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In the context of open inflation, we calculate the probability distribution for the density parafhefelarge
class of two field models of open inflation do not lead to infinite open universes, but to an ensemble of inflating
islands of finite size, or “quasi-open” universes, where the density parameter takes a range of values. Assum-
ing we are typical observers, the models make definite predictions for the ¢alwe are most likely to
observe. When compared with observations, these predictions can be used to constrain the parameters of the
models. We also argue that observers should not be surprised to find themselves living at the time when
curvature is about to dominatg50556-282(199)04712-9

PACS numbdrs): 98.80.Cq

I. INTRODUCTION paper we shall use this principle in order to calculate the
grobability distribution for the density paramet@r.

Standard inflationary models predi€l=1 with “cer-
tainty.” What this means is that these models can explain the
. X X bbserved homogeneity and isotropy of the universe only if
the “constants” are really random variables whose rang&nhe yniverse is flat. However, a class of “open inflation”
and “a priori” probabilities are determined by the laws of gels which lead t)<1 have received some attention in
physics. Knowledge of thesea"priori” probabilities is cer-  recent year§7—9]. In these models, inflation proceeds in two
tainly useful, but not sufficient to determine the probability steps. One starts with a scalar fietdrapped in a metastable
for an observer to measure given values of the constants. Fﬁﬁ|n|mum of its potentia]V(o-)_ The false vacuum energy
instance, some values which are in tha priori” allowed  drives an initial period of exponential expansion, and decays
range may be incompatible with the very existence of obthrough quantum nucleation of highly symmetric bubbles of
servers, and in this case they will never be measured. Theue vacuum. The interior of these bubbles has the geometry
relevant question is then how to assign a weight to this seef an open Friedmann-Robertson-Walker universe. This ac-
lection effect. counts for the observed homogeneity and isotropy of the

A natural framework where these ideas can be applied igniverse. In order to solve the flatness problem a second
inflation. There, the false-vacuum energy of the scalar fiel¢stage of slow roll inflation inside the bubble is necessary.
which drives the inflationary phase can thermalize in differ- In models with a single scalar fietg, all bubbles have the
ent local minima of its potential, and each local minimumsame value ofQ} which is determined by the number of
may have a different set of values for the constants of natureé-foldings in the second period of inflation. The potential
Also, there may be different routes from a false vacuum to &/(o) in such models is assumed to have a rather special
given minimum. In this case all thermalized regions will form, with a sharp barrier next to a flat slow-roll region,
have the same low energy physics constants, but each rOLM@'IiCh requires a substantial amount of fine-tuning. Addi-
will yield a hot universe with different large scale properties. tional tunning is needed to arrange the desired value.oh
Here, we shall be concerned with this possibility, where thegnore natural class of models includes two fieldsand ¢,
fundamental constantsuch as the gauge couplings or thewith o doing the tunneling andp the slow roll [9]. The
cosmological constantre fixed, but other cosmological pa- Simplest example is
rameters such as the density parameter or the amplitude of
cosmological perturbations are random variables whose dis-
tribution is dynamically determined.

In this context, the most reasonable—and predictive—
version of the anthropic principle seems to be the principlewhereVy(o) has a metastable false vacuumoat 0. After
of mediocrity[2—6], according to which we are typical ob- o tunnels to its true minimuner=uv, the field¢ would drive
servers who shall observe what the vast majority of observa second period of slow roll inflation inside the bubble. De-
ers would. Thus, the measure of probability for a given set opending on the value o# at the time of nucleation, the
constants is simply proportional to the total number of civi-number ofe-foldings of the second stage of inflation would
lizations emerging with those values of the constants. In thibe different.

Anthropic considerations have often been used in order t
justify the “naturalness” of the values taken by certain con-

V(0,0)=Vi(0) + 3 027, ®
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Initially, it was believed[9] that models such as E¢l)  bubble. Moreover, we can restrict ourselves to a fidlitet
would yield an ensemble of infinite open universes, one invery largg comoving volume within that bubble, provided
side each nucleated bubble, and each one with a differefifat its size is much greater than the characteristic scale of
value of the density parameter. However, it has been recentiyariation of ). Thus, we no longer need to compare infini-
realized[10] that this picture is oversimplified. The two field ties, and the problem becomes well defined.
models which allow for variabl€) do not actually lead to ~ The possibility of unambiguous calculation of probabili-
infinite open universes, but to an ensemble of inflating isties in the quasiopen model was our main motivation for
lands of finite size inside of each bubble. These islands arteVvising the analysis of Ref11]. Also, we shall give a more
called quasi-open universes. Within each island, the numbeiareful treatment of the astrophysical aspects of the problem
of efoldings of inflation decreases as we move from thewhich were discussed rather sketchily[t].
center to the edges. Also, each island is characterized by a The paper is organized as follows. In Sec. Il we review
different number ofe-foldings in its central region. As a the main features of quasi-open inflation. In Sec. lll we in-
result, even within the same bubble, different observers wilfroduce the probability distribution fd2. A basic ingredient
measure a range of values of the density parameter. THe this distribution will be the anthropic factar({2), which
picture of the large scale structure of the universe in thes@ives the number of civilizations that develop per unit ther-
models is rather simple, because all bubbles have the sanfig@lized volume in a region characterized by a certain value
statistical properties. We shall see that the quasiopen natufd (1. In Sec. IV we evaluate/({2) and calculate the prob-
of inflation is of crucial importance for the calculation of the ability distribution for ) in the model(1). In Sec. V we
probability distribution for the density parameter. extend our results to more general models with arbitrary

In models of quasiopen inflation, such as Ep, () takes  slow roll potentials for the fieldp. In Sec. VI we discuss
different values in different parts of the universe, while theobservational constraints on quasiopen models due to cosmic
other constants of Nature and cosmological parameters ranicrowave backgroundCMB) anisotropies and how these
main fixed. More general models can be constructed whergonstraints restrict the class of models that give a probability
other parameters can change as well, and in Sec. VIl we giveistribution peaked at a non-trivial value 6f. In Sec. VII
an example of a model with a variable amplitude of densitywe comment on the “cosmic age coincidence,” that is, on
fluctuations. However, our main focus in this paper is on thevhether it would be surprising to find ourselves living at the
models in which only is allowed to vary. time when the curvature of the universe starts dominating. In

In order to apply the principle of mediocrity to our mod- Sec. VIII we summarize our conclusions. Some side issues
els, we will have to compare the number of civilizations in and technical details are discussed in the appendices.
parts of the universe with different values Gf. Of course,
we cannot calculate the number of civilizations. However, Il. QUASI-OPEN INFLATION
since the value of) does not affect the physical processes ) ] ] ] ]
involved in the evolution of life, this number must be pro-  In this section we shall review the main features of quasi-
portional to the number of habitable stars or, as a rouglPPen m_odels which will _be relevant to our discussion. To
approximation, to the number of galaxies. Hence, we shalPegin with, we shall consider a model of the fofi. In Sec.
set the probability for us to observe a certain valudlofo ¥ We shall consider more general slow-roll potentials.
be proportional to the number of galaxies formed in parts of As men.t|oned in the Intro_ducuon, the interior of a bubblg
the universe wher€) takes the specified value. is isometric to an open Friedmann-Robertson-Walker uni-

