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We study the evolution of cosmic strings taking into account the frictional force due to the sur-
rounding radiation. We consider small perturbations on straight strings, oscillation of circular loops,

and small perturbations on circular loops.

For straight strings, friction exponentially suppresses

perturbations whose comoving scale crosses the horizon before the cosmological time t. ~ p~2 (in
Planck units), where p is the string tension. Loops with a size much smaller than t, will be approx-
imately circular at the time when they start the relativistic collapse. We investigate the possibility
that such loops will form black holes. We find that the number of black holes which are formed
through this process is well below present observational limits, so this does not give any lower or
upper bounds on p. We also consider the case of straight strings attached to walls and circular holes
that can spontaneously nucleate on metastable domain walls.

PACS number(s): 98.80.Cq, 98.80.Hw

I. INTRODUCTION

Cosmic strings are topological defects that may have
formed during phase transitions in the early Universe
(see, e.g., [1]). Their properties and observational conse-
quences, especially in connection with their possible role
in the formation of large scale structure in the Universe,
have been extensively studied during the past decade
(see, e.g., [2]).

Cosmic strings of mass per unit length p would have
formed at cosmological time of order ¢y ~ (Gu)~tp (G
is Newton’s constant and tp; is the Planck time). It is
well known that immediately after the phase transition
the dynamics of strings would be dominated by the force
of friction [3,4]. This force is due to the scattering of ther-
mal particles off the string. Friction would dominate the
dynamics until a time of order t, ~ (Gu)~?tp;. In most
of the investigations about cosmic strings, the effects of
friction have been neglected. The reason is that if cosmic
strings have to play a role in galaxy formation, then they
have to form near the grand unification scale. In that
case their mass per unit length is of order Gu ~ 10~
and friction is important only for a very short period of
time.

However, if strings have formed at later phase transi-
tions, say, closer to the electroweak scale, their dynam-
ics would be dominated by friction through most of the
thermal history of the Universe. It is therefore of some
interest to study the evolution of cosmic strings with fric-
tion in a quantitative way. The relativistic equation of
motion for strings with friction was given by Vilenkin [4].
The main purpose of this paper is to solve this equation
in a few simple cases, which should be representative of
more complicated situations.

The plan of the paper is the following. In Sec. II we
review the results of Ref. [4], in order to fix the notation.
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In Sec. III we study linearized perturbations on an infi-
nite straight string. In Sec. IV we consider the dynamics
of oscillating circular loops. The evolution of linearized
perturbations on circular loops is discussed in Sec. V.

It is known that an exactly circular loop would form
a black hole when it collapses under ‘its tension [5, 6].
Since friction tends to erase perturbations whose comov-
ing scale crosses the horizon before t,., loops smaller than
t. will tend to be approximately circular. In Sec. VI we
study the possibility that such loops form black holes.
Note that these black holes can have masses of order
M ~ pt,, which can be considerably large if Gpu is suf-
ficiently small. We discuss possible observational conse-
quences of these black holes.

Finally, in Sec. VII, we consider perturbations on
strings which are attached to domain walls, and in partic-
ular, to circular holes which can spontaneously nucleate
in a metastable wall. Our conclusions are summarized in

Sec. VIII.

II. STRINGS WITH FRICTION

In this section we summarize the results of Ref. [4],
where the equation of motion for a string with friction
was found. A cosmic string can be represented as a two-
dimensional world sheet in spacetime z# = z#(£*), where
&% (a = 0,1) are two arbitrary parameters on the world
sheet and z# are spacetime coordinates (p = 0,...,4).
In flat space, the equation of motion for the strings is
pnOz¥ = 0, where O denotes the d’Alembertian on the
world sheet. When one includes the effects of curvature
of the spacetime and a force of friction F'¥, the equation
of motion reads [4]

p [0z + Ty z%z7?] = F*(u},T, o). (1)
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Here T'Y, are the four-dimensional Christoffel symbols
(greek indices run over spacetime coordinates). The force
of friction F'¥ will depend on the temperature of the sur-
rounding matter T', the velocity of the fluid transverse
to the world sheet v’ = u” — z¥,z%%u,, and the type of
interaction between the particles and the string, which
we symbolically represent by o. Vilenkin [4] found the
form of F¥ for the case when friction is dominated by
Aharonov-Bohm scattering of charged particles with the
pure gauge field outside the string [7]

FY = BT3uY . (2)

The numerical coefficient 3 is given by
B =2r"%(3) ) basin®(mv,),

where the summation is over all effectively massless de-
grees of freedom (i.e., mass m < T') b, = 1 for bosons,
b, = 3/4 for fermions, and v, is the phase change ex-
perienced by a particle as it is transported around the
string.

For the case of a Friedmann-Robertson-Walker (FRW)

universe,
ds? = a®(1)[—d7? + dx?], (3)
with the four-velocity of the fluid given by uw” =

(a=1,0,0,0), and choosing the gauge £° = 7,x-x' = 0,
Eq. (1) reduces to

X —e ! (§>I+ [2a(H + h)](1 — %x*)x = 0, (4)

¢ + [2a(H + h))x%€e = 0. (5)

Here the overdot is exactly equal to d/dr, the prime is ex-
actly equal to d/d¢*, H = a/a? is the Hubble parameter,
and

The quantity € = [x'2/(1—%?)]'/2 is related to the energy
of the string [1]:

E= ,ua(’r)/dfle. (6)

[Using the definition of € it can be easily seen that Eq.
(5) is actually not independent of (4).] In the following
sections we shall solve the dynamical equations (4) in a
few idealized situations, which should be representative
of more general cases.

As noted in Ref. [4], the effect of friction is to make
the replacement

H—H+h

in the equations of motion for a free string in an expand-
ing universe. In what follows we will consider

a(r) ~ 7%
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(e = 1 in the radiation-dominated era and o = 2 in
the matter era). Since T ~ a™!, the friction term h(7)
dominates at early times, while the expansion term H (1)
will dominate at late times. Defining 7, as the time at
which both terms are equal,

h(t) = H(1),

one expects that friction will be unimportant for 7 > ,.
For future reference, it is convenient to express this time
in terms of cosmological time t defined by dt = a(7)dr.

Using Einstein’s equations in the radiation era, H? =
(873G /90)N'T*, one finds [4]

te = A(Gp) %tp, (7)

[for G}LZ(Atpl/teq)l/z]. Here t.q is the time of equal mat-
ter and radiation densities and A = [903%/3/3273N]3/2,
with A the effective number of massless degrees of free-
dom. The coefficient A can be rather small. Taking
sin® wy, ~ 1/2 in the expression for 3 one has

A~4x107*N1/2,

This estimate should actually be taken as an upper bound
for A, since some of the particle species may not interact
with the string.

