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The issue of de Sitter invariance for a massless minimally coupled scalar field is reexamined. For-
mally, it is possible to construct a de Sitter—invariant state for this case provided that the zero mode
of the field is quantized properly. Here we take the point of view that this state is physically accept-
able, in the sense that physical observables can be computed and have a reasonable interpretation. In
particular, we use this vacuum to derive a new result: that the squared difference between the field at
two points along a geodesic observer’s spacetime path grows linearly with the observer’s proper time
for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism
to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-
invariant states introduced by Allen and Follaci, and in the de Sitter—invariant vacuum. We find
that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitter—invariant

case.
PACS number(s): 98.80.Hw, 03.70.+k

I. INTRODUCTION

Quantum field theory in curved spacetimes has been
extensively studied during the past two decades or so
(see, e.g., Ref. [1] for a review) with the purpose of un-
derstanding quantum effects in the presence of strong
gravitational fields. In particular, a lot of attention has
been devoted to de Sitter space, mainly because it has a
high degree of symmetry and the wave equation can be
exactly solved in this background. A four-dimensional de
Sitter space can be conveniently defined as a hyperboloid
embedded in a five-dimensional Minkowski space:

4 (z)éu(z) = H™2, 1)

where &#(z) denotes the position vector of the point z in
the embedding space (4 = 0, ...,4). The manifest invari-
ance of Eq. (1) under five-dimensional Lorentz transfor-
mations implies that de Sitter space has a ten-parameter
group of isometries, the de Sitter group O(4,1).

Scalar fields of mass m with an arbitrary coupling & to
the Ricci curvature scalar [see Eq. (4) below] can be eas-
ily quantized in de Sitter space, and quantum states that
respect the O(4,1) invariance of the background can be
constructed for these fields [2]. Physical quantities such
as the two-point function and the renormalized expec-
tation value of the energy-momentum tensor in the de
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Sitter—invariant states were computed exactly in early
work [3].

Later, interest in this subject was motivated by the
inflationary cosmology scenario [4] (since the geometry
of spacetime during inflation is that of de Sitter space).
In this context, it was realized that the mean-squared
fluctuations of a massless minimally coupled field (i.e.,
m = £ = 0) grow linearly with time during inflation [5]:

H3
2 [~ ——
(#%) ~ st (2)

Note that this expression is not de Sitter invariant, es-
sentially because the quantum state that was used in its
derivation breaks the O(4,1) invariance explicitly.

The massless minimally coupled case is peculiar in that
the de Sitter—invariant two-point function becomes in-
frared divergent in the limit m — 0, & — 0. This
led some authors [6-8] to the definition of various other
“vacua” with less symmetry than the full de Sitter group,
but with a two-point function which is free from infrared
divergences. In particular, here we will consider the two-
parameter family of O(4)-invariant Fock “vacua” intro-
duced by Allen and Folacci [7]. Note that the £€° =const
spatial sections of (1) are three-spheres. The O(4) vacua
are not invariant under all de Sitter transformations, but
only under spatial rotations of these three-spheres.

In this paper we would like to reconsider the possibility
of constructing a de Sitter—invariant state for the mass-
less minimally coupled field. (This state is not a Fock
vacuum state.) That such state can be formally con-
structed was already implicit in Refs. [9, 10], where the
quantization was studied in the functional Schrédinger
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picture. Our emphasis here will be in the physical inter-
pretation. For m = £ = 0 the action [Eq. (4) below] has
a zero mode: It is invariant under constant shifts of the
field

¢ — ¢ + const.

The two-point function is ill defined because all values of
the spatially constant part of the field are equally proba-
ble in the de Sitter—invariant state (which is analogous to
an eigenstate of momentum in the quantum mechanics of
a free particle). However, such ambiguity does not pre-
vent us from computing the expectation value of phys-
ical observables. To illustrate this point here we shall
use this vacuum to derive a more powerful result than
the one given in Eq. (2), namely, that one may have a
de Sitter—invariant state |0), and in this state, any freely
falling observer who picks a base point z in spacetime
will see (0|[¢(x) — #(y)]?|0) increasing with proper time
along their path. We shall also compute the renormalized
expectation value of the energy-momentum tensor, both
in the one-parameter family of O(4)-invariant states and
in the de Sitter—invariant vacuum. As we shall see, the
vacuum energy density in the de Sitter—invariant case is
lower than in the O(4)-symmetric case.

The rest of the paper is organized as follows. In Sec.
II we briefly review the quantization of a scalar field in
de Sitter space, with the purpose of fixing the notation.
In Sec. III we compute the energy-momentum tensor in
the two-parameter family of O(4)-invariant vacua. Sec-
tion IV discusses the de Sitter-invariant vacuum for the
massless minimally coupled field. In Sec. V we use this
vacuum for the calculation of some observables. Finally,
a discussion of the results is given in Sec. VI. The quan-
tization of the scalar field in the functional Schrédinger
picture is summarized in the Appendix.

II. SCALAR FIELD IN de SITTER SPACE

In this section we summarize the quantum theory of
a scalar field of mass m and arbitrary coupling to the
scalar curvature in de Sitter space, which was developed
in Refs. [2,11,3,6,9].

The line element in de Sitter space reads

ds? = gapda®da® = H™?sin~ 2 [—dn? + dQ?, 3)

where we are using the closed coordinate system z% =
(n,9Q), (@ = 0,...,3) that covers the whole hyperboloid
(1). Here 1 € (0, ) is the so-called conformal time, €2 is
a set of angles on the three-sphere, and d2? denotes the
line element on the unit three-sphere.