The principle of mediocrity was applied to calculate the Verse, with line element

robability distribution for() in an earlier paperl1], which . .
gssumedythe old picture of homogeneoups gpen universes in- ds’=—dt*+a’(t)[dr’+sinif r(d6*+sin” gde?)].
side bubbles. A serious difficulty encountered in that calcu- 2)
Iation was that open l_miver.se.s_inside the bubbles_ have inﬁi’he scale factoa obeys the Friedmann equation
nite volume and contain an infinite number of galaxies. Thus,
2

to find the relative probability for different values &, one : 87G 1
had to compare infinities, which is an inherently ambiguous sz(é :Lp+ . 3
task. This problem was addressed[ird] by introducing a a 3 a

cutoff and counting only galaxies formed prior to the cutoff.
A|though the cutoff procedure emp|oyed ﬁm]_] has some At SUfﬁCiently early times (HO), the curvature term in the
nice properties, it is not unique, and the resulting probabilityight-hand sidgRHS) dominates over the energy densjty
distribution is sensitive to the choice of cutdff2]. This  of the scalar fields, and the scale factor behaves~at
cutoff dependence, which also appears in other models of For the second period of slow roll inflation inside the
eternal inflatior[ 12,13, has led some authors to doubt that abubble, the energy density of the scalar fields must be domi-
meaningful definition of probabilities in such models is evennated by the potential term
in principle possibld12,14. o

However, this pessimistic conclusion may have been pre- V(o,d)>a?, ¢ 4
mature. According to the quasiopen pictufe, takes all its
possible values within each bubble. Since all bubbles arénside the bubble, the field- quickly settles down to its
statistically equivalent, it is sufficient to consider a singlevacuum expectation valu&/EV) o=v with V(v)=0. This

023501-2



DENSITY PARAMETER AND THE ANTHROPIC PRINCIPLE PHYSICAL REVIEW B0 023501

happens on a time scale of ordgr-M ~*, whereM is the ~ GeV, We_findf~_|\/1|p- In this case, inflating regions of co-
typical mass scale of,. After that, ¢ becomes a free field Moving sizer ~y where the field is large and positive will

with constant mass be next to inflating regions where the field is large and nega-
tive. These two inflating regions will be separated by regions
, 9, where the field is small and the universe does not inflate.
m==3sv*, The parameters can also be such th&M,, and in that

case most of the regions will not attain an inflating value of
and the condition for inflation becomes=M,,, whereM> ¢ Inflation will only happen in those regions where, as a
=g 1 result of a statistical fluctuation, the field happens to be far

An important feature of quasi_open models is the exis_above its rms value. Since the volume of the hyperb0|0id is

tence of the so-called supercurvature modes for the slow roinfinite, there will be a small but finite density of these in-
field ¢. These are modes which are not normalizable on thdlating islands inside of each bubble. Those rare “high
infinite t=const hyperboloids inside the bubble, but whichPeaks” will have spherical symmetry. If we take the inflating
nevertheless have to be included in the field expansion. Thlatch to be centered at=0, the radial profile of the field is
reason is that they are normalizable on the Cauchy surfacgVen by
where equal time commutation relations are imposed. Super- ) 2
curvature modes are characterized by their eigenvalue of the Htor)~ sinf (1—y)™7] ®)
Laplacian on the 3-hyperboloid. For the modg), this ei- o ° (1= )Y sinhr’
genvalue is given by10]

wherego= ¢(t,,0) is a constant. The probability distribution

1 Y
y= §H§R8m2<1. ) for ¢ is given by
- b5
Here, P(¢o) = eXFiW : 9
, 871G The variation of¢, within the bubble results in a position-
Hi= Vo(0)

3 dependent number of inflationary e-foldings, and thus in a
variable density parameté€l. Note that all other cosmologi-
is the Hubble rate during the first stage of false vacuuntal parameters, such as the amplitude of the density fluctua-
dominated inflation an®, is the size of the bubble at the tions, remain fixed throughout the bublind are the same
time of nucleation, which can be given in terms of the modekor all bubbleg. The probability(9) is one of the basic in-

parameter§15]. Typically, m*<HZ<Ry?, from where the  gredients from which the most probable value(bis calcu-

condition y<1 follows. lated.

Around the timet, when o settles down to its VEV, the It should be mentioned that the size of an inflating region
field ¢ will be in a homogeneous and isotropic quantum statecan be much larger than the size of the actual “populated”
with mean squared amplitude given (0] region within it,r ,, where matter will cluster efficiently into

) galaxies. The size of the populated region is calculated in
f25<¢2>%<E) 1 6) Appendix A. This size should be larger than the present ho-
27 y’ rizon, since otherwise we would observe large anisotropies

_ in the galaxy distribution. Fof) not too close to 1, the
The presence of the factoy * reflects the fact that is  horizon distance is comparable to the curvature seafe,
dominated by the contribution of supercurvature modes. |nand we have to require thaE>1 The Corresponding con-

-1

troducing y from Eq. (5), we find straint ony is obtained in Appendix A.
Equation(9) can be understood from a different perspec-
f%\/_ii 7) tive, by using the Euclidean approach to the calculation of
T m the nucleation rate. The strategy is to study how this rate is

affected by the local value af at the place where the bubble

Up to numerical factors, this is basically the finite tempera-nucleates. This is simple because we only need this Euclid-
ture dispersion of a field of mass at the Rindler tempera- ean action to quadratic order. Taking=0, we denote by
ture given byT=(27R,) "*. The correlation length ob is  ¢,(7) the O(4) symmetric instantorf16] responsible for
given by[10] r~y~*. This means that at the timte-t, we  vacuum decay. Heres=it is the Euclidean time, the “ra-
can divide the space into regions of co-moving size dial” coordinate on which the instanton depends. Expanding
~y~'>1 where the field is coherent. Notice that the size ofthe Euclidean actioS to second order in perturbations of
these regions is much larger than the curvature scalé. and of ¢, the perturbations inr and ¢ will decouple to

The parameters of the model can be chosen in such a wayuadratic order. Takingy= ¢,=const the change in the Eu-
thatf is close to the Planck scale, and in that case the slowlidean action will simply be
roll field easily reaches inflating value~Mp. For in-
stance, if the potentiaV/; is such that the bubble walls are 2 2
thick, thenRy~M ~*. Taking M ~10* GeV andm~ 10 ASE:f (9/2)o5(7) o *x. (10
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We can approximate the integral by takigg*é:m2 inside M
the volume of the bubble angly=0 outside. Then we have bo> dip= —L£ (11
Var
w? (ﬁg . - . .
ASE=—m2R3—. is satisfied, then using Ed3) the scale factor will subse-
2 2 quently evolve as
From the formulaP~ exp(—S:), we essentially recover Eq. a(t)~Hg'eN®,

(9). Even though we have used the thin wall approximation,
we should stress that the coincidence of this “adiabatic”’whereH,=H(¢,) and
result (where the fieldg is taken as constantvith the field

theoretic one(where ¢ is quantized in the bubble back- SOH( )
ground and its r.m.s. is evaluated right after bubble nucle- N(t)=f —ddo.
ation) is also valid for thick wall§10]. %o

As emphasized if10], the adiabatic approach to the cal- ) )
culation of the distribution of, should be interpreted with USing the slow-roll equation of motion fap
caution. It does not mean that the surfaeet, inside the ’
bubble will have a constant value of the fiejd It only gives b= —m &
the probability that a bubble will nucleate with the value of 3H ™
¢= ¢ nearr =0. We know, however, that the quantum state
of a nucleating bubble is homogeneous, and therefore in thee have N(t)~27-rG[¢§— $2(t)]. Since ¢, is actually a
ensemble of bubbles there is nothing special about the poirsiowly varying function of position, the scale factor is a local
r=0. Therefore, this also gives the probability distributionone, and should be understood ag,x'). Notice that the
for ¢ around any point inside the bubble. comoving scale over which changes is comparable o *
and hence it is much larger than the curvature scale, so it is
meaningful to use the Friedmann equati@n
The number o&-foldings of inflation depends on the local
In this section we shall follow some of the steps used invalue of ¢:
Ref. [11] for the calculation of the probability distribution
for ), although the present case will actually be simpler. In ath(¢0)5HaleNth(%)%HaleZwGwSﬂﬁfh), (12)
the case of Ref.11], one had to deal with an infinite number

of bubbles, each one containing an infinite open universguhere ¢, is defined in Eq(11). It will be convenient, as a
with a different density parameter. Since the probability for afirst step, to find the probability distribution for a random
given set of parameters is roughly proportional to the totalcjyilization” to live in a region which had a value of the

volume that ends up having those values of the parametersjow roll field equal tog, at the beginning of inflation. This
one had to face the difficulty of comparing infinite volumesis given by

in an eternal inflationary univergé&3].