If the strings are so light that GuS(Atp:/teq)'/? then
t« > teq and (7) is not valid. Then we have to take into

account that T ~ t~2/3 in the matter era and we have
£ \1/2
. =AY (Gp)t (ﬂ) tpl. (8)
tp)

Typically, this will apply only for strings with energy
scale Gu~10729. For heavier strings ¢, is in the radiation
era and we should use (7).

The parameter ¢, (or the corresponding conformal time
7«) will play a central role in the following sections. As
we shall see, the effect of friction on a given comoving
scale will be essentially determined by the relative size of
this scale with respect to 7.

III. LINEARIZED PERTURBATIONS
ON A STRAIGHT STRING

Consider a straight string at rest, with trajectory x =
(&,0,0), and introduce a small displacement in the plane
transverse to the string:

6x = ey (1) = e*€(0, y2(7), ys(7)).

Substituting in (4) and keeping only terms linear in éx
we have

2a—1

. 1 7 .
y+2a[;+ e }y+k2y:0, (9)

where, as mentioned before, @ = 1 in the radiation era
and o = 2 in the matter era.

The case without friction corresponds to taking 7, =
0. Then (9) is just the modified Bessel equation. The
corresponding solution that is well behaved as 7 — 0 is
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given by
y=1yo 2°T'(v + 1)(kT) " J, (kT),

where v = a—1/2. At early times, 7 < k™1, the solution
tends to a constant,

y=yo (T<<k™t), (10)
whereas at late times, 7 > k~1, the solution is oscilla-
tory:

) cos (kT — gZr—) (r>k™h.

2
(11)

Modes with wavelength larger than the horizon size (7 <
k~1!) are frozen in, and their physical amplitude Yphys =
a(T)y is conformally stretched by the expansion. Once
the wavelength of a mode falls within the horizon (7 >
k~1!), the perturbation starts oscillating with constant
physical amplitude [1].

When friction is included (7. # 0), Eq. (9) can only be
solved in the high frequency approximation (k > 771).
This is actually the interesting regime, in which friction
plays a role. In the opposite limit (k < 7,1), we just
saw that perturbations are frozen in up to a time 7 ~
k~' > 7, due to the expansion term 2a/7 alone, and
by the time they start oscillating the friction term has
become negligible.

To solve for the case k >> 7,71 we introduce the variable

U = 7%exp [— 2aa— 1 (T—*)za_l] y. (12)

T

Substituting in (9), one finds that U satisfies the
Schrédinger equation

—¥ 4+ V()T = k%0, (13)
with the potential

-2 e ()]

Now Eq. (13) can be solved in the WKB approximation.
This is done in Appendix A.

With the boundary condition that the perturbations
are frozen in with the expansion at early times, the solu-
tion is

y(7) = yo (T € 7%), (14)
r) ~ 2o SN e conhr 4 ) (7> ).
(15)
Here
W/ = 5oy (%)211—17

_ 1 B 1+2a1
7_4a—2 4a '2)°

where B is Euler’s 8 function and 7, is the classical
turning point of the corresponding Schrodinger problem
V(i) = k%. The phase ¢ is just a constant. In a

JAUME GARRIGA AND MARIA SAKELLARIADOU 48

radiation-dominated universe,
T = (k_lT*)l/z,
v~ 1.2.

In general

T /2 [ak T 1211 2e, (16)

It can be checked that the conditions for the validity
of the WKB approximation are satisfied provided that
k>7r7tand a > 1/2.

Comparing (15) with (11) we can summarize as fol-
lows. Without friction perturbations of wave number &
are conformally stretched up to a time 7 ~ k™!, after
which they start oscillating with constant physical am-
plitude

Yphys = (2a — 1)Na(k™Hyo. (17)

With friction included, short wavelength perturbations
k > 1! are conformally stretched up to a time 74 given
by (16), hence the factor a(7x) in (15). Since 7p > k1,
friction contributes to increase the amplitude of the per-
turbation by a factor (71k), from time 7 ~ k7! up to
time 7. After 75, the perturbation starts oscillating and
losing energy to friction. This is represented by the two
exponential factors in (14). By the time 7 ~ 7, the am-
plitude of the perturbations has been damped by a fac-
tor exp(—~vk7t). For 7 >> 7. the modes do not lose any
more energy to friction, the first exponential in (15) has
reached its asymptotic value of unity, and the string os-
cillates with constant physical amplitude:

Yphys 2a(7'k)e_"k"’° Yo- (18)

The basic feature that distinguishes (18) from (17) is the
exponential factor, which strongly suppresses short wave-
length perturbations & > 7. This means that, as a re-
sult of friction, the string will become very smooth on
comoving scales much smaller than 7,.

As expected, friction plays no role after 7,. Also, the
exponential suppression in (18) becomes less and less dra-
matic as k approaches 7, (i.e., k=1 ~ 74 ~ 7,), in agree-
ment with the intuitive expectation that friction does not
affect wavelengths of comoving size comparable or larger
than 7..

As mentioned before, the WKB approximation is only
valid for a > 1/2. The case a < 1/2 is markedly dif-
ferent because friction never “switches off.” As a result,
the amplitude of perturbations is eventually damped to
zero for all wavelengths. The simplest example is the flat
space case (H = 0, h = const). In this case the equation
for y is that of a damped harmonic oscillator and all ex-
citations disappear after a characteristic lifetime which
is given by 7 ~ h™! for k > h, and by 7 ~ 2hk2 for
k < h (taking a = 1).

IV. CIRCULAR LOOPS

A circular loop can be parametrized as

x(1,€) = R(7) - (cos(€/Ry),sin(¢/Ry),0), (19)
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where Ry is a constant and £ € [0,2mRy]. The equations
of motion (4) and (5) read (see Appendix B)

R+ 2a(H +h)(1 - R*)R + (1—_3@ =0, (20)
é+2a(H + h)R% =0, (21)

with
i (22)

€= ———————.
Ro(1— R2)1/2

In the case of flat space and no friction, H = h = 0,
€ is a constant, so Eq. (4) is linear and one finds the
well-known oscillatory solution

R(t) = R cos(t/Ro). (23)

Note that, as a consequence of exact circular symmetry,
this solution collapses to a point. Of course the same
will happen when we include friction and expansion. In
reality, when the string shrinks to a point it would form
a black hole [5, 8]. We will consider this process in more
detail in Sec. VI, but for now we shall ignore it, and
continue the solutions beyond the singular points. The
reason is that here we are interested in the energy loss of
a loop due to friction. Although we consider the circular
loop for simplicity, similar results would apply to nearly
circular loops which do not shrink to a point.

In the following subsections we shall study the evo-
lution of circular loops when friction and expansion are
included. In the generic case H + h # 0 we cannot find
exact analytic solutions, so we have to use numerical so-
lutions and analytic approximations.

A. Loops with friction but no expansion

It is instructive to start by considering the case H = 0
and h = const # 0. Consider a loop initially at rest and
whose initial radius Ry is sufficiently large. It is clear
that as long as aR > h™! the motion of the loop will be
overdamped, with characteristic velocity

R~ (2ahR)™!