The action for the scalar field is given by

S = 2} / V=90a80%¢ + (m? + ER)¢%d*z,  (4)

where g is the determinant of the metric, R = 12H? is
the Ricci scalar, and £ is an arbitrary coupling. It is
convenient to expand the field as

¢ = xem(m)Yrm(Q), (5)

LM

where Yrps are the usual spherical harmonics on the
three-sphere, normalized as

/ Yirt (Y2 ar ()R = 810 6rsr- (6)

They are eigenfunctions of the Laplacian on the three-
sphere:

A®Yyy = —JYLu, (7

with J = L(L +2), L = 0,...,00. The index M, M =
0,..., (L +1)?, labels the degeneracy for given L.
Introducing (5) in (4) one finds

S= % > /(Hsin m 2 (xem)? —wimxipldn,  (8)
M

where

m? +¢R
(H sinn)?’

and the overdot indicates the derivative with respect to 7.
In going from (4) to (8) the term 8;Y7r0; YL has been
integrated by parts and the relations (6) and (7) have
been used. Equation (8) can be seen as the action for
a collection of harmonic oscillators with time-dependent

wim)=J+

frequencies. The classical equations of motion for the
modes xrnm(n) read
XLy — 2cot nxoam +wi(n)xom = 0. (9)

To quantize the theory, the field variables xry and
their canonically conjugate momenta

oL
OxLm

LM = = (Hsinn) XM (10)

are promoted to operators satisfying the canonical com-
mutation relations

IXLM, Fromr) = 6L 6mnr. (11)

In the Heisenberg picture, these are time-dependent op-
erators, and it is customary to expand them in terms of
(time-independent) creation and annihilation operators
arpy and aE M:

v = Ursmary + Ubpral o,
(12)

Foym = (Hsinn) "2 [Ursmary + Ufpral o).

Here Uy (n) are solutions of the field equation (9) (with
xrym < Ura) normalized according to the Wronskian
condition

UramUiar — Uiy UL = i(H sinn)?. (13)
The commutation relations (11) follow from (13) and the
usual commutation relations for the creation and annihi-
lation operators:

larr,al np] = 6LL 6nraar,

laLn,ar ] = [alapala0] = 0.
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A “vacuum” state |0) can be defined by

a,LM|O) = 0, VL, M, (14)

and the complete Hilbert space of states can be gener-
ated by repeated operation on |0) of the creation opera-
tors a} ,,. As is usual in curved space (see, e.g., [1]), the
definition of this vacuum is somewhat arbitrary, since it
depends on what particular choice we make for the set of
modes {Urr}. However, de Sitter space is a maximally
symmetric space, invariant under a ten-parameter group
of isometries [the de Sitter group O(4,1)], and it is nat-
ural to choose a vacuum state which also has the same
symmetry. Actually, there exists a one-parameter fam-
ily of de Sitter—invariant quantum states. Among them,
we shall concentrate on the so-called Euclidean vacuum
as the only one whose two-point function has Hadamard
form and so the ultraviolet behavior is the same as for
field theory in flat spacetime. The mode functions corre-
sponding to the Euclidean vacuum are given by [2]

. 21
Usss = Axsinm)¥ | P2(- cosm) - Z@2(~cosn)|,

(15)
where P and Q) are Legendre functions on the cut, and
9  m?+¢R]Y? 1
The normalization constants are given by
VT o oess [T — A +3/2)1Y2
= VYT Het w/2 (2T AT I/4)
AL = B T T T3)2) (17)

The de Sitter invariance of this state is manifest in the
symmetric two-point function

GO(z,3) = (0¢()p(z’) + (a")$(x)[0)
= > Uer UL rr (1) Yia () Vi ()
LM

UL (0 Uiag ()Y ()Y (), (18)
which can be evaluated to yield [2]
2H? 3 3
1) =2 (22— Z
G (2Z) (4W)2F<2 A)F<2+)\>
3 3 1+2

Here F is the hypergeometric function, and Z is given by

(7]

—_ /
Z(z,z') = H2%H(2)€,(z') = COS7y — COS 7 COS TN

sinnsinn/

- (20)

where v is the angle between © and Q'. Note that
the two-point function depends only on Z, which is a
Lorentz-invariant quantity in the embedding space, and
therefore G is de Sitter invariant.

The quantity Z(z,z’) can also be expressed as [7]

Ro
Z -cosw—g-,

(21)

where o(z,z’) is defined as one-half of the square of the
geodesic distance between r and z’. If x and z’ are time-
like separated, then ¢ < 0 and Z > 1. On the other hand,
if they are spacelike separated, then Z < 1. (However,
a geodesic joining the two points exists only if —1 < Z;
hence, o is undefined for Z < —1.)

ITII. MASSLESS MINIMALLY COUPLED CASE:
O(4)-INVARIANT VACUUM

It should be noted that the two-point function (19) is
ill-defined in the massless minimally coupled case (m =
& = 0), since one of the v functions has a pole at A =
3/2. This divergence has led some authors [6-8] to the
definition of other vacua with less symmetry than the
full de Sitter group, but with a well-defined two-point
function.

In the closed coordinate system that we are using, one
such natural vacuum is the O(4)-invariant vacuum [7],
which is symmetric under rotations of the n =const spa-
tial sections (which are three-spheres). The set of modes
that defines the O(4)-invariant quantum state is given
by (15) for L > 0, but in order to avoid the infrared
divergence, the L = 0 mode solution is chosen as [7]

U0=H[A(n—%sin2n~g)+3}, (22)
with
A=—ia, «ac€(0,00),

1/1 .
B'—‘—a(z-’-’bﬂ), ﬁe(—O0,00).

