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Hamiltonian formalism for space-time noncommutative theories
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Space-time non-commutative theories are nonlocal in time. We develop the Hamiltonian formalism for
non-local field theories ind space-time dimensions by considering auxiliary (d11)-dimensional field theories
which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered
and the Feynman rules in the Lagrangian formalism are derived. The case of non-commutativef3 theory is
considered as an example.
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I. INTRODUCTION

Space-time non-commutative field theories have pecu
properties due to their acausal behavior@1,2# and lack of
unitarity @3#. In Ref. @4# it has been shown that there is
relation between the lack of unitarity and the obstruction
finding a decoupling limit of string theory in an electroma
netic background@5–10#. These theories have an infinit
number of temporal and spatial derivatives, and therefore
non-local in time and space@11,12#. The initial value prob-
lem of a non-local theory requires one to give a trajectory
a finite piece of it@13#. The Euler-Lagrange~EL! equation is
a constraint in the space of trajectories.

The Hamiltonian formalism for non-local theories w
presented in@15#. In this paper we improve the formalism b
clarifying the relation among the Lagrangian and Ham
tonian structures. We first consider an equivalent theory
space-time of one dimension higher than that of the orig
theory. This space has ‘‘two times’’ and the dynamics
described in such a way that the evolution is local with
spect to one of the times. For this equivalent theory one
construct the Hamiltonian. A characteristic feature of t
Hamiltonian formalism for non-local theories is that it co
tains the EL equations as Hamiltonian constraints.

The Hamiltonian path integral for the (d11)-dimensional
field theory is constructed. The Lagrangian path integral f
malism for thed dimensional theory is obtained by integra
ing out the momenta.

We apply the Hamiltonian formalism to time-like an
light-like non-commutative theories@4#. As an example we
consider the case of non-commutativef3 theory ind dimen-
sions with space-time non-commutativity. The action co
tains the free Klein-Gordon Lagrangian and the interact
LagrangianLi5(2g/3!)*dxW f* f* f, where * refers to the
Moyal product. We construct the Hamiltonian ind11 di-
mensions. In the path integral quantization we get the Fe
man rules that coincide with those used in Refs.@1–3#. The
theory is unitary at the classical level~tree level! but is not
unitary at one loop@3#. This analysis should shed new ligh
on the structure of these theories. Knowledge of the Ham
tonian of time-like and light-like non-commutative fiel
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theories could also be useful to study the energy of th
solitons.

II. EULER-LAGRANGE EQUATIONS FOR NON-LOCAL
THEORIES

Unlike standard Lagrangians, which depend on the val
of a finite number of derivatives at a given time,q(t),
q̇(t), . . . ,q(n)(t), a non-local Lagrangian depends on
whole piece of the trajectoryq(t1l), for all values ofl,
that is,Lnon(t)5L„@q(t1l)#…. At best it can be written as a
function of all time derivativesq( j )(t), j 50,1,2, . . . , at the
samet. This means that the analogue of the tangent bun
for Lagrangians depending on positions and velocities is
finite dimensional. The action is

S@q#5E dt Lnon~ t !. ~1!

The EL equation is obtained as the variation of functional~1!
and is given by

E dt E~ t,t8;@q# !50, ~2!

whereE(t,t8;@q#)5dLnon(t)/dq(t8).
The EL equation must be understood as a functional r

tion to be satisfied by physical trajectories. It is not a diffe
ential system, as one is used to finding for local Lagrangia
In the latter case, the theorems of the existence and uni
ness of solutions enable one to interpret the EL equation
ruling the time evolution of the system, whose state at ev
instant of time is represented by a point in the space of ini
data, e.g.,JL5$q,q̇, . . . ,q(2n21)%, for a local Lagrangian of
ordern.

In the non-local case, if we denote the space of all p
sible trajectories asJ5$q(l),lPR%, Eq.~2! is a Lagrangian
constraint defining the subspaceJR,J of physical trajecto-
ries.
©2001 The American Physical Society03-1
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III. „1¿1…-DIMENSIONAL FIELD THEORY DESCRIPTION
OF NON-LOCAL THEORIES

Nevertheless, if we insist in defining a ‘‘time evolution
Tt for a given initial trajectoryq(l), a natural choice is

q~l!→
Tt

q~l1t !. ~3!

We shall hence introduce new dynamical variablesQ(t,l)
such that

Q~ t,l!5q~l1t !. ~4!

Thus, t is the ‘‘evolution’’ parameter andl is a continuous
parameter indexing the degrees of freedom. These new
ables follow the evolution~4! above, andQ(0,l) can be seen
as initial data in the local~111!-dimensional field theory.