[i.e., we neglect the R term in (20)]. That this is a good
approximation can be checked by computing R from the
previous equation and comparing it to the other terms in
(21). On the contrary, for aR < h™! the damping term
can be neglected and the string undergoes a relativistic
collapse similar to the frictionless one. This suggests that
the energy of the string at the moment of its first collapse
will be independent of Ry (for Ry > h™!), and will be
roughly equal to the energy of a loop of physical size h~1:

E ~ ph™t

This estimate will be of some importance later on, since
the energy determines the size of the black hole that
forms as a result of the collapse of the loop.

The estimate can be made more rigorous by using a
simple scaling argument. Introducing dimensionless vari-
ables p = R, u = 2haR, and v = 2haRye, the differential
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equations (20) and (21) can be reduced to

dp (1- Pz)l/ 2 2

| +(1-p9],

dy

du
where there is no reference to time or to h. The initial
conditions R = Ry and R = 0 become

= —pv,

U(Uo) = Uo, P(Uo) =0,

where ug = 2haRy. The energy of the string at the mo-
ment of first collapse is

E = 2mpaRoe = xmph ™t (24)

The coefficient x = v(u = 0) can be found by numerical
integration. Although v(u = 0) depends on ug, the result
rapidly saturates to a constant

x ~ 0.57

for ug larger than 1.

After the first collapse the loop will undergo a series of
oscillations, losing energy to friction in each one of them.
Let us estimate this energy loss. Since the behavior of
energy is controlled by Eq. (21) we will be interested
in the quantity (Rz), where the angular brackets denote
the temporal average between two consecutive collapses
of the loop. We have

(R?)

—(RR) = ((1 — R*)[1 + 2ahRR))
=1—(R? — 2ah(RR®),

or (R?) = (1 — 2ah(RR3))/2, where in the first step we
have integrated by parts and in the second we have used
the equation of motion (20). Repeating similar steps for
the calculation of (RR3) one can generate a perturbative
expansion in powers of ahR. The first terms are
. 1 1
(R?) = 5~ ga%ﬁ(}{z) + O(a*h*R?).

From (24) it is clear that after the first collapse ah R~0.3,
so the second term is a very small correction (at most of
order 1072) to the first and we have

(R?) =~ 1/2.

From (21) the fraction of the energy lost in between two
consecutive collapses is given by AE/E =~ —2(R2)hT,
where T is the time spent in the oscillation. Therefore
E x exp(—ht) and the loop will disappear in a charac-
teristic lifetime of order ~ h~! after the first collapse.

In this subsection we have ignored the expansion of the
Universe. This would have the effect of providing a time
dependent h. As we shall see in the next subsection, by
the time the loop initiates the relativistic collapse, the
expansion rate of the Universe is slow compared with the
period of oscillation of the loop, so some of the results
presented here will be useful in understanding the general
case.
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B. Loops with friction and expansion

The case without friction in an expanding universe has
been previously studied in the literature [1]. Loops are
conformally stretched by the expansion until they cross
the horizon. This happens at time t. defined by

H™'(t.) = a(t:)Ro = ..

Here 7. is the physical radius of the loop at horizon cross-
ing. After that, the loop oscillates with constant physi-
cal amplitude. This behavior is illustrated in Fig. 1(a),
which corresponds to the numerical solution of (20) with
h = 0 and for a radiation-dominated universe (a = 1).
The result is plotted in terms of dimensionless cosmolog-
ical time t/t.. The upper line represents F/E., where E
is the energy of the loop and E. = 27ur.. In the same
figure, we plot r/r., where r = aR is the physical ra-
dius, and R the velocity of the string with respect to the
cosmological fluid.

With friction included, for loops such that r. > t,,
the evolution is not much different from the one just de-

1.5

—_

0

w

(=]

t/te

FIG.1. (a) Evolution of a circular loop without friction in
a radiation-dominated universe, as a function of cosmological
time t. Here t. is the time at which the loop crosses the hori-
zon, r is the physical radius of the loop, and 7. is the radius at
horizon crossing. The energy of the loop E rapidly approaches
the value E. = 2mur. after the loop crosses the horizon, and
remains approximately constant. We also plot R, the velocity
of the string with respect to the cosmological fluid. (b) Evolu-
tion of a circular loop with friction in a radiation-dominated
universe, with r. = 1073¢,. [Same conventions as in (a).]
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scribed. The reason is that by the time these loops cross
the horizon and start oscillating, we already have h < H.

The effect will be important for loops that cross the
horizon well before t. (i.e., r. < ti). In Fig. 1(b) we
plot the time evolution of a loop with r. = 1073¢,, in
a radiation-dominated era [same conventions as in Fig.
1(a)]. Not surprisingly, friction delays the time at which
the loop first collapses. Initially, this increases the energy
of the loop, since it is stretched up to a radius much
larger than t.. Later, as the loop shrinks, it loses energy
to friction. It is interesting to observe that both effects
roughly compensate each other, in the sense that at the
time of first collapse t; we have E(ty) = E., just like in
the frictionless case. After ty the loop keeps losing energy
during each oscillation, up to a time t., when friction
switches off. From that time on, the loop oscillates with
constant physical amplitude.

It is possible to give an approximate analytical descrip-
tion of this evolution. At early times the motion of the
loop is overdamped. Neglecting the R term in (20) we
have

-1
T 2a(H+h)

Before t,, H can be neglected and we can integrate (25)
to find

RR (25)

2 2 1 7_20:-{—1
RP=R{— o ———. 26
O a(2a+1) 7201 (26)
The loop will first collapse at a value of conformal time
which is of order

T~ 7y = [a(200 4 1)T20 T RY)Y (Gt (27)

Actually, Eq. (26) is only valid as long as R < 1. After
that, the R term in (20) becomes comparable to the oth-
ers. Since Ry < Ty, the effective friction coefficient ah
will not appreciably change during the relativistic col-
lapse (which occurs at a conformal time close to 7y).
From (24), the energy of the loop at the moment of first
collapse is Ey == 0.57mu/h(7f). This has to be com-
pared to E, = 2wur. = 2nuRoa(Ry). Using (27) for 7y
we have

202 -3a+41
lgf A Za+1
E. ~ \Ro

In the radiation era (a = 1) we have Ef ~ E. inde-
pendently of Ry, in good agreement with the numerical
results. In the matter-dominated era, for Rg < 7, we
have Ef > E., so by the time 74 loops have actually
more energy than they would have had in the absence of
friction.

After tf, the radius of the loop is much smaller than
the horizon and the quantity 2a(H + h) is slowly varying
compared with the period of oscillation. From the argu-
ments of the previous subsection we have (R?) ~ 1/2,
and from (21) the change in € during one oscillation is
Ae/e = —a(H + h)AT. Since Ae < €, one can take the
continuous limit




48 EFFECTS OF FRICTION ON COSMIC STRINGS 2507

é a a'rf"_l
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€ a T2

and since E « ae, the energy of the loop is given by

T ,7.201—1
E = Ef exp —/ a—5—dr| . (28)
- T

f

In the case without friction (7. = 0) we have E = const,
in agreement with the numerical results [Fig. 1(a)]. With
friction included, the energy drops until time 7,, after
which loops oscillate with constant energy.

