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‘We evaluate the probability that a loop of string that has spontaneously nucleated during inflation
will form a black hole upon collapse, after the end of inflation. We then use the observational bounds
on the density of primordial black holes to put constraints on the parameters of the model. Combining
these constraints with current upper limits on the expansion rate during inflation, we conclude that
the density of black holes formed from nucleating strings is too low to be observed. Also, constraints
on domain wall nucleation and monopole pair production during inflation are briefly discussed.

PACS number(s): 98.80.Cq, 03.70.+k, 97.60.Lf

I. INTRODUCTION

It has been proposed [1, 2] that loops of string can
spontaneously nucleate during an inflationary period of
expansion in the early Universe. This is a quantum tun-
neling process, somewhat analogous to the spontaneous
nucleation of spherical bubbles of true vacuum in the
problem of false vacuum decay [3]. It has been shown
that loops can nucleate at considerable rates provided
that their tension u is not much larger than H? (here H
is the expansion rate during inflation) and, in this case,
the distribution of loops emerging from inflation may in
principle have significant cosmological consequences.

In this scenario, loops nucleate with sizes of the order of
H™!, and are subsequently stretched to large sizes by the
inflationary expansion. After inflation, in the radiation-
dominated era, the loops eventually fall within the Hub-
ble radius and start oscillating under their tension.

Because the instanton describing the nucleation of a
loop is maximally symmetric, the nucleated loops tend
to be nearly circular. It is well known that an exactly
circular loop would form a black hole upon collapse [4-6].
However, the nucleated loops will not be exactly circular.
The reason is that, during inflation, quantum fluctua-
tions on the string on subhorizon scales generate shape
instabilities as their wavelengths become larger than the
horizon (7, 8] (see also [9]). The question then arises of
how many of the nucleated loops will be circular enough
to form a black hole after the end of inflation. This is
the problem we address in the present paper.

The plan of the paper is the following. In Sec. II we
calculate the probability of black hole formation from
a nucleating string. In Sec. III we use this result and
the observational bounds on the abundance of primor-
dial black holes to put a constraint on the parameters of
the model (which are essentially 4 and H). An additional
constraint from the emission of gravitational waves by the
strings is also considered. In Sec. IV, we briefly discuss
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observational constraints on domain wall nucleation and
monopole-antimonopole pair production, which can also
occur during inflation [1]. We summarize our conclusions
in Sec. V. Some details are left to the appendices. Ap-
pendix A deals with linearized perturbations on a circular
loop of string in flat space, and in Appendix B we con-
sider the effect of damping processes on the probability
of black hole formation.

II. PROBABILITY OF BLACK HOLE
FORMATION

In this section we estimate the probability that a loop
of string that has nucleated during inflation will form a
black hole once it collapses under its tension, after the
end of inflation.

The classical world sheet of a circular loop of string
that has nucleated during inflation is given by [1]

R(t) = H-'V/eH =t 1 1, (1)

where R is the physical radius of the loop, H is the ex-
pansion rate of the inflationary Universe, and ¢ is the
usual cosmological time in the flat Friedmann-Robertson-
Walker coordinates. The parameter ¢o can be interpreted
(in a loose sense) as the time at which the loop nucle-
ates. Throughout this paper (unless otherwise stated)
we shall work in the approximation in which the strings
are infinitely thin, although nucleation of strings whose
thickness is not much smaller than H~1! is also possible
[2].

The loops nucleate with a size of the order of the hori-
zon size R ~ H™!, and afterwards they are stretched
by the inflationary expansion. For R > H~! they grow
proportionally to the scale factor

R(t) ~ H1eHt=t0),
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After inflation, in the radiation-dominated era, the loops
continue to be stretched by the expansion of the Universe,
R(t) o t'/2, until they enter the cosmological horizon, at
t ~ R. Soon after the loop comes within the horizon,
the effects of expansion become negligible and the loop
starts behaving approximately as it would behave in flat
space.

Let R. be the radius of a particular loop at horizon
crossing. The mass of this loop is 2w R i, where y is the
string tension. The Schwarzschild radius corresponding
to this mass is

Rs = 47GuR.. (2)

As the loop shrinks under its tension, its rest mass is con-
verted into kinetic energy, so that the total energy of the
loop remains constant. It is clear that if the loops were
exactly circular, they would all eventually shrink to a size
smaller than Rg, thus forming black holes (of course this
argument assumes that Rg is larger than the thickness of
the string, which will always be true for sufficiently large
loops).

However, loops nucleated during inflation will not be
exactly circular. Quantum fluctuations around the sym-
metric solution (1) will cause small departures from the
circular shape, and this will determine the probability
of black hole formation. Consider a circular loop of ra-
dius R(t) lying in the z = 0 plane and centered at the
origin. Using cylindrical coordinates (p,0,2), we can
parametrize a perturbed (noncircular) loop as follows:

p(o,t) = R(t) + A'r(9> t),

(3)
2(8,t) = Ay(6,1).

That is, we decompose the perturbations into a radial
part A, parallel to the plane of the unperturbed loop,
and a transverse part A; perpendicular to that plane. In
Eq. (3), p and z are physical coordinates (rather than
comoving).