The two complex parameters A and B have been reduced
to two real parameters o and [ because an overall phase
is irrelevant and because (13) must be satisfied. In ad-
dition, requiring time-reversal invariance fixes 8 = 0 [7],
which leaves us with just one parameter . In what fol-
lows we take 8 = 0.

The two-point function in this state is

G (@,2) = G(2,2') + 5.5 [Uo(m)U3 (n') + Voo \Us ()},
(23)

where G is defined as a sum over modes similar to (18)
but without the L = 0 term. This sum is given (up to
some irrelevant constant) in closed form by [7]

A 1
G(z,z') = ?4—8R;r_2[ T—%~ In(1 — Z) — In(4sinnsinn’)

—sin? n — sin? n'] , (24)
with Z defined in (20).

We will be interested in constructing the energy-
momentum tensor using the Hadamard formalism [12,
13]. For this we need to study the two-point function in
the coincidence limit; that is, we have to bring G!) into
the Hadamard form [14, 15]
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1 Al/z !
GV(z,2') = — [ _t(:i”_)

s + V(z,z')lno

+W(z, a:’)] , (25)

where o(z, z’) was defined in Eq. (21) and A(z,z’) is the
Van Vleck—Morette determinant. In de Sitter space it is
given by [14]

3/2 - -3
Ao) = (Rﬁa) I:sin 56—] . (26)

In Eq. (25), V(z,z’) and W(z,z’) are symmetric func-
tions of  and z’, which are smooth in the coincidence
limit.

Using (21) and (26), one can compare expressions (25)
and (23) and (24) to find

R

V(z,2') = TL

(27

R
W(z,z') = F(o) — —1—-2— (In(4sinnsinn’) + sin? n + sin? 7/

+2[Uo(mUs (n') + Ug (mUo(n')]- (28)
Here
Flo) = 112 [1 —closX - (XsiniX)1/2
“In (E%“ — cos X])} , (29)
with
x =1/

One can check that W is well behaved at o = 0 (as ex-
pected from the general theory) by expanding each term
in (29) in powers of . We find that the negative powers
of o cancel out, and we have

R R 1 Ro 2
12 [l (12) 3 1m0 O )} - (0
As usual, the singular part in (25) is purely geometrical,
and all the dependence of G(1) on the quantum state is
contained in the function W (z, z’).

The two-point function is now in a form ready for the
computation of the renormalized expectation value of the

energy-momentum tensor. Using the Hadamard formal-
ism, this is given by [12, 13]

F(o) =

4
m
872 (Tab>ren = Tab[W] Tab[ ]lnﬂz +2v19ab — Egaba

(31)
where

raslf] = lim, Day (2,2') [ (2, 2')].

Here D is the differential operator associated with the

point-split expression of the formal energy-momentum
operator. In the massless minimally coupled case,

Doy = VoV — 3gab gaar VIVY,

where g’ 1s the bivector of parallel transport [16]. In
Eq. (31), p? is a renormalization scale (arbitrary, in prin-
ciple), and v; is the “trace anomaly” scalar, which in de
Sitter space is equal to [13]

29R?

U1 = 3640

From (27) it is clear that, in our case,
Tab[V] = 0,

and the dependence on the renormalization scale disap-
pears. This is fortunate, since in the massles case there
is no natural mass parameter in the problem. Also, the
last term in (31) vanishes for m = 0.

All that we need to evaluate is 7,,[W], with W given
by (28). The term 744[F(c)] can be easily computed by
noting that

lim VoV F(0) = lim [F"(0)0 40y + F'(0)0,01]
T—z’ T—z’
= —F'(0)|s=09ab, (32)

where a prime indicates the derivative with respect to o
and we have used (see, e.g., [12])

lim 0, =0,
z—z’

lim, Oab’ = —Yab-
T—T

The value of F'(c) at o = 0 can be read off from (30),
and using (32) we have

RZ

Tab[F] = g5

=ranJab-
Also, it is clear that

Tab[In(2sin7n) + In(2sin7n’) + sin? 7 + sin? '] = 0,
and one can check that

Tab[Uo(m)Ug (n") + Ug (m)Uo(n')]

= §15R2042(1 — 2647) sin® 9 gas.
Substituting the previous expressions in (31), we have

119R?
13824072 7

2
Tids 2c\z sin® 7 gas(1 — 26an). (33)

Therefore, the energy-momentum tensor is not de Sitter
invariant, but only O(4) invariant, because of the explicit
time dependence. Note also that the term which is not de
Sitter invariant decays with the expansion of the Universe

(alTabla)ren -

+
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as a~%, where a is the scale factor (compare with radi-
ation, which behaves as a™* or with the vacuum energy
itself which behaves as a®) and therefore it is unlikely to
have any cosmological consequences. In the limit n — 0
or n — m, which corresponds to cosmological time going
to 400 or —oo, Eq. (33) reduces to the result (3.6) in
Ref. [7] as corrected in Ref. [17].

IV. de SITTER-INVARIANT VACUUM FOR
THE MASSLESS MINIMALLY COUPLED CASE

Sometimes it is said [6, 8] that the infrared divergence
in G indicates that de Sitter invariance is broken in the
massless minimally coupled case. However, it is still pos-
sible to define a de Sitter—invariant vacuum for this case,
and here we will take the point of view that this state is
physically acceptable in the sense that physical quantities
can be computed and have a reasonable interpretation.
However, as we shall see, the space of states cannot be
simply represented as a Fock space built by applying cre-
ation operators to this vacuum state. The quantization
of ¢ in the case m = £ = 0 is peculiar because the field
contains a zero mode: The action is invariant under the
transformation

¢ — ¢ + const. (34)

It is well known that an expansion in terms of creation
and annihilation operators, such as (12), is not adequate
for the variables associated to the zero modes [18-21].

