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Microwave background anisotropies in quasiopen inflation
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Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of produc-
ing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands.
In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation.
The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some
models incompatible with observations, and severely reduces the parameter space of others. Supernatural open
inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of
=<0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can
be made compatible with observatiopS0556-282(99)05816-6

PACS numbd(s): 98.80.Cq

[. INTRODUCTION spectrum. For that purpose it is necessary to know the pre-
dicted spectrum with great accuracy. As we will show, open
There is at present some evidence, based on observatiof¥dels have a more complicated primordial spectrum of per-
of supernovae at large redsHit], that the Universe may not turbatlpnst, Mth extra discrete modes and possibly large ten-
be Einstein—de Sitter typ@),,=1, O ,=0), as predicted by SO @niSOropies. o .
the simplest models of inflation. Furthermore, recent Obserﬁelgpsgallgfrlagg?e%?igll([jlg]e rg}ral;rz1e?n|3|52?e?f?;hexggfe?1tsi;?gIe-
vations of the cosmic microwave backgrouf@MB) and

g i 14,29-31, as long as there exists a false vacuum epoch
large scale structure indicate that the Universe may be op ring which the Universe becomes homogeneous and then

(Qo=0m+02,=0.8+0.3) [2]. In the near future, observa- one of the fields tunnels to the true vacuum, creating a single
tions of the microwave background with a new generation ofgp|ated bubble. The space-time inside this bubble is that of
satellites, such as the Microwave Anisotropy PrébeAP)  an open Univers€34,11]. Although single-field models can
[3] and PlancK 4], will determine with an accuracy of order n principle be constructed, they require a certain amount of
1% whether or not we live in an open Univerige-7]. Itis  fine-tuning in order to avoid tunneling via the Hawking-
therefore crucial to know whether inflation can be madeMoss instantor{14]. The problem is that a large mass is
compatible with such a Universe. needed for successful tunneling and a small mass for suc-
The idea that the Universe might be open is an old onecessful slow-roll inside the bubble. For that reason, it seems
see for instancg8]. Early attempts to accommodate standardmore natural to consider multiple-field models of open infla-
inflation in an open Universe failed to realize the fact that, intion [14,29—-31, where one field does the tunneling, another
usual inflation, homogeneity implies flatnd€g, because of drives slow-roll inflation inside the bubble, and yet another
the Grishchuck-Zel'dovich effecf10]. The possibility of ~may end inflation, as in the open hybrid mod8L]. Such
having, through the nucleation of a single bubble in de Sittefnodels account for the large-scale homogeneity observed by
space, a truly open Universe arising from inflation is not newthe Cosmic Background ExploréCOBE) [35] and are also
either, sed11,12. However, a concrete realization of a fully consistent with recent determinations of a small density pa-
consistent model was suggested only recently: the singld@meter36-39. . .
bubble open inflation moddll3,14. Since then, there has " this paper, we shall systematically explore the possible
been great progress in determining the precise primordia(fOnStraIntS from CM.B anlsotroples on existing models. of
spectra of perturbationd5—28, most of it based on quan- open and quasiopen inflation. The structure of the paper is as

tum field theory in spatially open spaces. Simultaneously, éollé)vtvhs. In _Sec.d_ll,l a bnetf rewefvv oftthg (i_uantgm t_unnelgwg
great deal of effort was made in model buildifis#,29-31 an IIIe' pgmort '3 tspec rum o p'eltl utr. a |c:nsS|s g'\ll\?n' ec-
and in constraining the existing models from observations ofion lll Is devoted to quasiopen inflation. In Sec. some

the temperature power spectrum of CMB anisotropis— general bounds are found from CMB obseryations. In Sec.
33 P P P P V, the bounds derived in the previous section are used to

Open inflation models provide a natural scenario for un.constrain several models of open inflation. Section VI dis-

derstanding the large-scale homogeneity and isotropy. Fuf2USses the probabilit.y distributic_m f6Y, in quasiopen infla-
thermore, these inflationary models generically predict glon and correspondlng cqnstramts on th? parameters of the
nearly scale-invariant spectrum of density and gravitationamc’dels' Section VII contains our conclusions.

wave perturbations, which could be responsible for the ob-
served CMB temperature anisotropies. Future precise obser-
vations could determine whether indeed these models are There are essentially two kinds of primordial perturba-
compatible with the observed features of the CMB powettions in open inflation, subcurvature and supercurvature. In

II. PRIMORDIAL PERTURBATION SPECTRA
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the first category we have the usual scalar and tensor metridere Pz (q) is the primordial spectrum of scalar metric per-
perturbations[16,17,23, which are generated during the turbationsR, in term of which the continuum part of the
slow roll inflation inside the bubble. The second category ofpower spectrurhis written as

modes arises because of perturbations which are generated

outside the bubble or as a result of the acceleration of the 5 27Pr(q)

expanding bubblé15,32,17. In particular, the fluctuations (IR(@)|*)= FEET R (4)

of the bubble wall itself generate perturbatidi®—21,24
which are specific to open inflation. In addition, in the con-

text of two-field models of open inflatiohl4], we have ande s the slow-roll parameteri4]

semiclassical effects due to tunneling to different values of 1 (V'())2
the inflaton field [25,26. All these perturbations create €= _) ) (5)
anisotropies in the CMB, which distort the angular power 2k°\ V(o)

spectrum on large scalé®w multipoles. On smaller scales,

the particle horizon at last scattering subtends an angle ofhe functionf(q) [17] depends on the tunneling parameters
about one degree on the sky for a flat universe, and somé& andb, see Eq(2),

what smaller for an open universe, due to the projection ef-

fect of the geodesics. This effect shifts the first acoustic peak z? cosg + 2qzsing

of the temperature power spectrum to higher multipoles f(q)=cothmq— (4%t D)sinhaq (6)
(Ipeak~208051/2) [40,41), but the primordial spectrum at
those multipoles is essentially that of a flat Universe. whereg=qIn((1+x)/(1—x)) and
A. Quantum tunneling Xx=A(1+A%) 12 7
The quantum tunneling that gives rise to the single bubble 2= 2b(1+A2) 12 ®

of open inflation can be described with the use of the bounce
action formalism developed by Coleman-DelLuci34] and ) o
by Parke[42] in the thin-wall approximation, valid when the The functionf(q) is linear at smallg, and approaches a
width of the bubble wall is much smaller than the radius of¢onstant valué(q)=1 atq=1, see Refs.33,43. Hereq is
curvature of the bubble. This only requires that the barriefhe effective r_nomentur? fog scalar modesz in-an open Uni-
between the false and the true vacuum be sufficiently highverse, determined from”=k”—1, where—k* is the eigen-
Uo>AU=Ug—Us. In this case we can write the radius of Value of the Laplacian.

the bubble in terms of the dimensionless parameteaadb In the presence of the bubble, the tensor primordial spec-
[33] trum' is given by[23]
RoHr=[1+(a+b)?] ¥2=[1+A%]%2 (1) 72Py(p)
h(p)|2) = -, 9
(Ih(p)|*) Ap(1+p?) 9)
AU k°S;
a=——, b= , (2 where
3S,Hy 4H,
H 2
. . P.(p)=A2 f(p), A2=8x? — (10)
wherex?=87G andS; is the surface tension of the bubble 9 T 0T 27w)

wall, computed a$, = [Tdo[2(U(o) —Ug) ]2 Hereo is
the tunneling field. For g madd in the false vacuum, the Herep is the effective momentum for tensor modes, defined

parametera=(AU/Ug)M/Hy, which characterizes the de- 0Y P°=k”—3. While for scalar modes the presence of the
generacy of the vacua, can be made arbitrarily small by tunfunctionf(q) in the primordial spectrum becomes irrelevant
ing U;y=Ur. On the other hand, the parametér for observations, for tensor modes the slope of the function
=(Ao/Mp)2M/H+, which characterizes the width of the @ P=0 is an important ingredient in the final value of the

barrier, is not so easily tunable, and could be very large oPredicted power spectrum at low multipolgS3].
very small depending on the model, see Ré48]. Note that the above spectra have been obtained under the

small backreaction approximation. Immediately after nucle-
ation, the scalar and tensor modes have been assumed to
B. Subcurvature scalar and tensor perturbations evolve in a nearly de Sitter spacetime. This assumption is

The primordial spectrum of scalar perturbations is similar"®asonably satisfied in the models considered in this paper,

to that of the flat case, except for a prefactor that depends dput in models where the inflaton moves initially very fast, the
the bubble geometrj17] infrared end of the spectrum may be slightly differ€28].