To study the evolution of a loop, we shall divide its his-
tory into three epochs: (a) The loop nucleates and then
expands during inflation; (b) after inflation, while the
loop is larger than the cosmological horizon it is stretched
by the expansion until it crosses the horizon; (c) once the
loop comes within the horizon, it shrinks under its ten-
sion. We will follow the evolution of the perturbations
A, A; through the epochs (a), (b), and (c). For this it
will be useful to expand them in Fourier modes:

2) sin L
As‘,I)J \/7_1_ ] ’

and similarly for A;. Note that the sum does not include
the modes with L = 0 and L = 1. This is because, as
it was shown in Ref. [8], such modes do not correspond
to true perturbations, but only to spatial rotations and
spacetime translations of the unperturbed solution (1).
(a) Evolution during inflation. In the process of nucle-
ation, the perturbations Agf,)L (1 =1,2; A =t,r) have to
be treated as quantum variables. The linearized theory
of quantum fluctuations around the classical solution (1)

> (1) cos L@
1
&=y a2

L=2

(4)
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was studied in Ref. [8], using a covariant formalism. The
world sheet (1) has the internal geometry of a (1+1)-
dimensional de Sitter space [1], and it was shown that
the perturbations A, and A; behave as two uncoupled
scalar fields of tachyonic mass m? = —2H? “living” in
this lower-dimensional de Sitter space. The symmetries
of the problem suggest that when the string nucleates,
the fields A,, A; should be in a de Sitter-invariant quan-
tum state (see also Ref. [10]). This state was constructed
in Ref. [8] using the Heisenberg picture. The correspond-
ing Schrodinger picture wave functional \Il({AE\Z,)L}) can
be obtained using well-known manipulations (see, e.g.,
[10]). Since we are dealing with a linearized theory, the
probability distribution associated with ¥ has the Gaus-

sian form
(3) _(AE\i)L 2
PEAVLY =12)> = [[ (2r 03 )2 exp [———-} :

A, L 2 Ug\vL
(5)
where the standard deviations oy, 1, are given by [8]
2 _ & \2gy _ L [HPRA(t)
U,\,L(t) = (‘Ill(A,\,L) |\I»'> = m [LZ__I— +1 .
(6)

For wavelengths much larger than the horizon, HR > 1,
we have o1, « R, i.e., the amplitude of the perturbations
is conformally stretched by the expansion (recall that R
grows like the scale factor during inflation). For wave-
lengths much smaller than the horizon the second term
in (6) dominates and we have oy = const, as expected.
This second term is just the flat space contribution to the
quantum fluctuations, and we shall subtract it in what
follows in order to avoid the well-known ultraviolet di-
vergences in (A2).

Soon after a given wavelength becomes larger than the
horizon, it can be treated as classical. Here we adopt
the point of view that Eq. (5) gives the probability dis-
tribution for the initial amplitudes of the perturbations,
which will evolve classically thereafter.

(b) After inflation: while the loop is larger than the
cosmological horizon. As we mentioned before, the loops
are conformally stretched until they enter the horizon.
Since we do not have analytical solutions to describe this
epoch, we shall use the following approximations [11, 12]:
for wavelengths larger than the horizon the amplitude
of the perturbations is conformally stretched by the ex-
pansion, whereas for wavelengths within the horizon the
amplitude of the perturbations remains constant.

Perturbations with wave number L enter the horizon at
time t;, ~ R(tL)/L. At this time we have o, = [2uL(L?—
1)]"Y2HR(t1) (as mentioned before, we subtract the flat
space contribution to o). The loop enters the horizon
at the time

R%(t
te ~ R(te) ~ _t(L—Ll ~ LR(t1).

Since the amplitude of the perturbations is frozen after
ti, we also have
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or(te) = [2pL(L? -
= [2uL3(L% -

at the time t..

(c) Loops inside the horizon. Once a loop comes within
the horizon we can ignore the effects of the expansion of
the Universe and consider the collapse of a loop in flat
space. In this case the evolution of the perturbations can
be solved analytically. The details can be found in Ap-
pendix A. We find that during this period the behavior
of radial perturbations A, is different from that of trans-
verse perturbations A;. The amplitude of radial pertur-
bations shrinks by a factor of L as the loop collapses,
while the amplitude of transverse perturbations remains
constant. For R <« R, we find

orr ~ (2uL")"Y2HR,,

1)]"Y2HR(t1)
1)]"Y2HR, (7)

(8)
ov1 ~ (2uL®)"Y2HR,.
Equation (8), together with (5), is the first important
result of this paper. It allows us to assign probablhtles to
different string configurations (parametrized by A X, L) at
the time when the radius of the unperturbed loop enters
the Schwarzschild radius Rg.

