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Abstract

Understanding what determines species’ geographic distributions is crucial for assessing

global change threats to biodiversity. Measuring limits on distributions is usually, and nec-

essarily, done with data at large geographic extents and coarse spatial resolution. How-

ever, survival of individuals is determined by processes that happen at small spatial

scales. The relative abundance of coexisting species (i.e. ‘community structure’) reflects

assembly processes occurring at small scales, and are often available for relatively exten-

sive areas, so could be useful for explaining species distributions. We demonstrate that

Bayesian Network Inference (BNI) can overcome several challenges to including commu-

nity structure into studies of species distributions, despite having been little used to date.

We hypothesized that the relative abundance of coexisting species can improve predic-

tions of species distributions. In 1570 assemblages of 68 Mediterranean woody plant spe-

cies we used BNI to incorporate community structure into Species Distribution Models

(SDMs), alongside environmental information. Information on species associations

improved SDM predictions of community structure and species distributions moderately,

though for some habitat specialists the deviance explained increased by up to 15%. We

demonstrate that most species associations (95%) were positive and occurred between

species with ecologically similar traits. This suggests that SDM improvement could be

because species co-occurrences are a proxy for local ecological processes. Our study

shows that Bayesian Networks, when interpreted carefully, can be used to include local

conditions into measurements of species’ large-scale distributions, and this information

can improve the predictions of species distributions.
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Introduction

Current topics in ecology such as biological invasions or species responses to global change

rely on a better understanding of the drivers governing species distributions [1,2]. Although at

large geographical scales climatic conditions are the main factor determining species distribu-

tions (but see [3]), several studies have shown that non-climatic biotic and abiotic factors

(e.g. landscape dynamics, disturbance regimes, micro-topography, biotic interactions between

species such as competition or predation) are important at finer spatial resolutions [4–9].

Therefore, information reflecting local ecological processes would be valuable for improving

forecasts of responses to environmental change by species distribution models (SDMs). Never-

theless this information is rarely included (but see [10]).

A potential reason why local factors are not usually included in SDMs is the lack of suitable

fine scale data over large areas. Although data on micro-environmental and biotic interactions

are usually not available at a large scale, for many taxa, in particular plant species, the relative

abundance of coexisting species in a community is well documented across large geographic

areas (e.g. in vegetation databases such as SIVIM (http://www.sivim.info/sivi/), BDN (http://

www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/), BIEN (http://bien.

nceas.ucsb.edu/bien/). An additional challenge specific to biotic interactions is finding statisti-

cal techniques to deal with the large amount of potential interactions. There have been previ-

ous attempts to include biotic information into SDMs [11], one approach is to focus on a small

number of pair-wise species dependencies (< 25 species) [12–15] and another to use surro-

gates for biotic interactions, such as species richness [16]. However, these approaches are

either unable to assess all potential species interactions (there are N2 –N / 2 possible pair-wise

interactions in a community that contains N species), or they rely on extremely detailed eco-

logical knowledge. Finally, the statistical challenge is made much more complicated when con-

sidering that species live in complex interaction networks, where co-occurrence patterns are

affected by not only pair-wise but also indirect interactions influenced by the presence of a

third species [17,18].

Bayesian network inference (BNI) can be a useful tool to overcome these major challenges.

These analyses are used to study the conditional dependencies (represented by directed edges)

among a set of either abiotic (i.e. climatic, edaphic or land-use-related) and/or biotic (i.e. spe-

cies abundances) variables (represented by nodes). BNI has been widely used to study interac-

tion patterns in molecular biology, medical informatics, economics and social science research