2
2_K HT

2
=AZf Ai=—|=—]| .
Pr@)=As (@), As 26(277) @ 1See the Appendix A for notation.
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C. Supercurvature and bubble-wall modes was previously thought, but to an ensemble of very large but

Apart from the usual continuum of scalag’=0) and finite inflating “islands.” The most probqble tunn_eling tra-
tensor p2=0) modes, generalized to an open Universe, injectory correspond; to a value of the inflaton field at the
single-bubble inflationary models there is a new type o ot;om of '|ts pqten'tlal'; large values, necessary for the sepond
quantum fluctuations, which basically account for the comPeriod of inflation inside the bubble, only arise as localized
bined effect of fluctuations generated during the falsdluctuations. These fluctuations are provided precisely by the

vacuum dominated era which penetrate the bubble, as well £4!Percurvature modes of the slow-roll fiefgl which due to

excitations of the slow roll field generated by the accelerated eir long wavelength can create 'afge r.egions of size larger
growth of the bubble. These modés5—17 are discrete than the hubble radius where the field is coherent and thus

modes characterized by having an imaginary effective moSan drive inflation. The interior of each nucleated bubble will

mentum(gq2<0 or, equivalentlyk?<1), and therefore de- contain an infinite number of such inflating regions of co-
1 Y 1 . . 71 < . . _

scribe fluctuations over scales larger than the curvature scal§l0Ving size of ordery™”, where y<1 is given by the su

whence its name cgupercurvaturemode[note that the cur- Percurvature eigenvalug=1-+q°=1- A< (this in turn de-

vature scale corresponds to the eigenmode with eigenval iEnds on the parameters of the model, see beldye may
k2=1, g?=0]. happen to live in one of those patches of comoving size

<+~ 1, where the Universe appears to be open. This scenario

The amplitude of the supercurvature mddier the usual
b P d was recently discussed in RE€26]. Here we will give a brief

two-field models such as the ones described by(&f), see

below] is found to be[17,37 account of the main results.
After tunneling in theo-field direction, there remains in
<|72A|2>:772A§O (12) the ¢-field (inflaton) direction a semiclassical displacement
characterized by a Gaussian distribufisith rms amplitude
where f, where
2/H.\2 2H?2 2
A2 :K_(_F) — Z_F' (12) o s N HEe
s¢ 27 SHZ f°=(¢ (to)>~m- (15

with A2 given by Eq.(3). , n N
However, this is not the only discrete supercurvature'f f is sufficiently largefor a power Ia\_/v potential this means
mode possible in single-bubble models. As realized in Refs{ ~Mpi, whereas for the open hybrid mode1], a much
[18—20, there are also scalar fluctuations of the bubble walfmallerf would do, then the fluctuations of the field will
with k2= —3, g?=—4, which could in principle have its make inflation generic inside the bubble. However, regions
1 1 - _l . -y .
imprint in the CMB anisotropies. Their amplitude was com-©f sizer~ v~ with large positives will be separated from
puted in Refs[20,21, regions with large negativé by noninflating regions where
¢ is small.
(|Rw|?)=4m2A3, (13 In many models, however, the rms fluctuatibms much
smaller than the field value needed for inflation. Then, most
Here of the hypersurface=t,~H ! inside the bubble will not be
5 5 inflating, leading to empty space with no galaxies. On the
A\%\/:K_( HT) _p2€ (14) other hand, inflating regions will still arise as localized
2z

27 Sz’ “rare” fluctuations, with exponentially suppressed probabil-

wherez is given by Eq.(8) and A% is the scalar amplitude
(3). Such modes contribute as transverse traceless curvature p — 22 §2 16
perturbationg20,19, which nevertheless behave as a homo- FexH— ¢ ), (16
geneous random fiel@2]. It was later realizedl24] that the

bubble-wall fluctuation mode is actually part of the tensor b herical. If h the oriain of dinat th
primordial spectrum, once the gravitational backreaction i§0 € spherical. It we choose the orgin ot coordinates on the
included, so we should not consider it as a new source of const hyperboloid to be at the center of the island, then

anisotropies if the tensor mode is properly taken into ac—the profile of the field as we move outwards is given by the

count | =0 supercurvature modesee Eq.A4)], normalized to the
' value ¢, at the center of the bubb[@6],

where$~Mp,. High peaks of a random Gaussian field tend

IIl. QUASIOPEN INFLATION

As mentioned in the Introduction, it is difficult to con-  2ere, and for the rest of the paper, we make the assumption that
struct single field models of open inflation without a certainthe sjow-roll field does not affect the geometry outside the bubble
amount of fine-tunind14], and thus multiple-field models (which we take to be de Sitter spacé the slow roll field has a
were considered14,29-31. In these models, one field  mass outside the bubble, then its quantum fluctuations will drive it
would do the tunneling while inside the bubble a second fieldo large values where its potential energy substantially modifies the
¢ would drive slow-roll inflation. However, a large class of local expansion rate. This may have an effect on the distribution of
two-field models do not lead to infinite open Universes, aghe field inside the bubble, which requires further investigation.
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sinh(Ar) We can now evaluate the gauge invariant metric pertur-
¢V=o=¢c(t)m- (17)  bation associated with this field fluctuation, which will re-
main constant outside the horizon and will reenter during the

. - matter era with an amplitude
The rms amplitude of the remaininig>0 supercurvature P

modes, which would account for departures from sphericity, 3 H.6¢
is much smaller, of ordep?f <f<¢(t,). S
Let us concentrate on one of these inflating regions. The S ¢
initial value of ¢, determines how many e-foldings of infla-
tion the center of the island will undergo, and hence thevhere[26]
value of (), that an observer in that region would measure
after inflation, at a given CMB temperature. For the sake of
illustration, let us assume that this observer measures
0¢=0.5 at the time whef¢\;g=2.728 K. Also, let us take ) ) )
y=10"%. Forr<y 1~10" the field on a=const slice will HereR, is the rgdlus of the bubble at tun'neh(@, M and
decrease very slowly with distance as we move away froni't are re_spectlvely the masses of the inflaton field in the
the center. Note that at large distances from the camter  [alSe arld in the true vaccuum, andvas computed, to order
we have ¢”=exp(—r/2). Denoting byN the number of (HERp)?, in Ref._[26]. Note that in the case of the simplest
e-foldings of inflation and assuming a quadratic potential(“nCO_Upled two-field model[14], wherem;=mg, these ex-
(a similar argument can be made for the hybrid mpdel Pressions coincide with those given in REZ5].

we have ON/N=~26¢/. Using the relation In deriving Eg.(19) we have concentrated in a single
26N=[Q¢(Qo—1)] 18Q,, we find that observers out to a island and we have assumed that we live far from the center,

distancer ~ 10 would measure a very similar density param-at r>1._This_seemS_ to be a minimal “Copernican” require-
eter, which differs from the one at the center only byment, since in any island there are many more observers far
800~Q0(Qo—1)Nyr=10"2 On the other hand, for from the center than near it. Hence, we sho(dd least

r~y~1=10" the universe will look rather empty, and even if impose the constraint that the CMB anisotropy induced by

inflation proceeds there for a few e-foldings, the density paEd- (21) should not exceed the observational bounds.

rameter would be too low for any galaxies to form and for , However, this is not the full storj27]. Let us note, first
observers to develop. of all, that the amplitude of the perturbatioh9) is propor-

Although the inflating region in the example above hastional to #o. Now, when the ensemble of all possible islands
spherical symmetry arourd=0, it is clear that most observ- that contain a particular valut_a of, is considered, one finds
ers in that island will live atr>1. To them the universe that those values of, for which Eq.(19) would be larger
would look anisotropic. This effect was dubbed “classicalth@n the perturbation caused by the usual supercurvature
anisotropy”[25], and can be estimated as follows. After ex- modes will occur typically near the center of the islafstse
pansion of Eq.(17) for r<y~!, we can separate the Appendix B. Hence, those are rather unlikely valuesdgf

t-dependent background from thendr dependent pertur- for us to observe. Therefore it seems reasonable to impose
bation, ¢7_,= ¢.(t) + 5, where not only that the anisotrop§21) should not exceed the ob-
1Pr=0= Pc ,

servational bounds, but also that it should not exceed the

anisotropy created by tHe>0 supercurvature modes.
(1_rcothr)~_¢c(t)z|n coshr, (18) These consideraf[ions naturally lead to the question of

2 what are the most likely values fab, or what is the most

probable value of) in a given model. The probability dis-
the last expression being a very good approximation fotribution for (), in models of quasiopen inflation was studied
1<r<y 1 To describe the Universe from the point of view in Ref. [27]. Stronger constraints on the models can be ob-
of an observer living at=ry>1, it is convenient to change tained from this probability distribution in combination with
the coordinatesr(#,¢) on the spacelike hyperboloid to a CMB constraints. These will be discussed in Sec. VI.
new set (',0',¢') such that the point=rg, is now the

= gACInf(r,e), (21

3 H2 2 mg
Ac==—7y, y==—+=HZRAM—m?). (22
2 m2 3Rz g FotTT R

6¢= (1)

N[

new origin of coordinatesr’=0. In that case, we have IV. CMB TEMPERATURE ANISOTROPIES
coshr=sinhrgysinhr’ cosé’ +coshrycoshr’, and the field ) _ _ .
can be separated in the for@ o= do(t)+ 5o, Where Quantum fluctuations of the inflaton fieldl during infla-

tion produce long-wavelength scalar curvature perturbations
and tensor(gravitational waveks perturbations, which may
leave their signature in the CMB temperature anisotropies,
when they re-enter the horizon. Temperature anisotropies are
usually given in terms of the two-point correlation function

bo~ Ppc(1—yrol2) is the value of the field at the location
ro, Which corresponds to a somewhat lower value(hf
than that of the central region, and