The situation is analogous to that of a quantum-
mechanical harmonic oscillator: The expansion of the
position and momentum operators z and p in terms of
creation and annihilation operators breaks down in the
limit when the frequency of the oscillator, w, goes to
zero (the free-particle case). In the Heisenberg picture
we have

z(t) = (2Mw)~/2(ae™™* 4 alet™?),
p(t) = —i(Mw/2)/?(ae~ ™t — atetiv?),

where M is the mass of the particle. Of course, these
expressions are not valid in the limit w — 0. The physi-
cal reason is that for a free particle the spectrum of the
Hamiltonian becomes continuous and the number oper-
ator loses its meaning. Instead, we can consider the ex-
pansions

z(t) = Zo + pot,
(35)

p(t) = po,

where the new operators satisfy the commutation rela-
tion [zo,po] = %. At the classical level, zo and po have
the interpretation of the initial position and momentum
(and are therefore constants), and so (35) can be seen as
a Hamilton-Jacobi canonical transformation in which the
new variables are constants of motion. The first equation
in (35) is obviously the general solution of the equations
of motion if we think of o and pp as constants of inte-
gration. In this sense this equation is analogous to (22).

The simplest example of a field theory with zero modes

is the massless scalar field in a flat compact space with
finite volume V and topology of a torus S! x St x S1,
discussed in Ref. [19]. In that case, a complete set of
solutions of the wave equation is given by

fie = 2Vw)2expli(k - x —wt)] (k #0),
(36)
fo = At + B.

Here w = |k| and the momenta k have the usual discrete
spectrum due to finite volume. The Klein-Gordon nor-
malization requires A*B — B*A = i/V. While the modes
fx (k # 0) are the classical solutions for a harmonic oscil-
lator of frequency w, the mode fy is the classical solution
for a free particle. Therefore, although it is formally pos-
sible to define creation and annihilation operators associ-
ated with fo, in a manner analogous to the construction
of the O(4)-invariant vacuum of the previous section, it
is more natural to define position and momentum oper-
ators analogous to pg and zo above. With this the field
expansion reads [19]

Zo + pot
¢_—__—+§ axfic + H.c.).
v k;eo( ©)

It can be checked that the equal-time commutation re-
lation for ¢ and its conjugate momentum are satisfied if
[z0,p0] = ¢ and the usual commutation relations for the
creation and annihilation operators are satisfied.

Note that in the limit of infinite volume the special
treatment of the zero mode becomes irrelevant, as it
makes a contribution of zero measure in the expansion
of the field. An equivalent statement is that the set of
modes with k # 0 becomes complete in the limit of infi-
nite volume. However, for finite volume the zero mode is
important and makes a finite contribution to the energy.
Indeed, it is straightforward to see that

P} t 1
E=.2_+§k:|k| (aka,k+-2—).

One can define the ground state for this system through
the equations po|0) = 0, ax|0) = 0. This ground state is
not normalizable, in the same way that the ground state
of a quantum-mechanical free particle is not (for a de-
tailed discussion on this issue, see Ref. [18], Sec. 9). The
field operator is seen to be equivalent to a collection of
harmonic oscillators plus a free particle [whose position,
in the Heisenberg picture, would be given by the operator
z(t) = zo + pot].- The space of states is equivalent to the
direct product of a Fock space corresponding to the os-
cillators and an ordinary Hilbert space corresponding to
the free particle. Since the energy is an observable, in ad-
dition to the usual Fock space operators, the momentum
po is also an observable.

The above construction can be generalized to arbitrary
curved backgrounds [18]. Of course, in general, there is
the usual caveat that for nonstationary backgrounds the
energy is not conserved and the definition of a ground
state is ambiguous. This is nothing new; it is the same
problem that we encountered in Sec. II when discussing
the massive field: The definition of a “vacuum” in nonsta-
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tionary backgrounds is always a matter of choice. Here,
as in Sec. II, we will be guided by considerations of sym-
metry in making this choice.

In the case of a massless minimally coupled field in
de Sitter space, the zero mode associated with (34) is in
the homogeneous sector (L = 0), and that is the reason
why the coefficient Ag [see Eq. (17)] becomes infinite for
A — 3/2. Instead of defining creation and annihilation
operators for L = 0 we replace the expansions (12) by [7]

Xo = —%[Q+ (n— %sin2n— %)P],
(37)
V2

= —P.
o H
The coefficients of @Q and P in the expansion of xo are
solutions of the field equation (9), and the expression
for my follows from (10). Moreover, the commutation
relation between xo and 7o implies

[Q,P]=1,,

and so, again, (37) can be seen as a Hamilton-Jacobi
transformation in which the new canonical variables are
constants of motion.

We define a vacuum state by

P|0) =0,
(38)

arm|0) =0, L >0,

where ar s were defined in Sec. II.