[19–23]. However, BNI has only been recently applied to ecological research questions: to

microbial community ecology, to the study of assembly rules in invertebrate and bird species,

to inform management decisions, and to disentangle direct and indirect associations between

environmental variables and species distribution patterns [24–31]. BNI estimates the effect of

specific interactions on a focal species considering all the potential direct and indirect relation-

ships among the rest of species in the community. To calculate the effect of every direct and

indirect interaction requires the estimation of a very high number of parameters (i.e. assigning

a probability to each potential combination of states of every species). This is unfeasible using

regression techniques, but is possible with BNI due to its heuristic nature. BNI uses a heuristic

search of graphs proposed by different algorithms, which are sequentially compared to the

dataset through goodness-of-fit statistics. The graph that best matches the relationships

between variables in the data is kept [23]. In addition, BNI decomposes the global probability

distribution of the abundance of a focal node (species), into a local probability distribution,

only affected by a set of conditioning variables [23]. Thus, BNI can combine abiotic and biotic

information, and consider the potential effects of the composition and relative abundance of

every species in a community (hereafter ‘community structure’) on a focal species [23,32].

Community structure and species distributions
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Based on this information, BNI summarizes the entire community structure by calculating the

strength of the effect of ‘parent nodes’ on ‘child nodes’[23,32], and each species can be a parent

or child to any other species. Larsen et al. (2012) [29] were the first to show that BNI can be

combined with regression techniques to improve predictions of species’ relative abundances in

a community. They suggested that BNI can be used to identify the most influential parent and

child nodes for a target species. Each of these nodes (species) can be entered into SDMs, which

are used to predict the target species’ distribution and resulting community structure.

Although BNI can identify patterns in species associations, it cannot disentangle the two

major underlying processes shaping the relative abundance of species in a community, biotic

interactions and environmental filtering [33,34]. Biotic interactions can prevent a species from

occupying all areas that are environmentally suitable for it (e.g. competition, predation), but at

the same time extend the distribution of a given species into areas that would be environmen-

tally unsuitable in the absence of the biotic interaction (e.g. facilitative interactions) [35,36].

Environmental filtering restricts species distributions to sites where environmental conditions

are suitable for a given species. This includes environmental conditions that vary at large spa-

tial scales (e.g. climate or lithology), and micro-environmental factors that vary at local scales

(e.g. pH, soil humidity or shade). At local scales, the presence of species with certain require-

ments could indicate the availability of suitable micro-environmental conditions for other

species that share similar environmental requirements. Thus, the same pattern of species co-

occurrence could be caused by both biotic interactions and micro-environmental filtering. As

the use of co-occurrences to study biotic interactions becomes more widespread, it is impor-

tant to consider how these two processes could be disentangled. A solution to this problem

might lie in addressing the ecological requirements of the species involved, as indicated by spe-

cies traits, and we explore how this could be done.

In this study, we hypothesized that the relative abundance of coexisting species can improve

the predictions of species geographic distributions made by SDMs. For 1570 assemblages of 68

Mediterranean woody plant species, we applied (BNI) to incorporate community structure

into SDMs. We assessed the accuracy of predictions of species abundance and community

structure based on SDMs with and without information on coexisting species. We used species

trait data to interpret the ecological processes potentially underlying the species associations

inferred by BNI.

Materials and methods

Overview of the methodology

Following [29], we used BNI to infer a) the “overall network” (i.e. considering all species and

environmental variables) and select the parent nodes of each focal species and the sign of the

inter-specific association; and b) another network for each species, in which only the focal spe-

cies and environmental factors were included. Then, for each species we fitted two SDMs in

which the predictor variables were the parent nodes of the focal species in each of the two net-

works (hereafter called “Env+Bio” and “Env” predictors respectively). Next, we compared the

ability of SDMs with the two predictor types to predict the abundance of each species, and the

community structure of each site.

In order to explore the ecological processes underlying the inferred species associations, we

classified 68 Mediterranean plant species into two groups, each consisting of similar combina-

tions of life-history traits and ecological requirements (see Species syndromes below). We used

a chi-square test to assess whether species with positive or negative abundance co-variance

tend to be more similar (belong to the same group) or dissimilar (belong to different groups)

than expected by chance.