So#~ ¢o(D)(¥/2)Inf(r",6"), (19) or power spectrunt,, defined by an expansion in multipole
. numberl. We are mainly interested in the large-scétewv
with multipole number temperature anisotropies since it is there
that gravitational waves and the discrete modes could be-
f(r,0)=coshr + sinhr cosé. (200  come important. Afterl~50, the tensor power spectrum
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drops down[45,46 while the density perturbation spectrum 1 6 (7

increases towards the first acoustic peak, see [R&f. On Wai= g lqi(70) + gJ drF’(mo—r)Ilg(r), (28
these large scales the dominant effect is gravitational redshift 0

via the Sachs-Wolfe effed®48], for adiabatic initial condi-

tions like those considered here, 70 /
o= | "aregm-naio, (29

T 1
T (6,6)=39(0)Q(70,6,¢)

which depend on the particular value@f,. The functions

+2fovodfCD'(no—r)Q(rﬁ,d))- (23 F(#n) andGy(7) are given by{23,33
sink? 7— 3% sinhn+4(coshy—1)

HereQ(r, 6, ¢) stands for the spatial dependence of the fluc- F(7)=5 (coshy—1)° ., (30
tuation, andzyy=cosh }(2/(0,—1) is the present conformal
time and also, to very good approximation, the distance to ) )
the last scattering surface(ss~0). The second term in Eq. Go(n)= sinh# sinp»—2p cospz(coshy—1)
(23) accounts for integration along the line of sight, and is P p(1+4p?)(coshy—1)*
important in an open universe, since the metric perturbation (39
& evolves in time after reentering the horizo®(7)
=® F(7), see Eq.(30), where® g is the value of the The scalar window functiong/,; grow as a large power af

perturbation at the surface of last scattering. at the origin, so that the scalar power spectrum is rather
insensitive to the “hump” in the functiorf(q). window
A. Scalar and tensor anisotropies functionsl,; remain finite atp=0, and only the linear de-

. pendence of (p) at the origin prevents the existence of the

Gaussian statistics since they arise from linearized uamuYnfrared divergence found in Ref49). Furthermore, since

fluctuations. As a consequenge one can characterizgthe te%-e functions S' are not negligible near the origin, the tensor
. S o . .~ power spectrum turns out to be very sensitive to the “hump”

perature anisotropies just with the two-point correlatmnin the spectral functiori(p): see Refs[33,43

function, or angular power spectrum, P P T

or 6T | Zo21+1 B. Supercurvature anisotropies

— () —(A") =2, ——C/P(cos), |
T T f.A —cosd am The supercurvature and bubble-wall modes also contrib-

(29 ute to the temperature power spectrum. The supercurvature

where (2+1)C,=3!.__(|]aym|?), brackets indicating aver- mode’s contribution to the CMB anisotropies can be written

ages over different realizations, and where we have ex2S
panded the temperature anisotropy projected on the sky in

spherical harmonics, D'SCE| (I+ 1)C'SC: WzAéCI (I+ 1)V_Vi'" (32
o
oT with the window function
FO.0)=2 2 anYim(6,4). (25

— 1 6 (70 —
The scalar and tensor components of the temperature WA,|:§HA,I(770)+EJ drF’(mo—r)IL,,(r), (33
power spectrum can be computed|48] 0

and the amplitudéd3. is given by Eq.(12).
The bubble wall mode’s contribution to the CMB
anisotropies can be written as

D=I(I+1)C3=1(I+ 1)f:dQ<|R(q>|2>W§|, (26)

DT=1(1+1)CT=11+1) | dp(|h(p)|? 12, _
I ( ) | ( )fO p<| (p)| > pl (27) D?NE|(|+1)C|W:4772A\2N|(|+1)W§,|1 (34)

functions® and the amplitude\y, is found in Eq.(14).

C. Classical anisotropies

%The eigenfunctiondl, for the subcurvature modeH,, (r) for We will concentrate here on the anisotropies associated
the supercurvaturég=iA, 0>A>1) and bubble wall {=2) with quasiopenness, the classical temperature anisotropies.
modes(below), andGP' for the tensor modes can be found in Ap- The Sachs-Wolfe effect23) for these metric perturbations
pendix A. can be written as
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ST 1 0.01
—(0)==AcInf(%q,0
T( ) 5Ac (70,0) o Q= 0.3 — 0.9
6 70 ,
+§f0 drF’'(nmo—r)Acinf(r,6). (39 DF 0.006
A%
Expanding in spherical harmoni¢g5), and noticing that 0.004
the temperature anisotrog$5) only depends o, we find
0.002
2lrl 1/22 f désin 6P,(cosb) 5T(0)5
am=|——"| 27 sin cosf) —
™ 4n I T mo 4 6 8 10 12
(36) l
=2a100mo 37 o 012
which gives, in this case, 0.01 =2
|
C 0.008
@+1¢f= 3 (am=(lad?. @8 Do
Ae > =3
Therefore, we find that the power spectrum associated witr 0.004
the classical anisotropig21) can be computed as 0.002

DFEI(I+1)C|C:7TA%I(I+1)W2' (39) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Qo

7, 1
Wlsf dfsinoPy(cosd)| zInf(7o,6)
0

FIG. 1. CMB power spectruni(l+1)CF, normalized to the
corresponding amplitudﬁé, for the semiclassical fluctuations, as a
_ (40) function of (¢, for the first few multipoled=2,3,...7, and as a
function of multipole numbet, for ,=0.3-0.9. Note the dip in
the semiclassical power spectrum at different valueQ gfor dif-
We have plotted this expression in Fig. 1, as a function oferent multipoles, due to accidental cancellations.
multipole numbet, for various values of)y; and as a func-
tion of O, for the first few multipoles. As can be appreci- n=1.02-0.24. (42
ated from the figure, the window functions for the semiclas-
sical mode for a givenl are proportional to the For an open Universe, Bunn and White gave a compact ex-
corresponding ones for the supercurvature modes. This wagession51], for n=1,
expected since, as mentioned in Sec. lll and in Appendix B,
the quasiopen island can be thought of as a superposition of
supercurvature modes.

6 (0
+—f drF'(no—r)Inf(r,0)
5Jo

Qg () -035-019In0
9(€2) ° ’

D. Bounds from CMB anisotropies whereg(Q)/Q=5/2(1+Q/2+ Q) "1 is a fitting function
o i to the suppression in the growth of scalar perturbations in an
The relative importance of the different components Ofopen universe relative to the critical density univefse],

the power spectrum is crucial in order to derive bounds oryq jt was assumed that only the scalar component contrib-
the model parameters. We have plotted in Fig. 2 the quadrysieq significantly to the CMB anisotropies. Under this as-

pole and tenth multipole of the CMB power spectrum for gymption, one can deduce the following constraints, for a
each mode, normalized to their corresponding amplitudes;cgie invariant spectrum, see RdR3,26

Note the dip in the spectrum at certain value<hf due to

As=4.9x10"° (43

accidental cancellatior{$0,31,33 between the intrinsic and H
integrated Sachs-Wolfe effects. This does not affect the T = mAg~9%x 1075, (44)
bounds, since higher multipoles will fill in those gaps. VeMp
From the 4-year Cosmic Background Explof€OBE)
maps[35], the overall amplitude and tilt of the CMB tem- He DA%
perature power spectrum at small multipole number have H_T< IR (49
been determined with some accuracy fbg=1 [50] borse
112 e DJIAS
w} =(1.03+0.07x 10" %, (41) E<W\/*0-6, (46)
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1l
bubble wall 141 |
1k u €W l — 2 | /
12 ¢ !
]
D, 0.1k tensor scalar 10 ¢ ) /
Po o1 | supercurvature
semiclassical
0.001
0000 973704 0.5 0.6 0.7 0.8 0.0 1 | -
Q 0.5 0.6 0.7 0.8 0.9 1
1 1 [=10 FIG. 3. This figure shows the boun@4)—(47) as a function of
N Sca’ar ). The dotted-dashed line corresponds to the actual constraint on
0.1t Tensor the scalar componentH /eMp) X 10°, for a scale invariant sca-
& bubble wall lar spectrum. The rest are upper boundsHuTH (solid line), on
A2 ubblew A% 10* (dashed ling and one/z (dotted ling. As can be seen, for
0.01 Qo=1, the upper bounds are not very restrictive.
superqurvature
0.001 ¢ semiclassical whereas the supercurvature and the semiclassical anisotro-
pies vanish, as can be seen from Fig. 2. Due to this fact, in
0.0001 the limit Qy— 1, the bound$45)—(47) disappear and put no

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Qo

FIG. 2. Quadrupolgtop figure and tenth multipole(bottom
figure) of the CMB power spectra, normalized to the corresponding
amplitude, I (1 +1)C, /A2, for the tensor, scalar, supercurvature,
bubble-wall and semiclassical primordial spectra. We are assuming
here the minimal contribution from tensa@=0, b=1).