V. PERTURBATIONS ON CIRCULAR LOOPS

Let R(7) be a solution of (20), representing the evo-
lution of a circular loop. A perturbed loop can be
parametrized as

pP= R(T) + yp(,r, 0)7 (29)
z = y*(1,0).

Here (p,0,z) are comoving cylindrical coordinates, in
which the metric takes the form

ds? = a%(7)(—d7r? + dp?® + p2dh? + dz?),

y” is aradial perturbation, and y? is a perturbation trans-
verse to the plane of the loop.

It is straightforward to write (4) in cylindrical coordi-
nates and then substitute (29) to find the linearized equa-
tions for the perturbations. This is done in Appendix B.
Decomposing y? as a sum over modes,

oo

v? = S [yp sin(L6) + y~ cos(LO)], (30)
L=2

and similarly for y#, the resulting equations are

" sovip  oR.p  LP—1
Y1, + Za(H + h)(l — 3R )yL — 2EyL + WyL = 0,
0
(31)
i L2
g1 +2a(H + h)(1 = B)L + 5a39L = 0, (32)
0

where we have omitted the index plus or minus. The sum
in (30) starts at L = 2 rather than at L = 0 because it
is easy to see that to linear order the L =0and L =1
modes do not correspond to deformations from the circu-
lar shape but rather to small translations and rotations
of a circular loop [9].

Since the function R(7) is not known analytically,
Egs. (31) and (32) have to be solved numerically. How-
ever, before we do that, the behavior of the perturbations
can be guessed from the results of the previous sections.

Let us first consider the case without friction. Up to
the time t. the loop is conformally stretched by the ex-
pansion and the perturbations will approximately behave
as perturbations on a straight string. Ignoring oscillatory
cosine factors, the amplitude of the perturbations at this

time will be yr(t.) = yo,ra(Ro/L)/a(r), where yo L is
the initial perturbation. Here we have used (11) making
the substitution & — L/R,. After t., the loop comes
within the cosmological horizon and starts collapsing. A
loop on subhorizon scales behaves approximately as it
would behave in flat space. The theory of perturbations
on a circular loop collapsing in flat space was solved in
[9] (see Appendix A of that reference). It was shown that
the amplitude of transverse perturbations stays constant
during the collapse, whereas the amplitude of radial per-
turbations shrinks by a factor of L as the loop shrinks to
r L r.. Therefore by that time we have

a(Ry/L
Yoy, = a(T)yL ~ yh%, (33)
Yinys,n = a(T)¥3 = v5 1 a(Ro/L). (34)

These approximate expressions for the evolution of the
perturbations in the absence of friction had already been
used in Ref. [9]. Since their numerical accuracy had not
been checked there, we shall do this now.

To check the validity of these approximations one has
to numerically solve Egs. (31) and (32), with h = 0. We
have done that for different values of L, in the radiation-
dominated universe and using the boundary condition
that perturbations are initially at rest. The result is plot-
ted in Fig. 2 as a function of wave number L. The circles
denote the ratio yf, _, divided by the right-hand side
(RHS) of Eq. (33) at the time when the loop first col-
lapses. Similarly, the crosses denote the ratio of Yhys, L
to the RHS of (34). Ignoring the “valleys” in Fig. 2,
these ratios are of order 1, which means that Egs. (33)
and (34) give a very good estimate. The valleys in Fig.
2 are due to oscillatory behavior of the perturbations,
which we have ignored in our argument.

1.2
1+ + o+ o0 + o9 ° T
+ + ° + o +
o . °
08F o * + o + ° 1
=] +
+ )
o
06 & .t * o .
+ o
0.4 + o J
+ © o + ° +
¥
02+ o Y. o 9
o o
0 +.
0 5 10 15 20 25 30
L
FIG. 2. Numerical results for the evolution of perturba-

tions on a circular loop in a radiation-dominated universe,
ignoring the force of friction. The results are plotted as a func-
tion of wave number L. The circles denote the ratio yghys, L
divided by the RHS of Eq. (33) at the time when the loop
first collapses. Similarly the crosses denote the ratio of ¥, 1
to the RHS of (34). Ignoring the oscillatory behavior, these
ratios are of order 1, which means that (33) and (34) give a
very good estimate.
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The effects of friction can be introduced along similar
lines, and they will only be important for comoving wave-
lengths (Ro/L) < T«. For such wavelengths the RHS of
Egs. (33) and (34) has to be corrected by a factor of

2
(2a — 1)1

This is obtained comparing (17) with (18), where now & is

(kTr)™ exp(—vkTe). (35)

given by L/Ry. Again, one can check the accuracy of this"

approximation by solving the equations of motion for the
perturbations, now with h # 0. The results for the case
of a radiation-dominated universe are plotted in Fig. 3(a)
for Ry = 7., and in Fig. 3(b) for Ry = 57,. The circles
and crosses denote the same quantities as in Fig. 2. It is
seen that the suppression factor (35), depicted as a solid
line, gives the right answer to very good approximation.
The above considerations apply only to loops with
Roz'r*. For Ry < 7, the perturbations do not have time
to be damped before the loop starts shrinking, so the fac-
tor (35) actually overestimates the effect of friction. We
shall consider this in more detail in the next section.
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FIG. 3. (a) Numerical results for the evolution of pertur-

bations on a circular loop in a radiation-dominated universe,
including the force of friction, for Rg = 7. Circles and crosses
denote the same quantities as in Fig. 2. It is seen that the
suppression factor (35), depicted as a solid line, gives the right
answer to a very good approximation. (b) Same quantities as
in (a), for the case Ro = 57«.
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VI. BLACK HOLE FORMATION

Let 7. be the physical radius of a circular loop at hori-
zon crossing. The mass of this loop is 27r.u and the
Schwarzschild radius corresponding to this mass is

rs = 4nGur,.

As the loop shrinks under its tension, its rest mass is
converted into kinetic energy so that the total energy of
the loop remains constant (neglecting friction and grav-
itational radiation for the moment). If a loop is exactly
circular then it will eventually shrink to a size smaller
than rg and form a black hole [5,6]. (This is only true
for strings that form as a result of gauge symmetry break-
ing. Strings which form as a result of global symmetry
breaking would radiate all of their energy in the form of
Goldstone bosons before they shrink to the size of their
Schwarzschild radius [10]).

