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Microwave background anisotropies in quasiopen inflation
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Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of produc-
ing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands.
In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation.
The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some
models incompatible with observations, and severely reduces the parameter space of others. Supernatural open
inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values ofV0

&0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can
be made compatible with observations.@S0556-2821~99!05816-6#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

There is at present some evidence, based on observa
of supernovae at large redshift@1#, that the Universe may no
be Einstein–de Sitter type~Vm51, VL50!, as predicted by
the simplest models of inflation. Furthermore, recent obs
vations of the cosmic microwave background~CMB! and
large scale structure indicate that the Universe may be o
(V05Vm1VL50.860.3) @2#. In the near future, observa
tions of the microwave background with a new generation
satellites, such as the Microwave Anisotropy Probe~MAP!
@3# and Planck@4#, will determine with an accuracy of orde
1% whether or not we live in an open Universe@5–7#. It is
therefore crucial to know whether inflation can be ma
compatible with such a Universe.

The idea that the Universe might be open is an old o
see for instance@8#. Early attempts to accommodate standa
inflation in an open Universe failed to realize the fact that,
usual inflation, homogeneity implies flatness@9#, because of
the Grishchuck-Zel’dovich effect@10#. The possibility of
having, through the nucleation of a single bubble in de Si
space, a truly open Universe arising from inflation is not n
either, see@11,12#. However, a concrete realization of a ful
consistent model was suggested only recently: the sin
bubble open inflation model@13,14#. Since then, there ha
been great progress in determining the precise primor
spectra of perturbations@15–28#, most of it based on quan
tum field theory in spatially open spaces. Simultaneously
great deal of effort was made in model building@14,29–31#
and in constraining the existing models from observations
the temperature power spectrum of CMB anisotropies@30–
33#.

Open inflation models provide a natural scenario for u
derstanding the large-scale homogeneity and isotropy.
thermore, these inflationary models generically predic
nearly scale-invariant spectrum of density and gravitatio
wave perturbations, which could be responsible for the
served CMB temperature anisotropies. Future precise ob
vations could determine whether indeed these models
compatible with the observed features of the CMB pow
0556-2821/99/60~8!/083501~17!/$15.00 60 0835
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spectrum. For that purpose it is necessary to know the
dicted spectrum with great accuracy. As we will show, op
models have a more complicated primordial spectrum of p
turbations, with extra discrete modes and possibly large
sor anisotropies.

Open inflation could be realized in the context of a sing
field scalar potential@13# or in multiple-field potentials
@14,29–31#, as long as there exists a false vacuum epo
during which the Universe becomes homogeneous and
one of the fields tunnels to the true vacuum, creating a sin
isolated bubble. The space-time inside this bubble is tha
an open Universe@34,11#. Although single-field models can
in principle be constructed, they require a certain amoun
fine-tuning in order to avoid tunneling via the Hawking
Moss instanton@14#. The problem is that a large mass
needed for successful tunneling and a small mass for
cessful slow-roll inside the bubble. For that reason, it see
more natural to consider multiple-field models of open infl
tion @14,29–31#, where one field does the tunneling, anoth
drives slow-roll inflation inside the bubble, and yet anoth
may end inflation, as in the open hybrid model@31#. Such
models account for the large-scale homogeneity observe
the Cosmic Background Explorer~COBE! @35# and are also
consistent with recent determinations of a small density
rameter@36–39#.

In this paper, we shall systematically explore the possi
constraints from CMB anisotropies on existing models
open and quasiopen inflation. The structure of the paper i
follows. In Sec. II, a brief review of the quantum tunnelin
and the primordial spectrum of perturbations is given. S
tion III is devoted to quasiopen inflation. In Sec. IV som
general bounds are found from CMB observations. In S
V, the bounds derived in the previous section are used
constrain several models of open inflation. Section VI d
cusses the probability distribution forV0 in quasiopen infla-
tion and corresponding constraints on the parameters of
models. Section VII contains our conclusions.

II. PRIMORDIAL PERTURBATION SPECTRA

There are essentially two kinds of primordial perturb
tions in open inflation, subcurvature and supercurvature
©1999 The American Physical Society01-1
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GARCÍA-BELLIDO, GARRIGA, AND MONTES PHYSICAL REVIEW D60 083501
the first category we have the usual scalar and tensor m
perturbations@16,17,23#, which are generated during th
slow roll inflation inside the bubble. The second category
modes arises because of perturbations which are gene
outside the bubble or as a result of the acceleration of
expanding bubble@15,32,17#. In particular, the fluctuations
of the bubble wall itself generate perturbations@19–21,24#
which are specific to open inflation. In addition, in the co
text of two-field models of open inflation@14#, we have
semiclassical effects due to tunneling to different values
the inflaton field @25,26#. All these perturbations creat
anisotropies in the CMB, which distort the angular pow
spectrum on large scales~low multipoles!. On smaller scales
the particle horizon at last scattering subtends an angl
about one degree on the sky for a flat universe, and so
what smaller for an open universe, due to the projection
fect of the geodesics. This effect shifts the first acoustic p
of the temperature power spectrum to higher multipo
( l peak;208V0

21/2) @40,41#, but the primordial spectrum a
those multipoles is essentially that of a flat Universe.

A. Quantum tunneling

The quantum tunneling that gives rise to the single bub
of open inflation can be described with the use of the bou
action formalism developed by Coleman-DeLuccia@34# and
by Parke@42# in the thin-wall approximation, valid when th
width of the bubble wall is much smaller than the radius
curvature of the bubble. This only requires that the bar
between the false and the true vacuum be sufficiently h
U0@DU5UF2UT . In this case we can write the radius
the bubble in terms of the dimensionless parametersa andb
@33#,

R0HT5@11~a1b!2#21/2[@11D2#21/2, ~1!

a[
DU

3S1HT
, b[

k2S1

4HT
, ~2!

wherek2[8pG andS1 is the surface tension of the bubb
wall, computed asS15*sF

sTds@2(U(s)2UF)#1/2. Heres is

the tunneling field. For a massM in the false vacuum, the
parametera.(DU/U0)M /HT , which characterizes the de
generacy of the vacua, can be made arbitrarily small by t
ing UT.UF . On the other hand, the parameterb
.(Ds/MPl)

2M /HT , which characterizes the width of th
barrier, is not so easily tunable, and could be very large
very small depending on the model, see Ref.@43#.

B. Subcurvature scalar and tensor perturbations

The primordial spectrum of scalar perturbations is sim
to that of the flat case, except for a prefactor that depend
the bubble geometry@17#,

PR~q!5AS
2 f ~q!, AS

25
k2

2e S HT

2p D 2

. ~3!
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HerePR(q) is the primordial spectrum of scalar metric pe
turbationsR, in term of which the continuum part of th
power spectrum1 is written as

^uR~q!u2&5
2p2PR~q!

q~11q2!
, ~4!

ande is the slow-roll parameter@44#

e5
1

2k2 S V8~f!

V~f! D 2

. ~5!

The functionf (q) @17# depends on the tunneling paramete
a andb, see Eq.~2!,

f ~q!5cothpq2
z2 cosq̃12qzsinq̃

~4q21z2!sinhpq
, ~6!

whereq̃5q ln„(11x)/(12x)… and

x5D~11D2!21/2, ~7!

z52b~11D2!21/2. ~8!

The function f (q) is linear at smallq, and approaches a
constant valuef (q)51 atq>1, see Refs.@33,43#. Hereq is
the effective momentum for scalar modes in an open U
verse, determined fromq25k221, where2k2 is the eigen-
value of the Laplacian.

In the presence of the bubble, the tensor primordial sp
trum1 is given by@23#

^uh~p!u2&5
p2Pg~p!

4p~11p2!
, ~9!

where

Pg~p!5AT
2 f ~p!, AT

258k2S HT

2p D 2

. ~10!

Herep is the effective momentum for tensor modes, defin
by p25k223. While for scalar modes the presence of t
function f (q) in the primordial spectrum becomes irreleva
for observations, for tensor modes the slope of the funct
at p50 is an important ingredient in the final value of th
predicted power spectrum at low multipoles@33#.