The ambiguity in the choice of a vacuum corresponds
to the freedom in the choice of the mode functions Up s
for L # 0 [which we take to be the same as for the O(4)
vacuum)|, plus the freedom in choosing the mode solutions
which appear as coefficients of Q@ and P in Eq. (37). In
principle, we could have chosen any two homogeneous
solutions of the wave equation, say, fi1(n) and f2(n),

xo = f1Q + f2 P,

T = (Hsinn)"z(flé + f.zl-’),

subject to the Wronskian condition fof; — fifs =
H?sin?n. With the choice (37) the equation P|0) = 0
implies that the vacuum wave functional ¥ does not de-
pend on xg:

PU = —% (—i%) ¥ =0. (39)

If we are interested in a de Sitter—invariant vacuum, this
turns out to be the right choice.

In the Appendix we review the quantization of the
scalar field in the Schrédinger picture. We show that
in the limit m — 0 and £ — 0, the de Sitter—invariant
wave functional becomes independent of xo, and there-
fore it satisfies P|0) = O [the other equations in (38) are
also satisfied by construction]. Note that the solution of

(39) is not normalizable, and that is the reason why G(!)
is ill-defined in the de Sitter—invariant state. This should
not be taken as an indication that the state is patholog-
ical: It simply means that all values of xo are equally
probable. The same problem would arise in the quan-
tum mechanics of a free particle if we tried to compute
(p|z?|p), where |p) is an eigenstate of momentum.

Apart from considerations about de Sitter invariance
(the group of isometries of the background spacetime),
there is another (aesthetic) reason for choosing a state
with P|0) = 0, based on the symmetry of the Lagrangian
under ¢ — ¢ + const. The corresponding Noether cur-
rent is j, = O,¢. The generator of the symmetry is the
“charge”

Q= [z
n=const

and so the vacuum will be invariant under this symmetry
if it is annihilated by the charge, Q|0) = 0. Introduc-
ing j, = 8,6 in (4) we find Q = 2rH 1P, and so the
condition becomes P|0) = 0. Note that even though the
current is linear in ¢, the charge operator is nonvanishing
and well defined precisely because the space has compact
spatial sections.

As mentioned before, the vacuum state defined in this
way is not simply a Fock-space vacuum (in fact, this
would be in contradiction of the work of Allen [6]) but the
direct product of a Fock space and an ordinary Hilbert
space corresponding to the xo variable. As we shall see,
in order that the energy density Tpo be a physical observ-
able, in addition to the usual Fock-space observables the
operator P is also a physical observable.

A basis for the space of states is the direct product of
the basis for the Fock space times the basis for the Hilbert
space of a particle in one dimension. The structure of the
Fock space corresponding to the modes L > 0 is identical
to the one corresponding to the O(4)-invariant vacuum,
and we shall not discuss it further. The Hilbert space
for one particle in one dimension is isomorphic to the
usual space of square-integrable complex functions of a
real variable, and a convenient basis is formed by the
eigenstates of the momentum operator P with eigenvalue
p:

lp) = €™2|0).
Since they form a continuous basis, these states are not
normalized in the discrete sense, but they have the con-

tinuous normalization (p|p’) = 6(p — p’). In the g repre-
sentation they are the ordinary plane waves

(qlp) = (2m) =127, (40)

where |g) are eigenstates of Q with eigenvalue ¢, normal-
ized as (glq) = 6(g — ¢')-

In this representation @ acts as a multiplicative oper-
ator and P as a derivative operator:

(9IRQIY) = q(ql¥),

(gl Plw) = —i-a‘%(qlw).
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To make a connection with the previous section, one
can see that the L = 0 sector of the O(4)-invariant vac-
uum |e) discussed previously corresponds to the normal-
ized Gaussian wave packet [7]

(glo) = V() = Yoo me’s

(41)
Indeed, the operator ag of the O(4) vacuum can be ex-
pressed [using (37)] as ap = iV2[B*P — A*Q], which
clearly annihilates (41). Also, the “multiparticle” homo-
geneous (L = 0) excitations above |a) are obtained by

repeated operation of a;', on (41), which gives

t\n 1/2
Q, 2a 02,2
Yo = <q (a0) 01> = (m) H,(20q)e™2*' 7,

Vnl
(42)
where H,, are the Hermite polynomials.

Throughout this section we have worked in the Heisen-
berg picture, and therefore the states (42) are time in-
dependent. To obtain the corresponding wave functions
in the Schrédinger picture one can solve the Schrodinger
equation with initial conditions (42). As we show in the
Appendix, this Schrédinger equation is just the one for a
free particle, and so the evolution of (41) is just that of
a minimal wave packet which spreads in time.

V. DISPERSION OF THE FIELD
AND ENERGY-MOMENTUM TENSOR

In order to gain intuition on the structure of the de
Sitter—invariant vacuum defined in (38), let us consider
the “dispersion” of the field, defined by

D?(z,y) = (0l[¢(z) — ()1*|0), (43)

which will give us an idea on how the value of the field
fluctuates over space and time. Since D? contains terms
of the form (0|¢(x)¢(z)|0), we will encounter the usual
ultraviolet divergences associated with the product of op-
erators in the coincidence limit. A convenient way of
getting around such divergences is to smear the field op-
erator over a region of size s (see, e.g., [22, 23]):

—_ 1 N33,/
)= —— z')d°x

¢8( ) VOI(S) d(m,zl)<3/2 ¢( ) I
where d(z,y) is the geodesic distance between = and z’
and Vol(s) is the volume of the smearing region. Here
and for the rest of this section, d3z stands for the three-
dimensional invariant-volume element. The “diameter” s
of the smearing region should be less than 2w H !, since
there are no spacelike geodesics longer than that [see
comments after Eq. (21)], and we shall take s ~ H~1.
Also, in order to smear the field operator it is necessary
to make a particular choice of the spacelike hypersurface
at the point z. In what follows we shall always con-
sider situations in which geodesic observers are involved,
and so the smearing regions can be defined on the space-
like sections orthogonal to these geodesics. For instance,
if x and y are timelike separated, we can consider the

geodesic curve that links z with y, and take spacelike
surfaces at « and y generated by the spacelike geodesics
orthogonal to this curve. Later, we shall also consider
the field measured by two observers moving along two
different geodesics. Each observer can smear the field on
the spacelike surface orthogonal to his or her geodesic.
In any case, in the limit of large separation between z
and y, the leading term in the dispersion will not depend
on the details of how we smear the field.