In our case, all bubbles are statistically equivalent. All of dP( o) = P(do)ad, (o) v( bo)d by . (13
them are described by a homogeneous and isotropic quantum
state, with( #?) given by Eq.(6). Hence, in order to find the Here
probability distribution for(Q) it is sufficient to look at the
interior of a single bubble. Also, since the quantum state is
homogeneous, we only need to consider the evolution of a
T o T S S o 0 DDyt a G ot o e 1 ypet
large that it contains regions with all possible values¢of loid will have the valueg, right after nucleation. Because

distributed according to Eq9). Since inflation inside the Lh:vguirgsb:rrtgg C’E\f/]"elz?(glt(;TSeli Fgﬁggg'ﬂgﬂé‘: tgjri\rlw Olumﬁé;’i\(')en
bubble is not eternal, the number of civilizations resulting_5 : : p“ " 9
(o). Finally, v(¢g) is the “human factor,” which rep-

from this co-moving patch is finite and there is no need for?th _ L :
regularization resents the number density of civilizations that will develop

As mentioned in the previous section, at early times thd®€" unit thermalized volume as a function @§.
scale factor behaves a®~t. By the time t~H 1(¢), Factoring out the dependence on
where

Ill. PROBABILITY DISTRIBUTION FOR Q

P( o) e~ 402 (14)

dP=v()dP, (15)

H( o) = (47GI3)md, -
the leading exponential behavior df° is

the energy density in the scalar fieltl starts dominating
over the curvature term. If the condition for slow roll infla-

617G L2
tion exp 6mG— 5z) 40,
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where we have used Egd2) and (13). The behavior of>  needed Alternative regularizations proposed [d2] give

depends on Whethéris |arge or Sma” Compared WI'[Mp . d|fferent I'esult.S a.nd are therefore d|sfa.V0red. ]
Defining Let us now include the human facte¢()). As mentioned
above, this will play a role fop.>1/2, when the expansion
1 alone is not sufficient to compensate for the exponential sup-
M= S anG e (16) pression ing, due to tunneling. Since the probability distri-

bution P tends to peak near the extremes, it is convenient to
it is clear that foru<1/2 large values ot are favored due work with a logarithmic variable which gives equal measure
to the gain in volume factor, and we may expect the univers¢o each decade in the vicinity & =0 or }=1. One such
to be very flat. Foru>1/2, the volume factor alone is not variable is Inx, where
sufficient to compensate for the exponential suppression of

high peaks. We shall see that the human factor may play an _1-0
important role in this case. ="q (20
It is convenient to express the above distribution in terms
of the density parameter. Followin§,11], we have Hence, we shall be interested in the probability density
2_ @ . 8 dp 3(u—1/2)
[H(dmam(¢o)*=1+Br—5~B7—5- (17 W(Q) = gy v(x)x*e 12, (21
Here The peak of this distribution will give the most probable
5 value of ().
B Tih It should be noted that, since the density parameter
NTeqTCMB’ changes with time, both(Q) and W(Q) are in principle

time dependent. However, this time dependence is somewhat
Teq is the temperature at equal matter and radiation densityrivial, entering Eq.(21) through the parametéfcyg, the
T, is the thermalization temperature afig),g is the tem-  temperature at which the density parameter is equdDl to
perature of the cosmic microwave background, measured aVhat we are actually interested in is the probability distribu-
the same time aQ. Typically, B is exponentially large, with  tion for different types of thermalized regions, which is in-
(InB)~10%. From Eqgs.(13) and(17) we find trinsically time independent. We could, for instance, set
Tcme €qual to the temperature at recombination, and then
din ay, the probability distribution would be expressed in terms of
— (19 Q which completely characterizes the history of a given
dog 20(1-Q) recy W np y _ yorag
thermalized region. Noting that Friedmann’s equation can be

Using Egs.(12), and disregarding the logarithmic depen- rewritten asx™'=(8wG/3)pa?, in the matter era we have
dence o}, we find

-1

dP(Q)=P(po)as,

xxa(t)xToyg, (22)

dP(Q) = QM2 31(1- )3 5%Q, (19 o , _
wherea indicates the scale factor. Hence, in practice, we can
where . is given by Eq.(16). For #>5/6 the probability ~US€ & “gauge invariant” approach: we shall witg(1) as a
distribution is peaked a@ =0, for u<1/6 it is peaked at function of the produck T\ 5, which is time independent in
Q =1, and for the intermediate range ¥/ <5/6 it has two ~ the matter era.
peaks, one afl=0 and one af)=1. However, it is easily
seen that foru>1/2 the highest peak will be afl=0 IV. THE ANTHROPIC FACTOR »(Q)
whereas foru.<1/2 it will be atQ =1 Note that all depen-
dence on the particle physics model in Ed9) has been
compressed into a single parameter
Equation(19) is the same expression that was found in
Ref.[11] by considering an ensemble of bubbles with differ-
ent values of) and using the prescription introduced| 8]
for the regularization of infinite volumes. We regard the
agreement between the two approaches as a validation of t
regularization prescriptiofin models where regularization is

In previous work[17-19,11,2Q »({}) was taken to be
proportional to the fraction of clustered mattieron a rel-
evant mass scaM . This scale can be chosen as the typical
mass of arL,, galaxy,My~10"*M ¢, [17,20), given that most
of the observed luminous matter is in this form. Also, galax-
ies much smaller than M, may not be suitable for life,

cause their gravitational potential would not be able to

old the heavy elements produced in supernovae explosions.
Matter will only cluster when the density contrag(M,)
extrapolated from linear perturbation theory exceeds a cer-
tain thresholds,. Hencef can be estimated 481,22

Istrictly speaking, the peak would not be exacthf)at 1 because
the Gaussian distributiofl4) is only an approximation which ig- S5
nores the back reaction of the slow roll field on the bubble back- fo(Myg ’t):erfc( c ) . (23
ground. We shall return to this issue in Sec. V. \/Ea
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Here erfc is the complementary error function and,t) 04 . . . — T T T

is the dispersion in the density contrast, also evolved accord- ¢35 |- ggat = 5%:1%1’6 4
: ; o= PC-een
ing to linear theory [23] wal |
501e(Mg) 0.25 - -
o(My,t)= ———1(x), 24 .
(Mg, = = —F() @ ]
wherex is given by Eq.(20) and e e 7
T S |
3 3(1+x)? e |
f(x):1+_+¥|n[(1+x)l/2_xllz]. (25) 0.05
X X3/2 0 1 1 1 1 1 1 1 1 ]

0 01 02 03 04 05 06 07 08 09 1
The subindexec denotes quantities evaluated at the time of %
recombination. In an open universe, perturbations stop grow- F|G. 1. The coefficientc which relates the variablg to the
ing after the universe becomes curvature dominated. Sincgensity parametery=xx=«(1—Q)/Q, depends onc,e, the
we are interested in the total fraction of clustered matter invalue of the density contrast at the time of recombination. Our
the entire history of a given region, we should use in 8) ability to infer o, from CMB observations is limited by the fact
the asymptotic value of at large times X— ), which ap-  thatQ, in our observable “subuniverse” is not known very pre-
proaches a constant. cisely. In the figure we plot the inferred value ef for various

In a flat universe, the critical density contrast takes theassumed values d@,. The value ofo . depends moreover on the
value §,~1.7. However, it is known tha#s, should be scaleRgy, corresponding to objects of galactic mass. The curve is
slightly Q-dependenf24]. The variation is rather small, and plotted for two different values of this scalsee Appendix B The
5. changes by no more than 5% Bsvaries from 0.1 to 1. parameterx depends on the temperature at which we obsélve
Here we adopt the value of, estimated in the spherical Here we have takeficys=2.7 K.
collapse model af25,26

3 Tcwms
y=KX= X

—= . (29
8c(X)= ;f(x)g(x), (26) 5\/§Urec Trec

In order to evaluate the coefficiert we need to knovr ...
where It is clear thato, . has nearly the same value in all regions
o3 where curvature dominates only well after the time of recom-
T bination. In principle this value is given in terms of the pa-
112 UV2_ i 1ol/2 (27) rameters of our theory of initial conditions.
X7A(1+X) sinh™ *x . .
In practice, we can adjust the parameters of the theory to

- — 213, ; fit CMB observations. Our ability to infeo e, from CMB
;? ;xﬂatol;r\]/;/vee:wsa(;/eg;d (];Ei(jwvcze) hav;;569='36;2 in the case observations is, however, limited by the fact that it depends
1 C .