Community structure and species distributions
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Study site and community structure database

Within the Iberian Peninsula (mainland Portugal and Spain) (S1 Fig), we aimed to select a pool

of plant species that do not have extremely different environmental requirements, for which

differences in their distributions are entirely driven by the local conditions (for example avoid-

ing the mix of plants from alpine and saltmarsh vegetation). In order to detect effects of the

local environment or biotic interactions, the study species needed to differ in subtler aspects of

their niche (for example shade or soil moisture requirements). The goal was to obtain assem-

blages that contain many of the same species, but that have different community structure (i.e.

relative abundances). In order to obtain this species pool, we selected a species with restricted

habitat requirements but which is broadly distributed throughout the Iberian Peninsula, the

cork-oak (Quercus suber), and the pool of plant species associated with it. To determine the spe-

cies associated with Q. suber, we used data from the SIVIM database (Sistema de Información

de la Vegetación Ibérica y Macaronésica; http://www.sivim.info/sivi/). SIVIM compiles plant

community information from phytosociological relevés (hereafter ‘plots’) consisting of directly

submitted data, publications, and unpublished documents (e.g. theses or reports) [37]. For

each plot the species composition and relative abundance (percentage of cover) of each species

was reported (more details in Methods appendix). We extracted all SIVIM plots in the Iberian

Peninsula in which Q. suber was present, and the relative abundances of co-occurring species

in those plots. This resulted in 1570 plots occupied by 68 plant species (S1 Table).

Environmental variables

Each plot was characterized based on the following environmental variables: climate, geology,

land use (agriculture or forest-shrub), orientation, and dominant growth-form of the vegeta-

tion (trees or shrubs). Climatic variables were obtained from a dynamical downscaling method

using the Weather Research and Forecasting model [38] (more details in Methods appendix).

Geological information was obtained from the digital geological map data provided by One-

Geology-Europe (http://www.onegeology.org/), and each plot was assigned to the dominant

geological type, i.e. that which covered�70% of the 10 km grid cell in which each plot was

located. If no single type fulfilled this requirement, the plot was assigned to a type called

“mix” (more details about geological types in Methods appendix). Land use information was

extracted from the European Environment Agency website (Corine Land Cover 2006; http://

www.eea.europa.eu/). We classified each 10 km UTM (Universal Transverse Mercator coordi-

nates system) grid cell into just one of the two main land uses, agriculture and forest-shrub,

based on the dominant land use type, or into a third category (mix) when neither of the land

uses covered 70% of the surface. Orientation determines the solar irradiance a site receives,

affecting the microclimatic conditions, and resulting in larger hydric stress in south oriented

aspects. Plot orientation (North (N), South (S), East (E), West (W), North-East (NE), North-

West (NW), South-East (SE), South-West (SW)) was extracted from the information included

in each entry of the SIVIM database. The dominant growth form (trees or shrubs) was consid-

ered “tree” if the percent of tree cover reported for that plot was more than 50%, and “shrub”

if tree cover was less than 25%. If the percentage of tree cover was between 25–50% the plot

was considered a ‘mix’. In order to account for trends in the data across large geographical dis-

tances, the longitude and latitude of the grid cell in which each plot was located was also used

as an environmental variable.

Network inference

We used BNI to infer relationships between the relative abundance of the 68 plant species

across the 1570 plots. BNI can identify which variables (i.e. the relative species abundance or

Community structure and species distributions
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environmental conditions in each plot) significantly condition the probability of finding a

given abundance of a given species [39]. The nodes of these networks represent the variables,

while the directed edges (links) show the dependency between the two variables involved.

Directed edges point from parent to child nodes. As species abundance was recorded as ranges

of percent cover, we used multinomial Bayesian networks, in which all the variables are cate-

gorical (see details about the criteria to define categories and selection of the algorithms to

infer the network in the Methods appendix).