A \/D'S/AéA 3x10°4
< —_— ~ 3 X
c DE/AZ"S ’

where the approximations are valid through the range 0.4
=0,=0.9, for the quadrupole, see Fig. 3. The third expres- .
sion accounts for both the tensor and the bubble-wall conhereB;=(1.1184, 0.8789,..), forl=2,3,..., which ap-
straints, since the bubble-wall fluctuation is actually part ofProaches,; =1 for large multipolesi(~10) and then decays
the tensor spectrufi24] and gives the largest contribution at {© Zero afted ~50. _ _

low multipoles. The constraints coming from higher multi-  FOr the supercurvature and semiclassical temperature
poles are significantly weaker, see Fig. 2. One could argu@nisotropies, expandindq (7o) and f(7g,6) in powers of
that the quadrupole is going to be hidden in the cosmic vari<o~2(1— Q)2 itis easily seen that the contribution to the
ance[7] and thus only the constraints at higher multipoles,corresponding window functions of the integrated Sachs-
say|>2, should be imposed. However, polarization powerWolfe effect is suppressed by an extra power of-@Q,)
spectra may one day be used to get around cosmic varian@éth respect to the intrinsic Sachs-Wolfe contribution. Tak-
[53] and we may be able to extract information about theing this into account, the leading contribution to the tempera-
scalar and tensor components at low multipoles. We willture anisotropy is given by the following expressions:
therefore take the conservative attitude that consistent mod-

constraint on the parameters of the models. In the scale in-
variant caseng=1, the scalar contribution in this limit is
given by

(48)

In the limit )y— 1, the tensor contribution can be expressed
as[45]

(47)

2
T TAT
D + 385 (49

4872
=36 B,

els of open inflation should satisfy the bounds coming from
the first few multipoles, as long as they do not exceed the
associated cosmic variance.

The bounds(44)—(47) are (),-dependent. For values of
(1—-Qp)<<1 analytic expressions for the temperature anisot-
ropy can be found as a power series in(Qg). In the limit
0¢—1, the scalar and the tensor contribution remain finite,
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¢ mAZT(+2)T(1+1) ’

™ 25 IT(1+3/2)?

Ob

(1_QO)I- bsinglez(M_PI
(52

M
— ~5X1079, (56)
Hr

o o ) which givesz~2b~108, an extremely small number that
Better approximations can be found by just including morémages it impossible to satisfy the bubble-wall constraint,
terms in the expansions dl (7o) and f(7y,60), but this  e<z, see Eq(46). In other words, the simplest single-field
will suffice for our purposes. models of open inflatio13] are not only fine-tuned but
Then, for values of (+()y)<1, the bounds read actually produce too large gravitational-wave anisotropies in
the CMB on large scales to be consistent with observations.

E 0.625 The reason for that is that in a new inflation type potential,
= , (53 . .
Hr (1-Qyp) slow roll has to begin very close @=0 in order to have
sufficient inflation. However, this does not leave much room
€_ 0.044 4 for a sufficiently thick barrier.
7= (1_90)?’ (54) Linde has recently proposed a new single-field open in-
flation model[54] in which the two different mass scales
5.3X10°° needed for tunneling and for slow-roll can coexist. This is
Ac= 10y (55  basically a quadratic potential, where a barrieappendedt

¢~ 3Mp,. Although the model is somewhatl hocfrom the
The error committed using this approximation is around 5%Point of view of particle physics, there is in principle the
for the supercurvature and semiclassical bounds for values @ossibility of making the barrier sufficiently thick, so that the

0,~0.8, and less than 10% for the bubble wall bound and?ubble wall fluctuations will not be important. This model
values 0fQ,~0.9. has specific signatures of its oW54,55.

V. MODEL BUILDING B. Coupled and uncoupled two-field models

In this section we will review the different single-bubble N this section we shall consider a class of two-field mod-

open inflation models present in the literature, and use th8!S[14] with a potential of the form
CMB observations to rule out some of them and severely
. . . . 1 1
constrain others. We will see that open inflation models V(o,¢)=Vo(o)+ = mPep?+ = g2o? P> (57)
could be as predictive as ordinary inflation, in the sense that 2 2

they also can be ruled out if they are in conflict with obser- ) _ _
vations. Here V, is a non-degenerate double well potential, with a

false vacuum atr=0 and a true vacuum at=v. Wheng is
in the false vacuumy, dominates the energy density and we
have an initial de Sitter phase with expansion rate given by
As mentioned in the Introduction, single-field models of H2~87V,(0)/3M3,. Once a bubble of true vacuum=v
open inflation[13] require some fine_—tuning in order to have forms, the energy density of the slow-roll fieimay drive
a large mass for successful tunneling and a small mass fQf second period of inflation. However, as pointed out in Ref.
slow-roll inside the bubblg14]. Even if such a model can be [14] the simplest two-field model of open inflation, given by
constructed from particle physics, it still needs to satisfy theEq_ (57) with g=0 andm+0, i.e., theuncoupledtwo-field
constraints coming from observations of the CMB anisotro—modeL is actually a quasiopen one; this is so because equal-
pies. In the thin wall regime, these models lack both supergme hypersurfaces, defined by thefield after nucleation,
curvature modefl7] and semiclassical anisotropies, by con- are not synchronized with equal-density hypersurfaces, de-
struction. However, in some cases, they produce too larggyrmined by the slow-roll of thep field during inflation in-
tensor anisotropies at low multipol¢83], where they are  gide the bubble. In order to suppress this effect it was argued
dominated by the bubble-wall fluctuations.  [14] that a large rate of expansion in the false vacuum with
Let us analyze a typical example, which is a variantiegpect to the true vacuurilz>Hy, could prevent thep
of the new inflation type[13]. The potential is a quartic fie|q from rolling outside the bubble and distorting the equal-
double well, to which a double barrier has been addeqjensity hypersurfaces inside it. However, this would induce
near the origin. Tunneling occurs from a symmetric phas?32] a large supercurvature mode anisotropy in the CMB,
at 0=0 to a valueay, from which the field slowly rolls \yhich would be incompatible with observations. A careful
down the potentlasl towards the symmetry breaking phase a{nalysig[25,26 shows that indeed the effect is important at
o=v~Mgyr~10"°GeV. The fact that we have a finite |5\, multipoles. In this modelme=m;=m, the supercurva-
number of ez—foldzs,Ne=60, requireso,~v exp(—aNe)<V,  yre eigenvaluey=2m2/3H2, and in order to satisfy Eq.
where a=m3/3H;. The rate of expansion in the true (47) it requires

vacuum is of the order of that in the false vacuum,
_ 2\1/2__ —6 ; ; ;
H=(8mV(0)/3Mp) 3X10 °Mp;, which  implies He (DF/A%)”A 1

A. Single-field models

e~10"3, for agreement with CMB anisotropies. Choosing a DSAZ —~60, (58

typical mass in the false vacuum to be~M g1, we find Hr [

S
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100

slightly from tunneling to the end of inflationm;
=1.3go.. This potential drives a period of chaotic inflation

50 ¢t with slow-roll parameterg= = 1/2N.=1/120. Substituting
into Eq. (44) we findHr=6.3m;=8X10 %Mp,, and there-
fore go,=10 ®Mp,. The rate of expansion in the false

20 vacuum is determined fronHZ/HZ=1+4ab, where b

ol = (4mv2/3\)M3/HMZ,, which gives

(1+4ab)*?
51 M=———"—H=v2Hg, (62
- - 4b
. - S - - - . . the last condition arising from preventing the formation of
05 0.6 07 08 09 1 the bubble through the Hawking-Moss instanton; see Ref.
-Qo [14]. Furthermore, takingnz=0 in the equatior{22) for the
eigenvaluey gives
FIG. 4. Constraints ol /H; due to supercurvature and semi- 2
classical fluctuations in the uncoupled open inflation model. The 5 _ 2 'F p 1y ya_ 3(1+4ab) 3% 10-4
region above the dashed lidue to supercurvature fluctuations €16 H%— o T 1g 1+ (a+b)?)? '
and below the solid linéddue to semiclassical fluctuationis ex- (63

cluded by observations. The region allowed by observatitims
small corner to the right of the picturéeaves only values of), From the supercurvature mode conditigt), (1+4ab
that are very close to 1. <3, together with Eq(62) we find the constrainb<1/2.
From Eg. (63), we realize that having nearly degenerate
which is incompatible with the supercurvature constraint  yacua,a<1, is not compatible with observations. Satisfying
H DS/A2 |12 | Eq. (63) would requireb<1 anda>1. However, for thesei
LS I'As ~ 3 (59) values of the parameters we expect large tensor contribu-
Hr \DPYAS va tions; see Refd33,43 (unless of coursé), is sufficiently
close to ong So there should be a compromise between the
On the other hand, for values 61,=0.9, combining the different mode contributions.

)1/2

bounds(53) and (55) we find that We have shown in Fig. 5 the complete temperature power
H spectrum for a coupled two-field model haviag=10 and
1371-0Y< —F <061-0 -1 60 b=0.2, forQy=0.4 and(1;=0.8, which are consistent with
( o) Ht & o) (60 observations. It has contributions from all the modes: scalar,

] o ) tensor, supercurvature, semiclassical and bubble-wall. Note,
which cannot be satisfied unled3,=0.97; see Fig. 4. powever, that the bubble-wall mode is in fact included in the
Therefore, this model seems to be ruled outfy=<0.97. sharp growth of the tensor contribution at small multipole

In order to construct a truly open model, Linde andhymper, as emphasized in RE24] and shown explicitly in
Mezhlumian suggested takini=0 and g#0, i.e,, the  Fig 5 and should not be counted twice. Although it is in
coupledtwo-field model[14]. In this way, the mass of the principle possible to construct a model consistent with obser-
slow-roll field vanishes in the false vacuum, and it wouldyations, the parameters of such a model are not very natural.
appear that the problem of classical evolution outside th¢y order to suppress the associated semiclassical anisotropy
bubble is circumvented. However, as we showed in Refye had to choose special values of the parameters. As can be
[26], this is not exactly so, and actually the whole class ofseen from Fig. 5, there still exists a range of parameters for
models(57) leads to quasiopen Universes, which are conhich all contributions to the CMB anisotropies are compat-
strained by CMB observations. Let us work out those conypje with present observations. However, future observations
s_traints in detail here. We will assume a tunneling potentiaby MAP and Planck surveyor will help constrain or even rule
like [14] out such models.