- : . on the values of), andh in our visible universe, which are
”miufi}iuws 5312%4) and(26) in £q. (23 and taking the not very well determined. As noted (20|, this limitation

also arises in attempts to find the probability distribution for

3 the cosmological constant. Therefore, until determinations of
v=erf _Xrec =erfdy). (29) oec become more precise, the best one can do is to assume
520 ec certain values of), andh and check whether the assumed

values fall within the range favored by the resulting probabil-
The distribution(28) is given as a function of the density ity distribution for 2. The value ofx for Toyg=2.7K is
parameter at the time of recombination. As mentioned at thestimated in Appendix B and plotted in Fig. 1 as a function
end of the last section, in order to compare predictions wittof (). For each value of),, h has been chosen so that the
observations, it is convenient to express the distribution as éshape parameter'T ~(),h~.25 (see Appendix B Also,
function of x at any temperatur&.yg. Using Eq.(22) we  there is some uncertainty in the relevant co-moving scale
have Rgal Corresponding tdV g, [20]. In the figure we consider

two  possibilites, Rgy=1 h™* Mpc and Ry,

=2 h ! Mpc. ForQ, in the range 0.£,<0.7 we find

2This expression for the growth of perturbations is different from that x~0.1. . . .
the one used if11]. There, the growth factor from the time of ~ 1he fraction of clustered matter is shown by a solid

equilibrium of matter and radiation was considered, and a spuriou§Urve in Fig. 2 as a function of In our universe, the density
factor of Q) was included, which was actually due to the uncertainty©f matter presently clustered in giant galaxies satidflgs,

in the value of the redshift at the time of equilibrium. This factor >0.05[27], which implies»(y)>0.05) . The asymptotic
should actually not be present in the probability distribution@igr ~ value v(y) should be even larger. Solving fgr we obtain
since the time of equilibrium is the same in all thermalized regionsthe observational constraint
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This curve is also shown in Fig. @urveb). Equation(33)

”';(yg — can be rewritten as
=1 — -
ui2-5----_ 1-Q 3 5\¥%
p=>55— E— , (34

_ 1(_ _5
=K o)
peak 2 4

which gives the peak value for the density parameter at the
temperaturd ;5. To estimate the width of the distribution
(31) we expand IW to quadratic order inA Iny around

. : ypeaka
- 2 : L W~W,ea X — (31— 5/2)(A Iny)?].
Ty [=s0-9)/9)]

Hence, the root mean squared dispersiolinaround its

FIG. 2. The probability distributiot31) as a function ofy, for ~ peak value will be given byfor u=3/2)
various values ofu. Also represented is the fraction of clustered

matterv(y) as a function ofy. Q - _E\-112
Aln( a ) (6u—5)""4 (35

y<0.9. (30)

while the dispersion ity is independent ofx, Ay~1/2.
The distribution From Fig. 2, we see that asis increased, the probability
distribution is sharper and displaced towards larger values of
dP 3(u-112) y, in agreement with Eqg33) and (35). For u=1, the dis-
W(Q)= mocerfc(y)y a (3D tribution has a substantial overlap with the region where Eq.
(30) is satisfied and the fraction of clustered matter is com-

gives the probability that a randomly selected civilization ispatible with observations. Fr=>5/2 this overlap is smaller,
located in a region which had a specified value(bfat a  but still non-negligible. However, fon=11/2, the probabil-
given temperaturdcys. It is represented in Fig. 2, as a ity density at the poiny~0.9 is more than two orders of
function of Iny, for different values of the parametgr The ~ Magnitude smaller than at its peak value. Particle physics
peak valugy .y, found fromdW/dy=0 is plotted in Fig. 3 models which give s_uch high value_s pfare th_erefore dis-
as a function ofu (curvea). favored by observations. As we discussed in Sec. lll, the

Fory=1, the error function can be approximated by prObab”lty distribution is peaKEd & =1 for ,LL<05 Hence
the range ofu that is of interest to us in this paper is

erfo(y)~——e ", (32 0.5<u=3. 36)
Vmy
This corresponds to
and the peak value can be expressed analytically,
0<Ypears2. (37)
3 5
ygeaﬁgﬂ— 1 (33) It should be noted that the peak value for the fraction of

clustered matter(y,a, depends only om, and not on the
primordial spectrum of density fluctuations.

So far we assumed that all galactic-size objects collapsing
at any time will form luminous galaxies. However, this is not
necessarily the case. Galaxies forming at later times have
lower density and shallower potential wells. They are vulner-
able to losing all their gas due to supernova explosj@&s
Moreover, a collapsing cloud will fragment into stars only if
the cooling timescale of the cloutl,,, is smaller than the
collapse timescaley, ,, , otherwise the cloud would stabilize
into a pressure supported configurat[@9,2g. The cooling
rate of such pressure supported clouds is exceedingly low,
_ and it is possible that star formation in the relevant mass
05 1 15 2 25 3 35 4 45 5 range will be suppressed in these clouds even when they
eventually cool. Hence, it is conceivable that galaxies that

FIG. 3. Peak of the probability distributiof81) (curvea). The  fail to cool during the initial collapse give a negligible con-
approximate value preakgiven by Eq.(33) is represented by the tribution to V(Q) [28] The possible effect of Cooling failure
curveb. Curvec represents the possible effect of helium line cool- and related phenomena on the probability distribution(or
ing failure, as discussed in Appendix C. is discussed in Appendix C, where we show that the effect is
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to shift the peak of the distribution towards larger values of

Q). These effects may be significant, but not dramatic, and ~

Eq. (34) remains valid by order of magnitude. As an illustra-

tiOﬂ, curvec of Flg 3 shows the peak of the modified distri- In many mode|s' the parameterharc”y Changes in the rel-

bution when matter which clusters after the time when he'evant range 0f¢0! and hence we shall treat it as a small

lium line cooling becomes inefficient is excluded from the constant parameter.

anthropic factor/((2). Extremizing Eq(38), we find that the peak value f, is
given by the condition

167G 1/2
€ ) |

V. MORE GENERAL MODELS

1 1ldlnerfdy)
In this section, we shall generalize our results to models wbolpea=5 -3 —qiny | (41)
where the slow roll potential is not necessarily quadratic in Y lpeax
¢. In this case, the factd®(¢) in Eg.(13) can be estimated where
in the adiabatic approximation, where the fiélds treated as
a constant during tunneling, as described at the end of Sec. 1 dSe( o)
Il In this approximation we have m(do)=3 TJ%- (42

= Se(¢0)
P(cho)xe 7170 Equation(41) is the same condition we found in Sec. IV, and

which is plotted in Fig. 3, except that nowis a function of
¢$o, and hence of.