Note that the above spectra have been obtained unde
small backreaction approximation. Immediately after nuc
ation, the scalar and tensor modes have been assume
evolve in a nearly de Sitter spacetime. This assumption
reasonably satisfied in the models considered in this pa
but in models where the inflaton moves initially very fast, t
infrared end of the spectrum may be slightly different@28#.

1See the Appendix A for notation.
1-2
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MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D60 083501
C. Supercurvature and bubble-wall modes

Apart from the usual continuum of scalar (q2>0) and
tensor (p2>0) modes, generalized to an open Universe,
single-bubble inflationary models there is a new type
quantum fluctuations, which basically account for the co
bined effect of fluctuations generated during the fa
vacuum dominated era which penetrate the bubble, as we
excitations of the slow roll field generated by the accelera
growth of the bubble. These modes@15–17# are discrete
modes characterized by having an imaginary effective m
mentum~q2,0 or, equivalently,k2,1!, and therefore de-
scribe fluctuations over scales larger than the curvature s
whence its name ofsupercurvaturemode@note that the cur-
vature scale corresponds to the eigenmode with eigenv
k251, q250#.

The amplitude of the supercurvature mode@for the usual
two-field models such as the ones described by Eq.~57!, see
below# is found to be@17,32#

^uR Lu2&5p2ASC
2 , ~11!

where

ASC
2 5

k2

e S HF

2p D 2

5AS
2

2HF
2

HT
2 , ~12!

with AS
2 given by Eq.~3!.

However, this is not the only discrete supercurvatu
mode possible in single-bubble models. As realized in R
@18–20#, there are also scalar fluctuations of the bubble w
with k2523, q2524, which could in principle have its
imprint in the CMB anisotropies. Their amplitude was com
puted in Refs.@20,21#,

^uR Wu2&54p2AW
2 . ~13!

Here

AW
2 5

k2

2z S HT

2p D 2

5AS
2 e

z
, ~14!

wherez is given by Eq.~8! and AS
2 is the scalar amplitude

~3!. Such modes contribute as transverse traceless curv
perturbations@20,19#, which nevertheless behave as a hom
geneous random field@22#. It was later realized@24# that the
bubble-wall fluctuation mode is actually part of the tens
primordial spectrum, once the gravitational backreaction
included, so we should not consider it as a new source
anisotropies if the tensor mode is properly taken into
count.

III. QUASIOPEN INFLATION

As mentioned in the Introduction, it is difficult to con
struct single field models of open inflation without a certa
amount of fine-tuning@14#, and thus multiple-field models
were considered@14,29–31#. In these models, one fields
would do the tunneling while inside the bubble a second fi
f would drive slow-roll inflation. However, a large class
two-field models do not lead to infinite open Universes,
08350
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was previously thought, but to an ensemble of very large
finite inflating ‘‘islands.’’ The most probable tunneling tra
jectory corresponds to a value of the inflaton field at t
bottom of its potential; large values, necessary for the sec
period of inflation inside the bubble, only arise as localiz
fluctuations. These fluctuations are provided precisely by
supercurvature modes of the slow-roll fieldf, which due to
their long wavelength can create large regions of size lar
than the hubble radius where the field is coherent and t
can drive inflation. The interior of each nucleated bubble w
contain an infinite number of such inflating regions of c
moving size of orderg21, whereg!1 is given by the su-
percurvature eigenvalueg511q2[12L2 ~this in turn de-
pends on the parameters of the model, see below!. We may
happen to live in one of those patches of comoving sized
<g21, where the Universe appears to be open. This scen
was recently discussed in Ref.@26#. Here we will give a brief
account of the main results.

After tunneling in thes-field direction, there remains in
the f-field ~inflaton! direction a semiclassical displaceme
characterized by a Gaussian distribution2 with rms amplitude
f , where

f 2[^f2~ t0!&'
HF

2

~2p!2g
. ~15!

If f is sufficiently large~for a power law potential this mean
f ;MPl , whereas for the open hybrid model@31#, a much
smaller f would do!, then the fluctuations of the fieldf will
make inflation generic inside the bubble. However, regio
of size r;g21 with large positivef will be separated from
regions with large negativef by noninflating regions where
f is small.

In many models, however, the rms fluctuationf is much
smaller than the field value needed for inflation. Then, m
of the hypersurfacet5t0;H21 inside the bubble will not be
inflating, leading to empty space with no galaxies. On
other hand, inflating regions will still arise as localize
‘‘rare’’ fluctuations, with exponentially suppressed probab
ity

P}exp~2f2/2 f 2!, ~16!

wheref;MPl . High peaks of a random Gaussian field te
to be spherical. If we choose the origin of coordinates on
t5const hyperboloid to be at the center of the island, th
the profile of the field as we move outwards is given by t
l 50 supercurvature mode@see Eq.~A4!#, normalized to the
valuefc at the center of the bubble@26#,

2Here, and for the rest of the paper, we make the assumption
the slow-roll field does not affect the geometry outside the bub
~which we take to be de Sitter space!. If the slow roll field has a
mass outside the bubble, then its quantum fluctuations will driv
to large values where its potential energy substantially modifies
local expansion rate. This may have an effect on the distribution
the field inside the bubble, which requires further investigation.
1-3
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f l 50
g 5fc~ t !

sinh~Lr !

L sinhr
. ~17!

The rms amplitude of the remainingl .0 supercurvature
modes, which would account for departures from spheric
is much smaller, of orderg1/2f ! f !f(t0).

Let us concentrate on one of these inflating regions. T
initial value of fc determines how many e-foldings of infla
tion the center of the island will undergo, and hence
value of V0 that an observer in that region would measu
after inflation, at a given CMB temperature. For the sake
illustration, let us assume that this observer measu
V050.5 at the time whenTCMB52.728 K. Also, let us take
g51024. For r !g21;104 the field on at5const slice will
decrease very slowly with distance as we move away fr
the center. Note that at large distances from the centerr @1
we havefg}exp(2gr/2). Denoting byN the number of
e-foldings of inflation and assuming a quadratic poten
~a similar argument can be made for the hybrid mod!,
we have dN/N'2df/f. Using the relation
2dN5@V0(V021)#21dV0 , we find that observers out to
distancer;10 would measure a very similar density para
eter, which differs from the one at the center only
dV0'V0(V021)Ngr &1022. On the other hand, fo
r;g215104 the universe will look rather empty, and even
inflation proceeds there for a few e-foldings, the density
rameter would be too low for any galaxies to form and
observers to develop.

Although the inflating region in the example above h
spherical symmetry aroundr 50, it is clear that most observ
ers in that island will live atr @1. To them the universe
would look anisotropic. This effect was dubbed ‘‘classic
anisotropy’’ @25#, and can be estimated as follows. After e
pansion of Eq. ~17! for r !g21, we can separate th
t-dependent background from thet and r dependent pertur
bation,f l 50

g 5fc(t)1df, where

df5fc~ t !
g

2
~12r cothr !'2fc~ t !

g

2
ln coshr , ~18!

the last expression being a very good approximation
1!r !g21. To describe the Universe from the point of vie
of an observer living atr 5r 0@1, it is convenient to change
the coordinates (r ,u,f) on the spacelike hyperboloid to
new set (r 8,u8,f8) such that the pointr 5r 0 is now the
new origin of coordinates,r 850. In that case, we hav
coshr5sinhr0 sinhr8 cosu81coshr0 coshr8, and the field
can be separated in the formf l 50

g 5f0(t)1d0f, where
f0'fc(12gr 0/2) is the value of the field at the locatio
r 0 , which corresponds to a somewhat lower value ofV0
than that of the central region, and

d0f'f0~ t !~g/2!ln f ~r 8,u8!, ~19!

with

f ~r ,u![coshr 1sinhr cosu. ~20!
08350
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We can now evaluate the gauge invariant metric per
bation associated with this field fluctuation, which will re
main constant outside the horizon and will reenter during
matter era with an amplitude

F5
3

5

HTdf

ḟ0

5
3

5
AC ln f ~r ,u!, ~21!

where@26#

AC5
3

2

HT
2

mT
2 g; g5

2

3

mF
2

HF
2 1

1

8
HF

2R0
4~mT

22mF
2 !. ~22!