In differential form, condition~4! reads

Q̇~ t,l!5Q8~ t,l!, ~5!

where the overdot and prime respectively stand for] t and
]l .

We then consider the Hamiltonian system for the~111!-
dimensional fieldQ with the Hamiltonian

H~ t,@Q,P# !5E dlP~ t,l!Q8~ t,l!2L̃~ t,@Q# !, ~6!

whereP is the canonical momentum ofQ. The phase spac
is thusT* J with the fundamental Poisson brackets

$Q~ t,l!,P~ t,l8!%5d~l2l8!. ~7!

In the Hamiltonian~6!, L̃(t,@Q#) is a functional defined by

L̃~ t,@Q# !ªE dl d~l!L~ t,l!. ~8!

The ‘‘density’’ L(t,l) is constructed fromLnon(t) by replac-
ing q(t) by Q(t,l), thet derivatives ofq(t) by l derivatives
of Q(t,l) andq(t1r) by Q(t,l1r). In this construction of
the Hamiltonianl inherits the signature of the original tim
t and is a time-like coordinate. Furthermore, the symmetry
the original Lagrangian is realized canonically in the e
larged space@14#. Note thatL(t,l) is local in t and is non-
local in l. H depends linearly onP(t,l) but does not de-
pend onQ̇(t,l).

The relation ~5! naturally arises as the first Hamilto
equation for Eq.~6!. However, there is noa priori relation-
ship betweenP(t,l) andQ(t,l), unlike what happens in the
local case, and the second Hamilton equation

Ṗ~ t,l!5P8~ t,l!1
dL̃~ t,@Q# !

dQ~ t,l!
~9!

does not imply any further restriction onQ(t,l). Thus, the
Hamiltonian system~6! on T* J is not so far equivalent to the
non-local Lagrangian system ofLnon(t).
04500
ri-
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Now, instead of taking the whole phase spaceT* J, we
shall restrict ourselves to the subspace defined by
1-parameter set of primary constraints@15#:

w~ t,l,@Q,P# ![P~ t,l!2F~ t,l,@Q# !'0 ~10!

with

F~ t,l,@Q# !ªE ds x~l,2s!E~ t;s,l!, ~11!

whereE(t;s,l) andx(l,2s) are defined by

E~ t;s,l!5
dL~ t,s!

dQ~ t,l!
, x~l,2s!5

e~l!2e~s!

2
.

~12!

Here e(l) is the sign distribution. The symbols ‘‘[ ’’ and
‘‘ ' ’’ respectively stand for ‘‘strong’’ and ‘‘weak’’ equality.

Further constraints are generated by requiring the stab
of the primary ones. In the first step, we obtain

ẇ~ t,l,@Q,P# ![w8~ t,l,@Q,P# !1d~l!c0~ t,@Q# !'0

where

c0~ t,@Q# !ªE ds E~ t;s,0!'0 ~13!

is the secondary constraint. Further constraints then fol
by successive time differentiations ofc0. They can be writ-
ten all together in a condensed form as

c~ t,l,@Q# ![E ds E~ t;s,l!'0. ~14!

Therefore, the constrained Hamiltonian system defined
the Hamiltonian~6! and the primary constraints~10! resides
in a reduced phase spaceG,T* J defined by Eqs.~10! and
~14!. Taking into account Eq.~4!, the constraint~14! reduces
to the EL equation~2! obtained fromLnon(t).

The constraints~10! and~14! belong to the second class i
non-singular systems. In the next section we will show e
plicitly, for ~non-singular! higher derivative Lagrangian sys
tem of ordern, that they are used to reduce the phase sp
to 2n dimensions, reproducing the canonical Ostrograd
formalism @16#. Our formalism developed here turns out
be a generalization of the Ostrogradski formalism to the c
of infinite order derivative theories. The infinite chain of se
ond class constraints has also appeared in the descriptio
boundary conditions as constraints@17#. Summarizing, the
equivalence has been built in the~111!-dimensional Hamil-
tonian formalism oflocal field theories through the con
straints~10! and ~14!. This type of equivalence between th
Hamiltonian and Lagrangian formalism is different from th
one in local theories@18#.
3-2
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IV. NON-SINGULAR HIGHER ORDER DERIVATIVE
THEORIES

Here we would like to derive both the Lagrangian a
Hamiltonian formalisms for non-singular higher order d
rivative theories from the Hamiltonian formalism of no
local theories developed in the last section@19#.

