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Space-time non-commutative theories are nonlocal in time. We develop the Hamiltonian formalism for
non-local field theories il space-time dimensions by considering auxiliagy-(1)-dimensional field theories
which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered
and the Feynman rules in the Lagrangian formalism are derived. The case of non-commpiatieory is
considered as an example.

DOI: 10.1103/PhysRevD.63.045003 PACS nuni®erl1.10.Ef, 11.10.Lm, 11.15.Kc
[. INTRODUCTION theories could also be useful to study the energy of their
solitons.

Space-time non-commutative field theories have peculiar
properties due to their acausal behavi@r2] and lack of
unitarity [3]. In Ref. [4] it has been shown that there is a
relation between the lack of unitarity and the obstruction to
finding a decoupling limit of string theory in an electromag-  Unlike standard Lagrangians, which depend on the values
netic background5-10. These theories have an infinite of a finite number of derivatives at a given time(t),
number of temporal and spatial derivatives, and therefore arg(ty ... q("(t), a non-local Lagrangian depends on a

non-local in time and spadd 1,12. The initial value prob-  \hole piece of the trajectorg(t+\), for all values ofx,

lem of a non-local theory requires one to give a trajectory Okpat is,L"Yt) =L ([ q(t+\)]). At best it can be written as a
afinite piece of if13]. The Euler-Lagrang€EL) equationis  fnction of all time derivatives)(t), j=0,1,2 . . ., at the

a constraint in the space of trajectories. samet. This means that the analogue of the tangent bundle

The Hamiltonian formalism for non-local theories was or | agrangians depending on positions and velocities is in-
presented in15]. In this paper we improve the formalism by finite dimensional. The action is

clarifying the relation among the Lagrangian and Hamil-

tonian structures. We first consider an equivalent theory in a

space-time of one dimension higher than that of the original S[q]:f dt LMo t). (1
theory. This space has “two times” and the dynamics is

described in such a way that the evolution is local with re-

spect to one of the times. For this equivalent theory one caffhe EL equation is obtained as the variation of functigial
construct the Hamiltonian. A characteristic feature of theand is given by

Hamiltonian formalism for non-local theories is that it con-

tains the EL equations as Hamiltonian constraints.

The Hamiltonian path integral for thel - 1)-dimensional f dt E(t,t";[q])=0, 2
field theory is constructed. The Lagrangian path integral for-
malism for thed dimensional theory is obtained by integrat-
ing out the momenta. whereE(t,t";[q]) = oL™Yt)/5q(t").

We apply the Hamiltonian formalism to time-like and  The EL equation must be understood as a functional rela-
light-like non-commutative theorieig]. As an example we tion to be satisfied by physical trajectories. It is not a differ-
consider the case of non-commutatig theory ind dimen- ential system, as one is used to finding for local Lagrangians.
sions with Space-time non_commutativity_ The action Con_ln the latter case, the theorems of the existence and Unique-
tains the free Klein-Gordon Lagrangian and the interactior€Ss of solutions enable one to interpret the EL equation as
Lagrangian_; = (—g/3!) fdX ¢* ¢* ¢, where * refers to the ruling the time evolution of the system, whose state at every

Il. EULER-LAGRANGE EQUATIONS FOR NON-LOCAL
THEORIES

Moyal product. We construct the Hamiltonian éh+1 di-  instant of time is represented by a point in the space of initial
mensions. In the path integral quantization we get the Feyndata, e.g.J, ={q.q, ... ,q®"" b}, for a local Lagrangian of
man rules that coincide with those used in R¢is-3]. The  ordern.

theory is unitary at the classical levétee level but is not In the non-local case, if we denote the space of all pos-

unitary at one loog3]. This analysis should shed new light sible trajectories a3={q(\),\ € R}, Eq.(2) is a Lagrangian
on the structure of these theories. Knowledge of the Hamileonstraint defining the subspadgCJ of physical trajecto-
tonian of time-like and light-like non-commutative field ries.
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Ill. (14+1)-DIMENSIONAL FIELD THEORY DESCRIPTION Now, instead of taking the whole phase spdcel, we
OF NON-LOCAL THEORIES shall restrict ourselves to the subspace defined by the