The dynamics of gravitational collapse and black hole
formation from a given loop configuration is, of course,
a complicated issue that cannot be treated in detail ana-
lytically. However, we know that if the amplitude of the
perturbations is much smaller than Rg at the time tg
when the unperturbed loop enters the Schwarzschild ra-
dius, then a black hole will form. On the contrary, if the
perturbations are large compared with Rg the loop will
probably self-intersect and fragment into smaller loops
before it shrinks to a size Rg (the resulting loops will be
far from circular, so a black hole will never form in this
case). To compute the probability of black hole forma-
tion, we shall count a particular loop as a black hole with
Gaussian weight:

6—62/02}2?9. (9)

Here 6 is the rms perturbation when one averages over
the circumference of the loop (at time tg):

S (a@?,

A, L

1 27

1
2 1 2 _ 1
&= 27 A%(0,ts) 27

where we have used (4). In Eq. (9), a is an unknown pa-
rameter of order 1, which models our lack of knowledge
on the dynamical details. We should emphasize that the
precise form of the “Gaussian window” (9) is not very im-
portant here; we have taken the Gaussian shape just for
computational convenience. Had we taken, for instance,
a step function window, our final conclusions would be
the same.

To find the probability of black hole formation from
a loop that has nucleated during inflation, we integrate
over all possible loop configurations with measure given
by the probability distribution (5)—(8), times the window
function (9):
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’P}3H=/]\I’|2e_‘$2/(°‘Rs)2 H dAE\i,)L
A, L
-1
- I (14 2) a0

Using (8), we can rewrite it as

Pru(Ls) = ﬁ (1 +2§—Z>_1 (1 +2%7)_1, (11)

L=2
where we have introduced the notation

L. = [167%B(aGu)?~1/5.

Here B = 4mu/H? is the Euclidean action of the instan-
ton describing the nucleation of the loop. Equation (11)
is the main result of this section. It allows us to find the
probability of black hole formation as a function of the
parameters of the model (4 and H). Note that Pgy does
not depend on R, the radius of the loop at horizon cross-
ing. Note, also, that the dependence on the parameters
H, pu, and o is only through the combination L,.

The physical meaning of L, is the following. Modes
with L > L, have 07, <« aRg. These modes will always
have amplitudes much smaller than the Schwarzschild
radius and they will not contribute to Pgy. This is also
clear from (11). Therefore L, is basically the number of
modes whose amplitude can be large enough to prevent
the formation of a black hole.

The function Pgu(L«) cannot be given in closed form.
However, one can compute it numerically to arbitrary
precision by including a sufficient number of terms in the
product (11). A plot of Pgy versus L, is given in Fig.
1. From the graph we see that the probability decays
(essentially) as an exponential function of L..

In deriving Eq. (11) we have neglected damping pro-
cesses, such as gravitational radiation and friction. In

T T T
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FIG. 1. The function Peu(L«) can be computed numer-

ically from Eq. (11) to arbitrary precision. We see that, es-
sentially, the probability of black hole formation decays as an
exponential function of L..
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principle these could reduce the amplitude of the pertur-
bations and therefore increase the probability of black
hole formation. In Appendix B we briefly discuss the
damping mechanisms and the limits in which they can
be neglected. We find that damping can be safely ig-
nored from the calculation of Pgy provided that Gu is
in the range

9
(a2B)~%/° (%)s/ SGu <5x1072a2B)3,  (12)
where mp is the Planck mass and M is the mass of the
black hole. The upper limit is due to gravitational ra-
diation, which is important for heavy strings, while the
lower limit corresponds to friction due to the surround-
ing matter, which is important for light strings. In the
next section we will be interested in Py for black holes
of mass M ~ 10®mp, so Eq. (12) leaves us with a wide
range of values of Gy for which (11) is valid.

III. OBSERVATIONAL CONSTRAINTS ON LOOP
NUCLEATION

During inflation, loops of size ~ H~! are produced at
a constant rate per unit physical volume. After nucle-
ation these loops grow like the scale factor, so we expect
that the number of loops with size ~ R contained in a
volume ~ R3 will be independent of R. That is, we ex-
pect a scale-invariant distribution of loops . The number
density distribution of loops will be given by [1]

dN _ dR
dvV ~ ~ RY’

[Actually, the distribution (13) has a lower cutoff at R ~
H~1, since we do not have loops smaller than that. It
also has an upper cutoff at R ~ EH~!, where E is the
total e-folding factor since the onset of inflation. See
Ref. [1] for details.]

The coefficient v is the number of loops produced dur-
ing an expansion time H~! in a volume H~3. This
has been estimated in the semiclassical approximation
in Ref. [1], using the instanton methods [3]:

(13)

v=Ae B, (14)

Here, as in Sec. II, B = 4wu/H? is the Euclidean action
of the instanton describing the nucleation of the string
(which is just a spherical world sheet of radius H~1).
The coefficient A has not been calculated and we shall
leave it as a free parameter here, presumably of order 1.

We should mention that the semiclassical approxi-
mation that leads to Eq. (14) is only valid when
the Euclidean action is large B > 1 (that is, the
symmetry-breaking scale of the strings, u!/2, should sat-
isfy u1/2R2 H). On the other hand, we do not want B to
be too large, since then the density of strings would be
unobservable. As we shall see, the most interesting range
occurs for 1 < BX50.