Milns et al (2010) pointed out that directionality in a BN is hard to assess as there are multi-

ple configurations of the network that can equally maximize the match with the observed

relationships among variables. In order to overcome this issue, we used a two-step process fol-

lowing Sachs et al. [40]: (i) Candidate associations among random variables were identified

using the 50% cut-off. The network structure is learned 500 times and the links and directions

that consistently (i.e. in > 50% of the runs) show a given direction across the 500 runs are

selected). The number of runs in which a link showed the same direction was used to quantify

the robustness of the direction. (ii) Significant associations were identified based on the thresh-

old approach proposed by Scutari et al. (2013) [41]. For all significant links, we calculated the

sign of the interaction using a Jonckheere trend test for ordered factors [42] (see Network

inference section in Methods appendix for more details about the order of the categorical vari-

ables). We partially constrained the inference by not allowing the species abundance to influ-

ence environmental variables and by not allowing any environmental variable to influence the

following variables: the temperature in the warmest quarter of the year, mean annual precipita-

tion, geological type and orientation. All analyses were performed using the package “bnlearn”

implemented in the software R version 3.1.2 [32].

Similarity in species life-history traits and ecological requirements: Species

syndromes

The plant species that currently co-exist in the Mediterranean basin are a mixture of species

that originated at different times and under different environments [43]. The dry, hot sum-

mers of the Mediterranean climate originated in the late Pliocene [44]. At that time, most of

the plants in the Mediterranean that required summer rain became extinct and predominantly

those species with traits that confer tolerance to summer drought persisted until today [45–

48]. However, other plant lineages that also currently inhabit Mediterranean areas originated

more recently and have evolved under Mediterranean climate [44]. Differences in the selective

pressures experienced by these two groups of Mediterranean plant lineages has resulted in dif-

ferent morphological-functional trait combinations and regeneration niche requirements,

which we term “syndromes” [43,46]. The recent lineages (with a Quaternary syndrome) are

characterized by non-sclerophyllous leaves, facultative summer deciduousness, hermaphro-

ditic, large, colored flowers, small seeds and pollination by large insects. Ancient lineages (with

a Tertiary syndrome) are evergreen plants with sclerophyllous leaves, reduced-greenish-uni-

sexual flowers, medium to large seeds, fleshy fruits dispersed by vertebrates, and pollination by

wind or small insects [49].

Most of the plant species considered in this study (60 out of 68) belong to genera that have

been previously assigned to one of these two syndromes according to the outcome of a princi-

pal component analysis based on their ecological traits and regeneration niche requirements

[43,46] (33 as Tertiary (T) and 27 as Quaternary (Q); S1 Table). We therefore restricted this

part of the analysis to those 60 species. We used a χ2 test to assess whether positive abundance

covariance between species that have similar (the same syndrome) or dissimilar (different syn-

dromes) ecological requirements occur more frequently than expected by chance.

Community structure and species distributions
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Species distribution models

We fitted SDMs to each of the 68 species. Following Larsen et al. (2012) [29], we used the net-

work structure learned using BNI to identify the parent nodes of each species and used those

nodes as explanatory variables. We used the mean percent of cover of each species in each plot

as the dependent variable to construct a generalized additive model (GAM) with a binomial

error distribution, including the longitude and latitude interaction of the 10 km grid cell as

a smoothing term [50–52]. Cross-validation was used to estimate the optimal amount of

smoothing (λ). During cross-validation, the optimal λ, and the effective degrees of freedom

was obtained by choosing different values of λ and then minimizing the sum of squares of the

linear regression penalized by the smoothing splines. This was performed using “mgcv” pack-

age implemented in the software R version 3.1.2 (Wood 2011). We fitted the GAMs using all

the parent nodes of each focal species identified by BNI (usually 1–4 variables per species, S2

Table). If the species did not have any parent node, the GAM was fitted using the intercept as

the only explanatory variable (indicated as ~ 1, in S2 Table). For longitude, latitude, mean tem-

perature of warmest quarter and annual mean precipitation we used continuous data in the

GAMs. As we aim to compare predictions made with the best available information on the

drivers of each species distribution in the presence and absence of species co-occurrence data,

the environmental predictors may differ between Env and Env+Bio SDMs for a given species

(S2 Table). Finally, we also asked whether the models used following this procedure predicted

the observed abundances better than the models based on randomly selected variables (Meth-

ods in appendix).