1 1
Vo(0)=Vo+ 5M 20°—aMol+ Z)\OA. (61) C. Supernatural open inflation

This model consists of a complex scalar field with a
For simplicity we will takea=+\. Then the field can slightly tilted Mexican hat potential, where the radial com-
tunnel for < ¢.=M/g, when the minimum of the potential ponent of the field does the tunneling and the pseudo-
at o#0 is deeper than the minimum at=0. The constant Goldstone mode does the slow-roll. This model was called
Vo=2.7™*\ has been added to ensure that the absolutésupernatural” inflation in Ref[14], because the hierarchy
minimum, at¢=0 and og=1.30, has vanishing cosmo- between tunneling and slow-roll mass scales is protected by
logical constant. Here . is the minimum for¢p= ¢.. After  an approximate globdl (1) symmetry. Expanding the field
tunneling, the field¢ moves along an effective potential in the form® = (a/v2)exp(¢/v), wherev is the expectation
V(¢)=m$¢2/2, where the effective mass varies only value ofo in the broken phase, we consider a potential of the
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100 inside the bubble. Depending on the valuefobn which we
Q=04 I ] end after tunneling, the number effoldings of inflation will
o be different.
< 500 a=10 ] As in the two field model, the soft mode which corre-
j b=02 JF i ] sponds to a change in the value éfafter tunneling mani-
3 166 = fests itself as a supercurvature mode which leads to quasio-
Q g0+ e=0.13 ™ H 4 . . . . .
S { pen inflating islands. For the generic potential
£ ad) ] b
= / 1 =A% 1-cos—
= 40 \Tﬁ:I\L 7 Vi(p)=A (1 cosv>, (64)
l 9‘ , | 4«%74_ ]
© 20 ] we find the slow-roll parametef€4]
SC ()12
T ] 1 [V'(¢ 1 o)
C ‘ ‘ e=—2( =_—5cof——<1, (65)
0 10 100 1000 2k V() 2KV 2v
l
1 V' (o) 1
100 — n_?W_E_TZVZ<1. (66)
Q=08
80 | 4210 T ] From the constraint on the spectral tilt, under the slow-roll
} b= 02 i approximation,
S
[N 16e =0.13 7 A H i din PR(k)
< = +
2 1 ng—1 dink 6e+27n
$ b4
= 4 ol 4 ] = —de—1k?v?*>-0.2, (67)
] | L
| T
“ s T 1 we find that, necessarilyk?v?>5, which means that the vev
sc of o is v=Mp,. We are again in a situation similar to the
N T single-field models, where we need some extreme fine-
0 ‘ S ‘ tuning to prevent the Hawking-Moss instanton from forming
10 100 1000 the bubble; see Refl14]. Indeed, for a generic tunneling

! potential like Eq.(61) we haveVo=M2¢3/2 and thusH

FIG. 5. The complete angular power spectrum of temperature=2M oo/Mp=M. Under this condition the tunneling does
anisotropies for the coupled two-field model wiity=0.4 (higher  not occur along the Coleman-Deluccia instanton, which is
plot) andQ,=0.8 (lower plo, for (a=10,b=0.2). We have cho- necessary for the formation of an open Universe inside the
sen as cosmological parametdrs-0.70, Qg=0.05, 2,=0, N, bubble. The only way to prevent this is by artificially bend-
=3.04. We show the individual contributions from the scad, ing the potential so that it has a large mass at the false
tensor(T), supercurvatur¢SC), semiclassicalC) and bubble-wall  vacuum. In Ref[14] a way was proposed to lower the mini-
(W) modes. Note that the bubble-wall mode is responsible for thenym at the center of the Mexican hat, using radiative cor-
large growth of the tensor contribution at low multipoles. Only the ractions from a coupling of th&J(1) field ® to another
scalar modes remain beyond abbst50, where they grow towards scalar y. For certain values of the coupling Constagﬁ
the .first acoustic peak. For comparison, we have superimposed the 327\, it is possible to make the two minima, at=0 and
available CMB anisotropy data, as compiled by Tegnia. oo, exactly degenerate. The tunneling potential is then

form V=Vy(o)+V (o, ¢), whereV, is U(1)-invariant and
V; is a small perturbation that breaks this invariance. It is
assumed tha¥ has a local minimum ab = 0, which makes
the symmetric phase metastable. We shall consider a tilt ig;nere oo=M/YyN=Mp,. The associated tunneling param-
the potential of the formV,;=A*c)G(¢), whereA is @  gters becomea=0 and b=(oo/Mp)2M/H;=M/H7,
SlOle Varying function ofo that vanishes at=0. For defi- which can be |arge_ As emphasized in R[QG], there is a
niteness we can tak€=(1—cosg/v). The idea is thalr  supercurvature mode in this model, associated with the mass-
tunnels from the symmetric phase=0 to the broken phase |ess Goldstone mode, which induces both supercurvature and
oo=V, landing at a certain value @f away from the mini-  semiclassical perturbations. Because of the different normal-
mum of the tilted bottom. Once in the broken phase, thdzation of the supercurvature mode in supernatural inflation,
potentialV, cannot be neglected, and the fietdslowly rolls HF—>2R51, the supercurvature constrai@5) should read,
down to its minimum, driving a second period of inflation in this case,

A o
VO(U)=—(US—0'2)0'2+)\0'4|n—, (68)
2 (0]
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! 1 r 2 2 9 ‘
05 U(U)—Z)\ o (o0—0g) + uUg 1—(0_—0) . (72
02
01 ) where sg=M2I\", Ug=M*4\" and u<1 for the thin-
0.0 wall approximation to be valid. This potential gives a
’ L7 tunneling  parameter b=(27r/3)\’)M3/HTM§,|, which
002 ~~ < _ _ -7 determines the relation between the mass of ¢hdield
T in the false vacuum and the rate of expansion there,
05 06 07 08 09 1 M=Hg(1+1/a)Y ub. Thanks tou<1, we can have
Q M>H¢ for values of b=1, which induces gravitational-
wave anisotropies that are well under control.
FIG. 6. Constraints oiRoHt due to supercurvature and semi-  Fyrthermore, the induced gravity model seems to be truly

classical fluctuations in the supernatural open inflation model. Th%)pen, since the inflaton field is static in the false vacuum
region below the solid linédue to supercurvature fluctuatiorend  gnd there is thus no supercurvature mode associated with
above the dgshed linedue tc_n semiclassical quctuatic)r!'s excluded classical motion outside the bubble; see R26]. Therefore
by observations. The region allowed by observafiéie small  he constraint47) does not apply, and there exists for this
corner to the right of the pictujdeaves only values df}, thatare 4| 5 range of parameters for which all contributions to
very close to 1. the CMB anisotropies are compatible with observations; see
<o L1 Ref.[33]. However, the instanton may not take yougg in N
Dy Asc the true vacuum, but to a different value, closer to the mini-
D/AS ~0.7, (69) mum of the potentiale=v. In that case, the number of
e-folds is smaller than expected, and so is the valu€) gf
Such effects should be taken into account for the determina-
tion of the model parameters.

RoH+> 2xf2<

which is not trivially satisfied, even for degenerate minima.
On the other hand, the eigenvalye- R3m3/2 for the Gold-
stone modg26] induces a large semiclassical perturbation

(47) unless E. Open hybrid inflation
A [ DS/AZ) 4 This mod_el was proppsed recenflyl], in an attempt to
RH-< / s Z18s 02 (70 produce a significantly tilted scalar spectrum in the context
o 3 DF/AC"’ o of open inflation, in order to be in agreement with large scale

structure[57]. It is based on the hybrid inflation scenario

Itis clear that these two constraints cannot be accommodatdg®>% which has recently received some attention from the

simultaneously. For values ¢1,>0.9, the bounds give point of view of particle physic$60-64, together with a
' tunneling field that sets the initial conditions inside the

bubble.

In this model there are three fields: the tunneling field
the inflaton field¢ and the triggering fields. The tunneling
which cannot be satisfied unle€3,=0.98; see Fig. 6. occurs as in the coupled model of Sec. VB with potential
Therefore, the model is incompatible with observations for
0,=0.98.