Let us consider a regular higher derivative theory d
scribed by the LagrangianL(q,q̇,q̈, . . . ,q(n)) and write the
expressions obtained in the previous section for the non-l
Lagrangian. As we embed the higher order theory in
non-local setting we start with the infinite dimensional pha
spaceT* J(t)5$Q(t,l),P(t,l)%. They are assumed to b
expanded in the Taylor basis@20# as

Q~ t,l![ (
m50

`

em~l!qm~ t !,

P~ t,l![ (
m50

`

em~l!pm~ t !, ~15!

whereel(l) andel(l) are orthonormal bases:

el~l!5~2]l! ld~l!, el~l!5
l l

l !
. ~16!

The coefficients in Eqs.~15! are new canonical variables,

$qm~ t !,pn~ t !%5dm
n , ~17!

and the Hamiltonian~6! is

H~ t !5 (
m50

`

pm~ t !qm11~ t !2L~q0,q1, . . . ,qn!. ~18!

The momentum constraint~10! becomes an infinite set o
constraints:

wm~ t !5pm~ t !2 (
l 50

n2m21

~2Dt!
l

]L~ t !

]ql 1m11~ t !
'0, ~19!

where

Dt5(
r 50

qr 11
]

]qr
. ~20!

On the other hand, the constraintc in Eq. ~14! in terms of
the Taylor basis becomes

cm~ t ![~Dt!
mF(

l 50

n

~2Dt!
l
]L~ t !

]ql~ t !
G'0. ~21!

These constraints~19! and ~21! are second class and a
used to reduce the infinite dimensional phase space to a fi
one, leading to the ordinary Ostrogradski Hamiltonian f
malism. The operatorDt defined in Eq.~20! becomes a time
evolution operator forq’s using the first set of the Hamilton
equation
04500
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q̇r5qr 11. ~22!

Using this in Eq.~19! the constraintswm (0<m<n21)
coincide with the definition of the Ostragradsky momenta

pm; (
l 50

n2m21

~2] t!
l

]L~ t !

]„] t
l 1m11q~ t !…

~0<m<n21!.

~23!

Now they can be solved forql (n< l<2n21) as functions
of the canonical pairs$qj ,pj% (0< j <n21)

ql'ql~q0,q1, . . . ,qn21,p0 ,p1 , . . . ,pn21!

~n< l<2n21!. ~24!

They are combined with the constraintsw l (n< l<2n
21),

w l5pl'0 ~n< l<2n21!, ~25!

to form a second class set and can be used to eliminate
canonical pairs$ql ,pl%(n< l<2n21).

If we take into account Eq.~22! the constraint~21! for
m50 is the Euler-Lagrange equation for the original high
derivative Lagrangian:

c0;(
l 50

n

~2] t!
l

]L~ t !

]„] t
lq~ t !…

50. ~26!

The constraints~21! for m.0 are the time derivatives of th
Euler-Lagrange equation~26! expressed in terms ofq’s. For
a non-singular theory, all the constraints~21! can be rewrit-
ten as

ql2ql~q0,q1, . . . ,qn21,p0 ,p1 , . . . ,pn21!'0 ~ l>2n!
~27!

and can be paired with the constraintsw l ( l>2n),

w l5pl'0 ~ l>2n!, ~28!

forming second class constraints. They are used to elimin
the canonical pairs$ql ,pl% ( l>2n).

In this way the infinite dimensional phase space is
duced to a finite dimensional one. The reduced phase s
is coordinated byT* Jn5$ql ,pl% with l 50,1, . . . ,n21. All
the constraints are second class and we use the iterative p
erty of Dirac brackets. The Dirac brackets for these variab
have the standard form

$qm,pn%* 5dm
n , $qm,qn%* 5$pm ,pn%* 50. ~29!

The Hamiltonian~6! in the reduced space is given by

H~ t !5 (
m50

n21

pm~ t !qm11~ t !2L~q0,q1, . . . ,qn! ~30!

where qn is expressed using Eq.~24! as a function of the
reduced variables inT* Jn. Note that if we consider the limit
n going to infinity, the constraints~19! and~21! do not allow
3-3
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one, in general, to reduce the dimensionality of the infin
dimensional phase space of the non-local system via D
brackets.

V. SYMPLECTIC FORMULATION
OF THE EULER-LAGRANGE EQUATION

The Hamiltonian formalism presented in the last sectio
can be cast into a symplectic form as follows. The Pois
brackets ~7! correspond to the symplectic two-formV
PL2(T* J):

V5E dl dP~ t,l!`dQ~ t,l!, ~31!

whered stands for the functional exterior derivative.
In the constrained phase spaceG1,T* J defined by Eq.