Comparing SDMs with “Env+Bio” and”Env” variables

Following Larsen et al. (2012) [29], for each species we fitted two models using “Env+Bio” and

“Env” predictor variables separately. To identify “Env+Bio” variables we inferred a single BN

considering all species relative abundances and environmental variables, so that either species

or environmental variables could be parent nodes of the focal species. For “Env” variables, we

inferred network structure for each species, which contained the focal species’ relative abun-

dance and all the environmental variables. In this way, the parent nodes of each species could

only be environmental variables.

The two sets of predictor variables represent different knowledge situations. ‘Env’ asks

which environmental variables we would think are important if we knew nothing about co-

occurring species. Env+Bio asks which environmental variables and species co-occurrences

are important when we have knowledge of both of these factors.

In order to evaluate the explanatory power of the SDMs with and without biotic data, we

randomly selected two thirds of the plots in which each species was present to construct

GAMs with the two sets of relevant explanatory variables (‘calibration plots’). The same plots

were used to evaluate SDMs with and without biotic data. In order to account for variation in

the number of explanatory variables used in “Env+Bio” and “Env” models, we calculated the

Akaike Information Criterion (AIC) of each model, which penalizes against the addition of

explanatory variables. We compared AICs between models using a paired t-test. We also calcu-

lated the percentage of variance explained by the two GAMs as a proxy for the absolute quality

of the models. The analyses were performed using the R package “MASS” and “mgcv” imple-

mented in the software R version 3.1.2 [53,54].

In order to evaluate the predictive power of SDMs, we used the GAMs constructed with

calibration plots to predict the community structure (species composition and abundance)

in the remaining one third of the plots (‘validation plots’). We calculated the Spearman

correlation coefficient (rho) between the observed species abundance and the abundances

Community structure and species distributions
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predicted by the “Env+Bio” and “Env” predictors. A paired t-test on the rho values was used

to test whether the predictions by the GAMs using “Env+Bio” or “Env” predictors correlate

better with the observed abundances. Finally, we used the Bray-Curtis (BC) dissimilarity

index to estimate the similarity between the predicted and observed community structure in

each of the validation plots. Hereafter we will use the similarity index 1-BC (where 1 is the

most similar, implying better predictions and 0 the most dissimilar and implying worse

predictions) and refer it as “BC similarity index”. A paired t-test was used to test whether the

BC similarity index was higher when the “Env+Bio” or “Env” predictors were used. These

analyses were performed using the R package “vegan” implemented in the software R version

3.1.2 [55].

Results

Overall BNI network

The overall network, including all species and environmental variables, contained a total of

138 significant links (Fig 1), 104 of which were positive (75%) and 20 (15%) negative. For 14

links the Jonckheere trend was not strong enough to assign a sign. Of the 138 significant links,

75 occurred between species. Most species-species links (95%) were positive, indicating that

the probability of finding a higher abundance of one species increases when the other species

is also abundant. Only four links between species were negative (S3 Table). On average, each

species had 1.94 ± 0.08 (mean ± SE) parent nodes and 1.29 ± 0.18 children nodes.

Fig 1. Network structure learned using Bayesian network inference. Only significant links are presented, and grey lines indicating links with no sign was detected.