Nevertheless, if we insist in defining a “time evolution” 1-parameter set of primary constraits]:

T, for a given initial trajectoryg(\), a natural choice is
(N [Q,PD=P(t,\)—F(t,\,[Q])~0 (10)
T

t
q(N)—q(A+1t). @ with
We shall hence introduce new dynamical variab@@g,\)
such that F(t,h,[Q])==f dox(\,—o)EtioN), (1D
Q(t,A)=q(A+1). 4
where&(t;o,\) and y(\,— o) are defined by
Thus,t is the “evolution” parameter and is a continuous
parameter indexing thg degrees of freedom. These new vari- SL(t, o) e\)—e(o)
ables follow the evolutior4) above, and)(0,\) can be seen EtyjoN)=——=———, x(\,—0o)=—FF——
as initial data in the locall+1)-dimensional field theory. SQ(t,\) 2 12
In differential form, condition(4) reads (12)
: —A Here €(\) is the sign distribution. The symbols=" and
)= t,\), 5 . .
QUM =Q(LN) ®) “ =" respectively stand for “strong” and “weak” equality.
where the overdot and prime respectively stand foand Further constraints are generated by requiring the stability
dy. of the primary ones. In the first step, we obtain
We then consider the Hamiltonian system for tte-1)- .
dimensional fieldQ with the Hamiltonian e(t, N [Q,PD) =0 (t,\,[Q,P])+ S(N) ¢hp(t,[Q])~0
H(t,[Q,P])=f dAP(tN)Q (LN -L(t,[Q]), ()  Where
whereP is the canonical momentum @. The phase space WL[QD‘ZJ do &t;0,00~0 (13
is thusT*J with the fundamental Poisson brackets
{Q(t,N),P(t,\")}=8(N—N"). (7)  is the secondary constraint. Further constraints then follow

_ by successive time differentiations ¢f,. They can be writ-
In the Hamiltonian(6), L(t,[Q]) is a functional defined by ten all together in a condensed form as

E(t,[Q])==f d\ S(M) L(EN). ® zﬂ(t,)\,[Q])Ef do &(t;0,1)=0. (14)

The “density” £(t,\) is constructed fronb."°"(t) by replac-
ing q(t) by Q(t,\), thet derivatives ofg(t) by \ derivatives
of Q(t,\) andq(t+p) by Q(t,\+p). In this construction of
the Hamiltonian\ inherits the signature of the original time
t and is a time-like coordinate. Furthermore, the symmetry o{
the original Lagrangian is realized canonically in the en-
larged spac¢l4]. Note thatZ(t,\) is local int and is non-
local in N. H depends linearly orP(t,\) but does not de-

pend onQ(t,\).

Therefore, the constrained Hamiltonian system defined by
the Hamiltonian(6) and the primary constraintd0) resides

in a reduced phase spate_T*J defined by Eqs(10) and

14). Taking into account Eq4), the constrain{14) reduces

o the EL equation(2) obtained fromL"'\(t).

The constraint$10) and(14) belong to the second class in
non-singular systems. In the next section we will show ex-
plicitly, for (non-singular higher derivative Lagrangian sys-

k ) i ) tem of ordem, that they are used to reduce the phase space

The relation (5) naturally arises as the first Hamilton , 55 gimensions, reproducing the canonical Ostrogradski
equation for Eq(6). However, there is na priori relation-  ¢,majism[16]. Our formalism developed here turns out to
ship betweerP(t,A) andQ(t,\), unlike what happensinthe o 5 generalization of the Ostrogradski formalism to the case
local case, and the second Hamilton equation of infinite order derivative theories. The infinite chain of sec-
ond class constraints has also appeared in the description of
boundary conditions as constrairits7]. Summarizing, the
equivalence has been built in tlie+1)-dimensional Hamil-
tonian formalism oflocal field theories through the con-
does not imply any further restriction dd(t,\). Thus, the straints(10) and(14). This type of equivalence between the
Hamiltonian systeng6) on T*J is not so far equivalent to the Hamiltonian and Lagrangian formalism is different from the
non-local Lagrangian system &f'°(t). one in local theorie§18].