Before we proceed, let us go back to the case discussed in
Sec. Il of a free slow roll field. Strictly speaking, the expres-
sion (14) for P(¢y) is just an approximation which is valid
<erfo(y)y¥?P(¢o)d 1, (38)  only for sufficiently low ¢, when the backreaction @f on

the bubble background can be neglected. Now we can take
where, as before this effect into account. For definiteness, let us consider the
case wheren~ 10" GeV, and where the tunneling potential
b 2Tcwsl—Q V(o) is such that false and true vacuum are strongly non-
y= 2 5T Q0 degenerate whegp=0. In this case, the radius of the bubble

Orec ™ rec is Rp~M ™1 (thick wall bubblg, whereM~10' GeV is a
typical mass scale in the tunneling potential. Let us denote
by ¢4eq the value for which the energy density correspond-
ing to the slow roll potential is equal to the false vacuum
dInay, V' v energy in the unbroken phasg=V,(oc=0),

—2 - 4+167G—, (39
deo \4 \4 39

whereSg(¢,) is the action of the instanton for bubble nucle-
ation, with the slow roll field frozen to the valug,.
From Eq.(13), we have

“diny

and we have used E@l7) to express the scale factor as a
function ofy. The Jacobiad is given by

diny
de¢o

1.,., M4

Em d’deg:VFN BN

where we have used,,=H(¢o)eN, and the relation be-

tween the hubble ratd (¢,) and the slow roll potentia in  where A is a self-coupling of the tunneling potential. For
true vacuum ho<dyeq, the value ofu is almost independent @b, (this

is the situation considered in Sec.)lll

2112 871G
H=H ((bo)”TV(UTKﬁo)- r m2
m( o< baeg ~ Ho= 755 113"
Here o7 is the value of the tunneling field in true vacuum.
We have also used the slow roll expression for the number ofhe massedM and m can be easily adjusted so that
e-foldings <1/2. However, fordy~ dgeq, the Euclidean actioe( ¢o)
. increases very steeply wiily, and so doeg.® In this case,
_ 0 the condition (41) will be satisfied for ¢g~ ¢qe
N(%)_SWGJ \7d¢‘ ~Mp(A o)~ Y2 whereM ,=G~*2is the Planck mass. The
corresponding number affoldings of inflation is given by
Here, as in Eq(39), V' stands for the derivative of with ~ N(¢o)~27G ¢eq~ (74/12) (N o) .
respect to the slow roll field. Introducing the slow roll pa-  Therefore, forug<1/2, and with a suitable choice af,
rameter the peak in the distribution may be adjusted to correspond to

<1, (40
3Indeed, asg, approachespgeq, the thin wall approximation

starts to apply. Then, from Eg&3) and (44) below, we find that
we have the action blows up as we approach degeneracy.
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N=~(1/2)InB~60, whereB is defined in Eq.(17). This is
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From this we can estimate the dispersion in the distribution

compatible with an open universe. However, this case i®f , which is again approximately given by E@S).
somewhat trivial, in the sense that the universe can be open

only if the maximum allowed value of the slow roll field
after tunneling, o= ¢q4e4, does not drive a long enough

period of inflation to make it flat.

VI. CONSTRAINTS FROM CMB ANISOTROPIES

As we have shown, given a particle physics model which

Turning to the general case, a more interesting situatiot@ds to quasi-open inflation, we can predict the probability

arises whenu(¢g)>1/2 throughout the range ap, (see

distribution P(). Of course, the model also makes predic-

Sec. Il). In this case the product of tunneling and volumetions for the CMB anisotropies. Comparison of all predic-
factors would peak ath,=0, where the resulting universe tions with observations can be used to constrain the param-

would be almost empty, and the anthropic facigK}) is
crucial in determining the probability distribution fér. For
large ., and using the approximate expressi@z2) for the
error function in Eq(41) we have

, 3 5
ypeak% EM(¢O) - Z!

which is formally the same expression as E2f).
In the thin wall approximation, we can estimate in

eters of the particle physics model.

In an open(or quasi-openuniverse, CMB anisotropies
which are generated during inflation come in three different
types. The first type corresponds to scalar fluctuations gen-
erated during slow roll inside the bubble, and it affects wave-
lengths smaller than the curvature scale. These are called
subcurvature modes. The corresponding spectrum of tem-
perature fluctuation, characterized by the multipole coeffi-
cientsl (I +1)C, as a function of, is nearly flat forl =<100.

This type of fluctuations is usually believed to give the domi-

terms ofV and the bubble radius. For simplicity, we shall hant contribution to the observed plateau in the CMB spec-

also neglect gravitational backreaction. DenotingSyythe

trum.

tension of the bubble wall, the radius of the bubble at the The second type of anisotropy corresponds to excitations

time of nucleation is given by16]

3s,

R Viag “

whereAV=V—V(o1,dp). HereVg is the potential in false
vacuum. For our approximation to be valiBy should be

of ¢ generated outside the bubble or during the process of
tunneling and expansion of the bubble into the false vacuum.
These are accounted for by the supercurvature modes dis-
cussed in Sec. I(see alsd10]). For the models we have
considered, the amplitude of temperature anisotropies caused
by supercurvature modes is a factor of ordtg#/10H ()
relative to the subcurvature ongg0]. However, supercurva-

larger than the thickness of the bubble wall and smaller thatture modes affect only the very few first multipoles, and
the Hubble radius in false vacuum. Under these assumptiongnce they cannot explain the observed flat spectrum. For

the Euclidean action is given Q6]

2

™ 3
Se~ > SRy- (44)

that reason, the constraifi-< 10H(¢) is usually imposed.

Finally, there are CMB anisotropies caused by gravity
waves, which can in turn be decomposed into the ones gen-
erated during slow-roll and the ones caused by fluctuations
of the bubble wall itsel{30,31. Wall fluctuations give the

The derivative ofSg can be expressed in terms of the slow dominant contribution for the few first multipoles, but their

roll parameter

dS V' m’ N m? 4 102
H—:SSEW—?ROV —7ROV(167TG€) ,

and finally, from Eq.(41), we have

7T2

n= RgVe. (45)

Taking one more derivative of MV with respect to Iry, we
find
d?ln W 5 2
d(Iny) 2

a4y, 2
RgVe (1+4VF_V

Neary=Ypeax We have, setting the first derivative @ to
zero and using<1,

d? Inw

2
ANYP2 | Po

peak

contribution decays rapidly with The waves generated dur-
ing slow roll give an approximately flat spectrum, whose
amplitude is much smaller than that of scalar modes.

The multipole coefficientsC, for the temperature
anisotropies due to subcurvature modes are givef86)82]

DS_|(|+1)C|S_47TG Hr
' 2w 25 \27

2
) %b(ﬂ) (1=100).
(46)

Here, we have used the notatibhy=H(¢,) and the slow
roll parametere given in Eq.(40). The coefficientb, is a
slowly varying function ofQ) which can be bounded as 1
=Db;=<6 in the range ¥ O <1.

Supercurvature modes induce temperature anisotropies
which for the lowest multipoles can be estimated 23,32

H 2
d—F) DS

+1)CP°
ol i

ose

whered,(Q)~10"2.
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0

. . . . tional constraints if CMB anisotropies are not completely
2t % o %Z% 2 - dominated by scalar subcurvature modes.
ni + o @ © o I=40 | If the observed CMB anisotropies are due to inflation,
5 4 + o then we should hav®S¢DV<DS~101° and Eq.(51)
6 oof oo+ o gives ©=100. For such values gk, the peak of the prob-
logiK, -8 o+ i ability distribution is at very low values df), and the cor-
ol O i responding fraction of clustered matter is unacceptably
+ small. It is therefore unlikely that the two-field potent{a)
12 - . can give a realistic model of open inflation which will ex-
a4l i plain both a nontrivial value of) and the observed spectrum
. . . . B of CMB fluctuations.
8 0.2 04 06 08 1 This problem disappears if the observed CMB anisotro-
Q pies are due to a different source, such as cosmic strings or

other topological defects forming at the end of inflation,
which would also be responsible for structure formation.
Also, the restriction50) will be less severe if the observed
value of Q) is larger than .7, since the coefficiedt is then
much smaller, or in models with a smaller slow roll param-
etere<10 3.