~10! only, the induced~pre!symplectic form is

V15
1

2E dl dl8 v~ t;l,l8,@Q# !dQ~ t,l!`dQ~ t,l8!

~32!

where

v~ t;l,l8,@Q# !5x~l8,2l!E ds
dE~ t;s,l!

dQ~ t,l8!
. ~33!

The induced Hamiltonian is

H1~ t,@Q# !5E dl F~ t,l,@Q# !Q8~ t,l!2L̃~ t,@Q# !.

~34!

The generator of the time evolution~4! is the vector field

X~@Q# !5E dl Q̇~ t,l!
d

dQ~ t,l!
. ~35!

Now, i (X)V11dH150 gives a first order formulation of th
EL equation. Indeed a short calculation yields

i ~X!V11dH152E dsE~ t;s,0!dQ~ t,0!

1E dldl8dQ~ t,l8!

3@Q̇~ t,l!2Q8~ t,l!#v~ t;l,l8!,

~36!

whence the evolution~5! and the EL equation~2! follow
from it.

VI. PATH INTEGRAL QUANTIZATION

Let us consider the Hamiltonian path integral quantizat
of the ~111!-dimensional field theory associated with th
Hamiltonian~6! for Lnon(t). The path integral is given by
04500
e
c

s
n

n

E @dP~ t,l!#@dQ~ t,l!#m

3expS i E dtdl$P~ t,l!@Q̇~ t,l!2Q8~ t,l!#

1L̃~ t !d~l!% D . ~37!

The integration is performed over the reduced phase spaG
and the measure@21,22# m is

m5detS $w,w% $w,c%

$c,w% $c,c%
D d~w!d~c!. ~38!

First we consider the non-singular higher derivative L
grangian system of ordern. From the discussions of Sec. IV
the constraints are arranged in a set in which the canon
variables (qj ,pj ) for j >n are expressed in terms of the on
for 0< j <n21. The measure becomes

m5 )
j 5n

2n21

$d~pj !d~qj2••• !% )
k52n

`

$d~pk!d~qk2••• !%

~39!

where ••• terms are given as functions of (qi ,pi)( i
50, . . . ,n21). Integrating over (qi ,pi)( i>n) Eq. ~37! be-
comes

E )
i 50

n21

dqidpiexpS i E dt(
i 50

n21

pi~ q̇i2qi 11!

1L~q0, . . . ,qn!D ~40!

whereqn is given as a function of (qi ,pi)( i 50, . . . ,n21).
This is the Hamiltonian path integral of the Ostrograds
formalism. If we assume that non-local systems can be
garded as the infinite limit ofn, the higher derivative system
~40! becomes, by takingn→`,

E @dP~ t,l!#@dQ~ t,l!#

3expS i E dtdl$P~ t,l!@Q̇~ t,l!2Q8~ t,l!#

1L̃~ t !d~l!% D , ~41!

where Q and P, which aren→` of (qi ,pi) ( i 50, . . . ,n
21), are not restricted by the constraints in contrast to
~37!.

If we integrate out the momenta and used„Q̇(t,l)
2Q8(t,l)…, we get

E @dq~ t !#expS i E dt Lnon~ t ! D , ~42!
3-4
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which is the Lagrangian path integral formulation for t
non-local theory.

VII. APPLICATION TO SPACE-TIME
NON-COMMUTATIVE f3 THEORY

Space-time non-commutative theories have peculiar p
erties due to their acausal behavior and lack of unitar
Here we would like to use the previous formalism to stu
the question of unitarity in these theories.

To fix the ideas we consider a non-commutativef3

theory with arbitrary non-commutativity ind dimensions.
The Lagrangian density is given by

L non~xm!5
1

2
]mf~x!]mf~x!2

m2

2
f~x!2

2
g

3!
f~x!* f~x!* f~x! ~43!

where * is the star product defined by using a general a
symmetric backgroundumn:

f ~x!* g~x!5@ei (umn/2)]m
a]n

b
f ~x1a!g~x1b!#a5b50.

~44!

The EL equation is

~h2m2!f~x!2
g

2!
f~x!* f~x!50. ~45!

x0 in Eqs. ~43!–~45! will be denoted ast hereafter. We in-
troduce a ‘‘new coordinatex0’’ which plays the role ofl in
the previous discussion and introduce the fieldQ(t,xm) in
d11 dimensions. Nowt is regard as ‘‘evolution time’’ and
xm

ª(x0,xW ) is a continuous Lorentzian index. Our metr
conventions areh tt5h00521,h i i 511. The relation~4! in
this case is

Q~ t,x0,xW !5f~ t1x0,xW !. ~46!

