0.01-0.11 dex from the SS analysis. The largest dispersion for
both methods corresponds to NGC 6791 0.08 and 0.11 dex for EW
and SS, respectively. This is the faintest OC in our sample with
SNR ~50, while for the others we reach SNR ~70. This may partly
explain the large dispersion.

The most metal-rich OCs are NGC 6791 and NGC 6705 accord-
ing to GaLA results, and NGC 6705 is not metal-rich according to
1sPEC. On the other hand, the most metal-poor clusters are NGC
2420, NGC 1817 and NGC 1907, for both GaLA and 1spEc. We note
that this is the first time chemical abundances are derived from high-
resolution spectroscopy for the clusters NGC 6939, NGC 6991 and
NGC 7245.

7 COMPARISON WITH LITERATURE

Previous works have analysed stars from our sample providing re-
sults obtained using different methodologies, resolution and quality
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Figure 8. Iron abundances obtained for the 18 studied OCs. In black GALA results, in blue 1spec results. Red symbols indicate probable non-members or
spectroscopic binaries detected by their radial velocity or [Fe/H]. These stars are not used to compute the mean abundance. NGC 1907 W2087 is indicated
with an arrow because it falls out of the plot. The black solid and dashed lines indicate the mean and lo level of GaLa iron abundance, respectively. The blue
solid and dotted lines indicate the mean and 1o level of 1spEc iron abundance, respectively.
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Table 9. Iron abundances from GaLA and 1SPEC analysis of
the 18 OCs computed as the mean of the bona fide member
stars. Dispersions are listed as errors. The number of stars to
compute the mean in each cluster is indicated.

4377

of the spectra. A comparison of our results with those available
in the literature provides an independent consistency test for our
analysis. We compared the averaged values of T, log g and the
two determinations of [Fe/H] with previous measurements in the

literature. This is shown in Figs 9 and 10.

Cluster (Fe/HlgaLa (Fe/Hlispec Stars In general, we find good agreement in effective temperature and
IC 4756 00 + 003  —0.05 + 0.02 8 surface gravity, with negligible offsets and expected dispersions:
NGC 188 0.02 + 0.02 —0.05 + 0.05 5 10 £ 92 K, —0.02 £ 0.27 dex. In metallicity, both methods have
NGC 752 0.02 £ 0.02 —0.04 £ 0.02 7 the same dispersion in comparison with literature with offsets in
NGC 1817  —0.08 £ 0.02  —0.11 + 0.03 5 opposite directions: 0.02 £ 0.09 dex (caLa), —0.05 £ 0.10 dex
NGC 1907  —0.06 £0.03  —0.17 £ 0.03 5 (1spec). These offsets are fully compatible with the quoted disper-
NGC 2099 0.08 £ 0.03 0.0 £ 0.02 7 sions. More importantly, they are consistent with the comparison
ggg igg Booé i 88‘1‘ *8(1;1‘ i 883 ; done in Section 5, in the sense that we find a systematic difference of
' ’ e ’ .07 £ 0. h hods.
NGC2682 004 003  —006+ 001 8 0 0T7h 0.05 dg.x betweint etv&lio me;n(.’dsl s and with
NGC 6633 004 £ 002  —003 % 002 4 ere are discrepant cases for particular stars and with some
NGC 6705 0.17 + 0.04 0.04 + 005 3 authors, mostly in log g and [Fe/H], as discussed below. For some
NGC 6791 0.2 4+ 0.08 0.19 + 0.11 6 of the concerned clusters (IC 4756, NGC 2682, NGC 6791), a
NGC 6819 0.09 + 0.03 —0.03 &+ 0.04 6 detailed metallicity comparison between different authors can also
NGC 6939 0.1 &+ 0.04 —0.03 £+ 0.04 5 be found in Heiter et al. (2014).
NGC 6991 0.02 + 0.02 —0.04 £ 0.02 6
NGC 7245 0.06 + 0.05 0.04 + 0.04 5 (i) Jacobson, Friel & Pilachowski (2007) obtained gravities
EGC 7762 0.03 i 004 —005 i 0'03 3 around 0.5 dex lower than ours for IC 4756. However, for the
GC 7789 0.06 + 0.05 —005+£00 i same cluster Santos et al. (2009) and Pace et al. (2010) obtain
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Figure 9. Comparison of the derived atmospheric parameters from this study (average values between GaLa and I1sPEC), and previous determinations in the

literature. Differences are in the direction this study — literature.
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Figure 10. Comparison of iron abundances obtained in this study and previous determinations in the literature. In the top panel we compare values from GALA,
and in the bottom panel determinations from 1spec. Differences are in the direction this study — literature.

gravities 0.25 dex higher than us. We also have a shift in [Fe/H] of
around 0.15/0.1 dex (GaLa and 1sPEC, respectively) with Jacobson
et al. (2007).

(i) For NGC 6791, Carraro et al. (2006) find surface gravities
about 0.6 dex higher than ours (two stars in common), and SDSS
Collaboration et al. (2016) also find higher values than us for those
stars and high dispersion in the whole cluster. However, SDSS
Collaboration et al. (2016) find higher gravities respect to us in
the whole sample of common stars. On the contrary, Gratton et al.
(2006) find very similar results to us for the three stars in common.

(iii) Pancinoetal. (2010) find discrepant gravities, around 0.4 dex
higher than us, for the cluster NGC 2682, and more compatible
values for the stars in common in NGC 2099, NGC 2420 and
NGC 7789. We also find a quite discrepant value of temperature
(400 K higher than them) for the star NGC 2099 W148. Other
determinations of gravity of NGC 2682, such as Jacobson et al.
(2011) and TautvaiSiene et al. (2000) agree with ours.