Now we can consider the dispersion of the smeared
field:

D3(z,y) = (0l[¢s(z) — ¢s(¥)]?/0). (44)

Note that this expression has no infrared divergences ei-
ther, since the operator @ (which causes trouble in the
two-point function because its expectation value is ill-
defined in the de Sitter—invariant vacuum) cancels out
when we consider the difference ¢(z) — ¢(y).

As an intermediate step to compute (44) we “point-
split” and symmetrize expression (43):

D?(x’, .’lJ”; y/’ yn)

Nl

(0{[8(z") — o(¥)] [8(=") — ¢(¥")1}0).

Here z’ and z” are points within the smearing region
surrounding x, separated by a geodesic distance € (e < s)
(similarly for y’ and y”), and the curly brackets denote
the anticommutator. Since P|0) = 0, this expression
reduces to

D? = LG(«',2") + G, y") — G(=',y") - G/, ")),

with G defined in (23) and (24). It is convenient to
rewrite it as

H2
D? = -8;5[g(w',z")+g(y',y")—g(w’,y")—g(y',x")],
(45)
where

“%”ET?%IE_m“”ﬂ%”L

Note that (45) is a fully de Sitter—invariant expression
(as it should be, since we are dealing with a de Sitter—
invariant state). All the terms in (24) that depend explic-
itly on the conformal time 7 cancel out in the expression
for D..

Now we can easily estimate the smeared dispersion
D?(z,y) for the case when the separation between z and
y is much larger than H~! (that is |Z| > 1). This can
be done by smearing the expression (45) term by term.
We note that when the two points =’ and z”” lie within
the same smearing region, the integrals

o,
—_— dBmI/ d3$”g :L‘I,$”
[VOI(S)]2 d(z,z')<s/2 d(z,z')<s/2 ( )

give contributions of order 1, while if one of the points
lies in the neighborhood of xz and the other lies in the
neighborhood of y, we have
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1
oy | Lo 9@ ) ~ o@ ) ~ -~z (),

where we have used |Z| > 1. As a result,

2 H?
Ds (.’L‘,y) ~ Z;r_j'lnlz(x) y)l (lZI > 1)' (46)

If z and y are timelike separated, we can use (21) to write

3

(Ol16+(2) ~ o @10} ~ 1oy (> H),
where 7 is the proper time measured by a geodesic ob-
server traveling from z to y.

Equation (47) embodies a familiar property of massless
minimally coupled fields in de Sitter space, namely, that
the mean-squared fluctuations in the field grow linearly
with time [5, 23] [see Eq. (2)]. Here we have been able to
derive this result in an invariant way, without the need
of using a quantum state that breaks de Sitter invariance
and without the need of introducing a cosmological time
coordinate |7 in Eq. (47) is just the geodesic distance].
As noted by Vilenkin [22], the linear growth in time of the
mean-squared fluctuation can be interpreted in terms of a
random walk of the field ¢. The magnitude of ¢ smeared
over the interior of a Hubble-radius (H~!) two-sphere
changes by +(H/27) per expansion time H~!. Then, the
average displacement squared is D? ~ (H/2m)2N, where
N ~ Hr is the number of steps. To support this interpre-
tation, Vilenkin studied field correlations between points
which were at large spacelike separations. We can repeat
his arguments using the de Sitter—invariant formalism.

Since points separated by spacelike distances greater
than mH~1 cannot be connected by geodesics (and we
are interested in much larger separations), the discus-
sion will require more work than in the case of timelike
separations. Consider, to begin with, an arbitrary point
z in de Sitter space and a timelike geodesic C; passing
through it. We can think of C, as the trajectory of an
inertial observer. Without loss of generality (by using
de Sitter transformations) we can take x to have coor-
dinates (n = 7/2,Q) and C; to be the curve Q =const,
while the metric still takes the form (3). Let z’ be a
second point on the spacelike hypersurface orthogonal to
C, at z, such that the geodesic distance between = and
z' is much smaller than H~1, and let C,/ be a geodesic
through the point =’ which is initially parallel to C,. In
our coordinate system, z’ has coordinates (n = 7/2,Q’),
C, is the curve €2 =const, and the distance between x
and z’ is YH™! (v < 1), where v is the angle between
Q and Q. Parametrizing both geodesics by the proper
time 7 and taking 7 = 0 at n = 7/2, we can find what is
the separation between points in C, and C. at any given
r

(47)

From (20) we have
Z(7,9) = 1 + [cosy — 1] cosh? HT,

where Z(7,7) means the invariant function Z between
the two points on the geodesics C; and C., at proper time
7 and we have used (sinn)~! = cosh H7. Two observers
at z and z’, which were initially close and at rest relative

to each other (Z =~ 1), are pulled apart by the expansion,
so that eventually they reach large spacelike separation
Z < —1. The distance between both observers will be
equal to (r/2)H~1 at the time 7, when Z(7.,v) = 0 [see
Eq. (21)], and so we can write

cosh? Hr

Z(t,y) =1— ———.
(r,7) cosh? Hr,

For 7 >> 7, we have [from (46)]

H3
D? z24—7F5(T—T.,). (48)

In the language of Ref. [23], this result can be phrased
as follows. The field measured by each one of the
two observers undergoes a random walk of step A¢, =
+(H/2r). As long as both observers lie within the same
Hubble volume their steps are correlated and the dis-
persion of the field does not grow. Approximately after
time 7y, the Hubble volumes around the two observers
stop overlapping; this means the future light cones of the
two observers fail to overlap, and so the respective ran-
dom walks of the field become uncorrelated. Therefore,
the dispersion is proportional to (7 — 7). The factor of
2 in Eq. (48) arises because we have two independent
random walks.