The Lagrangian density ind11 dimensions forQ(t,xm) @see
Eq. ~8!# is

L~ t,xm!52
1

2
]mQ~ t,x!]mQ~ t,x!2

m2

2
Q~ t,x!2

2
g

3!
Q~ t,x!* Q~ t,x!* Q~ t,x!, ~47!

where now the derivatives in * are with respect toxm

5(x0,xW ). Note that this Lagrangian density is local in th
evolution timet.

The momentum constraint~10! is given by
04500
p-
.

i-

w~ t,xm!5P~ t,xm!2d~x0!Q8~ t,x!

1
g

2!E dx8x~x0,2x80!E dy1dy2

3K~y12x8,y22x8,x2x8!Q~ t,y1!Q~ t,y2!,

~48!

whereQ8(t,x) denotes]x0Q(t,xm). HereK is the symmetric
kernel of three star products:

f ~x!* g~x!* h~x!5E dy1dy2dy3

3K~y12x,y22x,y32x!

3 f ~y1!g~y2!h~y3!. ~49!

The Hamiltonian~6! is

H~ t !5E dx@P~ t,x!Q8~ t,x!2L~ t,x!d~x0!#

5E dxFP~ t,x!Q8~ t,x!1d~x0!H 2
1

2
Q8~ t,x!2

1
1

2
@¹Q~ t,x!#21

m2

2
Q~ t,x!2

1
g

3!
Q~ t,x!* Q~ t,x!* Q~ t,x!J G . ~50!

The Hamilton equations are

Q̇~ t,x!5Q8~ t,x!, ~51!

Ṗ~ t,x!5P8~ t,x!2d8~x0!@Q8~ t,x!#x0501d~x0!

3$¹2Q~ t,x!2m2Q~ t,x!%

2
g

2!E dx8dy1dy2d~x80!

3K~y12x8,y22x8,x2x8!

3Q~ t,y1!Q~ t,y2!. ~52!

The stability of the constraint implies the new constrain
~13!:

c~ t,x![~¹22]x0
2

2m2!Q~ t,x!

2
g

2!
Q~ t,x!* Q~ t,x!50, at x050. ~53!

By requiring further consistency we have an infinite numb
of constraints which can be written as, Eq.~14!,

c~ t,x!50 for 2`,x0,`. ~54!

Using the Hamilton equation~51! for Q, Eq. ~54! be-
comes the EL equation
3-5
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~¹22] t
22m2!Q~ t,x!2

g

2!
Q~ t,x!* Q~ t,x!50, ~55!

where]x0 on Q is replaced by] t both in the first term and in
the * product. It is the original non-local EL equation~45!.

If we write the symplectic form and the Hamiltonian
terms ofQ(t,x), Eqs.~34! and ~32!, we have

V5E dx d~x0!dQ8~ t,x!`dQ~ t,x!

2
g

4E dx d„Q~ t,x!* Q~ t,x!…e~x0!`dQ~ t,x! ~56!

and

H5E dx
d~x0!

2
$Q8~ t,x!21@¹Q~ t,x!#21m2Q~ t,x!2%

2
g

4E dx@Q~ t,x!* Q~ t,x!#e~x0!Q8~ t,x!. ~57!

These expressions can be rewritten in terms off(x) using
Eq. ~51!, i.e., Eq.~46!. In particular the interaction Hamil
tonian becomes

Hi52
g

4E dx@f~x!* f~x!#e~x0!ḟ~x!. ~58!

Note that the occurrence of time derivatives of any orde
the interaction Hamiltonian is not forbidden in non-loc
theories. This property is clearly not satisfied by loc
theories.
rg

rg

e

, J

he
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Now we can perform the path integral quantization us
Eq. ~42! to obtain

E @df~x!#expF E dxS 1

2
]mf~x!]mf~x!2

m2

2
f~x!2

2
g

3!
f~x!* f~x!* f~x! D G , ~59!

from which we read the Lagrangian Feynman rules@23#.
They coincide with the ones used in@3#. Therefore, it follows
from @3# and@4# that non-commutativef3 theory with time-
like non-commutativity is not unitary while non
commutativef3 theory with light-like non-commutativity is
unitary.

Note added. Recently, Ref.@24# has also considered th
Hamiltonian formalism for non-local theories.
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