FIG. 4. The coefficientK; for various values of the density
parameter.

Let us now consider the contribution to CMB anisotropies
from tensor modes. As mentioned above, for the lowest mul
tipoles this is dominated by the domain wall fluctuations
[33,30,32. For simplicity, we shall consider the case of a
weakly gravitating domain wall, satisfyingsS;Ro<1, VII. THE COSMIC AGE COINCIDENCE
whereS; is the wall tension. Also, we shall restrict attention

to the thin wall case. Then, the anisotropies caused by the The usual objection against models with<1 is that it is
wall fluctuations are given b§32,33,3Q hard to explain why we happen to live at the epoch when the

curvature is about to dominate. That is, why
5 2H2
L ’7TS]_R0

c(Q). (48) to~te,

For the first few multipoles, anf in the range .1 to .5, the
coefficientc,(Q) is of order 102 [for higher multipolesc,
decays very fast, scaling roughly as{0)'].

Since H|2:>(87TG/3)AV, where AV was introduced in
Eq. (43), we have

wheret, is the present time ang is the time of curvature
domination. Observers att, would find Q~1, while ob-
servers at>t. would find ) <<1. It appears that one needs
to be lucky to live at the time whef2<1. There is another
coincidence which is required in open-universe models and
<2 which also calls for an explanation. Observationally the ep-
H2R2> 247G —% ~16G Hz(i)_ (49) och of structure formation, when giant galaxies were as-
Fro AV T D?N sembled, is at~1—3, ortg~ty,/3—1ty/8. On the other hand,
the interesting range dfl for open universe models is 0.3
From Eq.(45), and using Eqs(46), (47) and(49), we find ~ <(<0.9, which corresponds ta,~0.1-2, or t.~0.3%,
—0.9%,. We see thatg andt. are within one order of mag-

2 2
Dfo Dfo 1 nitude of one another. It is not clear why these seemingly
=K —==| | —=| —= (50 ;
m=€R D|SC D}N DS’ unrelated times should be comparable. We could have for
10

exampletg<<t.. In this section, we shall argue that the co-

where the coefficier,=400m2c2d?b?/b3, is plotted in Fig. mcidence

4 for various values dfand(). The inequality(50) turns out

to be somewhat restrictive. tg~te~to
In the model given in Eq.(1), the parametere

=[2N(¢o)] 1 is of order 10°2. From Fig. 4, the coefficient

may be not as surprising as it first appears.
K, is never smaller than 1¢ for Q in the range .1 to .7. Y P g PP

, Let us begin with the coindidendg~t.. In models we
Hence, we find are considering here, most of the volume in each quasi-open
s bubble is occupied by regions with small values(bf cor-
leo({D_ responding to small values ¢f. Mathematically this is ex-
DSC pressed by the fact that the “dehumanized” probability dis-
tribution dP(Q) in Eq. (14) is peaked atQ=0 (for u
As discussed in Sec. 1V, constraints from the observed frac>1/2). On the other hand, the “human factos{Q) sup-
tion of clustered matter imply.=<3. On the other hand, ob- presses all values dd for which t.<tq, so that curvature
servations of CMB anisotropies requi@{<10 % Hence, domination interferes with structure formation. As a result,
we conclude that this model can only satisfy all observathe peak of the full probability distributiondP((})

2 10~ 10

( o5 G

DW
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= »(Q)dP(Q) is shifted to a value of) corresponding to the valueQ~10"° is selected by the conditions~tc;.* A
t.~ts. Hence, we should not be surprised thattg in our detailed analysis is left for further research.
universe.
It remains to be explained why we live at a tintg VIIl. SUMMARY AND CONCLUSIONS
~tg. Clearly,ty could not be much less thag, so we need

to explain why we do not havé>tg. We now recall  yongjry parameter in models of open inflation with variable
Dicke’s observatior{34] that the t|met8 is unlikely to be () This probability is basically the product of three factors:
much greater thatg +t,, wheret,~10' yrs is the lifetime  tne “tynneling” factor, which is related to the microphysics
of a typical main sequence star. Noticing that-ts, we  f pypble nucleation and subsequent expansion: the volume
conclude that the expected valuetgfis ~tg . factor, related to the amount of slow roll inflation undergone

The value oft, andtg depend only on fundamental con- i gifferent regions of the universe; and the “anthropic fac-
stants and on the amplitude of the cosmological density fluctor » which determines the number of galaxies that will de-
tuations. In the models we have considered in this papegelop per unit thermalized volume. It is interesting that the
v_vhereQ is the only variable parameter, these timescales argxpression for the probabilit§d1) depends on the underlying
fixed and one cannot address the question of why they afgarticle physics model through a single dimensionless pa-
similar. _ _ rameteru, defined in Eq(42).

If cooling failure (discussed at the end of Sec. IV and in  Taking the minimum of the slow roll potential to be at
Appendix O indeed represents a barrier for effective stary—q, the tunneling factor tends to suppress large initial val-
formation, then it adds yet another timescale which is comy,eg of ¢, favoring low values ofQ). However, only those
parable to the other four we have encountered in this sectiorpegiOns for whichg is large enough will inflate. Hence, there

This is the timet. after which collapsing gas clouds of il he a competition between volume enhancement and
galactic mass cannot fragment and remain pressure SUpfunneIing” suppression.

ported. This timescale is also determined by fundamental The most interesting situation occurs when the tunneling
const_ants, so t_he comqldence of this scale \l@h_lal_’ant be suppression dominates over the volume factor. In this case,
explalngd within our simple model. However, it is easy Othe product of both would peak & =0, and the anthropic
generalize the model so that both and o are variable.  factor () becomes essential in determining the probability
For instance, instead of just one slow roll scalar field, we canyistribution. In an open universe, cosmological perturbations
consider two of them, stop growing when the universe becomes curvature domi-
nated, and for low values d) structure formation is sup-
) pressed. The effect of the anthropic factor is, therefore, to
o ; R ~
V(o by, o) =Vi( o)+ ?(91¢§+92¢§)- \S;Q:Ltetr:)?g.eak of the distribution froM =0 to a nonzero
As a first approximatioi11,20, we have taken/({}) to
be proportional to the fraction of matter that clusters on the
In this case, the two slow roll fields will have different mass galactic mass scale in the entire history of a certain region.
inside the bubble. The duration of inflation and the amplitudé/NVe have found that the peak of the distribution is given by
of density perturbations are determined by the point in théhe condition
plane (¢,,¢,) where the fields land after tunneling. Chang-
1-Q 3 5\
0 ) N(zﬂ‘z) = (52
peak

We have calculated the probability distribution for the

ing to polar coordinates on that plane, the number of
e-foldings of inflation depends basically on the radial coor-
dinateR (how far we are from the bottom of the potential
On the other hand, the amplitude of density perturbationgnere the coefficienic~10 is defined in Eq.(29). For
depends on the effective mass along the curve described by qels with u~1 (which can be easily constructeche
the inflaton, which is determined by the angular coordinate
0.

The volume factor in the probability distribution will be ) _ ) _
the same ofR=const surfaces, whereas the tunneling factor Anthropic bounds orQ have been previously discussed in Ref.
will choose the direction® in which the massm2(®) [28]. Tegmark and Re€g28] _used the |nequaI|tyG.<tcf to impose
ocglco§+gzsin2® is the lowest. In our modeld,ec a lower bound orQ. To obtain an upper bound, it has been argued
«m(©)N(R)M ;1, where N(R)~GR2 is the number of [35,29 that for large values of) galaxies would be too dense and

. . . . frequent stellar encounters would disrupt planetary orbits. To esti-
e-foldings of inflation ande is the Pl_anck mass. LO\m_ mate the rate of encounters, the relative stellar velocity was taken to
means largdg, because the smaller is.., the longer it

. . be the virial velocityv,;,~200 km/s, resulting in a boun®
takes for a perturbation to go nonlinear. Hence, volume and. 10-4 However, Silk[36] has pointed out that the local velocity

tunneling factors would choose the largest possible On  gispersion of stars in our galaxy is an order of magnitude smaller
the other hand,s cannot be larger than the cooling boundarythany ;. . This givesQ>103, which is a rather weak constraint.
ter. Thereforets~t ¢ could also be explained in this model. This issue does not arise in the approach outlined in the text above,
This argument can be regarded as an explanation for theince in our case large values @fare suppressed by the tunneling
observed amplitude of density fluctuatioQsn our universe:  and volume factors in the probability.