Grey and black circles represent species with a Quaternary and Tertiary syndrome respectively. White circles are either environmental variables (mean temperature in

the warmest quarter of the year (Twarm), annual precipitation (anualP), soil types (soil), land use (landuse), orientation (orientation), dominant form (dom_form) and

spatial location (spac)) or species with no syndrome associated. Continuous and dashed lines represent negative and positive associations respectively. Complete names

for species are provided in the appendix and environmental variable categories in the methods section.

https://doi.org/10.1371/journal.pone.0197877.g001
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The accuracy of SDMs when informed by community structure

Across all species, the “Env+Bio” predictors resulted in models of species abundance that have

greater explanatory power than did the “Env” predictors (mean (±SE) decrement in AIC =

-146 ± 100; tpaired = -3.97, df = 67, p-value < 0.0001) (S1 Table). Across all species, the models

of species abundance using “Env+Bio” predictors explains a slight but significantly higher per-

centage of deviance than the models using “Env” predictors, (mean increment in the percent-

age of deviance explained (±SE) = 1.5% ± 0.42; tpaired = 3.54, df = 67, p-value< 0.001), but

there was considerable variation across species, ranging from species for which the model

using “Env+Bio” predictors decreased the deviance explained by 6% (Pterospartum tridenta-
tum) to species in which the model using “Env+Bio” predictors increased the deviance

explained by 15% (Salix atrocinerea). The models using “Env+Bio” predictors also predicted

the observed abundances better than the models based on randomly selected variables; on

average, Env+Bio predictors explained a higher percentage of deviance (3.18% ± 1.29; tpaired =

2.36, df = 67, p-value = 0.01) (more details in Methods in appendix).

Including community structure in SDMs improved the accuracy of the species’ observed

abundance predictions, as there was a slight but significant higher correlation between the

observed and the predicted abundances using “Env+Bio” predictors than using “Env” predic-

tors (mean increment in rho (±SE) = 0.02 ± 0.006; tpaired = -3.1, df = 67, p-value < 0.002) (Fig

2). However, there were six species for which the models using “Env+Bio” predictors resulted

in an increment of the Spearman correlation coefficient above 0.10, indicating a considerably

more accurate prediction of these species’ abundances (S2 Table). Models using “Env+Bio”

predictors also improved the predictions of the whole community structure in each plot. Over-

all, the Bray-Curtis similarity index was higher when using “Env+Bio” predictors than when

using “Env” predictors (mean increment in Bray-Curtis similarity index (±SE) = 0.1 ± 0.004;

N = 524; tpaired = 2.1861, df = 523, p-value < 0.0001) (Fig 3).

Potential ecological processes underlying abundance covariance between

species

The links between species inferred by BNI do not occur between random pairs of species. Posi-

tive links between species with the same syndrome (Tertiary-Tertiary (TT) or Quaternary-

Quaternary (QQ)) are significantly more frequent than expected by chance (χ2 = 26.68, df = 1,

p-value < 0.0001). The links were significantly more frequent between species with the same

syndrome than between species with a different syndrome (Number of links: QQ = 20,

TT = 32, QT = 4, TQ = 7; χ2 = 63, df = 3, p-value < 0.0001), and especially between those shar-

ing a Tertiary syndrome (S3 Table). Only four of the significant links were negative, which pre-

vented us from performing any statistical inference for negative links.

Discussion

For 80% of the 68 species, including information on community structure in SDMs appears to

improve predictions of species distributions. The improvements in SDM performance are of a

similar magnitude to those recently found by [56], who used BNs to directly model biotic

interactions and shared habitat requirements’ relationships among species in a community.

Positive associations between Mediterranean woody plants tend to occur between ecologically

similar (i.e. ‘Tertiary’) species. This association pattern suggests that positive associations

might be driven by a match between the requirements of similar species and the presence of

environmental conditions, in particular shade and moisture. The species associations we

observe appear to reflect the conditions that occur within vegetation plots, and so at a much
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finer spatial resolution than is usually possible to study with most sources of climate data.

Moreover, we selected a study system in which the macro-climatic conditions did not vary

greatly. Thus, we propose that species distribution predictions might have been improved

because information about the community structure acts as a proxy for micro-environmental

conditions, for which direct data are not available.