HereR0 is the radius of the bubble at tunneling~1!, mF and
mT are respectively the masses of the inflaton field in
false and in the true vaccuum, andg was computed, to orde
(HFR0)4, in Ref. @26#. Note that in the case of the simple
~uncoupled! two-field model@14#, wheremT5mF , these ex-
pressions coincide with those given in Ref.@25#.

In deriving Eq. ~19! we have concentrated in a sing
island and we have assumed that we live far from the cen
at r @1. This seems to be a minimal ‘‘Copernican’’ requir
ment, since in any island there are many more observers
from the center than near it. Hence, we should~at least!
impose the constraint that the CMB anisotropy induced
Eq. ~21! should not exceed the observational bounds.

However, this is not the full story@27#. Let us note, first
of all, that the amplitude of the perturbation~19! is propor-
tional tof0 . Now, when the ensemble of all possible islan
that contain a particular value off0 is considered, one finds
that those values off0 for which Eq. ~19! would be larger
than the perturbation caused by the usual supercurva
modes will occur typically near the center of the islands~see
Appendix B!. Hence, those are rather unlikely values off0
for us to observe. Therefore it seems reasonable to imp
not only that the anisotropy~21! should not exceed the ob
servational bounds, but also that it should not exceed
anisotropy created by thel .0 supercurvature modes.

These considerations naturally lead to the question
what are the most likely values forf0 or what is the most
probable value ofV0 in a given model. The probability dis
tribution for V0 in models of quasiopen inflation was studie
in Ref. @27#. Stronger constraints on the models can be
tained from this probability distribution in combination wit
CMB constraints. These will be discussed in Sec. VI.

IV. CMB TEMPERATURE ANISOTROPIES

Quantum fluctuations of the inflaton fieldf during infla-
tion produce long-wavelength scalar curvature perturbati
and tensor~gravitational waves! perturbations, which may
leave their signature in the CMB temperature anisotrop
when they re-enter the horizon. Temperature anisotropies
usually given in terms of the two-point correlation functio
or power spectrumCl , defined by an expansion in multipol
numberl . We are mainly interested in the large-scale~low
multipole number! temperature anisotropies since it is the
that gravitational waves and the discrete modes could
come important. Afterl;50, the tensor power spectrum
1-4
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MICROWAVE BACKGROUND ANISOTROPIES IN . . . PHYSICAL REVIEW D60 083501
drops down@45,46# while the density perturbation spectru
increases towards the first acoustic peak, see Ref.@47#. On
these large scales the dominant effect is gravitational red
via the Sachs-Wolfe effect@48#, for adiabatic initial condi-
tions like those considered here,

dT

T
~u,f!5

1

3
F~0!Q~h0 ,u,f!

12E
0

h0
dr F8~h02r !Q~r ,u,f!. ~23!

HereQ(r ,u,f) stands for the spatial dependence of the fl
tuation, andh05cosh21(2/V021) is the present conforma
time and also, to very good approximation, the distance
the last scattering surface (hLSS'0). The second term in Eq
~23! accounts for integration along the line of sight, and
important in an open universe, since the metric perturba
F evolves in time after reentering the horizon,F(h)
5FLSF(h), see Eq.~30!, where FLS is the value of the
perturbation at the surface of last scattering.

A. Scalar and tensor anisotropies

Perturbations generated during inflation have generic
Gaussian statistics since they arise from linearized quan
fluctuations. As a consequence, one can characterize the
perature anisotropies just with the two-point correlati
function, or angular power spectrum,

K dT

T
~ n̂!•

dT

T
~ n̂8!L

n̂•n̂85cosu

5(
l 51

`
2l 11

4p
Cl Pl~cosu!,

~24!

where (2l 11)Cl5(m52 l
l ^ualmu2&, brackets indicating aver

ages over different realizations, and where we have
panded the temperature anisotropy projected on the sk
spherical harmonics,

dT

T
~u,f!5(

l 51

`

(
m52 l

l

almYlm~u,f!. ~25!

The scalar and tensor components of the tempera
power spectrum can be computed as@43#

Dl
S[ l ~ l 11!Cl

S5 l ~ l 11!E
0

`

dq^uR~q!u2&Wql
2 , ~26!

Dl
T[ l ~ l 11!Cl

T5 l ~ l 11!E
0

`

dp^uh~p!u2&I pl
2 ,

~27!

where Wql and I pl @33# are the corresponding window

functions,3

3The eigenfunctionsPql for the subcurvature modes,P̄L,l(r ) for
the supercurvature~q5 iL, 0.L.1! and bubble wall (L52)
modes~below!, andGrr

pl for the tensor modes can be found in A
pendix A.
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1

5
Pql~h0!1

6

5 E0

h0
drF8~h02r !Pql~r !, ~28!

I pl5E
0

h0
drGp8~h02r !Grr

pl~r !, ~29!

which depend on the particular value ofV0 . The functions
F(h) andGp(h) are given by@23,33#

F~h!55
sinh2 h23h sinhh14~coshh21!

~coshh21!3 , ~30!

Gp~h!53
sinhh sinph22p cosph~coshh21!

p~114p2!~coshh21!2 .

~31!

The scalar window functionsWql grow as a large power ofq
at the origin, so that the scalar power spectrum is rat
insensitive to the ‘‘hump’’ in the functionf (q). window
functions I pl remain finite atp50, and only the linear de-
pendence off (p) at the origin prevents the existence of th
infrared divergence found in Ref.@49#. Furthermore, since
the functionsI pl

2 are not negligible near the origin, the tens
power spectrum turns out to be very sensitive to the ‘‘hum
in the spectral functionf (p); see Refs.@33,43#.

B. Supercurvature anisotropies

The supercurvature and bubble-wall modes also cont
ute to the temperature power spectrum. The supercurva
mode’s contribution to the CMB anisotropies can be writt
as

Dl
SC[ l ~ l 11!Cl

SC5p2ASC
2 l ~ l 11!W̄L,l

2 , ~32!

with the window function

W̄L,l5
1

5
P̄L,l~h0!1

6

5 E0

h0
drF8~h02r !P̄L,l~r !, ~33!

and the amplitudeASC
2 is given by Eq.~12!.

The bubble wall mode’s contribution to the CM
anisotropies can be written as

Dl
W[ l ~ l 11!Cl

W54p2AW
2 l ~ l 11!W̄2,l

2 , ~34!

where the window function is given by Eq.~33! for L52,
and the amplitudeAW

2 is found in Eq.~14!.

C. Classical anisotropies

We will concentrate here on the anisotropies associa
with quasiopenness, the classical temperature anisotro
The Sachs-Wolfe effect~23! for these metric perturbation
can be written as
1-5
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dT

T
~u!5

1

5
AC ln f ~h0 ,u!

1
6

5 E0

h0
drF8~h02r !AC ln f ~r ,u!. ~35!

Expanding in spherical harmonics~25!, and noticing that
the temperature anisotropy~35! only depends onu, we find

alm5F2l 11

4p G1/2

2pE du sinuPl~cosu!
dT

T
~u!dm0

~36!

[al0dm0 , ~37!

which gives, in this case,

~2l 11!Cl
C5 (

m52 l

l

^ualmu2&5^ual0u2&. ~38!

Therefore, we find that the power spectrum associated w
the classical anisotropies~21! can be computed as

Dl
C[ l ~ l 11!Cl

C5pAC
2 l ~ l 11!Wl

2, ~39!

Wl[E
0

p

du sinuPl~cosu!F1

5
ln f ~h0 ,u!

1
6

5 E0

h0
dr F8~h02r !ln f ~r ,u!G . ~40!

We have plotted this expression in Fig. 1, as a function
multipole numberl , for various values ofV0 ; and as a func-
tion of V0 , for the first few multipoles. As can be apprec
ated from the figure, the window functions for the semicla
sical mode for a given l are proportional to the
corresponding ones for the supercurvature modes. This
expected since, as mentioned in Sec. III and in Appendix
the quasiopen island can be thought of as a superpositio
supercurvature modes.