After inflation, the distribution of loops with R > ¢t
is still given by (13), since these loops continue to be
stretched by the expansion. Loops with a size smaller
than the cosmological horizon, R < t, are not stretched
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and are simply diluted by the expansion:

where a is the cosmological scale factor.

The distribution of loops (15) is similar to the distri-
bution of loops that would chop off a network of strings
that has been produced at a phase transition [27]. In
that case, assuming that @ loops of length L = &t
are created at time t per horizon volume and expan-
sion time, the resulting distribution would be dN/dV =
&%B[a(L)/a(t)]3dL/L*. To make a correspondence with
(15) we should take L =~ 2R, & =~ 2w, and B = v. De-
spite the similarities between both scenarios, there are
also important differences. In the phase transition sce-
nario, loops are chopped off infinite strings at relativistic
speeds, and at any time t there are no loops of length
greater than &t. Numerical simulations suggest a very

small value of 51073 [13,14]. On the other hand, in
our case there are no infinite strings, loops have zero ve-
locities, and their size distribution (15) extends all the
way to R ~ t.

Let us now consider various observational constraints
that one can place on the parameters of the model.

(a) Constraint from primordial black hole abundance.
For loops that enter the horizon during the radiation-
dominated era, we have

A u( L >3/29§. (16)

(15)

av ~ " \tR R
Multiplying by the mass of the loops, M = 27uR, we
obtain the mass density distribution

27Gu 3/2
dp(M)-u(tGM> dM. 17

Dividing by the critical density p, = 3/32wGt? we have,

at the present time,
dp(M) _ 64m2v/2r (G2 [ Lea Y2 dMm
GM M’

Pec 3
(18)

where teq & 4 x 1010 sec is the time of equal matter and
radiation densities.

As we described in Sec. II, some of the loops in the
network will form black holes with probability given by
Eq. (11). To obtain the spectrum of primordial black
holes that are produced through this mechanism we mul-
tipy (18) by Pgu. The fraction of the density parameter
Q in black holes of mass ~ M is then given by

64m2/21 te 1/2
AT V2T (Gpye/2y (m) .9

The strongest observational constraint on the abun-
dance of primordial black holes comes from the emission
of v rays by holes that are evaporating at the present
time [15] (see also [16]). These black holes have a mass
M =5 x 10 g, and the constraint is given by

dQs(M) =

QBH (M) ~ PBH

Qe (5 x 10 g)<1078. (20)
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From (19) we have
Pou(Gp)¥?vi1072, (21)

We can rewrite this inequality as
3
~logyo Pau(L.) — 3 logio(aGu) + (logio €) BRN,

(22)

where N = 28 + log;o(Aa~3%/2). Note that the left-
hand side only depends on B and the combination aGu.
Therefore, for given N, Eq. (22) will exclude a certain re-
gion in the plane (B,aGu). Since the parameters o and
A are expected to be of order 1, their contribution to N
will be small. Note also that even if the observational
constraint (20) was improved by 1 order of magnitude,
this would only increase N by one. At any rate, we ex-
pect N = 28 plus or minus a few units.

In Fig. 2, the boundary of the excluded region in pa-
rameter space is depicted for N = 27, 28, and 30. It
is seen that the result is not very sensitive to the value
of N and, quite generically, the bound will be satisfied
provided that

aGuI1074, (23)

independently of B. This can be easily understood since,
for such values of aGpu, the parameter L, will be very
large and, correspondingly, the probability of black hole
formation will be exponentially small (see Fig. 1).

Also, from Fig. 2 we see that for large values of B, say

BR50, the constraint on Gu is practically removed due
to the exponential suppression in the number of nucle-
ated loops. Of course this limit is not very interesting
cosmologically.

The bound (23) does not apply for global strings, which
form as a result of global symmetry breaking. Fort and

5
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aGu(107%)
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FIG. 2. We represent the boundary of the region excluded
by the constraint (22) in parameter space (aGu vs B) for
N = 27 (dashed line), N = 28 (solid line), and N = 30
(dotted line). The result is not very sensitive to the value of
N and, quite generically, the bound is satisfied provided that
aGpS1074,
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Vachaspati [17] have shown that even an exactly circu-
lar loop of global string will not form a black hole un-
less G,uZJIO"Z. The reason is that, unlike gauge strings,
global strings emit all of their energy in the form of Gold-
stone bosons before they reach the Schwarzschild radius.
In the following discussion [constraints (b)] we shall see
that the gauge string constraint (23) is also in no danger
of being violated.

(b) Constraints on the scale of inflation. The back-
ground of gravitational waves that would be produced
during inflation [18] can be used to constrain the scale of
inflation to be less than [19]

H<4x10 %mp.

(In certain models of inflation this bound can be tight-
ened by a factor of about 2 [20], due to the contribution of
scalar modes to the distortions of the cosmic microwave
background.)

From this we have B > 47 x 10°Gy, and if we require
B < 50 we must have

Gus108  (gauge strings) (24)

and thus the black hole constraint (23) is always satisfied.