Finally, we should say that although (47) and (48) have
been derived using the de Sitter-invariant state, they
would hold for any O(4)-invariant state (in the limit of
large 7). This is because the contribution of L = 0 to D?
is

H2 2 2
5= 3 sin2n + (n — n')?)(P?).

This term remains bounded in time and eventually be-
comes subdominant with respect to the vacuum terms
(47) and (48). Similarly, because the modes Urjs are
bounded in time, any finite number of particles in the
modes L > 0 will make a bounded contribution which
will be irrelevant at late times.

Another physical quantity that we can compute us-
ing |0) is the expectation value of the energy-momentum
tensor. Since the differential operator D,; acting on a
constant is zero, the operator @ will not be present in
the formal expression of Ty Also, since P|0) = 0, it is
clear that

(0|Pat {¢(2), (") }|0) = Dapy G(z, ).

The computation of (0|T,,|0) now reduces to the one pre-
sented in Sec. IV, replacing G‘(AI’)B by G. Obviously, the
result is given by Eq. (33) with A = 0:

119

(OTeslO)ren = 13550072

Rzgabv (49)

which is de Sitter invariant as expected.

Since we chose a state with P|0) = 0, there is no con-
tribution from the L = 0 sector to (Ty). The L = 0
contribution to the energy-momentum tensor operator is
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R? b2

~(L=0) — (1 _ 26:10) Sins n gab?.

4t 14472

In a state with nonvanishing momentum, the expectation
value of this operator has to be added to the right-hand

|

<Tab>ren =

2 (e YNp_ Ll 2p_ 1
m(é 6 )R- mE—3

Note that the limit of this expression asm — 0and £ — 0
is ambiguous, because the term

e b (- ()

., _—9m__R?
2 R
153672 1 + &8

(50)

gives different answers by approaching the origin of the
(¢, m?) plane in different ways. It is intriguing that in
order to recover the result (49) the limit m2,¢ — 0 has
to be taken along a path such that

R
% — —2. (51)

The origin of the ambiguity can be traced back to the
contribution of the mode L = 0 to (T}, ) in the Euclidean
vacuum. It is easy to see that this contribution is given
by

—R? (¢R+2m?)
153672 (m? + £R)

+ O(m?,¢),

and therefore it will vanish only if the limit is taken ac-
cording to the path (51). This is equivalent to taking the
limit m?2,£ — 0 in the formal expression of the energy-
momentum tensor operator before taking the vacuum ex-
pectation value.

VI. CONCLUSIONS AND DISCUSSION

We have used the Hadamard formalism to compute the
renormalized expectation value of the energy-momentum
tensor for a massless minimally coupled field in de Sit-
ter space in the two-parameter family of O(4) Hadamard
vacua. We find that this tensor is not de Sitter invariant
but only O(4) invariant (in disagreement with the result
of Ref. 7], which was subsequently corrected in Ref. [17]).

We have also studied the de Sitter—invariant state for
the massless minimally coupled field. It is worth noting
that such state is not a Fock vacuum (indeed, Allen [6]
has shown that for m = £ = 0 there is no de Sitter—
invariant Fock vacuum): The discrete zero mode is not

side (RHS) of (49). In particular, for the O(4)-invariant
states, (P?), = 2a? and we recover (33). Clearly, for the
energy (Tpo) to be an observable, P has to be observable.
It is interesting to compare Eq. (49) with the general
result for a massive and nonminimally coupled field [3]:

—3Jab 1 3 3 R
et e+ (e 5) ] [v (G-2) ¢ (53+*) +n5a]

1\?> , R?
—E)R+2160}'

f

quantized in terms of creation and annihilation operators,
but rather using the canonical position and momentum
operators. In particular, we have used it to derive a co-
variant version of Eq. (2). We find that the expectation
value of the square of the difference ¢(x) — ¢(y) grows
linearly with the geodesic distance between z and y, for
timelike separations which are large compared with H~1
[see Eq. (47)]. The linear growth D(z,y) «x H7 has the
same physical origin as the linear growth in time of Eq.
(2), and it can be interpreted, along the same lines, as a
“Brownian motion” of the field due to quantum fluctua-
tions (see, e.g., Ref. [23]).

We have computed the renormalized expectation value
of the energy-momentum tensor in the de Sitter—invariant
vacuum. We find that the renormalized vacuum energy
density (Too)ren is lower in this state than in any of the
O(4)-invariant states. In this sense, only the de Sitter—
invariant state deserves to be called vacuum.