D. Bounds from CMB anisotropies

The relative importance of the different components
the power spectrum is crucial in order to derive bounds
the model parameters. We have plotted in Fig. 2 the qua
pole and tenth multipole of the CMB power spectrum f
each mode, normalized to their corresponding amplitud
Note the dip in the spectrum at certain values ofV0 due to
accidental cancellations@30,31,33# between the intrinsic and
integrated Sachs-Wolfe effects. This does not affect
bounds, since higher multipoles will fill in those gaps.

From the 4-year Cosmic Background Explorer~COBE!
maps@35#, the overall amplitude and tilt of the CMB tem
perature power spectrum at small multipole number h
been determined with some accuracy forV0.1 @50#

F l ~ l 11!Cl

2p G1/2

5~1.0360.07!31025, ~41!
08350
th

f

-

as
,
of

f
n
u-

s.

e

e

n51.0260.24. ~42!

For an open Universe, Bunn and White gave a compact
pression@51#, for n51,

AS54.931025
V0

g~V0!
V0

20.3520.19 lnV0, ~43!

whereg(V)/V55/2(11V/21V4/7)21 is a fitting function
to the suppression in the growth of scalar perturbations in
open universe relative to the critical density universe@52#,
and it was assumed that only the scalar component con
uted significantly to the CMB anisotropies. Under this a
sumption, one can deduce the following constraints, fo
scale invariant spectrum, see Refs.@33,26#,

HT

AeMPl

5ApAS'931025, ~44!

HF

HT
,A Dl

S/AS
2

2Dl
SC/ASC

2 '3, ~45!

e

z
,

Dl
S/AS

2

Dl
W/AW

2 '0.6, ~46!

FIG. 1. CMB power spectruml ( l 11)Cl
C , normalized to the

corresponding amplitudeAC
2 , for the semiclassical fluctuations, as

function of V0 , for the first few multipolesl 52,3,. . . 7, and as a
function of multipole numberl , for V050.3– 0.9. Note the dip in
the semiclassical power spectrum at different values ofV0 for dif-
ferent multipoles, due to accidental cancellations.
1-6
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AC,ADl
S/AS

2

Dl
C/AC

2 AS'331024, ~47!

where the approximations are valid through the range
&V0&0.9, for the quadrupole, see Fig. 3. The third expr
sion accounts for both the tensor and the bubble-wall c
straints, since the bubble-wall fluctuation is actually part
the tensor spectrum@24# and gives the largest contribution
low multipoles. The constraints coming from higher mul
poles are significantly weaker, see Fig. 2. One could ar
that the quadrupole is going to be hidden in the cosmic v
ance@7# and thus only the constraints at higher multipole
say l .2, should be imposed. However, polarization pow
spectra may one day be used to get around cosmic vari
@53# and we may be able to extract information about
scalar and tensor components at low multipoles. We w
therefore take the conservative attitude that consistent m
els of open inflation should satisfy the bounds coming fr
the first few multipoles, as long as they do not exceed
associated cosmic variance.

The bounds~44!–~47! are V0-dependent. For values o
(12V0)!1 analytic expressions for the temperature anis
ropy can be found as a power series in (12V0). In the limit
V0→1, the scalar and the tensor contribution remain fin

FIG. 2. Quadrupole~top figure! and tenth multipole~bottom
figure! of the CMB power spectra, normalized to the correspond
amplitude, l ( l 11)Cl /A2, for the tensor, scalar, supercurvatur
bubble-wall and semiclassical primordial spectra. We are assum
here the minimal contribution from tensors~a50, b51!.
08350
.4
-
-

f

e
i-
,
r
ce

e
ll
d-

e

t-

,

whereas the supercurvature and the semiclassical anis
pies vanish, as can be seen from Fig. 2. Due to this fac
the limit V0→1, the bounds~45!–~47! disappear and put no
constraint on the parameters of the models. In the scale
variant case,nS51, the scalar contribution in this limit is
given by

Dl
S5

2p

25
AS

2. ~48!

In the limit V0→1, the tensor contribution can be express
as @45#

Dl
T5

pAT
2

36 S 11
48p2

385 DBl , ~49!

whereBl5(1.1184, 0.8789,. . . ), for l 52,3,. . . , which ap-
proachesBl51 for large multipoles (l;10) and then decays
to zero afterl;50.

For the supercurvature and semiclassical tempera
anisotropies, expandingP̄ql(h0) and f (h0 ,u) in powers of
h0'2(12V0)1/2, it is easily seen that the contribution to th
corresponding window functions of the integrated Sac
Wolfe effect is suppressed by an extra power of (12V0)
with respect to the intrinsic Sachs-Wolfe contribution. Ta
ing this into account, the leading contribution to the tempe
ture anisotropy is given by the following expressions:

Dl
SC.

p2ASC
2

100

G~ l 12!2

G~ l 13/2!2 ~12V0! l , ~50!

Dl
W.

p2AW
2

25

G~ l 12!G~ l 13!

~ l 21!G~ l 13/2!2 ~12V0! l ,

~51!

g

ng

FIG. 3. This figure shows the bounds~44!–~47! as a function of
V0 . The dotted-dashed line corresponds to the actual constrain
the scalar component, (HT /AeMPl)3105, for a scale invariant sca
lar spectrum. The rest are upper bounds, onHF /HT ~solid line!, on
AC3104 ~dashed line!, and one/z ~dotted line!. As can be seen, for
V0.1, the upper bounds are not very restrictive.
1-7
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Dl
C.

p2AC
2

25

G~ l 12!G~ l 11!

lG~ l 13/2!2 ~12V0! l .

~52!

Better approximations can be found by just including mo
terms in the expansions ofP̄ql(h0) and f (h0 ,u), but this
will suffice for our purposes.

Then, for values of (12V0)!1, the bounds read

HF

HT
&

0.625

~12V0!
, ~53!

e

z
&

0.044

~12V0!2 , ~54!

AC&
5.331025

~12V0!
. ~55!

The error committed using this approximation is around
for the supercurvature and semiclassical bounds for value
V0'0.8, and less than 10% for the bubble wall bound a
values ofV0'0.9.

V. MODEL BUILDING

In this section we will review the different single-bubb
open inflation models present in the literature, and use
CMB observations to rule out some of them and sever
constrain others. We will see that open inflation mod
could be as predictive as ordinary inflation, in the sense
they also can be ruled out if they are in conflict with obs
vations.

A. Single-field models

As mentioned in the Introduction, single-field models
open inflation@13# require some fine-tuning in order to hav
a large mass for successful tunneling and a small mass
slow-roll inside the bubble@14#. Even if such a model can b
constructed from particle physics, it still needs to satisfy
constraints coming from observations of the CMB anisot
pies. In the thin wall regime, these models lack both sup
curvature modes@17# and semiclassical anisotropies, by co
struction. However, in some cases, they produce too la
tensor anisotropies at low multipoles@33#, where they are
dominated by the bubble-wall fluctuations.

Let us analyze a typical example, which is a varia
of the new inflation type@13#. The potential is a quartic
double well, to which a double barrier has been add
near the origin. Tunneling occurs from a symmetric pha
at s50 to a valuesb from which the field slowly rolls
down the potential towards the symmetry breaking phas
s5v;MGUT;1015GeV. The fact that we have a finit
number of e-folds,Ne560, requiressb;v exp(2aNe)!v,
where a.mT

2/3HT
2 . The rate of expansion in the tru

vacuum is of the order of that in the false vacuu
HT.„8pV(0)/3MPl

2
…

1/2;331026MPl , which implies
e;1023, for agreement with CMB anisotropies. Choosing
typical mass in the false vacuum to beM;MGUT, we find
08350
e

of
d

e
ly
s
at
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f

or

e
-
r-
-
e

t

d
e
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bsingle.S sb

MPl
D 2 M

HT
;531029, ~56!

which givesz;2b;1028, an extremely small number tha
makes it impossible to satisfy the bubble-wall constrai
e,z, see Eq.~46!. In other words, the simplest single-fiel
models of open inflation@13# are not only fine-tuned bu
actually produce too large gravitational-wave anisotropies
the CMB on large scales to be consistent with observatio
The reason for that is that in a new inflation type potent
slow roll has to begin very close tos50 in order to have
sufficient inflation. However, this does not leave much roo
for a sufficiently thick barrier.