Global strings produced during inflation can be slightly
heavier than that if their thickness is close to H~!. In
this case (2] B ~ (872/3)An*H 4, where X is a coupling
constant not much smaller than 1 and 7 is the vacuum
expectation value of the field in the broken phase. For

BX50 we have Gn?<10~°. The actual energy per unit
length of the string is given by u = 2712 In(R/6), where
R is the radius of the loop and § = A~1/2p~1 is the
thickness of the string core. Since the logarithmic factor
can be as large as 10, we can have Gy as large as

Gus107%  (global string) (25)

and in this case also the black hole constraint (23) is
satisfied.

(¢) Constraint from gravitational radiation. The mil-
lisecond pulsar observations place a constraint on the
density parameter in gravitational radiation of a period
~ 1y [21]:

Qy, <4x1077h72 | (26)
From strings, we have [22] (see also [23])

128 ap\?
o~ 500 ()

where Q. ~ 4x 1075h~2 is the present density parameter
in radiation and -y, ~ 100. With this, the bound (26)
reads

v(Gu)'/?32 x 1073,

This is always satisfied provided that the bounds (24)
and (25) from the previous subsection are satisfied.

(d) Structure formation. A question of cosmological in-
terest is whether the constraints derived so far are com-
patible with a scenario in which the nucleated strings
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would seed the formation of large-scale structure in the
Universe. Let us make a rough estimate of the values of
the parameters needed for such a purpose.

Assuming, for simplicity, cold dark matter, the mass
accreted by a loop of radius R < teq at the present time
is

M =2n1pRzeq (R < teq). 27)

Here zeq =~ 2 x 107%h? is the redshift at time toq, with
h the Hubble constant in units of 100 kmsec™! Mpc™!.
This is because perturbations start growing at time teq
and they grow proportionally to the scale factor. From
(16) the number density of loops of radius ~ R is
ng ~ v(teqR) 3?22, Using (27), the mean separation
between objects of mass M is given by

_ _ Mteqz 1/2
dng ~o mglfd ~ v/ (#) . (28)

Rich clusters of mass My ~ 10'%h~1 My are separated
by distances of order d.; ~ 50h~! Mpc. Therefore, from
(28), we obtain the normalization

PBRGu~5x 10781 (¥31072). (29)

This normalization is valid for GuR10~®h (hence

Vr<le_2). For smaller values of G the loops that ac-
crete masses of order M have R > teq, and (27) does
not apply.

For GuleO‘Gh, loops start accreting matter when they
enter the horizon, and we have

£\ 2/3
M =2muvR <i?-) (R > teq)-

Using ng = v/(Rt2) we obtain
dy ~ n}—%zﬁ) ~ v YB3M(2mp) L.
Again, normalizing for rich clusters, we find
V3G~ 2x1077  (1R1072). (30)

As shown in the discussion of constraints (b), gauge
strings can nucleate in substantial numbers only if

GufalO‘S, and therefore they will not be useful as seeds
for structure formation. For global strings the situation is
somewhat better since then Gy can be as large as ~ 1076,
so a scenario in which nucleated strings may seed some
of the observed structure in our Universe does not seem
to be ruled out.

We should now mention the effects of compensation
[24] which has been ignored in the above discussion.
When a loop nucleates, its energy is balanced by a corre-
sponding deficit in the local densities of matter and radia-
tion. This compensation reduces the gravitational effect
of the loop on surrounding matter and on background
photons on scales greater than R. When a compensated
loop radiates away its energy, it leaves behind an under-
dense region. As the density contrast grows, this region
will evolve into a void with a dense central object seeded

by the loop. The compensation is somewhat reduced by
radiation and neutrinos streaming into the underdense
regions and can be further reduced by loop fragmenta-
tion. The effect of compensation on structure formation
has not been fully investigated, but it seems reasonable
to assume that this effect will not be dramatic on scales
crossing the horizon before teq. Then the relations (29)
and (30) should still be valid by order of magnitude.

IV. DOMAIN WALLS AND MONOPOLES

Just as in the case of strings, spherical domain walls
can spontaneously nucleate at a constant rate per unit
volume during inflation. As a result, the Universe will
get filled with a scale-invariant distribution of walls given
by (13) and (14), where now B = 2720 H 2 is the action
of the instanton describing the nucleation of the wall.

The observational constraints on domain wall nucle-
ation are very different from the ones that one can impose
on strings, since the mass of a spherical wall

M = 4noR? (31)

grows quadratically rather than linearly with the radius.
An inmediate consequence is that walls of size

R. > (87Go)™! (32)

will all collapse to form black holes [1], since for them
Rs > R..

To estimate the microwave background anisotropy in-
duced by domain wall bubbles, one has to take proper
account of the compensation effect discussed at the end
of the previous section. This is a somewhat complicated
issue and we shall not attempt to address it in detail
here. However, one can make a rough estimate of what
this effect should be by using the following arguments.