We should mention, before proceeding with the argu-
ment, that a black hole would not form if the thickness
of the core of the string is larger than the Schwarzschild
radius rs. In that case, before it shrinks to a size smaller
than rg, the string would unwind and release all of its
energy in the form of quanta of the scalar field and gauge
fields which constitute the string. This would make the
formation of a black hole very unlikely. The thickness of
the string is typically given by § ~ A~1/24=1/2 where A
is the dimensionless Higgs self-coupling. Provided that
rs > 4, i.e., provided that the radius of the loop at hori-
zon crossing is larger than

re > [4m(Gp)®/2AY 3" p, (36)

the effects of finite thickness can be safely ignored and
black holes will form.

If the loop is not exactly circular it will still form
a black hole provided that the size of the perturba-
tions is sufficiently small. Let 75 denote the time when
the unperturbed loop would shrink to the size of its
Schwarzschild radius. It is clear that if

la(ts)y(rs)| < rs (= a(rs)Rs) (37)

then a black hole will still form.

From the analysis of the previous section one could ar-
gue that loops of string with Ry < 7, could easily form
black holes. The argument is that since friction exponen-
tially suppresses wiggles on scales smaller than 7, these
loops would be circular to very good approximation. This
would result in the copious production of black holes with
masses up to

M ~ 27mpt, ~ QWA(G/,L)Almpl, (38)

where mp; is the Planck mass. Note that for loops such
that 7. ~ t. ~ A(Gu)~%tp;, the inequality (36) will be
satisfied provided that

Gp < (4mA)°X. (39)

From Sec. II we have (4mA)? in the range 1073-107°
(taking A in the range 1 — 102). Taking typical values
of X in the range 10! — 1074, we see that the inequality
(39) will hold provided that Gp is sufficiently small.
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There are observational upper bounds on the density

of black holes of masses M 2’1014771,121, which would be
evaporating at the time of nucleosynthesis or later (see
[11] and references therein). Then, from (38), one would
be able to put constraints on topologically stable cosmic
strings of very low tension:

Gu < (2mA) x 10714, (40)

This, in turn, could be used to constrain models in
which spontaneous symmetry breaking occurs below en-
ergy scales of order (2 A4)'/2 x 10'2 GeV.

However, this argument needs to be refined, since for
Ry < T, one cannot simply use the exponential suppres-
sion factor (35) to estimate the effect of friction. As a
result, the loops will be fairly circular, but not to ex-
ponential accuracy (which is what we need to produce
black holes). This is because these loops collapse well
before 7, and friction has not had enough time to damp
the perturbations. Therefore, it is important to study
the behavior of perturbations on loops with Ry < 7, in
more detail.

At very early times, both the loop and the perturba-
tion will be overdamped. Neglecting second derivatives
in (32) we have

y? L? 1

v R2HTR) (41)

Using (25) we have the interesting relation

L2
w0 =vio) () (2

so the perturbations shrink faster than the radius of the
loop, the relative perturbation decreasing as the coordi-
nate radius shrinks from its initial value Ry. Following
similar steps we also have

yP(t) = y*(to) (%)LLI : (43)

To find the limit of applicability of the overdamped ap-
proximation, one can calculate R and ¢* from (25) and
(41) and compare them to the damping term in Egs. (20)
and (32). One readily finds that (25) is valid for R < 1,
while (42) is valid for R < L~!. The time at which
R ~ L~ coincides also with the time at which the rel-
evant physical scale comes within the effective horizon
h~! and starts oscillating.

Once a perturbation starts oscillating it is damped very
efficiently, so the perturbations which will be more diffi-
cult to eliminate are those with L. = 2, which are over-
damped up to the time when the loop becomes relativis-
tic, R ~ 1. From (25) this happens when R ~ [ah]™ !,
at a time of order 7y, given by (27). That is, the loop
becomes relativistic when

B 1 R\ (44)
RO a(Tf)h(Tf)Ro o™ ’

where in the last step we have restricted attention to
loops which are collapsing in the radiation era. After

that, during the relativistic collapse, the loop is within
the effective horizon and it can be seen that perturbations
behave very much like they would on a circular loop in
flat space. That is, as the loop shrinks the amplitude of
transverse perturbations stays constant whereas radial
perturbations only shrink by a factor of L [9].

As aresult, all the suppression in the lowest modes L =
2 comes from the overdamped regime. From (43) with
(R/Ro) given by (44), and using that rg ~ Guh™!(7y)
we obtain that at the time ts when the unperturbed loop
crosses its Schwarzschild radius

vi(ts) M(Gu)_l (52)2/3

RS RO Tx
1/3
y5 (to) —1(Tec
~ 22179 = . 45
50) Gy (7 (45)

For strings formed at a phase transition, the initial value
of the relative perturbation y4(¢0)/Ro can be of order 1.
Then, in order to satisfy (37) we need

re~(Gp)t,.

However, if this condition is met, the energy of the loop

at the moment of first collapse is £ ~ ;I,T'C'S(G/J,)zmpl,
much smaller than the Planck mass, which simply means
that a black hole will not form.

Therefore friction by itself is not sufficient to ensure the
formation of a black hole if we start from an arbitrarily
wiggly loop: the lowest modes L = 2 are not sufficiently
damped. This was not obvious a priori and it is in con-
trast with what would happen if the Universe were not
expanding. In that case h is a constant and from (42)
and (43) all loops whose initial size aRy is much larger
than (Gp)~'/2h~! would shrink to form black holes of
mass M ~ ph™t.

Even in an expanding universe, some of the loops pro-
duced at the phase transition might just happen to be cir-
cular enough initially that they would form black holes,
even without friction. With friction included, the number
of loops that will form black holes is larger. The question
is then what fraction of the ensemble will go into black
holes or, in other words, what is the probability of black
hole formation Pgg.

Before we try to answer this question we should know
how Pgy is constrained from cosmological observations.
Assuming a scale invariant distribution of loops with
number density at horizon crossing given by [1] dn(r.) =
vr %dr., where v is a parameter of order 1 or smaller,
and given that these loops form black holes of mass
M = 2mur. with probability Ppy, the number density
of black holes is

dn(M) = mdw(2rGu)®/* Py (@)5/2 ter s
Pl M :

wd (%) . (46)

Here we have included a factor of (r./t)%/? in the distri-
bution to account for the dilution of the strings (or black
holes) by the expansion of the Universe. Black holes of



2510

mass M ~ 1010 — 10'! g would evaporate during cos-

mological nucleosynthesis, producing high-energy parti-
cles which would deplete the deuterium and helium when
standard nucleosynthesis has almost concluded. This
process has been studied in Ref. [12], using a distribu-
tion of black holes of the form (46) with the numerical
coefficient left as a free parameter. The bound that these
authors obtained can be translated into

(27)3/20(Gp)®/?* Py < 10726 (47)

(assuming that the present abundance of deuterium is
of cosmological origin), which results in a constraint for
Ppu for certain values of the string tension.

Note that if Pgy ~ 1, then we would be in trouble for

GpR10~'8, It is then important to estimate Ppg. An
upper bound can be obtained directly from Eq. (45). The
probability that y5(ts) < Rs is equal to the probability
that

Y5 (to) < (Gu)(ts/re)"/*Ro.