(iv) We remark the case of NGC 6791, an extensively studied
cluster, for which we find lower [Fe/H] than all previous authors
with both analysis methods. Gratton et al. (2006) (R = 29 000)
and Carretta, Bragaglia & Gratton (2007) (R = 30000) find a mean
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abundance of +0.47 (£0.09 and +0.12, respectively), both from the
analysis of four stars, which is more than 0.25 dex higher than us.
Carraro et al. (2006) found +0.38 using medium-resolution spectra
(R = 17000) of six stars, which is still more than 0.15 dex higher.
The highest resolution studies are from Brogaard et al. (2012) (R =
37000), Geisler et al. (2012) (R = 45000) and Boesgaard, Jensen
& Deliyannis (2009) (R = 46 000), which found +0.29, 4+0.42 and
+0.30, respectively. Finally SDSS Collaboration et al. (2016) found
abundances around 0.15 dex higher than us (R = 22000, in the
H band). A possible explanation is that all previous studies have
lower resolution than us, and this can make a difference for the most
metal-rich clusters since they should be more subject to line crowd-
ing. Also NGC 6791 stars have the lowest SNR among our sample.

8 GALACTIC DISC GRADIENTS

In the previous sections, we have performed a membership selection
based on radial velocities and iron abundances of 18 OCs. We
have analysed them in a homogeneous way providing atmospheric
parameters and mean iron abundances. The analysed OCs cover a
range in Galactocentric radius of 6.8 <Rgc < 10.7 kpc, and span
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Figure 11. [Fe/H] versus Rgc distribution of the 18 OCs in three bins of age. We overplot the pure chemical evolution model for the thin disc of Chiappini
(2009), and the N-body chemodynamical model by Minchev et al. (2013, 2014, MCM).

ages between 0.3 and 10.2 Gyr. All the clusters in the sample have
|z] < 1 kpc. Here, we discuss the implications of our results on the
evolution of the Galactic disc radial metallicity gradient, which is
a fundamental constrain for Galactic chemical evolution models.
This is a preliminary comparison that will be extended once the full
sample of OCs and species is acquired.

In Fig. 11, we show the [Fe/H] versus Rgc distribution of the OCs
in three bins of age, along with the pure chemical evolution model
for the thin disc by Chiappini (2009), and to the chemodynami-
cal thin-disc model by Minchev, Chiappini & Martig (2013, 2014,
MCM). The MCM model is a combination of the chemical evolu-
tion model of Chiappini (2009) and a high-resolution simulation at
a cosmological context, which includes dynamical effects such as
radial migration and heating. The abundances of both models are
scaled such that the solar abundance matches the model at the age
of the Sun (4.5 Gyr) at the most probable birth position of the Sun
(2 kpc closer to the Galactic Centre than today; see Minchev et al.
2013). This calibration agrees very well with the abundance scale
set by local disc Cepheids (Genovali et al. 2013).

The small uncertainties in iron abundance (Table 9) allow us to
draw some conclusions. It can be clearly seen that the younger OCs
fit perfectly the pure chemical gradient (left-hand panel in Fig. 11).
As OCs get older, they start to deviate from the chemical model,
and in the oldest bin of age they fall out of it by more than 3o . This
deviation though can be explained by the chemodynamical model
that includes radial mixing, since in fact there are blue points at the
position of the two oldest clusters.

9 CONCLUSIONS

This paper provides the second release of OCCASO, which in-
cludes atmospheric parameters (7., log g, £) and [Fe/H] chemical
abundances from high-resolution spectra using EW (Gara) and SS
(1spEc) methods for 115 stars in 18 OCs.

We made an extensive comparison of the results of both methods
to assess our internal consistency and the quoted errors.

(i) The comparison between methods of 7. and log g per star for
the OCs and Arcturus and p-Leo shows that there are no systematic
offsets.

(ii) The comparison of the results obtained by the two methods
with the reference values of the GBS also indicates that there are
no systematic differences.

(iii) We calculate atmospheric parameters using Johnson BVI
photometry for two OCs: NGC 2420 and NGC 6791. The systematic
differences found in the comparison with spectroscopy are inside
the errors when varying the assumed E(B — V), (V, — My) and
[Fe/H], in the photometric analysis.

In all the comparisons, we found dispersions of ~60-80 K and 0.15-
0.20 dex in T, and log g, respectively. The internal dispersion in
each cluster from spectroscopy is larger than from photometry.

‘We calculated [Fe/H] abundances for all OCCASO stars with both
methods, using the average values of T and log g. A comparison
between the iron abundances from each method showed an offset
of 0.07 £ 0.05 dex.

We did several additional tests to investigate the performance
of the two methods when calculating iron abundances. We used
the GBS sample to derive [Fe/H] in different conditions: (a) fixing
T and log g to their reference value in Heiter et al. (2015b); (b)
fixing also the microturbulence; (c) only using the lines in common
to calculate [Fe/H]; (d) only use the common lines and force the
synthesis method not to reproduce blends.

We discussed the [Fe/H] abundances obtained for the stars by OC
to perform a more accurate membership selection. With the bona
fide member stars, we obtained the final values of [Fe/H] per OC.
We found cluster dispersions in the range 0.01-0.08 dex from the
EW analysis, and 0.01-0.11 dex from the SS analysis. We note that
this is the first time chemical abundances are derived from high-
resolution spectroscopy for the clusters NGC 6939, NGC 6991 and
NGC 7245.

We compared our results with a pure chemical evolution model
and a chemodynamical model of the Milky Way thin disc. We ex-
plored the radial gradient in three bins of age obtaining that: the
younger OCs fit the gradient drawn by the pure chemical evolution
model, and as we go to older ages the metallicity at the traced posi-
tion can only be explained by the MCM model that adds dynamical
effects such as heating and radial migration.
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