3(1- Q) <RyH1=0.0081—Q4) 2 (72

A 1
U(o,é)=Vo+ ZUZ(U_UC)ZJF EQZ(Q"Z— $2)a?+Uy,
D. Induced gravity open inflation (73

This model was proposed in R¢R9] as a way of avoid-
ing the problems of classical motion outside the bubble. Thavhere oc=2M/\X, ¢;=M/g, Vo=2.7M“/\, to ensure
inflaton field is trapped in the false vacuum due to its nonthat at the global minimum we have vanishing cosmological
minimal coupling to gravity, with coupling. When the tun-  constant, andJ, is the vacuum energy density associated
neling occurs it is left free to slide down its symmetry break-with the triggering field. We satisfy/q<U,. If the o field
ing potentialV(¢) =\ (¢%— v?)?/8. The expectation value of tunnels when¢=¢r=3¢/4, then AU=Ur—U7=V,/2
the inflaton at the global minimum gives the Planck mass= m32¢2/4. After that, the inflaton field will slow-roll down
today: M,?_,,:Swgvz. The model is parametrized by the effective potential=Ug+ m$<;52/2:u0 driving hybrid
a=8Ug/\v*, which determines the value of the stable fixedinflation, until the coupling tay triggers its end. The model
point in the false vacuumgo§t= v’(1+a), as well as the is parametrized byy=m-2r/H2, see Refd31,33,43, in terms
difference in the rates of expansion in the false and truef which the spectral tilts can be written ag—1=2a/3
vacua, HZ=H2(1+a)/a, and the slow-roll parameters, —6e and n;=—2e. At tunneling we can write
e=8&/(1+6&)a?, n=8¢&(1—a)l(1+6&)a? see Ref[30].  Vo=m2¢2/2=8m2¢2/9, so that the slow-roll parameter
We will assume, for ther field, a tunneling potential of e=(a/3)9V,/16U+=3aab/2, where ab=AU/Ut
the type =V,/2U+, see Eq(2), and thus
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2a 27ab 100 ' ' '
ns=1+? 1_7 . (74) Q=04 T
80 r a=6 4

In order for open hybrid models to have a large tilt, we
requireboth a large value otx and a small value o&b. As
we will show, this will be impossible given the constraints
(44)—(47) from the CMB. For that purpose, we should first
compute the tunneling parametera=M/2H; and
b = (4mv2/3\)M3/H: M3=(Vo/4U1)H/M=2abH/M.
Since bothH{<M andV,<U+, we expeca>1 andb<1,
which will induce large tensor anisotropies at low multi-
poles. This is a generic feature of open hybrid models. In 20
order to satisfy the CMB constraints we require

b=0.01

60 - 16 =0.022

™~

T (i(i+1) C,12m)" uK

40 - _A :

y
|
‘\

éT

2 2__ T 1
H2Z/H2=1+4ab=10, (75) 0 = = —

3aab  2b(0.6
"2 T[it(a+b™ (76 100 ' + |

€
Q=038

3(1+4ab L
( )2]253>< 1074, 77 80 a=6

Ac= 5>
€161+ (a+b) b=0.01

co | 16¢ = 0.068 7 H ]

2a
M:WHF>HF' (78

Note that M2~2M?>2HZ. Since a>1 requires
b<V,/8U;<1, we can use the third constraint to get the
bounda>5, which then imposegthrough the second con-
strain) that «<0.8/a(1+a%)?=1/a?<1/30. This means
that the scalar til{74) cannot be significantly larger than 1,
as was the aim of Ref31].

We have plotted in Fig. 7 the complete angular power /

spectrum of temperature anisotropies for the open hybrid
model, in the case)y=0.4 and ,=0.8, for (a=6, b FIG. 7. The complete angular power spectrum of temperature

=0.0J. In order to prevent the tensor contribution from ex- anisotropies for the open hybrid model with,=0.4 (higher plo}
ceeding the cosmic variance, we had to reduce the scaland Q,=0.8 (lower ploy, for (a=6, b=0.01). The cosmological
spectral tilt ton=1.002, which is essentially scale invariant Parameters are the same as in Fig. 5. We show the individual con-
and may not be sufficient to allow consistency with thetributions from the scalar, tensor, supercurvature, semiclassical and
large-scale structufs7]. Furthermore, as we decreaselp bubble-wall modes. Note that the bubblg-wgll mode is responsible
it will be necessary for scalar spectra to be closer and closdf" the large growth of the tensor contribution at low multipoles.
to scale invariance, in order to reduce the tensor contributiofon!y’ the scalar modes remain beyond abbut50, where they
In any case, there exists for this model a range of parametefOW towards the first acoustic peak.
for which all contributions to the CMB anisotropies, see,
e.g., Fig. 7, are compatible with observations, even for lowsically corresponds to Eq16) and tends to suppress large
values ofQ),. Of course, as we approa€hy~1, it is much values of¢,, favoring low values of},. The other is the
more likely to accommodate the bounds. “anthropic” factor, related to structure formation. The for-
mation of objects of galactic size is suppressed in a low
density universe, and so this factor favors large valuesgof
Finally, there is also a volume factor, taking into account that
As mentioned in Sec. lll, stronger constraints on two fieldlonger inflation leads to more galaxies, although for model
models arise if we take into account the probability distribu-parameters where this factor is dominant, the probability dis-
tion for g, which was considered in Ref27]. Inside a tribution is sharply peaked &,=1.
given bubble, there will be observers which will measure all We should emphasize that we are assuming that the slow-
possible values of)y, and the probability for a given value roll field outside the bubble does not affect the geometry of
of Q) is taken to be proportional to the number of collapsedde Sitter space. If, for instance, the Universe outside the
objects of galactic size that would form in all regions with bubble is in a process of self-reproduction, the probability
that value ofQ)y. This probability is the product of three distribution for (), inside the bubble may be affected. This
competing factors. One is the “tunneling” factor, which ba- issue requires further investigation.

8T =T (i(i+1) C,12m)" pK
1
{

100 1000

VI. PROBABILITY DISTRIBUTION FOR Qg
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With the above assumptions, it was found that, in terms of 100 '
the variable Q0385
1_90 80 - a=50 7]
X=( Q, ) :i b=008 s
o : 8 el 16 = 0.13 - H ]
the logarithmic distributionW=dP/d Inx is peaked at the &
value > ]
i Z
3 5)1/2 E 40 \'I"otal J ]
Xpea= K | spu—=| (79
peak 2“ 4 l
(2]
where k~0.1 is a parameter related to structure formation, ]
and u is given by
= 7T—ZR“V(¢ P p— (80) 1000
H= e TP T e 1+ A%
.y . . . 100
Near the peak value, the probability distributddhis Gauss- —_—
ian, with rms given by Q=085 L
80 r =50 ]
Alnx~(6u—5)"12 (81) =] by
These expressions are valid fe= 1. For smaller values, the S 60 - 16e = 0.032 7 H ]
peak is atx=0, meaning that most observers will see a flat < {
universe. On the other hand, the valuguo$hould not be too 3 Z T
large, sayu=<3, otherwise, from Eqs(79) and (81), we E 40 + ! .
would have Inke4=3 and Alnx=<0.3, so the observed I ’Q’\ta—l— | \‘ j7
value,x~1, would be many standard deviations away from & ﬂbs *:—r*ﬂﬂ( ‘
the peak value. 20 1
Using Ag=5x10 %, and Egs.(75), (76), we havea sC
%(4AS’“1/2)71/2, bS4.5Aé/2,ul/4 and n T
0 10 100 1000

e<10 32 (82 /

In the coupled modelg~ 10°2 and this constraint is not FIG. 8. The complete angular power spectrum of temperature
satisfied foru=<3. One possibility would be to increase the anisotropies for the coupled modébp pane) and for the open
value of the parameter, but then a value of);=0.1 would  hybrid model(bottom panelwith ,=0.85, for(a=50,b=0.08.
be extremely unlikely. Thus, the coupled model does notfhe cosmological parameters are the same as in Fig. 5.
seem to accommodate well an intermediate value of the den-
sity parameter 0%(),=<0.7, and produce at the same time tjonal boundgsee Fig. 8 Therefore, the coupled model is in
sufficiently small CMB anisotropies. However, we must re-go0d shape if the measured value@§ turns out to be not
call that for values off), close to 1, the constraints from g far from 1. This is very simple to understand: in that
supercurvature and b_ubble wall anisotropies are s_|gn|f|cantl}{mit, all the effects of the bubble wall are strongly sup-
reduced. The constraing5), (76) can then be substituted by d
; pressed.
Egs.(53), (54), and(82) is replaced by This should be compared with the situation in Fig. 5.
e=4X1076(1—Qg) 4ul2 There, t_he CMB map is acceptable even fy=0.4. How-
ever, witha=10, we haveu~10°. In this case the peak
Thus, for (1- Q) ~0.1, the constraints are satisfied even forvalue is at In,~6 and the standard deviation &sInx
e~10"2. ~0.01. This means that the “measured” validg= 0.4 used
For the sake of illustration, let us take=1. Then the for that plot is formidably unlikely. For those values of the
probability distribution for() is peaked in the interesting parameters, most observers within the same bubble would
range: all values 0£Q0,=<0.9 fall within one standard de- measure much smaller values of the density parameter.
viation or so from the peak value and are not strongly sup- Finally, for the open hybrid modgB1], the parametee
pressed. This value g can be obtained by taking=50 can be made as small as desired, and the condi@®ncan
and, for instanceb=0.08. Such values o& andb would be easily satisfied. The reason is that in this model the range
lead to unacceptably large supercurvature and wall fluctuasf values of the inflaton field are well below Planck scale and
tion anisotropies if we take, sd),=0.8. However, fof),  the probability distribution(16) easily covers those values
=0.85 we find that the anisotropies are below the observawithin one “standard deviation.”
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VIl. CONCLUSIONS the parameter range where the CMB anisotropies are com-