Linde has recently proposed a new single-field open
flation model @54# in which the two different mass scale
needed for tunneling and for slow-roll can coexist. This
basically a quadratic potential, where a barrier isappendedat
f;3MPl . Although the model is somewhatad hocfrom the
point of view of particle physics, there is in principle th
possibility of making the barrier sufficiently thick, so that th
bubble wall fluctuations will not be important. This mod
has specific signatures of its own@54,55#.

B. Coupled and uncoupled two-field models

In this section we shall consider a class of two-field mo
els @14# with a potential of the form

V~s,f!5V0~s!1
1

2
m2f21

1

2
g2s2f2. ~57!

Here V0 is a non-degenerate double well potential, with
false vacuum ats50 and a true vacuum ats5v. Whens is
in the false vacuum,V0 dominates the energy density and w
have an initial de Sitter phase with expansion rate given
HF

2'8pV0(0)/3MPl
2 . Once a bubble of true vacuums5v

forms, the energy density of the slow-roll fieldf may drive
a second period of inflation. However, as pointed out in R
@14#, the simplest two-field model of open inflation, given b
Eq. ~57! with g50 andmÞ0, i.e., theuncoupledtwo-field
model, is actually a quasiopen one; this is so because eq
time hypersurfaces, defined by thes field after nucleation,
are not synchronized with equal-density hypersurfaces,
termined by the slow-roll of thef field during inflation in-
side the bubble. In order to suppress this effect it was arg
@14# that a large rate of expansion in the false vacuum w
respect to the true vacuum,HF@HT , could prevent thef
field from rolling outside the bubble and distorting the equ
density hypersurfaces inside it. However, this would indu
@32# a large supercurvature mode anisotropy in the CM
which would be incompatible with observations. A caref
analysis@25,26# shows that indeed the effect is important
low multipoles. In this model,mF5mT5m, the supercurva-
ture eigenvalueg52mF

2/3HF
2 , and in order to satisfy Eq

~47! it requires

HF

HT
.S Dl

C/AC
2

Dl
S/AS

2 D 1/4 1

AAS

'60, ~58!
1-8
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which is incompatible with the supercurvature constraint

HF

HT
,S Dl

S/AS
2

Dl
SC/ASC

2 D 1/2 1

&
'3. ~59!

On the other hand, for values ofV0*0.9, combining the
bounds~53! and ~55! we find that

137~12V0!1/2&
HF

HT
&0.6~12V0!21, ~60!

which cannot be satisfied unlessV0*0.97; see Fig. 4.
Therefore, this model seems to be ruled out forV0&0.97.

In order to construct a truly open model, Linde a
Mezhlumian suggested takingm50 and gÞ0, i.e., the
coupledtwo-field model@14#. In this way, the mass of the
slow-roll field vanishes in the false vacuum, and it wou
appear that the problem of classical evolution outside
bubble is circumvented. However, as we showed in R
@26#, this is not exactly so, and actually the whole class
models~57! leads to quasiopen Universes, which are co
strained by CMB observations. Let us work out those c
straints in detail here. We will assume a tunneling poten
like @14#

V0~s!5V01
1

2
M2s22aMs31

1

4
ls4. ~61!

For simplicity we will takea5Al. Then the field can
tunnel forf,fc5M /g, when the minimum of the potentia
at sÞ0 is deeper than the minimum ats50. The constant
V0.2.77M4/l has been added to ensure that the abso
minimum, atf50 and s0.1.3sc , has vanishing cosmo
logical constant. Heresc is the minimum forf5fc . After
tunneling, the fieldf moves along an effective potentia
V(f)5mT

2f2/2, where the effective mass varies on

FIG. 4. Constraints onHF /HT due to supercurvature and sem
classical fluctuations in the uncoupled open inflation model. T
region above the dashed line~due to supercurvature fluctuation!
and below the solid line~due to semiclassical fluctuations! is ex-
cluded by observations. The region allowed by observations~the
small corner to the right of the picture! leaves only values ofV0

that are very close to 1.
08350
e
f.
f
-
-
l

te

slightly from tunneling to the end of inflation,mT
.1.3gsc . This potential drives a period of chaotic inflatio
with slow-roll parameterse5h51/2Ne.1/120. Substituting
into Eq. ~44! we find HT56.3mT.831026MPl , and there-
fore gsc51026MPl . The rate of expansion in the fals
vacuum is determined fromHF

2/HT
25114ab, where b

5(4p&/3l)M3/HTMPl
2 , which gives

M5
~114ab!1/2

4b
HF>&HF , ~62!

the last condition arising from preventing the formation
the bubble through the Hawking-Moss instanton; see R
@14#. Furthermore, takingmF50 in the equation~22! for the
eigenvalueg gives

AC5
3

16

HF
2

HT
2 ~R0HT!45

3~114ab!

16@11~a1b!2#2,331024.

~63!

From the supercurvature mode condition~45!, (114ab)1/2

,3, together with Eq.~62! we find the constraintb,1/2.
From Eq. ~63!, we realize that having nearly degenera
vacua,a!1, is not compatible with observations. Satisfyin
Eq. ~63! would requireb!1 anda@1. However, for these
values of the parameters we expect large tensor contr
tions; see Refs.@33,43# ~unless of courseV0 is sufficiently
close to one!. So there should be a compromise between
different mode contributions.

We have shown in Fig. 5 the complete temperature po
spectrum for a coupled two-field model havinga510 and
b50.2, forV050.4 andV050.8, which are consistent with
observations. It has contributions from all the modes: sca
tensor, supercurvature, semiclassical and bubble-wall. N
however, that the bubble-wall mode is in fact included in t
sharp growth of the tensor contribution at small multipo
number, as emphasized in Ref.@24# and shown explicitly in
Fig. 5, and should not be counted twice. Although it is
principle possible to construct a model consistent with obs
vations, the parameters of such a model are not very nat
In order to suppress the associated semiclassical anisot
we had to choose special values of the parameters. As ca
seen from Fig. 5, there still exists a range of parameters
which all contributions to the CMB anisotropies are comp
ible with present observations. However, future observati
by MAP and Planck surveyor will help constrain or even ru
out such models.

C. Supernatural open inflation

This model consists of a complex scalar field with
slightly tilted Mexican hat potential, where the radial com
ponent of the field does the tunneling and the pseu
Goldstone mode does the slow-roll. This model was cal
‘‘supernatural’’ inflation in Ref.@14#, because the hierarch
between tunneling and slow-roll mass scales is protected
an approximate globalU(1) symmetry. Expanding the field
in the formF5(s/&)exp(if/v), wherev is the expectation
value ofs in the broken phase, we consider a potential of

e

1-9
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form V5V0(s)1V1(s,f), whereV0 is U(1)-invariant and
V1 is a small perturbation that breaks this invariance. It
assumed thatV has a local minimum atF50, which makes
the symmetric phase metastable. We shall consider a ti
the potential of the formV15L4(s)G(f), where L is a
slowly varying function ofs that vanishes ats50. For defi-
niteness we can takeG5(12cosf/v). The idea is thats
tunnels from the symmetric phases50 to the broken phase
s05v, landing at a certain value off away from the mini-
mum of the tilted bottom. Once in the broken phase,
potentialV1 cannot be neglected, and the fieldf slowly rolls
down to its minimum, driving a second period of inflatio

FIG. 5. The complete angular power spectrum of tempera
anisotropies for the coupled two-field model withV050.4 ~higher
plot! andV050.8 ~lower plot!, for ~a510, b50.2!. We have cho-
sen as cosmological parametersh50.70, VB50.05, VL50, Nn

53.04. We show the individual contributions from the scalar~S!,
tensor~T!, supercurvature~SC!, semiclassical~C! and bubble-wall
~W! modes. Note that the bubble-wall mode is responsible for
large growth of the tensor contribution at low multipoles. Only t
scalar modes remain beyond aboutl 550, where they grow towards
the first acoustic peak. For comparison, we have superimpose
available CMB anisotropy data, as compiled by Tegmark@56#.
08350
s

in

e

inside the bubble. Depending on the value off on which we
end after tunneling, the number ofe-foldings of inflation will
be different.