Incorporating community structure in SDMs

SDM predictions of species distribution and community structure improved when informa-

tion on community structure was included. Several of the species for which community struc-

ture information improved SDMs have specific habitat requirements. Corynephorus canescens
requires bare and sandy soils [57], Salix atrocinerea occupies river banks and permanently wet

soils [58], and Quercus canariensis occupies shaded and humid canyons [59]. By contrast, spe-

cies for which community structure information does not improve SDMs often have wide dis-

tributions in the Mediterranean region (Quercus ilex [59]) or are highly generalist and exhibit

invasive behaviour in non-native regions (Brachypodium sylvaticum, Hedera helix [60–62]) (S2

Table). Therefore, the micro-environmental data added by community structure might be

especially informative for species with restrictive ecological requirements, and less relevant for

more generalist species.

Fig 2. Correlation between the prediction of “Env” and “Env + Bio” models. Rho coefficient of the correlation between the observed species

abundances and abundances predicted by “Env+Bio” vs. the correlation coefficient between abundances observed and predicted by “Env” models, for

the 68 species. Black points above the line represent species with higher Spearman’s rho correlation coefficients values using “Env+Bio” rather than

“Env” predictors. The opposite is true for white points below the line.

https://doi.org/10.1371/journal.pone.0197877.g002
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Information about micro-climatic conditions is rarely available across large spatial extents

such as the Iberian Peninsula (though climate data can be downscaled [63]). However, infor-

mation about the community structure of coexisting plant species is often available across

large extents, and can act as a substitute for micro-climatic information that cannot be other-

wise included in SDMs.

Using traits to explore ecological processes underlying abundance

covariance between species

We caution against simply assuming that co-occurrence patterns reflect biotic interactions.

Instead, we suggest that asking whether associations occur between species with similar or

dissimilar ecological requirements can provide insight into the predominance of biotic interac-

tions and environmental filtering. Community assembly theory suggests that biotic interac-

tions and environmental filtering can affect the distribution of trait values within communities

(i.e. by permitting different sets of species to co-exist). Environmental filtering leads to coexist-

ing species having similar traits as a result of shared ecological tolerances [64,65]. However,

Fig 3. Correlation between the Bray-Curtis similarity index using “Env” and “Env + Bio models”. Bray-Curtis similarity index between the observed community

structure and the community structure predicted by “Env+Bio” vs. the similarity index between the observed community structure and that predicted by “Env”

models, for the 524 validation plots. Values of Bray-Curtis similarity index closer to 1 imply that community structure is predicted more accurately and values closer to

0 indicate less accurate predictions. Black points above the line represent plots with higher similarity between the observed values and those predicted using the “Env

+Bio” rather than the “Env” predictors. The opposite is true for white points below the line.

https://doi.org/10.1371/journal.pone.0197877.g003
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non-consumptive interactions like competition and facilitation can have varying effects on

traits, depending on the traits and details of the interaction. For example, most studies focus-

ing on competition have been based on the common assumption that species with similar eco-

logical strategies compete more intensely for resources than species with different strategies

[66] resulting in co-existing species having different traits. On the other hand, competition

can magnify the effects of environmental filtering by causing species with similar traits to co-

occur. For example, competition for light in shaded environments can lead to species with the

same light-adaptation traits outcompeting species with different traits [67]. Positive biotic

interactions such as facilitation (i.e. one species directly promotes the presence of another

[68]) can result in a positive association between ecologically dissimilar species, because this

ecological process is frequent between phylogenetically distant plant species [35,69,70]. Alter-

natively, facilitative interactions driven by shared mutualists such as pollinators, can result in a

positive association between plants with similar floral traits, as similar flowers enhance the

attraction of shared pollinators [71]. The potential for different trait co-occurrence patterns to

arise from the same type of biotic interactions therefore adds complexity to the interpretation

of trait data to explain species co-occurrence. However, we suggest that considering traits

appropriate to the situation can be highly informative when interpreting causes of co-occur-

rence patterns.

The tendency for Tertiary species (which are associated with humid, shaded areas) to co-

occur, suggests that their presence can provide information about micro-environmental con-

ditions, specifically shade and soil moisture (Fig 4). An alternative explanation could be that

the species are facilitating each other’s reproduction by attracting shared pollinators [71].