In a pure dust Universe the compensation would be
complete, and background photons would be unper-
turbed on scales greater than the comoving scale of Rg at
horizon crossing. Therefore, on larger scales, the whole
effect should be due to the underdensity in radiation that
is needed to compensate for the mass of the black hole.
This underdensity causes radiation from neighboring re-
gions to move in, partially destroying compensation. As
this happens, the initial underdensity propagates away
from the black hole as a sound wave at the speed of light.
At time teq the mass of the underdensity, M,, is compa-
rable to the mass of the black hole, Mpy. At later times,
we have M, ~ Mppz/%eq, due to cosmological redshift.
The gravitational potential of M, extends up to scales
of order ¢, and we have ¢ ~ GM,t~!. This will cause
temperature distortions of order

6T GMBH 25/2
T ~Y ¢ PN err——

b
to Zeq

on scales of the order of the cosmological horizon at red-
shift z.

The angle o subtended by the horizon at redshift z is
given by tan a ~ (21/2 —1)~1, so at small angles 6T /T
o~5. In particular, for o =~ 10°, we have
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§T  Mpu
T M,
whereas for a ~ 90° we have a much lower effect §7°/7" ~
Mgu/(Myzeq). Here M, = G~'tq is approximately the
mass of our observable Universe.
Let us denote by Rmax the radius of the largest wall
that may have existed in our observable universe (up to
distances do = 3tp). How massive can this wall be? From

(33), and using 6T/T<10-5, we have

(o = 10°), (33)

Mmax~1075M, ~ 1052 g. (34)

From (31) and (34) we can see that Ruyax must be less
than teq even if o is as low as the electroweak scale. Using

2
%]Y; ~ s 12/3/2 <t_:ﬂ> dR,
R5/2t.4 0

the number of walls with size larger than R within a
volume 47/3(3tq)? is

2,
€

Nsp = 24nv Rqs/2 .

Therefore, the larger wall that we can expect to
find in the observable Universe has radius Rmax =~
[247utL?t:]?/3, and Eq. (34) yields the bound

43 21070, (35)
mp

Let us now turn to monopole pair production during
inflation. Unlike walls and strings, monopoles are not
stretched to enormous sizes by the inflationary expan-
sion. They are just diluted. An inmediate consequence
is that the only monopoles that will be relevant at the
end of inflation are the ones that have been produced
during the last expansion time. This density is given by

[1]
n = H3A6—27rm/H’ (36)

where m is the mass of the monopole (here, as in the
previous sections, the exponent 2rmH ! is the action of
the relevant instanton).

A constraint on the abundance of nucleated monopoles
comes from the fact that they should not recreate the
monopole problem that inflation was aimed to solve. Of
course this can be easily achieved by choosing the ratio
m/H to be sufficiently large, but as we shall see, one does
not necessarily have to impose that.

Actually, the number density of monopoles at the time
of reheating depends very much on the details of how
inflation ended. Consider, as an example, a model in
which the usual exponential expansion is followed by a
short period of power law expansion a  t? that starts at
time t; and ends at time t3 (p may be larger than 1, in
which case we have power law inflation, but it need not
be). At time t; reheating is completed and we enter the
usual radiation-dominated era.

It is clear that, if no monopoles are created during the
power law epoch, we will have, at time ¢,

n(t2) = n(t1) f*7, (37)
where n(t) is given by (36) and

2! 1/2 2
={—=)=1. —_—
f (t ) 6N/

2 mp

Here N is the effective number of massless degrees of
freedom at reheating and we have used ¢; = pH~! and
ta = 2pmp(10N)~V/2T 72, with mp the Planck mass and
T, the reheating temperature. Even if we assume that
monopoles continue to be produced at a rate per unit
volume given by

_2rm
AHre™ T,

where H = a/a is the instantaneous expansion rate, it
is not difficult to show (for 2rmH~! > 3p — 4) that
the density of monopoles during the power law era is
dominated by the ones that were already present at t;.
Therefore Eq. (37) is still valid in this case.

After reheating, the monopoles continue to be diluted
as a~3 whereas the density in radiation decays as a=4.
Therefore the contribution of the monopoles to the den-
sity parameter at the time teq ~ 1010 sec given by

O = mn(ts) (te;q> 1/2
™ pe(ta) \ ta
H ]3/2 2rm MM

~ 1029]03[]7-%] [m—P AG_T——P. (38)

The Parker bound [25] requires Q,,~10=%(m/mp) (as-
suming Dirac charges for the monopoles), so we must
impose

H1%? 1, _2gm

[—} f3lP—2l g~ *H* S107%. (39)
mp

As mentioned above, this bound can be trivially satis-
fied by supressing the creation of monopoles with a suf-
ficiently large m/H ratio. Alternatively, if p > 1/2, then
Q, will decrease with the reheating temperature through
the supression factor f. For instance, taking p = 3.5 and
f ~ 107 the bound is automatically satisfied without
any assumptions on m/H.