As in the two field model, the soft mode which corr
sponds to a change in the value off after tunneling mani-
fests itself as a supercurvature mode which leads to qua
pen inflating islands. For the generic potential

V1~f!5L4S 12cos
f

v D , ~64!

we find the slow-roll parameters@44#

e5
1

2k2 S V8~f!

V~f! D 2

5
1

2k2v2 cot2
f

2v
!1, ~65!

h5
1

k2

V9~f!

V~f!
5e2

1

2k2v2 !1. ~66!

From the constraint on the spectral tilt, under the slow-r
approximation,

nS21[
d ln PR~k!

d ln k
.26e12h

524e21/k2v2.20.2 , ~67!

we find that, necessarily,k2v2.5, which means that the ve
of s is v.MPl . We are again in a situation similar to th
single-field models, where we need some extreme fi
tuning to prevent the Hawking-Moss instanton from formi
the bubble; see Ref.@14#. Indeed, for a generic tunnelin
potential like Eq.~61! we haveV0.M2s0

2/2 and thusHF

.2Ms0 /MPl>M . Under this condition the tunneling doe
not occur along the Coleman-DeLuccia instanton, which
necessary for the formation of an open Universe inside
bubble. The only way to prevent this is by artificially ben
ing the potential so that it has a large mass at the fa
vacuum. In Ref.@14# a way was proposed to lower the min
mum at the center of the Mexican hat, using radiative c
rections from a coupling of theU(1) field F to another
scalar x. For certain values of the coupling constant,g4

532pl, it is possible to make the two minima, ats50 and
s0 , exactly degenerate. The tunneling potential is then

V0~s!5
l

2
~s0

22s2!s21ls4 ln
s

s0
, ~68!

where s05M /Al.MPl . The associated tunneling param
eters becomea50 and b5(s0 /MPl)

2M /HT.M /HT ,
which can be large. As emphasized in Ref.@26#, there is a
supercurvature mode in this model, associated with the m
less Goldstone mode, which induces both supercurvature
semiclassical perturbations. Because of the different norm
ization of the supercurvature mode in supernatural inflati
HF→2R0

21, the supercurvature constraint~45! should read,
in this case,

re

e
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R0HT.2&S Dl
SC/ASC

2

Dl
S/AS

2 D 1/2

'0.7, ~69!

which is not trivially satisfied, even for degenerate minim
On the other hand, the eigenvalueg5R0

2mT
2/2 for the Gold-

stone mode@26# induces a large semiclassical perturbati
~47! unless

R0HT,A4AS

3 S Dl
S/AS

2

Dl
C/AC

2 D 1/4

'0.02. ~70!

It is clear that these two constraints cannot be accommod
simultaneously. For values ofV0.0.9, the bounds give

3~12V0!&R0HT&0.008~12V0!21/2, ~71!

which cannot be satisfied unlessV0*0.98; see Fig. 6.
Therefore, the model is incompatible with observations
V0&0.98.

D. Induced gravity open inflation

This model was proposed in Ref.@29# as a way of avoid-
ing the problems of classical motion outside the bubble. T
inflaton field is trapped in the false vacuum due to its no
minimal coupling to gravity, with couplingj. When the tun-
neling occurs it is left free to slide down its symmetry brea
ing potentialV(w)5l(w22n2)2/8. The expectation value o
the inflaton at the global minimum gives the Planck ma
today: MPl

2 58pjn2. The model is parametrized b
a58UF /ln4, which determines the value of the stable fix
point in the false vacuum,wst

25n2(11a), as well as the
difference in the rates of expansion in the false and t
vacua, HF

25HT
2(11a)/a, and the slow-roll parameters

e58j/(116j)a2, h58j(12a)/(116j)a2; see Ref.@30#.
We will assume, for thes field, a tunneling potential of

the type

FIG. 6. Constraints onR0HT due to supercurvature and sem
classical fluctuations in the supernatural open inflation model.
region below the solid line~due to supercurvature fluctuations! and
above the dashed line~due to semiclassical fluctuations! is excluded
by observations. The region allowed by observations~the small
corner to the right of the picture! leaves only values ofV0 that are
very close to 1.
08350
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U~s!5
1

4
l8s2~s2s0!21mU0F12S s

s0
D 4G , ~72!

where s05MA2/l8, U05M4/4l8 and m!1 for the thin-
wall approximation to be valid. This potential gives
tunneling parameter b5(2p/3l8)M3/HTMPl

2 , which
determines the relation between the mass of thes field
in the false vacuum and the rate of expansion the
M5HF(111/a)1/2/mb. Thanks to m!1, we can have
M@HF for values of b>1, which induces gravitational
wave anisotropies that are well under control.

Furthermore, the induced gravity model seems to be tr
open, since the inflaton fieldw is static in the false vacuum
and there is thus no supercurvature mode associated
classical motion outside the bubble; see Ref.@26#. Therefore
the constraint~47! does not apply, and there exists for th
model a range of parameters for which all contributions
the CMB anisotropies are compatible with observations;
Ref. @33#. However, the instanton may not take you towst in
the true vacuum, but to a different value, closer to the m
mum of the potential,w5v. In that case, the number o
e-folds is smaller than expected, and so is the value ofV0 .
Such effects should be taken into account for the determ
tion of the model parameters.

E. Open hybrid inflation

This model was proposed recently@31#, in an attempt to
produce a significantly tilted scalar spectrum in the cont
of open inflation, in order to be in agreement with large sc
structure@57#. It is based on the hybrid inflation scenar
@58,59#, which has recently received some attention from
point of view of particle physics@60–64#, together with a
tunneling field that sets the initial conditions inside t
bubble.

In this model there are three fields: the tunneling fields,
the inflaton fieldf and the triggering fieldc. The tunneling
occurs as in the coupled model of Sec. V B with potentia

U~s,f!5V01
l

4
s2~s2sc!

21
1

2
g2~f22fc

2!s21U0 ,

~73!

where sc52M /Al, fc5M /g, V0.2.77M4/l, to ensure
that at the global minimum we have vanishing cosmologi
constant, andU0 is the vacuum energy density associat
with the triggering field. We satisfyV0!U0 . If the s field
tunnels whenf5fT53fc/4, then DU5UF2UT.V0/2
.mT

2fc
2/4. After that, the inflaton field will slow-roll down

the effective potentialU5U01mT
2f2/2.U0 driving hybrid

inflation, until the coupling toc triggers its end. The mode
is parametrized bya5mT

2/HT
2 , see Refs.@31,33,43#, in terms

of which the spectral tilts can be written asnS2152a/3
26e and nT522e. At tunneling we can write
V0.mT

2fc
2/258mT

2fT
2/9, so that the slow-roll paramete

e5(a/3)9V0/16UT53aab/2, where 4ab5DU/UT
.V0/2UT , see Eq.~2!, and thus

e

1-11



e

ts
st

ti-
I

he
-

,

e
br

x-
a
nt
he

s
io
te
e
ow

ld
u

a
e
e
th
e
a-

e

r-
ow

hat
del
is-

low-
of

the
lity
is

ture

con-
and

ible
s.
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nS511
2a

3 S 12
27ab

2 D . ~74!

In order for open hybrid models to have a large tilt, w
requireboth a large value ofa and a small value ofab. As
we will show, this will be impossible given the constrain
~44!–~47! from the CMB. For that purpose, we should fir
compute the tunneling parametersa5M /2HT and
b 5 (4p&/ 3l)M3/HT MPl

2 .(V0/4UT)HT /M52abHT /M .
Since bothHT,M andV0!UT , we expecta.1 andb!1,
which will induce large tensor anisotropies at low mul
poles. This is a generic feature of open hybrid models.
order to satisfy the CMB constraints we require

HF
2/HT

25114ab&10, ~75!

e5
3aab

2
&

2b~0.6!