The O(4)-invariant (T, )ren [Eq. (33)] approaches the
de Sitter—invariant value (49) at timelike infinity. Also,
the dispersion D(z,y) computed in Sec. IV using the
de Sitter—invariant state coincides with the limit n — =
of the dispersion computed in a O(4)-invariant state.
Therefore, the de Sitter—invariant state can be seen as
the limit into which the O(4)-invariant states evolve at
sufficiently late times. This behavior is familiar from the
massive case, and it corresponds to the fact that any ex-
citations above the de Sitter—invariant vacuum are red-
shifted away by the exponential expansion.

After this paper was submitted, we became aware
that the result of Ref. [7] had already been corrected in
Ref. [17].
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APPENDIX

For completeness, in this appendix we summarize the
field quantization in the Schrédinger picture (see, e.g.,
Ref. [9]).
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In the Schrédinger picture, xras and #pps are time-
independent operators satisfying the commutation rela-
tions

(A1)

and acting on a Hilbert space of time-dependent physical
states ¥. In the g representation, such states are de-
scribed by wave functionals U({xLa},n) and the action
of the operators is given by

(XeM, Frmr] = 4800 6nme

xemV¥ = xrmV,
15]

6XLM

The time evolution is governed by the Schrédinger equa-
tion

0.

WLM\I/ = -1

(A2)

where H is the Hamiltonian derived from the action (8),
with xza and 7 as replaced by its operator counterparts:

7-33 [t + (Hsinm)Pobtae| - (49

Note that throughout this appendix xras are not func-
tions of n (as they were in Sec. II), but they are the
time-independent position operators of the Schrédinger
picture (see, e.g., [24]).

Factorizing the wave functional as

=[] Yomxea,m),
LM

Eq. (A2) separates into a set of Schrédinger equations,

one for each individual mode:

1 -1 o2
(Hsinn)=2 8x2%,,

+ (H sin Tl)_zw%X%M] Vrm

——ilu. (ag)

On

These can be solved by using the ansatz

PPN
Winm = gru exp {ﬁ(Hsmm - xiM], (A5)

where gra(n) and Via(n) are unspecified functions.
Substituting (A5) into (A4) and collecting the terms pro-
portional to x%,, one finds

VLM — 2cot 77VLM + w%(n)VLM =0, (A6)

and so Vi must be a solution of the field equation (9).
Collecting the terms which are independent of xr s, one
finds a differential equation for gras which can be solved
immediately to yield

gLM = CLMVL—A}/Z,

where Cpps is just an overall normalization constant.

Choosing one solution of (A6) for each L and M specifies
a particular quantum state. In order to know what set of
solutions {VLap} corresponds to the de Sitter—invariant
quantum state defined in Sec. II, one has to impose that
the wave functional be annihilated by the operators aras
associated with the set of modes that defines such vacua
[Eq. (15)]:

o . Uim

v = |Ujy -
e = M o s X

v =0,

where we have inverted (12) to express ar)s in terms of

xrLm and 7pps. Clearly, these conditions are satisfied if
and only if

VLM = UZM'

In summary, the de Sitter—invariant wave functional is
given by

¥ = H(21r) 1/4UL13,,/2 exp
LM

(H sin 77)“2 Ui XLM

(A7)

with Ur s given by (15). It can be checked that this wave
functional is annihilated by the operator generators of the
de Sitter group [24] and is thus de Sitter invariant. Note
also that this wave functional is properly normalized, in
the sense that

/ " T dxem ¥ (xan bl = 1.

LM

Note that the case m? = ¢ = 0 is special. From (15) we
find that Uy becomes constant in the massless minimally
coupled limit,

Uo = Ao (—\/E) y
™
and so the Wronskian condition cannot be satisfied
and the normalization constant Ay becomes infinite [see
Eq. (17)]. Such infinity can be understood by noting
that, since

lim 00
m2,6—0 Uy

the wave functional becomes independent of xo,

.0 _ 2 _ ¢
WQ\I’——Z%‘I’—O (m —5—0),

and therefore ¥ is not normalizable in the discrete sense
(which is natural for an eigenstate of momentum).

To conclude, let us study in more detail the L = 0 term
of the Schrodinger equation (A2). Using the notation
1 = Ur_o we have

1 0 —i 0

2ax2¢_ H?25t

=,
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where we have introduced the new time variable

- 1 1 . T
t -2—< —551n2n—§).

In this notation the basic solutions are the eigenstates of
momentum that we discussed in Sec. IV:

¥p(x0) ox €PIF"D,

with ¢ = v/2H 'xo [see Eq. (37)]. For £ = 0 these are
the Heisenberg wave functions (40).

The wave packet (41) is just a superposition of these
modes, and its time evolution can be found in any ele-
mentary textbook. It represents a Gaussian wave packet
that spreads in time. Noting that (a|P?|a) = 2a2 and
(¢|Q?|a) = (2a?)~! we have, from (37),

1 -
(X0)a = H? [m + 40°t 2]-

Since the range of ¢ is finite, £ € [—7/4,7/4], the expec-
tation value of x2 does not grow unbounded, but reaches
a constant in the asymptotic past and future. Therefore
the asymptotic growth in time of (¢?) in de Sitter space
is due to the L > 0 modes.

This behavior is somewhat different from that of the
theory of a massless field on a compact toroidal flat space-
time which we briefly discussed in Sec. IV. There, the
contribution of the L = 0 mode to (¢?) also has a term
proportional to (p2)t?. However, in that case, t is the
Minkowski time. If we choose a state with (p3) # O,
then (¢2?) o« t? grows unbounded as time increases due
to the L = 0 contribution alone. On the other hand, for
the ground state (p3) = 0, but (z2) = oo, and therefore
(#?) is infinite, just like in the de Sitter—invariant state
studied in this paper.
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