Treating y5(to) as a random variable normally dis-
tributed, with rms amplitude of order Ry, and noting
that for L = 2 there are two independent modes [the
plus and the minus modes in Eq. (30)], that probability
is bounded by

£\ M3 2 o/ [Mp112/3
Peu < |Gu (-) ~ (Guw)*/ [W]

Te

<107°(Gu)*?, (48)

where in the last step we have used MX10' mp;. As
a result, the constraint (47) will always be satisfied for
cosmic strings in the low-energy range (40) in which we
were interested.

What can one say about heavier strings? Note that
PpH can actually be much lower than the RHS of (48),
and the bound (47) is likely to be satisfied even for large
values of the string tension Gu ~ 107%. In this case
the loops that form black holes in the mass range 1014-
102° mp, cross the horizon much later than t,, so fric-
tion only smoothes out the perturbations of very large
L. This does not help very much when we try to form
black holes. The smoothness of the strings in this case
has to be attributed to other damping mechanisms such
as gravitational radiation. The probability of black hole
formation in the absence of friction has been estimated
by Hawking [8] and others [13, 8],

PeH ~ (Gu)?. (49)

In the case of a loop formed by n straight segments,
Hawking found p ~ 2n. This form for Py results from
the fact that in order to form a black hole it is necessary
to “fine-tune” a set of 2n angles with accuracy given by
Gu. Typically, p will be of the order of the number of
random variables that parametrize the ensemble of loops,
since for a black hole to form all the parameters have to
be fine-tuned with-an accuracy given by Gu. Polnarev
and Zembowicz [13] studied Ppu for a family of loops
containing excitations in the first and third harmonics in
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a Fourier expansion of the solutions to the Nambu equa-
tions of motion. They studied a two parameter family
and they found p = 2 (with some uncertainty due to the
arbitrariness in the definition of a probability distribution
in the space of parameters). However, p is likely to be
larger (and therefore Pp;, smaller) since one need not be
restricted to a two parameter family. In particular, the
general solution including the first and third harmonics
is a five parameter family (see, e.g., [14]), and one may
expect p ~ 5.

Other observational constraints come from black holes
of mass M ~ 10%2° mp;, which would be evaporating at
the present time, producing intense bursts of «y rays (see,
e.g., [15]). This constraint has been studied in [13], whose

authors concluded that if p<2 there is conflict with obser-

vations for strings heavier than G;LZJO_". On the other
hand, if p > 4 there is no conflict even if Gu is as large
as 1075, Including friction does not modify these results,
since for M ~ 10%° mp; friction is important only for

GpS10720 [see Eq. (38)]. But for such low values of the
tension there is no observable effect even if Py = 1 [13].

VII. STRINGS ATTACHED TO WALLS

In this section we consider perturbations on strings
which are attached to planar domain walls [1]. For sim-
plicity, we shall ignore the expansion of the Universe.
Also, we shall restrict ourselves to perturbations which
lie in the plane of the wall.

Then we are effectively left with a (2+1)-dimensional
problem, in which the string is the boundary between
a region of “false vacuum” (the wall) with energy per
unit area equal to the surface tension o, and a region of
“true vacuum” where there is no wall. In the absence of
friction, the equations of motion are [16]

—pOz* = on*. (50)

Here O is the covariant d’Alembertian on the world sheet
of the string and n* is the spacelike unit vector normal
to the world sheet, with n#n, = 1 and n,0,z* = 0. Our
sign convention is that n* points towards the wall. It
is easy to see that Eq. (50) has a solution representing a
straight string which is constantly accelerating due to the
tension of the wall. The wall gradually disappears as the
string moves forward, its energy going into kinetic energy
of the string [16]. The string undergoes the so-called
hyperbolic motion, asymptotically approaching the speed
of light at late times. :

Equation (50) has to be modified to include the force
of friction F¥. To keep things general we take

F¥ = F(u,)n”, (51)

without specifying the dependence in the transverse ve-
locity of the fluid uy = u*n,. (Note that u defined in
Sec. II is given by ¢4 = u,n”.) Then the equations of
motion read

—p0z” = [o + F(uy)]n"”. (52)

This is the analogue of Eq. (1). Since now we are ignoring



48 EFFECTS OF FRICTION ON COSMIC STRINGS 2511

the expansion of the Universe there are no Christoffel
symbols in the equation corresponding to the curvature
of the embedding spacetime. The effect of the wall is
to supply the constant force on”. Also, since we have
restricted ourselves to planar motion of the string, the
frictional force lies on the plane of the wall, along the
normal to the string.

We can study perturbations on any solution z*(£%) of
(52) using the covariant formalism of Ref. [16], suitably
modified to include friction. Since only perturbations
which are normal to the string are physically observable,
one need only consider perturbations of the form

Sat = p(&)n*.

Here ¢ represents the proper magnitude of the pertur-
bation, i.e., the normal displacement as measured by an
observer that is moving with the string. Multiplying (52)
by n, we can write

—uK? = (o + F), (53)

where Ky, = n,V,0,z* is the extrinsic curvature of the
world sheet. Latin indices are raised and lowered using
the world sheet metric

Gab = Oz Opx,,.

The linearized equation of motion for the perturbations
can be found from variation of Eq. (53)

wéK:2 = —46F,
where § denotes the variation induced, to linear order
in ¢, by the small perturbation éz#. Following [16], we
have K¢ = O¢ + K%K ,p¢. On the other hand, 6F =
F'(uy)éu,, where F' = dF/du,. Also, du; = u,én¥,
and the change in n* induced by the perturbation is [16]
on* = —g®p,;, O,xz*. Therefore, the resulting equation
of motion for ¢ is

!

—O¢ + M2p = _quﬂaamuqs,a , (54)

where the “mass” is given by

M? = —Ka K = [’R - (‘7 + F>2] . (55)

m

In the last step we have used the Gauss-Codazzi relation
K., K% = (K2)? — R, where R is the intrinsic curvature
scalar on the world sheet. The RHS of Eq. (54) acts like a
friction term for the perturbation ¢ provided that F’ > 0.
But this condition is always met, since it just means that
the force of friction increases with the transverse velocity
of the fluid.

In the spirit of Refs. [16,17], Eq.(54) can be seen as the
equation of motion for a scalar field ¢ which is “living” in
the world sheet of the defect. Now this equation has a dif-
ferent mass than in the case without friction, and it also
has a right-hand side in which the field has a derivative
coupling to some external sources (which are essentially
the “temporal” components of the tangent vectors to the
string).

In the case when the unperturbed string is straight,
lying along the y axis, and moving with trajectory = =
z(t), the metric on the world sheet is

ds® = gapd€®de® = —(1 — £?)dt? + dy®
= —dr? + dy?.