sL(t,[Q])

P(t,)\):P,(t,)\)-F m

9
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IV. NON-SINGULAR HIGHER ORDER DERIVATIVE g =g+l 22)
THEORIES '
qusing this in Eq.(19) the constraintsp, (Osm<n-—1)

Here we would like to derive both the Lagrangian and~>""2 . L
grang coincide with the definition of the Ostragradsky momenta:

Hamiltonian formalisms for non-singular higher order de-
rivative theories from the Hamiltonian formalism of non-

-m-1
local theories developed in the last sectjad]. P~ > (=) oL () (0=m=n-1).
Let us consider a regular higher derivative theory de- =0 a3 ™ g(t))
scribed by the Lagrangian(q,q.q, . .. ,q™) and write the (23

expressions obtained in the previous section for the non-local | B .
Lagrangian. As we embed the higher order theory in thgglfotvr\]’;hc?ngﬁ:lge 2?:%/6](1 f_(? (ér1<§l<sn2jll)l) as functions
non-local setting we start with the infinite dimensional phase Pairsas. p; ==
spaceT*J(t)={Q(t,\),P(t,\)}. They are assumed to be q~a'@%q?, ..., 9" LPo.P1s - - - Pr1)

expanded in the Taylor badi&0] as

) (n<l<2n-1). (24)
Q(U\)Emz:() em(M)a™(1), They are combined with the constraints (n<I<2n
_1)1
P(tA)= 3 e"()p(b), (19 a=p=0 (n=l=2n-1), @9
m=0

to form a second class set and can be used to eliminate the

wheree'(\) ande,(\) are orthonormal bases: canonical pair{q',p}(n<I<2n-1).

| If we take into account Eq(22) the constraint21) for

s | A m=0 is the Euler-Lagrange equation for the original higher
eM)=(=a)8(\), &)= e (16 gerivative Lagrangian:
The coefficients in Eq915) are new canonical variables, . JdL(1)
w°~|20 (=) ———= (26)
{q" (1) Pa()} = ™, (17 - 7@a(v)

The constraint$21) for m>0 are the time derivatives of the
Euler-Lagrange equatiof26) expressed in terms @f's. For
a non-singular theory, all the constraii&l) can be rewrit-

H<t>=mE:O Pu(Ha™ () —L(g%q", ... g"). (18 tenas

. o q'-d'(@%a" ....9" 1po.P1, - .- Pr-1)=0 (1=2n)
The momentum constraigt10) becomes an infinite set of (27)
constraints:

and the Hamiltoniar{6) is

and can be paired with the constraigts (I=2n),
n-m—1

aL(t
em(D) =P~ > (—Dt)'&lTi)l(tﬁo, (19) e=p=0 (I1=2n), (28)
=0 q
forming second class constraints. They are used to eliminate
where the canonical pairéq',p,} (1=2n).

In this way the infinite dimensional phase space is re-
d duced to a finite dimensional one. The reduced phase space
D=2 q "t —. (200 is coordinated byr*J"={q',p,} with [=0,1, ... n—1. All
the constraints are second class and we use the iterative prop-
erty of Dirac brackets. The Dirac brackets for these variables
have the standard form

{qm,pn}*:é\mn, {qmaqn}*:{pm!pn}*zo- (29

The Hamiltonian(6) in the reduced space is given by

On the other hand, the constraigtin Eq. (14) in terms of
the Taylor basis becomes

L)

ym(t)=(Dy) m

Zﬁ (—Dy) ~0. (21)

n-1
These constraint6l9) and(21) are second class and are _ — 0 1 n
used to reduce the infinite dimensional phase space to a finite H(t)—mE:O Pm(Ha™ () —L(a"a% ....q")  (30)
one, leading to the ordinary Ostrogradski Hamiltonian for-
malism. The operatdD, defined in Eq(20) becomes a time whereq" is expressed using Eq24) as a function of the
evolution operator fog's using the first set of the Hamilton reduced variables iif* J". Note that if we consider the limit
equation n going to infinity, the constraint€l9) and(21) do not allow

045003-3



JOAQUIM GOMIS, KIYOSHI KAMIMURA, AND JOSEP LLOSA

one, in general, to reduce the dimensionality of the infinite
dimensional phase space of the non-local system via Dirac

brackets.