Sinale-bubbl inflation i . . ¢ patible with observations at low multipoles, the tilt of the
ingle-bubble open inflation is an ingenious way of rec-g - spectrum is negligible.

onciling an infinite open Universe with the inflationary para- In conclusion, we find that existing models of open infla-

di_gm. In this scengriol, a ;ymmetric bubble nucleates in dgq, are strongly constrained by present CMB data. How-
Sitter space and its interior undergoes a second stage @{er, there is still for all of them a range of parameters where
slow-roll inflation to almost flatness. At present there is athey would be compatible with observations.
growing number of experiments studying the CMB tempera-  Hawking and TuroK65] have recently proposed that it is
ture anisotropies at fractions of a degree resoluimorre-  possible to create an open universe from nothing in a model
sponding to multipole rangds=20-800, and they already without a false vacuum. The instanton describing this pro-
put some constraints on the spatial curvature of the universeess is singular, and therefore its validity has been subject to
However, in the near future, observations of the CMBquestion66]. Nevertheless, it has also been pointed out that
anisotropies with MAP and Planck will determine whetherthe quantization of linearized perturbations in the singular
we live in an open Universe or not with better than 1% background is reasonably well pogd¥]. Provided that one
accuracy. It is therefore crucial to know whether inflation cancan make sense of the instanton by appealing to an underly-
be made compatible with such a Universe. Single-bubbléng theory where the singularity is smoothed out, it seems
open inflation models provide a natural scenario for underthat the details of that theory need not be known in order to
standing the large-scale homogeneity and isotropy, but mos§@lculate the spectrum of cosmological perturbations. This
importantly, they generically predict a nearly scale invarian$SPectrum can be quite different from that of the one-bubble
spectrum of density and gravitational wave perturbationsuniverse case at large scalese e.g[28], where an analyti-
Future observations of CMB anisotropies and large scal€@lly solvable model was considejednd it deserves further
structure power spectra will determine whether these model§vestigation.
are still valid descriptions. For that purpose, it is necessary to
know the predicted spectrum with great accuracy. In this ACKNOWLEDGMENTS

aper we have explored the CMB anisotropy spectrum for ) - .
\F/)arri)ous models ofpsingle—bubble open infla%n.pA host of_ It 1S @ pleasure_ to th_ank Andrei Linde and Takahiro
features at low multipoles due to bubble wall fluctuations, | 2haka for useful discussions. The CMB power spectra were

supercurvature modes and quasiopenness place significaftmPuted using a modified version ofiBrAST [68]. J.G.B.
constraints on these models. Is supported by the Royal Society of London, while J.G. and

In particular, we find that the simplest uncoupled two-X:M. acknowledge support from CICYT, under contract

field model and the “supernatural” model can only accom-AEN98-1093.
modate CMB observations provided th@{,=0.98. Simi-
larly, the simplest single-field models of open inflation, APPENDIX A

based on a modification of new inflationary potentials with . _
The open universe scalar harmonics for the subcurvature

the addition of a barrier near the origin, induce too large . .
tensor anisotropies in the CMB unless the universe is suffirnOdes can be written &3qim=11qi(1) Yim(0, ¢), where[69)]

ciently flat. Other single field models, where a barrier is suit- : : -1
ably appended to a generic slow-roll potential far from the [y \/F(IQ+|+1)F(—Iq+I+1) iq—1/2 (COshr)
origin may not suffer from this probler54]. al r'dig)r(=iq) Jsinhr

For the coupled two-field model, there is a range of pa- (A1)
rameters for which all constraints from CMB anisotropies are
satisfied even if) is rather low(sayQy=~0.4). On the other HereY (6, ¢) are the usual spherical harmonics.
hand, as argued ifi27] (see Sec. Y, stronger constraints The open universe scalar harmonics for the supercurva-
arise if we consider the probability distribution for the den-ture modes ¢?>=—A?) can be written as YAim
sity parameter for a given set of model parameters, and re= ﬁA,|(f)Y|m(9, ¢), where[19]
quire that the measured value@f, is not too unlikely in the

ensemble of all possible observers inside the bubble. In that __ T(I+1+MT(+1-A) Py 5% coshr)

case, CMB constraints can still be accommodated provided II, \(r)= \/ _ .

that Q,=>0.85. 2 vsinhr
Finally, we have considered the open hybrid model, (A2)

which was introduced ifi31] with the motivation of gener-
ating a tilted blue spectrum of density perturbations. In thi
model, all CMB constraints can be accommodated even for

SThe various multipole$=A can be obtained from

1/2

low Q. Also, model parameters can be chosen so that typi- PAZap(coshr) /2 coshAr

. ) . —_— =\, (A3)
cal observers will measure the density parameter in the range Jsinhr 7 sinhr
0.1=0,=0.9. In this sense, the open hybrid model fares
better than the coupled two-field model. This is perhaps not —12 .
too surprising, since this model involves three fields and M: \EM (A4)
hence has more free parameters. Even so, it turns out that for Jsinhr m A sinhr
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with the recurrence relation

(Ih(@)%=2 |n.(pI* (A13)

(A2=12)P, 4 coshr)=P¥? | (coshr)
APPENDIX B
—(21-1)cothrP¥2 ) (coshr). _ , _
As mentioned in Sec. Ill, an observer located at a distance

(A5) r>1 from the center of an inflating island would measure an
anisotropy due to the gauge invariant perturbat@b). This

To define the primordial scalar power spectrum we asiS c@used by a field perturbatigip~(y/2) o, wheredy is
sume that at the end of inflation the scalar metric perturball€ Value of the scalar field at the beginning of inflation at
tion takes the form th_e location where_the observer lives. We can compare this

with the perturbation caused by tHe-0 supercurvature
modes, which is of ordef¢~Hg/27. The “semiclassical”
R%z RaYrim (AB) anisotropy would only dominate over the usual supercurva-
A

ture anisotropies when

” Y$o=He. (B1)
2 fo dqR+(a)Qqim (A7)
- However, it turns out that such values @§ typically occur
o ' _ only near the centers of inflating islands, as the following
from where the explicit expressions for the amplltud%s argument showg27]. If ¢, is the value at the center, then
A%. and A, can be read off. The continuum part of the

scalar power spectrum is defined as Y,
b0~ b 1—€f . <1, (B2)
(IR(@))=2 [R(a)?, (A8) y
* bo~do| 1= 57|, l<r<y L. (B3)

see[17] for detalils.

To describe the open universe gravitational waves we us
the following notation. The perturbed metfi€we only con-
sider even gravitational perturbatiorsan be written as

Defining A = ¢.— ¢g, the probability for the observer to
fie at a distance away from the center can be obtained by
expanding the exponent in E(L6)

— o), A¢
ds?=a%(n)[ —dn?+ (¥ + 2hj)dxidx].  (A9) P(d’O*A‘f’)“eXF{W 2] |
The perturbatiorh;; is then expanded as Hence, the expected ¢ for an observer atp, is of order

A¢p=12/¢$,. Using Eq.(B3), we see that for values of the
field which satisfy Eq.(B1), the expected distance to the

- center of the island is of order
hiizg;n JO dphe pim(7)QFM(xY), (A10)

.|:2 H2
[~—5~ —FZSl
- aplmyky _ ~pl ybo Yo
where the even harmonldsﬁ (X)=G{j(r)Yim(6,¢) are
transverse and traceld€9,23,33, and the radial component ) . )
is given by Therefore, one is led to the conclusion that field values for

which the semiclassical anisotropy would be large, satisfying
Eqg. (B1), occur typically near the center of the islands,
<1, where the anisotropy is actually not seen.

The same conclusion can be reached from first principles.
All the necessary information is contained in the quantum
state, a wave functional depending on the amplitudes of the
different field multipoles. Expanding the field ar,6,¢)
=ZCqmZqim(X'), the square of the wave functional will give
the probability distributionP[ ¢]=11I;P;[c;] for the coeffi-

o I cientsc;, wherei=(q,l,m) is a collective indexP factor-
hiiH;m fo dph.(p)Qjj " (xY). (A12) izes into independerR;’s (which are just Gaussian distribu-
N tions for eachc;), because we are quantizing linearized
perturbations which are decoupled from each other. The
The power spectrum is then defined as guantum state we are using is homogeneous, and we can take

I=D)I(1+1)(1+2)

1/21-[ (r)
ey — p!
Gpr(r)_[ 2p2(1+p2)

sinkfr

(A11)

At the end of inflation, the gravitational perturbation takes
the form[23,24]
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any point on the hyperboloid as the origin of coordinates. Lethis point of view, it is clear that typical observers will ef-
us then take our observer to berat0, and let us concentrate fectively not see the semiclassical anisotropy discussed in
on the supercurvature sectgf=—1. All modes withl >0 Seﬁ- li. d d ab he “weak” _
vanish at the origin. Therefore, the value of the fieldr at owever, as discussed above, the “weak™ assumption

—0 onlv d q th ffici . . that our value ofp, is not too special, in the sense that it will
=Y only e_pen S on the coe _'C'eDEZ:—lﬁO’O In-our-uni-— geeyr typically at large distances from the center of the is-
verse. Thel=0 mode is spherically symmetric and hence|and' implies thatygo=<Hg. In other words, we must im-

does not contribute to anisotropies. The anisotropies megose that the anisotropy induced by the perturbat@h
sured by this observer will only depend on the amplitudesshould always be subdominant with respect to the usual su-
taken by thec; with 1>0, whose rms is of ordez. From  percurvature anisotropy.