Here t is the time in the rest frame of the fluid and 7 is
the proper time of an observer who is moving with the
string. In this case the metric on the world sheet is flat,
the curvature scalar vanishes and the effective mass M?
is tachyonic. This is also true in the absence of friction
[16], and it essentially means that modes with wavelength
larger than |M|~! are unstable. Now, including friction,
the difference is that the tachyonic mass “switches off”
as the string approaches its terminal velocity v. Indeed,
the terminal velocity of the string is determined by the
vanishing of the driving force in (52), that is

o+ F(uy) =0, (56)

but this implies that the mass term for the perturbations

vanishes.
When the straight string has reached the terminal ve-
locity v, Eq. (54) reduces to
d’¢ F'v, d¢

- 2 e
+ k%o o dr

h- (57)

where k is the wave number of the perturbation, and
7o = (1 — v2)~1/2 is the relativistic factor corresponding
to the terminal velocity. The friction term in the RHS of
(57) now causes the perturbations to decay exponentially
with a lifetime which is easily calculable. Taking a force
of the form (2) we have F' = BT3. Noting that u, =
ntu, = —vvy,, BEq. (56) gives

g

YoV = ﬁ

In cosmological situations the temperature is always
lower than the energy scale of the wall (typically of order
o1/3); therefore, the terminal velocity will be relativistic,

v~1,

and the v factor will be of order v, ~ ¢T3 (ignoring the
numerical factor 3). Then the RHS of (57) reads

F'~, L

7 7

It is then straightforward to see that the perturbations
decay with proper lifetime given by 7 ~ p/o for k > o/u
and T~ op" k™2 for k € o /p.

A more interesting case is that of a string which is
at the boundary of a circular hole that has sponta-
neously nucleated on a metastable domain wall (see, e.g.,
Ref. [18]). This process is the (2+1)-dimensional ana-
logue of the formation of true vacuum bubbles in the
problem of false vacuum decay.

Without friction, perturbations on these bubbles (or
holes) have been studied in Ref. [16]. In that case, the
unperturbed solution was a circular hole whose radius R
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expands with constant acceleration:
R? —t? = (2u/0)>. (58)

The effective mass for the perturbations was M? =
—o/2u?, which is tachyonic. Because of the expansion
of the hole, any perturbation eventually reaches a wave-
length larger than M ~!, at which point it becomes un-
stable and starts growing like ¢ oc R =~ t [16]. From an
intrinsic point of view, one can say that the string is un-
stable, in the sense that ¢ (the perturbation measured
by a comoving observer) grows in time. However, an ex-
ternal observer measures a perturbation which is Lorentz
contracted [16] A = y~1¢, where here v = (1 — R?)~1/2.
Since from (58) v ~ R, we have A ~ const at late times.
The relative perturbation A/R decreases and the string
becomes more circular as the hole expands [16].

Including friction, the main difference will be that the
string reaches a terminal velocity v, and the Lorentz
contraction factor will go to a constant at late times.
Also, the mass term switches off as the string ap-
proaches the terminal velocity. Let us see, then, what
is the fate of the perturbations when friction is included
in the dynamics. The string world sheet is given by
z# = (t,Rcosf,Rsinh,0), and the metric induced on
the world sheet is

ds* = —(1 — R?)dt? + R?d#* = —dr* + R*d6>.

The normal vector is
n, = (1- Rz)Vl/z(—R, cosf,sin 6, 0).

The extrinsic curvature can be easily calculated and one
finds

—M? = K3 K = v*R72 + 4%(R)%. (59)

The velocity is bounded by the terminal velocity R <
v, so at late times R ~ vt and R decays faster than
R~'. Then, neglecting the R term in (59) the equation
of motion for the perturbations takes the form

?¢r | F'vo dér n L
dr? uodr

with ¢ = ¢r(7) exp(iLF).

Note that as the hole expands, the tachyonic mass
squared —y2R~2 “redshifts” at the same rate as the wave
number term L?2R~2. One might expect instability for
modes with L < +,, since for these the total effective
mass squared is negative. However, at sufficiently late
times we can use the overdamped approximation and ne-
glect ¢ in (60). Then a simple integration shows that,
since R~2 decreases faster than 71, the amplitude of the
perturbations asymptotically approaches a constant ¢ —
const. From an intrinsic point of view the asymptotic
behavior of the perturbations is very different from the
frictionless case, in which ¢ was growing in time. How-
ever, Now +, is constant and we have A = v, 1¢ — const,
so from the point of view of an external observer which
is at rest the behavior is similar to that of the frictionless
case. The relative perturbation A/R also goes to zero,
and the loop becomes more and more circular as the hole
expands.

2 ,YZ
gy =0, (60)
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VIII. CONCLUSIONS

In this paper we have studied the evolution of cosmic
strings taking into account the force of friction. The re-
sults are conveniently expressed in terms of t,, defined
as the time at which friction “switches off” [Eqgs. (7) and
()]

For small perturbations around a straight string, a
WKB analysis shows that they are exponentially sup-
pressed if their wavelength crosses the horizon before the
time t,. Relative to the frictionless case, the amplitude of
the perturbations has to be multiplied by the suppression
factor (35), which in the case of a radiation-dominated
universe (a = 1) reduces to

4 (”;*)1/2 exp {-27 (Wi“)l/z] . (61)

Here ) is the physical wavelength of the perturbation at
the time t, and v = 1.2. The suppression of the ampli-
tude of these perturbations is due to the oscillation of the
perturbations before the time t,. After ¢, the perturba-
tions oscillate with constant physical amplitude. Pertur-
bations whose wavelength crosses the horizon after ¢, are
practically unaffected by friction.

Similarly, for circular loops we should distinguish be-
tween large loops with r. > t,, and small loops with
r. < ty. Here r. is the radius of the loop at horizon
crossing. Large loops are unaffected by friction, after
they cross the horizon they start oscillating with con-
stant physical amplitude 7.. Small loops do not start
collapsing relativistically right after they cross the hori-
zon. During the nonrelativistic evolution, the velocity at
which the string moves with respect to the fluid is given
by

: ©
R~ BT3r’

where r is the physical radius of the loop, T is the tem-
perature, and 3 is the numerical factor in (2). Because
of the frictional force, these loops are dragged by the ex-
pansion more than they would in the absence of friction,
growing to a size larger than r.. However as they col-
lapse they lose energy to friction. It is interesting to note
that in a radiation-dominated universe both effects ap-
proximately compensate each other, in the sense that at
the time when they first collapse to a point their energy
is given by Ey =~ 2mur., just as in the frictionless case
(in a matter-dominated universe Ey is actually larger
than 2mur.). In subsequent oscillations, the loops will
keep losing energy, up to the time #.. After that they
oscillate with constant energy. This energy can be ob-
tained from (28) in the limit of large times, and one has
E(t > t.) = Ef exp(~2t*/3rc)1/3.