Fig 4. Expected covariance between species involved in biotic interactions and environmental filtering. The

combination of 3-d shapes and colors represent four different species. Species with similar requirements (syndromes)

are represented by the same shape (pyramids: Tertiary (T), cubes: Quaternary(Q)), but distinct colors. Environmental

filters are represented as grey ellipses in which only species with certain traits can survive (e.g. moist and shaded

environments on north facing slopes where species with a tertiary syndrome can survive, or sunny environments on

south facing slopes where quaternary species can survive: the 3-d shapes must match the shape of the ellipse). In the

case of negative abundance covariance, competition is expected to be more intense between species with similar traits

and ecological requirements resulting in spatial segregation between species with similar requirements and traits, while

environmental filtering will result in spatial segregation between species with dissimilar requirements and traits. In the

case of positive abundance covariance, facilitation promotes the co-occurrence between species with dissimilar

requirements and traits, while habitat filtering results in the co-occurrence of species with similar requirements and

traits.

https://doi.org/10.1371/journal.pone.0197877.g004
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However, only two of the 14 morphological and functional traits used to define Quaternary

and Tertiary syndromes relate to the pollination syndromes [49]. In addition, the plants stud-

ied showed neither entomophily or anemophilia, so there was little inter-specific variation in

floral morphology. Therefore, although we cannot completely rule out the possibility that facil-

itation through enhanced attraction of shared pollinators underlies the co-occurrence of eco-

logically similar plant species in our study, we consider it unlikely.

Although environmental filtering appears to explain the co-occurrence patterns found,

environmental filtering would also be expected to result in negative links among species that

inhabit different habitat types, with the same frequency as positive links [72,73]. The predomi-

nance of positive links in our network (Fig 1 and S3 Table) might be because the study system

is defined by the presence of Quercus suber which has relatively restricted habitat require-

ments, resulting in insufficient environmental variation to reveal strong segregation between

Quaternary and Tertiary species. The predominance of positive species associations has been

also reported in other studies of species associations [25,74–76].

Although our results suggest that environmental filtering drives species associations, plant-

plant facilitation (positive interactions) between species with Quaternary and Tertiary syn-

dromes is known to have played a crucial role in the persistence of the latter [46]. It may be

possible to detect facilitation at an even finer spatial resolution than we studied. Quaternary-

Tertiary facilitation may often take the form of improved seedling recruitment under adult

plants, which might be apparent if networks are created using plant abundance data on the

scale of a few meters. The ecological processes captured by network inference may therefore

depend on the spatial resolution of the analysis.

In conclusion, we show how BNIs can improve understanding of species distributions, and

how this could improve SDMs. The network structure provided by the BNI can be combined

with ecological trait data to explore potential processes underlying species associations. How-

ever, these interpretations should be made cautiously, given that different mechanisms could

result in similar patterns. Taking this into account, we consider it likely that species abundance

in Mediterranean woody plant communities, at the resolution studied, arise from micro-envi-

ronmental associations that are rarely detectable using standard SDM approaches.
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8. Araújo MB, Luoto M. The importance of biotic interactions for modelling species distributions under cli-

mate change. Global Ecology and Biogeography. Wiley Online Library; 2007; 16(6):743–53.

9. Scott J, Heglund P, Morrison M, Haufler J, Raphael M, Wall W, et al. Predicting species occurrences:

issues of scale and accuracy. Predicting species occurrences: Issues of scale and accuracy. Island

Press Washington D. C.; 2002.

10. Meineri E, Hylander K. Fine-grain, large-domain climate models based on climate station and compre-

hensive topographic information improve microrefugia detection. Ecography. Wiley Online Library;

2017; 40(8):1003–13.

11. Kissling WD, Dormann CF, Groeneveld J, Hickler T, Kühn I, McInerny GJ, et al. Towards novel
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