K
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probablility distribution for the density parametBtQ) can APPENDIX A: SIZE OF THE POPULATED UNIVERSE
peak at values of) such thatx=(1—Q)/Q~1 (see Fig. L AND CLASSICAL ANISOTROPIES

The peaks are not too sharp, with amplituig~1/2, or As mentioned in Sec. I, a quasi-open universe is formed

Ax~5, so a range of values d@ would be measured by py an ensemble of inflating regions of very large size com-

typical observers. pared to the curvature scale. Clearly, the central parts of each

The analysis we presented here demonstrates that, giver&yion will inflate longer and, will have a larger density pa-
particle physics model, the probability distribution frcan 5 eter than the peripheric regions. Hence, the fraction of
be unambiguously calculated from first principles. We cane|ystered matter will decrease as we move away from the
also invert this approach and use our results to exclude paganter. Here we shall estimate the size of the populated re-
ticle physics models which give the peak of the distributiongion’ which, as we shall see, is much smaller than the size of
at unacceptably low values @&@. This gives the constraint e inflating region.

u=3. _ From Egs.(21), (17) and(12) we have
An independent constraint on the model parameters can
be obtained from CMB observations. If the observed CMB ) q',g
anisotropies are to be explained within the same two-field din V|peak:27TG(6M—3)d¢o~f—zd Ingo. (Al

model of open inflation, without adding any extra fields, then

we have shown in Sec. IV that the corresponding constrainhjs equation gives the variation efdue to the gradients in

(if the observed value of) lies in the range .1 t0 .7) i& 4 as we move away from a typical civilization which mea-

=10°€%, wheree is the slow roll parameter defined in EQ. gyres the peak value 61. [The estimate in EqAL) holds

(40). Combining both constraints, we obtain a bound on theprovided thatu is not too close to 1/2, say=.6.]

slow roll parameter Taking this civilization to be located at=0, the gradi-
ents can be decomposed in multipoles. Fe0, d¢y can be

e<10 3. found from Eq.(8). For r~1 (which for low Q roughly

corresponds to the present Hubble distaneee have

This bound is somewhat restrictive. For instance, for theg)ll” ¢o~. Combining with Eq(A1) we find thatv changes

simple free field model1), the slow roll parameter is of

order 102, and so this model would contradict observations. peak 2

It is easy, however, to generalize the slow roll potential in Sin v~ (4o ) X (A2)

order to makee sufficiently small. If one allows some other f2

source for CMB fluctuationge.g., topological defectsthen

the CMB constraint is much less restrictive, and simple modover the Hubble distance.

els of the form(1) are still viable. For X<1, v would not change appreciably on cosmologi-
We have advanced anthropic arguments towards explairtal scales. Using E@8), the co-moving size of the populated

ing the “cosmic age coincidence,” that is, whether it would universe can be estimated as the distance at whittops by

be surprising to find that we live at the time when the cur-an order of magnitude,

vature is about to dominate. We have argued that this is not .

unexpected. We have also discussed a three-field model in Fp~X""

which the amplitude of density fluctuation@ becomes a

random variable. We have outlined an argument explainin

the observed valu®~ 10" ° in the framework of this model.
While this work was being completed, Hawking and . . ; _

Turok [37], have suggested the possibility of creation of ansmaller than the size of the quasi-open |slanst,rg3<y '

open universe from nothingsee alsd38]). The validity of For X>1 we can use Ed8) for smallr to obtain

the instantons describing this procd$8], and also their r2

ability to successfully reproduce a sufficiently homogeneous din go=~7y—. (A3)

universe, is still a matter of debate and needs further inves- 6

tigation. Clearly, the analysis presented in this paper can b

easily adapted to this new framework.

E{a:or u>1/2 we need¢§>f2 in order to have sufficiently
ong inflation. Hence we find that the size of the populated

region is larger than the curvature scale but still much
1

fh that case, the size of the populated universe can be esti-
mated as

-1/2
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Spo~ yMr!. (A5) 3 Tews
K= ——F——
5\/§Urec Trec

Combining with Eq.(Al1) we have

Sin v~XY2! that relatex to y. For the temperatures we takgyg~2.7 K
andT,..=1100Tcpyg- The main unknown in this coefficient
For largeX, thel =1 anisotropy inv becomes of order one at 'S Trec- . o
the distance ,, as expected. The value ofoe. is, to a very good approximation, the
If v is proportional to the fraction of clustered matter, asS&@me in all thermalized regions. Henc_e it can be inferred
we have assumed in the preceding section, a large drop from measurements of CMB anisotropies on large angular

this quantity is already excluded by observatip4@], so the scales in our observable region. Since we are interested in
constraint relatively small scales, we also need to make some assump-

tions about the power spectrum of density fluctuations. We
shall take a scale invariant cold dark ma(€DM) adiabatic

eak, 2
XEM51 (AB) spectrum. As we shall see, our ability to infer the precise
f2 value of a,¢. Will be limited by the fact that the density
parameter(), in the observable part of our universe is not
must be imposed on our model. known very precisely. Hence, we shall leave it as a free

This constraint is relevant to the question of classicalparameter. We emphasize tt{ is the value of the density
anisotropies in a quasi-open universe, discussed in[REf.  which is actually realized in our universe today, and whose
To an observer living at large distances from the center oprecise value we do not know yet. This should not be con-
the islandr>1 the universe would look anisotropic, with fused with the random variabl@ which appears in the prob-
d¢o~ yég over the curvature scale around that point. Forability distributions, and which takes different values in dif-
X>1 this anisotropy would be larger than the0 quantum ferent regions.

fluctuations from supercurvature modess). However, as In order to determiner,.., we note that
shown above, forxX>1 the typical observer must be at a
distancer ~X~1<1 from the center of the island, and the Trecd(R) =AY Q) oo(R), (B1)

arguments of Ref41] do not apply. Hence, even though the
constraint/A6) coincides with the one derived [41] (where  whereoy(R) is the present density contrast on the relevant
a single island was considered and the universe was naicaleR andA(() is the factor by which linear perturbations
taken to be homogeneous on very large sgalesinterpre-  have grown from the time of recombination until the present
tation is very different. It does not arise from requiring thattime. In an open universe, this factor is given [123]

the classical CMB anisotropy should be smaller thanlthe

>1 supercurvature anisotropy but from demanding that the 5 f(Xq)

factor v determining the density of civilizations should be Alfdo)= 2 Xrec
isotropic around us.