@11~a1b!2#1/2, ~76!

AC5
3~114ab!

16@11~a1b!2#2 &331024, ~77!

M5
2a

~114ab!1/2HF.HF . ~78!

Note that MF
2'2M2.2HF

2 . Since a.1 requires
b,V0/8UT!1, we can use the third constraint to get t
bounda.5, which then imposes~through the second con
straint! that a&0.8/a(11a2)1/2.1/a2,1/30. This means
that the scalar tilt~74! cannot be significantly larger than 1
as was the aim of Ref.@31#.

We have plotted in Fig. 7 the complete angular pow
spectrum of temperature anisotropies for the open hy
model, in the caseV050.4 and V050.8, for ~a56, b
50.01!. In order to prevent the tensor contribution from e
ceeding the cosmic variance, we had to reduce the sc
spectral tilt ton51.002, which is essentially scale invaria
and may not be sufficient to allow consistency with t
large-scale structure@57#. Furthermore, as we decrease inV0
it will be necessary for scalar spectra to be closer and clo
to scale invariance, in order to reduce the tensor contribut
In any case, there exists for this model a range of parame
for which all contributions to the CMB anisotropies, se
e.g., Fig. 7, are compatible with observations, even for l
values ofV0 . Of course, as we approachV0'1, it is much
more likely to accommodate the bounds.

VI. PROBABILITY DISTRIBUTION FOR V0

As mentioned in Sec. III, stronger constraints on two fie
models arise if we take into account the probability distrib
tion for V0 , which was considered in Ref.@27#. Inside a
given bubble, there will be observers which will measure
possible values ofV0 , and the probability for a given valu
of V0 is taken to be proportional to the number of collaps
objects of galactic size that would form in all regions wi
that value ofV0 . This probability is the product of thre
competing factors. One is the ‘‘tunneling’’ factor, which b
08350
n

r
id

lar

er
n.
rs

,

-

ll

d

sically corresponds to Eq.~16! and tends to suppress larg
values off0 , favoring low values ofV0 . The other is the
‘‘anthropic’’ factor, related to structure formation. The fo
mation of objects of galactic size is suppressed in a l
density universe, and so this factor favors large values off0 .
Finally, there is also a volume factor, taking into account t
longer inflation leads to more galaxies, although for mo
parameters where this factor is dominant, the probability d
tribution is sharply peaked atV051.

We should emphasize that we are assuming that the s
roll field outside the bubble does not affect the geometry
de Sitter space. If, for instance, the Universe outside
bubble is in a process of self-reproduction, the probabi
distribution for V0 inside the bubble may be affected. Th
issue requires further investigation.

FIG. 7. The complete angular power spectrum of tempera
anisotropies for the open hybrid model withV050.4 ~higher plot!
and V050.8 ~lower plot!, for ~a56, b50.01!. The cosmological
parameters are the same as in Fig. 5. We show the individual
tributions from the scalar, tensor, supercurvature, semiclassical
bubble-wall modes. Note that the bubble-wall mode is respons
for the large growth of the tensor contribution at low multipole
Only the scalar modes remain beyond aboutl 550, where they
grow towards the first acoustic peak.
1-12
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With the above assumptions, it was found that, in terms
the variable

x[S 12V0

V0
D ,

the logarithmic distributionW5dP/d ln x is peaked at the
value

xpeak'k21S 3

2
m2

5

4D 1/2

, ~79!

wherek;0.1 is a parameter related to structure formati
andm is given by

m5
p2

6
R0

4V~f0!e5
1

16AS
2@11D2#2 . ~80!

Near the peak value, the probability distributionW is Gauss-
ian, with rms given by

D ln x;~6m25!21/2. ~81!

These expressions are valid form*1. For smaller values, the
peak is atx50, meaning that most observers will see a fl
universe. On the other hand, the value ofm should not be too
large, saym&3, otherwise, from Eqs.~79! and ~81!, we
would have lnxpeak*3 and D ln x&0.3, so the observed
value,x;1, would be many standard deviations away fro
the peak value.

Using AS'531025, and Eqs.~75!, ~76!, we havea
'(4ASm1/2)21/2, b&4.5AS

1/2m1/4 and

e&1023m1/2. ~82!

In the coupled model,e;1022 and this constraint is no
satisfied form&3. One possibility would be to increase th
value of the parameterm, but then a value ofV0*0.1 would
be extremely unlikely. Thus, the coupled model does
seem to accommodate well an intermediate value of the d
sity parameter 0.1&V0&0.7, and produce at the same tim
sufficiently small CMB anisotropies. However, we must r
call that for values ofV0 close to 1, the constraints from
supercurvature and bubble wall anisotropies are significa
reduced. The constraints~75!, ~76! can then be substituted b
Eqs.~53!, ~54!, and~82! is replaced by

e&431026~12V0!24m1/2.

Thus, for (12V0);0.1, the constraints are satisfied even
e;1022.

For the sake of illustration, let us takem51. Then the
probability distribution forV0 is peaked in the interestin
range: all values 0.1&V0&0.9 fall within one standard de
viation or so from the peak value and are not strongly s
pressed. This value ofm can be obtained by takinga550
and, for instance,b50.08. Such values ofa and b would
lead to unacceptably large supercurvature and wall fluc
tion anisotropies if we take, sayV0&0.8. However, forV0
*0.85 we find that the anisotropies are below the obse
08350
f

,

t

t
n-

-

ly

r

-

a-

a-

tional bounds~see Fig. 8!. Therefore, the coupled model is i
good shape if the measured value ofV0 turns out to be not
too far from 1. This is very simple to understand: in th
limit, all the effects of the bubble wall are strongly su
pressed.

This should be compared with the situation in Fig.
There, the CMB map is acceptable even forV050.4. How-
ever, with a510, we havem;103. In this case the peak
value is at lnxpeak.6 and the standard deviation isD ln x
'0.01. This means that the ‘‘measured’’ valueV050.4 used
for that plot is formidably unlikely. For those values of th
parameters, most observers within the same bubble wo
measure much smaller values of the density parameter.

Finally, for the open hybrid model@31#, the parametere
can be made as small as desired, and the condition~82! can
be easily satisfied. The reason is that in this model the ra
of values of the inflaton field are well below Planck scale a
the probability distribution~16! easily covers those value
within one ‘‘standard deviation.’’

FIG. 8. The complete angular power spectrum of tempera
anisotropies for the coupled model~top panel! and for the open
hybrid model~bottom panel! with V050.85, for~a550, b50.08!.
The cosmological parameters are the same as in Fig. 5.
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VII. CONCLUSIONS

Single-bubble open inflation is an ingenious way of re
onciling an infinite open Universe with the inflationary par
digm. In this scenario, a symmetric bubble nucleates in
Sitter space and its interior undergoes a second stag
slow-roll inflation to almost flatness. At present there is
growing number of experiments studying the CMB tempe
ture anisotropies at fractions of a degree resolution~corre-
sponding to multipole rangesl 520– 800!, and they already
put some constraints on the spatial curvature of the unive
However, in the near future, observations of the CM
anisotropies with MAP and Planck will determine wheth
we live in an open Universe or not with better than 1
accuracy. It is therefore crucial to know whether inflation c
be made compatible with such a Universe. Single-bub
open inflation models provide a natural scenario for und
standing the large-scale homogeneity and isotropy, but m
importantly, they generically predict a nearly scale invaria
spectrum of density and gravitational wave perturbatio
Future observations of CMB anisotropies and large sc
structure power spectra will determine whether these mo
are still valid descriptions. For that purpose, it is necessar
know the predicted spectrum with great accuracy. In t
paper we have explored the CMB anisotropy spectrum
various models of single-bubble open inflation. A host
features at low multipoles due to bubble wall fluctuation
supercurvature modes and quasiopenness place signifi
constraints on these models.