V. CONCLUSIONS

In this paper we calculated the probability of black
hole formation by a string loop spontaneously nucleated
during inflation. The calculation was based on the quan-
tum theory of perturbations on strings in de Sitter space
developed in Ref. [8]. The result is given in Eq. (11) and
in Fig. 1. We then used probability (11) to derive obser-
vational constraints on the mass parameter of the string
and on the loop density parameter v. The strongest con-
straint comes from the emission of 7 rays by evaporating
black holes. The excluded region in the parameter space
is shown in Fig. 2. Roughly, the values of the parameters

for which both GuR10~% and p~4H? are excluded.
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This bound does not apply to global strings which,

for Gu~1072, radiate their energy into Goldstone bosons
before they reach the Schwarzschild radius [17]. In the
interesting case when the string thickness is comparable
to H™1, the expression for the Euclidean action is also
modified and the excluded parameter space for global
strings is GuR10~2 with n ~ H, where 7 is the vacuum
expectation value (VEV) of the field in the broken phase.

The allowed rate of expansion during inflation, H,
is limited [18, 19] by the observational bounds on the
intensity of long-wavelength gravitational waves, H <
4 x 1075mp. This bound implies that loops of string

can nucleate in substantial numbers only if Gu510“8,

for gauge strings, or Gu~10~8 for global strings. In both
cases, this bound is much stronger than the correspond-
ing black hole constraint, and thus black holes can only
form with a density well below the present observational

constraints. Gauge strings with Gu~10~8 are too light
to serve as seeds for structure formation, while global
strings may still play this role if Gu is near its upper
bound, Gu ~ 1078.

‘We have also briefly discussed the cosmological impli-
cations of nucleated domain wall bubbles and monopole-
antimonopole pairs. For sufficiently large bubbles, the
formation of black holes is inevitable. Although these
black holes can have enormous masses, their effect on
structure formation and on the background radiation
anisotropy is diminished due to the compensation effect
[24]). The predicted density of the monopoles is given by
Eq. (38). This density is not in conflict with the Parker
bound on the cosmological abundance of monopoles pro-
vided that the parameters lie in the range determined by
Eq. (39).
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APPENDIX A

In this appendix we study linear perturbations to a cir-
cular loop of string in flat space. Before going to the par-
ticular case of a circular loop, we shall consider pertur-
bations to an arbitrary string configuration whose world
sheet is given by z#(£%) (£ are arbitrary coordinates on
the world sheet). This will be a trivial extension of the
general results given in Refs. [7, 8] for the case of domain
walls.

Following Ref. [7], we parametrize the perturbed world
sheet Z# as

2
() = z4(€) + ) _ neh,

A=1

(A1)
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where n# are the two vectors normal to the unperturbed
world sheet. They satisfy

nA“nE = §4B,

nA4d,z,, = 0, (A2)
The perturbation fields ¢4 have the meaning of normal
displacements to the world sheet, as measured by an ob-
server that is moving with the unperturbed string.
The dynamics of the string is governed by the Nambu

action

Slt(€)] = - [ V=g &%, (43)
where g is the determinant of the metric induced on the
world sheet gop = 0,2#0yx,. The equations of motion
that result from (A3) are well known:

OzH(€%) =0, (A4)
where O stands for the covariant d’Alembertian on the
world sheet. Multiplying (A4) by nf} and integrating by
parts one obtains

9Ky =0, (A5)
where K j:;, = —&mﬁabx“ is the extrinsic curvature cor-
responding to the normal n4.

The effective action for the perturbation fields ¢4 on

a given background z#(§) can be obtained by introduc-
ing (Al) into the action (A3) and then expanding to
quadratic order in ¢%. After some lengthy algebra, the
result can be written as

S[E#] = S[a*] + S,.

The first term is just the action for the unperturbed so-
lution, while the second is given by

1 1
Sy =~ / V=g [§¢:‘;¢A,“ —5 KK ¢h6P + S] d%,
(A6)
with

1
S = §¢A¢Bnc“n0”8anﬁ3“nf + qbflqﬁBnA“nf,“.

In deriving this effective action we have used the equa-
tions of motion (A5) to eliminate the terms linear in ¢4.
From (A6) we see that, in general, the two fields ¢* are
coupled to each other in a complicated way.

Particularizing to the case of a circular loop, matters
will simplify considerably. The unperturbed world sheet
in Cartesian coordinates (¢, z,y, z) is given by

o = (t,Rccosecos ﬁt_c’Rc sin 6 cos Ric,()) . (A7)

Here R. is just the radius of the loop at ¢ = 0 (when
the loop is at rest). The two vectors normal to the world
sheet, can be chosen as
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n(d) =

(sin —t—, cos 8,sin 8, 0) ,

3
Cos 7= R,

(A8)
n(® = (0,0,0,1).

The first one is a radial normal vector, while the second
one is transverse to the plane of the loop. It is easy to

see that in this case K g) = 0 and S = 0, so the fields
#M® and ¢? decouple from each other. They simply
behave like free scalar fields in the curved geometry of
the unperturbed world sheet.

In particular, the transverse perturbation behaves like
a massless minimally coupled field. The corresponding
equation of motion

06 = —=0.(V=ag"08V) = 0 (A9)

can be solved trivially. The metric on the world sheet is
given by

ds}y = gapd€®dt® = cos®(t/R.)[—dt* + R2d?].