[1] See, for instance, S. Perlmutter, 19th Texas Symposium of23] T. Tanaka and M. Sasaki, Prog. Theor. PHy&.243(1997;
Relativistic Astrophysics, Paris, 1998npublisheg M. Bucher and J. D. Cohn, Phys. Rev.55, 7461(1997.
[2] See, for instance, G. Efstathiou, 19th Texas Symposium oifi24] M. Sasaki, T. Tanaka, and Y. Yakushige, Phys. Re66D616

Relativistic Astrophysics, Paris, 1998npublished
[3] MAP Home Page at http://map.gsfc.nasa.gd@98.

(199%); J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Nucl.
Phys.B513 343(1998.

[4] Planck Surveyor Home Page at http:/astro.estec.esa.nl/SA25] 3. Garriga and V. F. Mukhanov, Phys. Rev5B 2439(1997).

general/Projects/Planck1998.

[5] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N.
Spergel, Phys. Rev. B4, 1332(1996.

[6] M. Zaldarriaga, D. Spergel, and U. Seljak, Astrophy<l8B, 1
(1997.

[7]J. R. Bond, G. Efstathiou, and M. Tegmark, Mon. Not. R.
Astron. Soc.291, L33 (1997.

[8] P. J. E. Peeble®rinciples of Physical Cosmologyrinceton
University Press, Princeton, NJ, 1993

[9] J. Silk and M. S. Turner, Phys. Rev. &5, 419(1987; M. S.
Turner,ibid. 44, 3737(1991); A. Kashlinsky, I. Tkachev, and
J. Frieman, Phys. Rev. Leff3, 1582(1994.

[10] L. P. Grishchuk and Ya. B. Zel'dovich, Astron. ZB5, 209
(1978 [Sov. Astron.22, 125(1978]; J. Garca-Bellido, A. R.
Liddle, D. H. Lyth, and D. Wands, Phys. Rev. &2, 6750
(1995.

[11] J. R. Gott I, Nature(London 295, 304(1982; J. R. Gott Ill
and T. S. Statler, Phys. Lett36B, 157 (1984.

[12] B. Ratra and P. J. E. Peebles, Astrophys43R, L5 (1994);
Phys. Rev. 52, 1837(1995; M. Kamionkowski, B. Ratra, D.
Spergel, and N. Sugiyama, Astrophys434, L57 (1994).

[13] M. Bucher, A. S. Goldhaber, and N. Turok, Phys. Revc®)
3314(1995; K. Yamamoto, M. Sasaki, and T. Tanaka, Astro-
phys. J.455 412 (1995.

[14] A. D. Linde, Phys. Lett. B351, 99(1995; A. D. Linde and A.
Mezhlumian, Phys. Rev. 52, 6789(1995.

[15] D. H. Lyth and A. Woszczyna, Phys. Rev.32, 3338(1995.

[16] M. Sasaki, T. Tanaka, and K. Yamamoto, Phys. Revb1D
2979(1999; M. Bucher and N. Turokibid. 52, 5538(1995.

[17] K. Yamamoto, M. Sasaki, and T. Tanaka, Phys. Revs4)
5031(1996.

[26] J. Garca-Bellido, J. Garriga, and X. Montes, Phys. RevsD)
4669 (1998.

[27] J. Garriga, T. Tanaka, and A. Vilenkin, Phys. Rev. 6D,
023501(1999.

[28] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Nucl. Phys.
B551, 317(1999.

[29] A. Green and A. R. Liddle, Phys. Rev. &5, 609 (1997.

[30] J. Garca-Bellido and A. R. Liddle, Phys. Rev. B5, 4603
(1997.

[31] J. Garca-Bellido and A. Linde, Phys. Lett. B98, 18 (1997;
Phys. Rev. D55, 7480(1997.

[32] M. Sasaki and T. Tanaka, Phys. Rev5B, R4705(1996.

[33] J. Garca-Bellido, Phys. Rev. 36, 3225(1997.

[34] S. Coleman and F. De Luccia, Phys. Rev2D) 3305(1980.

[35] C. L. Bennettet al, Astrophys. J464, L1 (1996.

[36] A. Dekel, in 3rd ESO-VLT Workshop on Galaxy Scaling Re-
lations, Garching, 1996, astro-ph/9705033.

[37] W. Freedman, in 18th Texas Symposium on Relativistic As-
trophysics, Chicago, 1996, astro-ph/9706072.

[38] C. Lineweaver, D. Barbosa, A. Blanchard, and J. Bartlett, As-
tron. Astrophys322 365(1997); 329 799 (1997).

[39] C. Lineweaver and D. Barbosa, Astrophys496, 624(1998.

[40] M. Kamionkowski, D. N. Spergel, and N. Sugiyama, Astro-
phys. J426, L57 (1994; W. Hu and N. Sugiyama, Phys. Rev.
D 51, 2599(1995.

[41] P. H. Frampton, Y. Jack Ng, and R. Rohm, Mod. Phys. Lett. A
13, 2541(1998.

[42] S. Parke, Phys. Letfl21B, 313(1983.

[43] J. Garca-Bellido, in 2nd Workshop on Birth of the Universe
and Fundamental Physics, Rome, 1997, hep-ph/9803270.

[18] T. Hamazaki, M. Sasaki, T. Tanaka, and K. Yamamoto, Phys[44] A. R. Liddle and D. H. Lyth, Phys. Re231, 1 (1993.

Rev. D53, 2045(1996.

[19] J. Garca-Bellido, Phys. Rev. 34, 2473(1996.

[20] J. Garriga, Phys. Rev. B4, 4764(1996.

[21] J. D. Cohn, Phys. Rev. B4, 7215(1996.

[22] J. Garca-Bellido, A. R. Liddle, D. H. Lyth, and D. Wands,
Phys. Rev. Db5, 4596(1997).

[45] A. A. Starobinsky, Pis'ma Astron. Zhl1, 323 (1985 [Sov.
Astron. Lett.11, 133(1985].

[46] W. Hu and M. White, Astrophys. 386, L1 (1997).

[47] W. Hu, N. Sugiyama, and J. Silk, Natufeondon 386, 37
(1997.

[48] R. K. Sachs and A. M. Wolfe, Astrophys. 147, 73 (1967.

083501-16



MICROWAVE BACKGROUND ANISOTROPIES IN . .. PHYSICAL REVIEW 50 083501

[49] B. Allen and R. Caldwell, Report No. WISC-MILW-94-TH-21 [59] E. Copeland, A. Liddle, D. Lyth, E. Stewart, and D. Wands,
(unpublished Phys. Rev. D49, 6410(1994.

[50] J. R. Bond, inCosmology and Large Scale Structudees  [60] L. Randall, M. Solja&, and A. H. Guth, Nucl. PhysB472,
Houches Summer School Course LX, edited by R. Schaeffer 377 (1996.

(Elsevier Science Press, Amsterdam, 1996 [61] J. Garca-Bellido, A. D. Linde, and D. Wands, Phys. Rev. D

[51] E. F. Bunn and M. White, Astrophys. 480, 6 (1997). 54, 6040(1996.

[52] S. Carroll, W. Press, and E. Turner, Annu. Rev. Astron. As-[62] A. D. Linde and A. Riotto, Phys. Rev. B6, 1841(1997.
trophys.30, 499 (1992. [63] C. Panagiotakopoulos, Phys. Rev.5B, 7335(1997).

[53] M. Kamionkowski and A. Loeb, Phys. Rev. B6, 4511 [64] G. Dvali, G. Lazarides, and Q. Shafi, Phys. Lett4B4, 259
(1997. (1998.

[54] A. D. Linde, Phys. Rev. 19, 023503(1999. [65] S. W. Hawking and N. Turok, Phys. Lett. &5 25(1998.

[55] A. D. Linde, M. Sasaki, and T. Tanaka, Phys. Rev.5B [66] A. Vilenkin, Phys. Rev. D67, 7069(1998; A. Linde, ibid. 58,
123522(1999. 083514(1998; W. Unruh, gr-qc/98030501998.

[56] Max Tegmark web page at http://www.sns.ias.edu/[67] J. Garriga, hep-th/9803210998.
“max/cmb/experiments.html [68] CMBFAST Home Page at http://www.sns.ias.edu/

[57] M. White and J. Silk, Phys. Rev. Leff7, 4704(1996. “matiasz/CMBFAST/cmbfast.html

[58] A. D. Linde, Phys. Lett. B259, 38 (1991); Phys. Rev. D49, [69] E. R. Harrison, Rev. Mod. Phy89, 862(1967); L. F. Abbot
748 (1994. and R. K. Schaefer, Astrophys. 308 546 (1986.

083501-17