V. SYMPLECTIC FORMULATION
OF THE EULER-LAGRANGE EQUATION

The Hamiltonian formalism presented in the last sections

PHYSICAL REVIEW D63 045003

f[dP(t,x)][dQ(t.A)]M
xexpn(if dtdA{P(t,\M)[Q(t,\)— Q' (t,\)]

+[(t)6()\)}). (37)

can be cast into a symplectic form as follows. The Poisson

brackets (7) correspond to the symplectic two-forrf
e AX(T*J):

Q:f d\ SP(t,M)A\SQ(t,N), (31

where § stands for the functional exterior derivative.
In the constrained phase spalceC T*J defined by Eq.
(10) only, the inducedpre)symplectic form is

legf A\ dM w(tA M [QT) QL)AL
(32

where

SE(t,o,N)

o QN . (33

WEAN[QD =X, N [ d
The induced Hamiltonian is

Hl<t,[Q]>=f A F(ALQDQ (60 ~L(LIQ]).
(34

The generator of the time evolutidd) is the vector field

(39

. 1)
X([Q])= f (0)N Q(U\)m-

Now, i (X)Q,+ 6H,=0 gives a first order formulation of the

EL equation. Indeed a short calculation yields
i(X)Qq1+8H,= —f do&(t;0,0)6Q(t,0)

+f dhdN'6Q(t,N")

X[Q(t,N) = Q' (t,N)]w(t; AN,
(36)

whence the evolutior{5) and the EL equatiorf2) follow
from it.

VI. PATH INTEGRAL QUANTIZATION

The integration is performed over the reduced phase space
and the measurg21,22 w is

:de<{¢>,¢} {o. 0}
K5 e (o

First we consider the non-singular higher derivative La-
grangian system of order. From the discussions of Sec. IV
the constraints are arranged in a set in which the canonical
variables §',p;) for j=n are expressed in terms of the ones
for 0<j=n-—1. The measure becomes

o(@) 6(¢h). (39

2n—-1 -
p=TT oot = HIT {apo (=)}

(39

where --- terms are given as functions ofq'(p;)(i

=0,...,n—1). Integrating overd',p;)(i=n) Eq. (37) be-
comes

n—1

n—-1
11 dq‘dpiexp(if dt>, pi(a'—q'"h)

+L(q° ... ,q”)) (40)

whereq" is given as a function ofd,p;)(i=0, ... n—1).

This is the Hamiltonian path integral of the Ostrogradski
formalism. If we assume that non-local systems can be re-
garded as the infinite limit of, the higher derivative system
(40) becomes, by taking— oo,

f[dP<t,x)][dQ(t,A)]
xexp(if dtdA{P(t,M)[Q(t,\)—Q'(t,\)]

+L(t) (M)}, (41)

where Q and P, which aren— of (q',p;) (i=0,...n
—1), are not restricted by the constraints in contrast to Eq.
(37).

If we integrate out the momenta and uﬁéQ(t,A)
—Q’(t,\)), we get

Let us consider the Hamiltonian path integral quantization

of the (1+1)-dimensional field theory associated with the

Hamiltonian(6) for L"°"(t). The path integral is given by

(42

f [dq(t)]ex;{if dt L”O”(t)),
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which is the Lagrangian path integral formulation for the  ¢(t,x*)=P(t,x*)— 8(x°)Q’(t,x)
non-local theory.
+ %f dX’X(XO,—X'O)I dy,dy,
VIl. APPLICATION TO SPACE-TIME ’
NON-COMMUTATIVE  ¢® THEORY XK(yp=X",y2= X", x=x")Q(t,y1)Q(t,y2),

Space-time non-commutative theories have peculiar prop- (48
erties due to their acausal behavior and lack of unitarity. ) ) )
Here we would like to use the previous formalism to studywhereQ’(t,x) denotes?,0Q(t,x*). HereK is the symmetric

the question of unitarity in these theories. kernel of three star products:
To fix the ideas we consider a non-commutatiyé
theory with arbltrary _no.n—cc.)mmutatlwty il dimensions. f(x)*g(x)*h(x)=J dy,dy,dys
The Lagrangian density is given by
L ) XK(Y1=X,Y2—X,y3—X)
m
LMN(x#) = §0M¢(X)ﬁ“¢(X)—7¢(X)2 xf(y1a(y2)h(ys). (49
g The Hamiltonian(6) is
— 37 (0* B(0* $(x) (43)