Introducing this metric in (A9) we obtain a flat space
wave equation
5@ _ L g _

where a prime denotes derivative with respect to §. Equa-
tion (A10) is not surprising, since in 1+1 dimensions the
conformal coupling is the same as the minimal coupling
(see, e.g., [26]). The mode solutions of (A10) are just
standing waves that oscillate with constant amplitude.
Note that ¢(® coincides with A, of Sec. II, so we have
the following result: transverse perturbations to a cir-
cular loop oscillate with constant amplitude as the loop
collapses.

The equation of motion for the radial perturbations
#1) can be found from (A6) (with K éi) =8 =0). We
have

0p™ + KWK Mabg® — o, (A11)

The extrinsic curvature can be obtained from (A7) and
(A8):

1

1 A
K = K = K =0

The proper perturbation ¢(!), as measured by a lo-
cal observer that is moving with the string, is related to
the radial perturbation A, defined in Sec. II through a
Lorentz contraction factor

A, =M1 - R2,

Writing (A11) in terms of A, and decomposing in Fourier
modes [as in (4)] we have, after some algebra,

. (L2—

. 2 t 1)
AT,L + E-tan (E) AT,L + _—122-—Ar’[’ =0.

The general solution to this equation can be written as

ArL(0 / R2 | Lt R Lt
AL(t)z—-i‘L—(—-)-[ l—R—zsmE—i—LEcosE:l

A R, R? Lt
+AL(0)I—-——L2-|: 1—-_R_(2;COS_12—C'

R Lt

LRc sin —R—CJ , (A12)
where A (0) and Az (0) are the values of the perturba-
tion and its derivative at ¢ = 0 (we have dropped the
subindex r), and R = R.cos(t/R.) is the radius of the
unperturbed loop.

In the cosmological problem that we are interested in,
t = 0 corresponds to the moment when the loop enters
the horizon and starts collapsing. The probability distri-
bution for the initial conditions A (0) will be given by
(5) and (7). We also need the initial conditions Af (0).
When the wavelength of a perturbation is within the
horizon we expect (A%2) = (L/R.;)?(A%), where the an-
gular brackets indicate the average over one oscillation
period. Therefore, by the time the loop enters the hori-
zon, the perturbations will have developed velocities of
order A(t = 0) ~ (L/R.)AL(t = 0). Using this in (A12)
we have

Ar (R < Rc) ~ éi'(iR—C)

That is to say, the radial perturbations shrink by a factor
of L as the loop collapses.

APPENDIX B

Damping mechanisms, such as gravitational radiation
and friction, may decrease the amplitude of the pertur-
bations on a circular loop of string and therefore increase
the probability of black hole formation. In this appendix
we briefly discuss the limits in which the effects of grav-
itational radiation and friction can be ignored.

Gravitational radiation can only smooth out pertur-
bations on wavelengths smaller than Ay = v,Gut, where
vg ~ 100 (see, e.g., [27]). Takingt ~ R., this corresponds
to wave numbers larger than L, = 2m(v,Gu)~t. It is
clear, from the physical interpretation of L. discussed in
Sec. II, that gravitational damping can be neglected in
the calculation of Py providing that Ly > L.. This
inequality gives

Gu < (2my;1)¥3(167%a?B)/3 ~ (177,1)%/3(a?B) /3.
(B1)

Typically, the right-hand side of (B1) will be of order
102 or larger, so this is not a very strong condition.
Similarly we can consider the effects of friction. The
dominant contribution to friction comes from Aharonov-
Bohm scattering of ambient particles off the string in
the radiation dominated era (see Ref. [28]). Assuming a
situation in which the wavelength of the perturbations is
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conformally stretched by the expansion of the Universe
(as it is in the present case), it is shown in Ref. [29] that
friction can only be important for wavelengths smaller
than A\; = v;(GuT)~!. Here T is the temperature and ¢
is a numerical coefficient of order 1. The physical reason
is that for A > Ay, the friction term in the equations of
motion will “switch off” before the perturbations cross
the cosmological horizon and start to oscillate.
The wave number corresponding to Ay is

Ly = 2mv;'RTGu = v; '\GMT.,

where T, is the temperature of the Universe at the time
t. when the loop crosses the horizon, M is the mass of the
loop at t. (which is also the mass of the resulting black
hole), and we have used that the product RT is indepen-
dent of time before the loop crosses the horizon. Using
T, ~ (10GN)~Y/4t;? and t, ~ R, = M(2np)~! (where
N ~ 10? is the effective number of massless degrees of
freedom) we have
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M\ 2
L= (10./\/)_1/4'7;1(271'67,11)1/2 (7_n;> .

Similar to the case of gravitational radiation, friction can
be neglected in the calculation of Pgy providing that
L¢ > L,. This condition is equivalent to

4\ 5/18
GuZ (NWf) (a2B)~%/° (25)5/9, (B2)

230 M

Therefore, the range of values of Gu for which friction
can be ignored depends on the mass of the black hole
that one wishes to consider.

Putting (B1) and (B2) together and taking v; ~ 1,
Yg ~ 102, we conclude that damping is unimportant for
values of Gy in the range

5/9
(a?B)~2/? (%) SGup < 5 x 1072(a?B)1/3,
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