On the other hand, for the simple modg), one can find  \herex andx, .. are the values of (£ Q)/€ in our observ-

a much stronger constraint 0k by combining the bounds apje yniverse at present and at recombination respectively.
from the observed isotropy of the CMB discussed in Sec. Vlirhe functionf is given in Eq.(25).

with the bounds on the observed fraction of clustered matter. \yjith this. we have
Indeed, the supercurvature anisotropy can be expressed as '

3 f(xo)
K= ,
2\/50'0 XO

D{~10 6u2X, (A7)

whereX was defined in EqA2). Using the constraints from
the observed fraction of clustered mattes 3 [see Eq(36)]  where we have used the fact that=const in the matter era.
and requiringD?“< 109, this results in The present linear density contragg is given by[22,20)

X=10"4u2<1073, (A8) o0(Rga)) = (C1000) 20K A Rya)). (B2)

a much stronger constraint than E&6). Hence, the size of Here c10¢~=2997.9 is the speed of light in units of
the populated universe should be at least fihes larger 100 km s, 8, is the dimensionless amplitude at horizon
than the curvature scale in this model. crossing(which can be inferred from COBE measuremgnts
I'=Qgh is the “shape parameter,” with the present hubble
rate in units of 100 kms' Mpc™! (we ignore the effect of
baryon density in this expression fbi), andK contains the
As mentioned at the end of Sec. VI, in order to predict theinformation on the power spectrum and the length sBglg
expected values of) at Tcyg=2.7 K in our part of the we are considering.
universe, we need to know, as well as the coefficient For a scale invariant spectrur,is given by[20]

APPENDIX B: EVALUATION OF «
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o ~ 2 -1

|<(R)Ef0 a*T?(q)WA(gRHC Mpc~1)da, pur=10(G )

wheret,;, is the time at which the collapse occurs. The viri-
alization temperature can be estimated 'a§,~mpv5"
~my(G3p,irMZ) Y. Herem, is the proton mass, and,; is

the virial velocityv,i; ~(GMgy/L)*? whereL is the size of

the collapsed object. The later an object collapses, the colder
and rarer it will be.

The cooling rater.,, of a gas cloud of fixed mass de-
pends only on its density and temperature, but as shown
above both of these quantities are determined, fy.° The
timescale needed for gravitational collapse 7iga, ~t,i-
Therefore, the conditionrq,< 745, gives an upper bound
t, on the time at which collapse occurs. Matter that clusters
after that time should not contribute to the anthropic factor
v(Q).

In order to find numerical estimates, we shall consi@g] ~ Various cooling processes such as bremsstrahlung and
Rga=1—2 h™* Mpc. Roughly speaking, this corresponds line cooling in neutral hydrogen and hellurr; were considered

to the scale whose baryon content collapses to form a galax§ Ref. [28]. For a cloud of mas#ly~10"Mo, cooling

with a mass comparable to that of the Milky Way. Also, by turns out to be efficiefitfor

requiring that CDM predictions correctly reproduce the sta-
tistics for galaxy distribution on scales of tens of megapar-
secs[43], the shape parameter is constrained to be in the

where the transfer functiod in the CDM model can be
approximated ap42]

In(1+2.3
T(Q)Z—( 2,349 uil

+(5.469)%+ (6.710)4] Y4,

[1+3.981+(16.19)?

and the top-hat window functiod/ in momentum space is
given by

3
W(u)= Jg(sinu—u cosu).

t<t, ~3x100yr. (CY

range
I'~0.25+0.05.
For our estimates, we shall take=.25. With this, we find
K(1 h™! Mpc)=0.049, K(2 h™! Mpc)~0.026.

For the dimensionless amplitudg, we shall use the fit-
ting function given by Liddleet al. [22]

o4(Q)=(4.10+ 8.8 —8.500%)Y>x 1075  (B3)
Hence, the coefficient
3 f(Xo)
K:
22(Cq000) 2K Y2 51 (20)Xo

(B4)

will be sensitive to our ignorance of the value @f, in our
universe, as mentioned above.

In Fig. 1 we plotx as a function of} for the two chosen
values of the scal®y, -

This value oft, should be taken only as indicative, since the
present status of the theory does not allow for very precise
estimates.

From the time of recombination to the timg fluctua-
tions will grow by the factof23]

G, ()=

a0,

whereas the critical density contrast is given by

_3
5C—§f(X*)g(X*),

wheref(x) andg(x) are given in Eqs(25) and (27). Fol-
lowing the steps that lead to E8) we now find
v=erfd kxg(x,)]. (C2

Noting that in the matter er@3]

X1/2( 1+ X)1/2_ sinh™ lX1/2

. t=t
APPENDIX C: EFFECTS OF COOLING FAILURE recxrlézc(l"'xrec)llz_ sinh’lxrlé%

As mentioned at the end of Sec. IV, fragmentation of gas
clouds will only occur if the cooling timescale,,, is  and usingx,..<1 we have
smaller than the timescale needed for gravitational collapse
Tgrav - B€CAUSE Of this, fragmentation will be suppressed af-
ter a_ C_e_rta'n critical time, . Here _We shall investigate the SActually, the fraction of baryonic mattet, is also relevant for
possibility [28] that clouds collapsing at>t, do not effec-  qgjing. Following[28] we shall takeX,~0.1.
tively form stars even after they eventually cool. We shall éthis ypper bound on is determined by line cooling in helium.

see that, as a consequence, the peak of the distribution witly, Mg=10"M, there is also a narrow range of time near

be shifted to somewhat larger values(®f
The density of the virialized collapsing cloydg;, is given
by [28,25

t~3x 10" yr where cooling is again efficient due to hydrogen line
cooling. However, the range is very narrow and we shall disregard
the galaxies which may form during this short late period.
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e 2° 1 B A,
g(X*)~1+ 2t* ) E—l‘l'T
where
_ Trec (37Ttrec) 2B (C3)
* Teme! 2t '

Therefore, the fraction of matter that clusters on a given
scale before the critical time is basically obtained by shifting

y in Eqg. (28) by the constaniA,

v=erfqy+«A,). (C9

Using the valueg),=.5 andh=.5 for our observable uni-
verse in order to inferx (see Fig. 1 and t,.
~5.6x 10'(0Q,h?) "2 s, we havexA, ~0.2 (as in Appen-
dix B, we have usedl,..=1100Tcyg). The peak of the
modified probability distribution is plotted in Fig.(@urvec)
as a function ofu, next to the original curva where cooling

PHYSICAL REVIEW B0 023501

dP
dz

FIG. 5. The probability distribution fof) is sensitive to the fact
that objects which collapse at very late times have very low density,
and therefore may be unsuitable for life. Neglecting these “selec-
tion” effects, frame(a) shows the probability distribution fdR for
various values ofu (the value of() is the one measured at the
temperaturel ¢ yg= 2.7 K). In this case, the anthropic factof(})

failure is neglected. Asymptotically both curves differ only (150 shown in the platis just proportional to the total fraction of
by AYpeaw=xA,/2=0.1. This is much smaller than the matter that clusters on the galactic mass scale in the entire history of
width of the distributionAy~0.5, so the effect is rather g3 particular region. In framé) we disregard matter which clusters
small. In Fig. %a) we plot the probability distribution as a after the time when helium line cooling becomes inefficient, so that

function ofx=(1—Q)/Q (at the temperaturécz=2.7 K)

for three different values oft, without taking into account
cooling effects. For comparison, in Fig(lp we show the
modified distribution when matter that clumps after tilge

the collapsed galactic mass objects cannot fragment into stars. Fi-
nally, as a more extreme case, in frafopwe disregard matter that
clumps after the time, ~3x10° yr, since we do not see many
giant galaxies forming at redshifts lower than 2.

is disregarded.

We note that even if cooling is efficient, the density of theing at redshifts lower tham=2, we may consider as a third
protogalactic cloud is likely to affect the number and thepossibility the case where matter that clumps after the time
mass distribution of stars in the resulting galaxy. Masses of, ~3x10° yr is excluded from the anthropic factor. This
suitable stars should be large enough to provide the neceserresponds taA, ~1. Even in this extreme case the shift
sary luminosity and small enough so that the stellar lifetimein the peak|AypealeKA*/2~0.5 is of the same order of
is sufficient to evolve intelligent life. It is conceivable that magnitude as the width of the distributidny~0.5 [see Eq.
the number of such stars drops with the density, in which(35)]. The new distribution as a function afis plotted in
case the upper bound arshould be stronger than EGC1). Fig. 5c).

Again, galaxy formation is not understood to the extent that Therefore, we find that the impact of these effects on the
would allow us to estimate this upper bound with accuracyprobability distribution may be significant, but not dramatic,
However, since we do not observe many giant galaxies formand Eq.(34) is still valid by order of magnitude.
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