H(t)= J dx[P(t,x)Q’ (t,x)— L(t,x)8(x°)]

where * is the star product defined by using a general anti-

; v. 1
symmetric background*”: :f dx P(t,x)Q’(t,x)+5(x°)[ _EQI(t’X)Z
H v a.fB
f(x)* g(x)=[€ "% F (x+ @) g(X+ B) ] a=p=o- 1 m?
P77 (aa) +5IVQ(L0 1+ 5 Q(tx)?
. . g
The EL equation Is + gQ(t,X)*Q(t,X)*Q(t,X)J . (50
g . .
(O —m?) p(x)— E(b(x)* #(x)=0. (450  The Hamilton equations are
Q(t,)=Q’(t,), (51)
x% in Egs. (43)—(45) will be denoted ag hereafter. We in- .
troduce a “new coordinatg®” which plays the role ofx in P(t,x)=P'(t,x)— 8" (XO)[ Q' (t,X) ]x0- o+ 6(x°)
the previous discussion and introduce the fi€i¢t,x*) in ) 5
d+1 dimensions. Now is regard as “evolution time” and X{V2Q(tx) —m*Q(t,x)}
x“::(xo,i) is a continuous Lorentzian index. Our metric g 0
conventions arey,= 7go= — 1,7;;= + 1. The relation(4) in - EJ dx’dy;dy,6(x"")
this case is '
XK(y;—x",yo,—x",x—=x")
Q(t,x°,%) = p(t+x%,X). (46) X Q(t,y)Q(t,y2). (52)
The Lagrangian density id+ 1 dimensions fof(t,x*) [see Tlhse. stability of the constraint implies the new constraints
Eq. ®)] is (13y:
. , Y(t,X)= (V2= %~ m?)Q(t,X)
m
‘C(thM)Z - Ea#Q(t,X)(?'uQ(t,X)_7Q(t,x)2 g
- gQ(t,x)*Q(t,x)zo, at xX°=0. (53
g
B ﬁQ(t’X)*Q(t’X)*Q(t’X)’ (47) By requiring further consistency we have an infinite number
of constraints which can be written as, E4),
where* now the derivatives in * are with respect x¢ P(t,x)=0 for —w<x0<c, (54)
=(x%x). Note that this Lagrangian density is local in the
evolution timet. Using the Hamilton equatioii51) for Q, Eq. (54) be-
The momentum constraifl0) is given by comes the EL equation
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s g Now we can perform the path integral quantization using
(VE= = mI)Q(t,x) — 7 Q(L,X)* Q(t,x)=0, (55 Eq. (42 to obtain

whered,o on Q is replaced by, both in the first term and in

the * product. It is the original non-local EL equatiofs). 1 m? ,
If we write the symplectic form and the Hamiltonian in j [dd)(x)]exr{j dx(za#qﬁ(x)&“ax)—?(ﬁ(x)
terms ofQ(t,x), Eqgs.(34) and(32), we have

, (59

g o
Q=fdxé(XO)éQ’(t,x)AﬁQ(t,x) 31 $(0" $(X) ¢(X>)

—%f dx 8(Q(t,%)* Q(t,x))e(x°)A\éQ(t,x) (56)  from which we read the Lagrangian Feynman rul&s].
They coincide with the ones used[iB]. Therefore, it follows

and from [3] and[4] that non-commutatives® theory with time-
like non-commutativity is not unitary while non-
5(x°) commutative$® theory with light-like non-commutativity is
Hzfdx > Q' (LX)*+[VQ(t, ) ]*+m*Q(t,x)?} unitary.

Note addedRecently, Ref[24] has also considered the

g . Hamiltonian formalism for non-local theories.
—7 | PLQULX)*Q(t,X) Je(xT) Q" (t,X). (57)
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