We have also studied perturbations on circular loops.
If the loops are larger than t,, then the perturbations
behave in much the same way as the perturbations on a
straight infinite string. Perturbations whose wavelength
crosses the horizon before t, are suppressed according to
(61), whereas if it crosses later than ¢, they are unaffected
by friction. If the loops are much smaller than t, then it is
not correct to use the suppression factor (61), essentially
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because the loops start their relativistic collapse much
before t,. As a result, the perturbations in the lowest
modes are only suppressed as a power law in (r./t.) [see,
e.g., (45)].

Because the suppression in the relative amplitude of
the lowest modes is only power law, the probability that
loops of strings become circular enough to form black
holes is very small (to form a black hole one needs the
relative amplitude of the perturbations be of order Gu,
which is very small). As a result, the number of black

holes of masses M~1014 mp; (which would be evaporat-
ing at the time of nucleosynthesis or later) formed by
strings which cross the horizon before t, is too small
to have any observable consequences (for all values of
1). This conclusion is reached even if we ignore the fi-
nite thickness of the core of the string. As discussed in
Sec. VI, if this thickness is comparable or larger than
the Schwarzschild radius of the loop, the formation of a
black hole is even more unlikely, so our conclusion is re-
inforced. For loops which cross the horizon later than t,,
friction only eliminates the perturbations of very large
wave number, so the probability that they form black
holes is not substantially enhanced by friction.

We have also studied perturbations on strings attached
to walls. For this we have used the covariant formalism
developed in Ref. [16], generalizing it to include the force
of friction. In particular we have studied the case of a cir-
cular hole which spontaneously nucleates on a metastable
domain wall. We find that perturbations on the string
that is at the boundary of the hole are initially unstable,
growing at the same rate as the radius of the expanding
hole. However, as the loop reaches its terminal velocity
v < 1, the instability switches off and the perturbations
freeze out at a constant amplitude. As a result, the rel-
ative perturbation decreases in time, and the hole be-
comes increasingly circular as it expands. This behavior
is similar to the behavior that one obtains in the ab-
sence of friction [16]. However the mechanism by which
perturbations freeze out is very different. In the former
case it is due to the force of friction, which balances the
instability due to the tension of the wall. In the latter
case the freezing occurred for purely kinematical reasons,
since the unperturbed string asymptotically approached
the speed of light.
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APPENDIX A

Let us solve Eq. (13) in the WKB approximation. The
solution “under the barrier” is given by

2513

Cy [ /Tk / ! ]
U = exp |+ dr'p (T T L Tg), Al
2 o ()| (r<m), (A1)
where p; = [V (7)—k?]'/2 and 74, is the “classical” turning
point:
V(Tk) = kz.

Since at early times V(1) ~ a7 %(7, /7)**

that
Tk

IE/ dr'py (1)
o

(2)2"_1 —T(k, ) + O(r2"1), (A2)

T

, it is clear

%
20 — 1

where the function I'(k, 7% ), which will be specified below,
is independent of 7.

Since perturbations are frozen in at early times, the
coefficients Cy are determined by imposing the bound-
ary condition that the comoving perturbation y should
approach some constant value yo as 7 — 0. This imme-
diately requires

C+:07

C_ = yoy/ arie e Tk )

The vanishing of C is necessary for regularity, and the
value of C_ gives the right normalization at early times.

Using the standard connection formulas of the WKB
formalism, the solution in the “classically allowed” region
is

aTZa——l 1/2 T T
U = 2y, <*—> e T(k:7k) cog (/ dT'pz(T') - —)
P2 - 4

(’T >>7'k), (A3)

where p; = [k2 — V]'/2,

The simplest case, which is also the most interesting, is
the radiation-dominated universe a = 1. In this case the
potential assumes a particularly simple form V = 72774,
and the turning point is given by 7 = (7.k~!)'/2. Then,
the exponent I'(k, 7¢) can be calculated analytically:

Tk ’T2 1/2 T
T(k, ) = — lim / dr (ﬁ - k2> ar — ()

Integrating by parts we have

(A4)

. t dzx

where B is Euler’s 8 function.

For a # 1, the potential is more complicated and the
turning points cannot be given explicitly in terms of 7,
and k. However, for £ > 7!, the potential under the
barrier can be approximated by the second term and we
have
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TR R [ak_l‘rf“_l]l/za.

(A6)

Neglecting the first term in V'(7) and following the same
steps as before we have

1 14+2a 1
=k B — .
r Tk4a——2 ( 4o ’2)

Substituting in (A1) and (A3) and using (12) we have
the solution (15).

APPENDIX B

Here we express the equations of motion for a string
with friction in cylindrical coordinates, and derive the
equations for perturbations on a circular loop.

The FRW metric is written as

ds? = a*(1)(—dr? + dp* + p?do? + d2?).

The nonvanishing Christoffel symbols are
2 a
Fgo :Fgo =17 = Fﬁo =7

1 a

Pge ==p ng =p F?J = Egzj

The metric on the string world sheet is given by
Gapd€®de? = a*(1)[— (1 — v?)d7? + p?de?],
where
v? = (%)% = gi;a'a?,
p2 = (x/)2 — gijmlil',j-
An overdot denotes derivative with respect to 7, and a
prime is derivative with respect to £. Here g;; is the flat
three-dimensional metric in cylindrical coordinates, and

the indices ¢, j run over p, 6, and z.
Substituting in (1), the temporal component yields

é+ A(T)v%e = 0,

where A(T) = 2a(H + h) and € = p(1 — v2)~1/2, The
spatial components yield
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Bt (- v?)A(r)p -

|-
/N
o |
N——
I
R
| —|
S
)
|
m|¢b
LN
| S
I
“D

(B1)
b+ (1—v?)A(r)6 — % (%) + % [ép - ";g’} — 0,

(B2)
54 (1—v?)A(r)s — % (%) =0 (B3)

These are the equations of motion for a string propagat-
ing in a flat FRW background in cylindrical coordinates.

For circular loops we can take z = 0 and the parameter
¢ proportional to the angular variable, £ = Ry, where
Ry is the initial coordinate radius of the loop. Then
p = R(1), p =0, 6 =0, and we obtain (20) and (21).

Let us derive the equations for the perturbations on
circular loops. Taking z = y*(76) < R it is immedi-
ate from (B3) to obtain the equation for small transverse
perturbations (32). The equation for the radial perturba-
tions requires more work. First we write the perturbed
solution as p = R(7) + A, and 6 = ({/Ro) + &, where
A and ¢ are small deviations from the unperturbed val-
ues. Substituting in (B1) one finds, to linear order in the
perturbations,

X3 . . .« . . A "
R+A+(1—R2—2RA)AR<1+é.>—é—
R €2
1+ 26
H(R+A) tz —0.

Also to linear order,

where €p is the unperturbed value. Substituting in the
previous expression and using (20) we find

.. R . . . L2 -1
A—ZEA+(1—3R JA(T)A + =

A =0,

which is the equation of motion for radial perturbations
(31).
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