In particular, we find that the simplest uncoupled tw
field model and the ‘‘supernatural’’ model can only acco
modate CMB observations provided thatV0>0.98. Simi-
larly, the simplest single-field models of open inflatio
based on a modification of new inflationary potentials w
the addition of a barrier near the origin, induce too lar
tensor anisotropies in the CMB unless the universe is su
ciently flat. Other single field models, where a barrier is su
ably appended to a generic slow-roll potential far from t
origin may not suffer from this problem@54#.

For the coupled two-field model, there is a range of p
rameters for which all constraints from CMB anisotropies
satisfied even ifV0 is rather low~sayV0'0.4!. On the other
hand, as argued in@27# ~see Sec. V!, stronger constraints
arise if we consider the probability distribution for the de
sity parameter for a given set of model parameters, and
quire that the measured value ofV0 is not too unlikely in the
ensemble of all possible observers inside the bubble. In
case, CMB constraints can still be accommodated provi
that V0>0.85.

Finally, we have considered the open hybrid mod
which was introduced in@31# with the motivation of gener-
ating a tilted blue spectrum of density perturbations. In t
model, all CMB constraints can be accommodated even
low V0 . Also, model parameters can be chosen so that t
cal observers will measure the density parameter in the ra
0.1&V0&0.9. In this sense, the open hybrid model far
better than the coupled two-field model. This is perhaps
too surprising, since this model involves three fields a
hence has more free parameters. Even so, it turns out tha
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the parameter range where the CMB anisotropies are c
patible with observations at low multipoles, the tilt of th
scalar spectrum is negligible.

In conclusion, we find that existing models of open infl
tion are strongly constrained by present CMB data. Ho
ever, there is still for all of them a range of parameters wh
they would be compatible with observations.

Hawking and Turok@65# have recently proposed that it i
possible to create an open universe from nothing in a mo
without a false vacuum. The instanton describing this p
cess is singular, and therefore its validity has been subjec
question@66#. Nevertheless, it has also been pointed out t
the quantization of linearized perturbations in the singu
background is reasonably well posed@67#. Provided that one
can make sense of the instanton by appealing to an und
ing theory where the singularity is smoothed out, it see
that the details of that theory need not be known in orde
calculate the spectrum of cosmological perturbations. T
spectrum can be quite different from that of the one-bub
universe case at large scales~see e.g.@28#, where an analyti-
cally solvable model was considered!, and it deserves furthe
investigation.
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APPENDIX A

The open universe scalar harmonics for the subcurva
modes can be written asQqlm5Pql(r )Ylm(u,f), where@69#

Pql~r !5AG~ iq1 l 11!G~2 iq1 l 11!

G~ iq !G~2 iq !

Piq21/2
2 l 21/2~coshr !

Asinhr
.

~A1!

HereYlm(u,f) are the usual spherical harmonics.
The open universe scalar harmonics for the supercu

ture modes (q252L2) can be written as YL,lm

5P̄L,l(r )Ylm(u,f), where@19#

P̄L,l~r !5AG~ l 111L!G~ l 112L!

2

PL21/2
2 l 21/2~coshr !

Asinhr
.

~A2!

The various multipolesl>L can be obtained from

PL21/2
1/2 ~coshr !

Asinhr
5A2

p

coshLr

sinhr
, ~A3!

PL21/2
21/2 ~coshr !

Asinhr
5A2

p

sinhLr

L sinhr
, ~A4!
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with the recurrence relation

~L22 l 2!PL21/2
2 l 21/2~coshr !5PL21/2

3/22 l ~coshr !

2~2l 21!cothrPL21/2
1/22 l ~coshr !.

~A5!

To define the primordial scalar power spectrum we
sume that at the end of inflation the scalar metric pertur
tion takes the form

R→(
L

RLYL,lm ~A6!

1 (
6 lm

E
0

`

dqR6~q!Qqlm ~A7!

from where the explicit expressions for the amplitudesAS
2 ,

ASC
2 and AW

2 can be read off. The continuum part of th
scalar power spectrum is defined as

^uR~q!u2&5(
6

uR6~q!u2, ~A8!

see@17# for details.
To describe the open universe gravitational waves we

the following notation. The perturbed metric~if we only con-
sider even gravitational perturbations! can be written as

ds25a2~h!@2dh21~g i j
(0)12hi j !dxidxj #. ~A9!

The perturbationhi j is then expanded as

hi j 5 (
6 lm

E
0

`

dph6plm~h!Qi j
plm~xk!, ~A10!

where the even harmonicsQi j
plm(xk)5Gi j

pl(r )Ylm(u,f) are
transverse and traceless@69,23,33#, and the radial componen
is given by

Grr
pl~r !5F ~ l 21!l ~ l 11!~ l 12!

2p2~11p2! G1/2Ppl~r !

sinh2 r
. ~A11!

At the end of inflation, the gravitational perturbation tak
the form @23,24#

hi j → (
6 lm

E
0

`

dph6~p!Qi j
plm~xk!. ~A12!

The power spectrum is then defined as
08350
-
-

se

^uh~p!u2&5(
6

uh6~p!u2. ~A13!

APPENDIX B

As mentioned in Sec. III, an observer located at a dista
r @1 from the center of an inflating island would measure
anisotropy due to the gauge invariant perturbation~21!. This
is caused by a field perturbationdf'(g/2)f0 , wheref0 is
the value of the scalar field at the beginning of inflation
the location where the observer lives. We can compare
with the perturbation caused by thel .0 supercurvature
modes, which is of orderdf;HF/2p. The ‘‘semiclassical’’
anisotropy would only dominate over the usual supercur
ture anisotropies when

gf0*HF . ~B1!

However, it turns out that such values off0 typically occur
only near the centers of inflating islands, as the followi
argument shows@27#. If fc is the value at the center, then

f0'fcS 12
g

6
r 2D , r !1, ~B2!

f0'fcS 12
g

2
r D , 1!r !g21. ~B3!

Defining Df5fc2f0 , the probability for the observer to
be at a distancer away from the center can be obtained
expanding the exponent in Eq.~16!

P~f01Df!}expF2f0
2

2 f 2 S 112
Df

f0
D G .

Hence, the expectedDf for an observer atf0 is of order
Df& f 2/f0 . Using Eq.~B3!, we see that for values of th
field which satisfy Eq.~B1!, the expected distance to th
center of the island is of order

r;
f 2

gf0
2 ;

HF
2

g2f0
2 &1.

Therefore, one is led to the conclusion that field values
which the semiclassical anisotropy would be large, satisfy
Eq. ~B1!, occur typically near the center of the islands,r
!1, where the anisotropy is actually not seen.

The same conclusion can be reached from first princip
All the necessary information is contained in the quant
state, a wave functional depending on the amplitudes of
different field multipoles. Expanding the field asf(r ,u,w)
5(cqlmZqlm(xi), the square of the wave functional will giv
the probability distributionP@f#5P i Pi@ci # for the coeffi-
cientsci , wherei 5(q,l ,m) is a collective index.P factor-
izes into independentPi ’s ~which are just Gaussian distribu
tions for eachci!, because we are quantizing linearize
perturbations which are decoupled from each other. T
quantum state we are using is homogeneous, and we can
1-15
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any point on the hyperboloid as the origin of coordinates.
us then take our observer to be atr 50, and let us concentrat
on the supercurvature sectorq2521. All modes withl .0
vanish at the origin. Therefore, the value of the field ar
50 only depends on the coefficientcq2521,0,0 in our uni-
verse. Thel 50 mode is spherically symmetric and hen
does not contribute to anisotropies. The anisotropies m
sured by this observer will only depend on the amplitud
taken by theci with l .0, whose rms is of orderHF . From
o

o

/S

.

R.

o-

ys

,

08350
t

a-
s

this point of view, it is clear that typical observers will e
fectively not see the semiclassical anisotropy discussed
Sec. III.

However, as discussed above, the ‘‘weak’’ assumpt
that our value off0 is not too special, in the sense that it w
occur typically at large distances from the center of the
land, implies thatgf0&HF . In other words, we must im-
pose that the anisotropy induced by the perturbation~21!
should always be subdominant with respect to the usual
percurvature anisotropy.
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