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Open inflation and the singular boundary
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The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the
fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the
Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and
scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of
a family of “no-boundary” solutions where both the geometry and the scalar field are regular. Using this
procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term.
Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturba-
tions and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in
this background.

PACS numbes): 98.80.Cq

Recently, Hawking and Turokl,2] have suggested that andh is the determinant of the metric on the world sheet of
an open universe can be created from nothing. This is athe membrane. The parametep>0 is a positive tension
attractive possibility because it would allow one to constructwhich stabilizes the vacuum &i=0, and« is a small cou-
open models of inflation with very simple inflationary poten- pling. These parameters will not play a role once the “sin-
tials (see alsd3-6)). gular” limit is taken, but for the time being there is no harm

The new ingredient that makes their construction possiblén thinking of them as physical. The parameterwill be
is that they allow their instanton solution to be singular.specified below. We have not written a boundary term, since
There may be some justification for this, since the Euclideamur geometries will not have a boundary.
action is integrable. Moreover, if we think of the singularity ~ Following [1] we take an @)-symmetric ansatz for the
as the boundary of spacetime, the Gibbons-Hawking boundmetric and the scalar field:
ary term[7] is nonvanishing and finite. This is rather coin-
cidental, since it requires the extrinsic curvature of the ds’=do?+b%(o)(dy? +sinfyd Q). €)
boundary to increase just at the same rate as the inverse of its i ,
volume as the singularity is approached. In the absence of a membrane, the field equation® (o)

On the other hand, the very existence of a boundary magnd ¢(o) are
be considered a disturbing feat(garticularly in the context b’
of the no-boundary proposal for the wave funcjicemd one ¢ +3 ' =V, (4)
may conjecture that the singularity is just an effective de- b ’
scription at low energies whose structure is resolved in the
framework of a better theory. Here we shall consider the (
possibility of regularizing the singularity with matter, so that
the instanton can be obtained as the limit of a family of . o )
nonsingular geometries where the scalar field is also welVh€re primes stand for derivatives with respectto
behaved. As we shall see, by using this limiting procedure, 1he Hawking-Turok instanton is depicted in Fig. 1. The
the contribution of the “singularity” to the Euclidean action
is different from the Gibbons-Hawking term.

The simplest way to regularize the solutions is to intro-
duce a membrane coupled to the scalar field. The Euclidean
action is given by
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FIG. 1. Hawking-Turok singular instanton. The solution is regu-
where lar ato=0, whereb~o and¢’'=0. As ¢ is increasedb grows to
a maximum value and then decreases again, reaching a second zero
at someo = o, where the solution is singular. To the leftlnf the
m(P)= po— ae ?, 2 solution is very similar to the Euclidean—de Sitter solution, but to
the right it has the behavior given in Eq$) and (7). The singu-
larity can be removed by introducing a membrane coupled to the
*Electronic address: garriga@ifae.es scalar field atv= o, .
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solution is regular at-=0, whereb~o and¢’'=0. Aso is  Using Eq.(10) we find that the leadin@(b %) terms in Eq.
increasedp grows to a maximum value and then decrease$12) cancel out. The subleading terms are unimportant; they
again, reaching a second zero at sameo; . However, this  will not contribute once the size of the membrane is shrunk
second zero is singular. Near the singularity the scale factdo zero.

behaves afl,4] Inserting the trace of Einstein’s equations in Eg), we
find [9]
b3~C(127G) Y o¢— o), (6)
1
and the scalar field as Se= —f d4X\/§V(¢)—§f d*evhu(g). (14
_ —1 _ o . .
¢~—(127G)" *2In(oy— o) +const. (7) " The limit of the second term as the size of the membrane is

shrunk to zero can be interpreted as the contribution of the

These asymptotic expressions are valid for singularity to the action of the instanton. It is given by

b<b,=CY°G4 (8) 20

Ssing:_- (15

In spite of the singular behavior of the scalar field and the K

geometry, the Euclidean action is integrable. o o
Here, we shall take the approach of modifying the solu-Taking into account that the trace of the extrinsic curvature
tion so that it will be everywhere regular. The idea is to©f the membrane i&=3(b’/b), and using Eq(13), we find
surround the singularity with a spherical membrane whicHhat thls contribution is actually one-third of the Gibbons-
will act as a source for the scalar field. The interior of theHawking term[7,4,2) evaluated on the external face of the
membrane is replaced with a ball Gfearly flat space. At membrane:
the center of the bally=0, we take¢’'=0,b’'=—1, and 1 1
¢(o.) is chosen so that it matches the value dpfat the — :_j A3 VK. (16)
membrane. The membrane will also provide the energy mo- Ssing=3 56K~ 227G EVhKex
mentum source necessary to match both geometries. ] o ) ) )
Substituting the @%)-symmetric ansatz into the Euclidean This conclusion is rather general. The junction condifi®h
action and varying with respect i, one easily finds match- [K]=—127Gu relates the value gi(¢) in Eq. (14) to the
ing conditions for the scalar field at the membrane. The disiUMP in the trace of the extrinsic curvature. However, the

continuity in the first derivative is given by jump in K is dominated by the extrinsic curvature on the
external face, from which Eq16) follows.
[ (o)]= — axe<®lom) (9) Note that the result in Eq15) does not depend on the

parameterg.y or a characterizing the membrane. The reason
where the square brackets indicate the difference between thethat« has been eliminated in favor & through Eq.(10),
values inside and outside, ang, is the location of the mem- whereasu does not contribute in the limib(o,,)—0. In
brane. Given thath’' ~0 inside the membrane and using the fact, there is no strong reason for using a coupling of the
asymptotic form of¢’ near the external face we have form (2). It has been chosen so that the regulataemains
finite as the singularity is approach&df we think of our
3 cd(o) membrane as a physical object, then for e@and for each
~ab®(op)e ”m. (10 value of the cutoffo,,, the solution only exists for specific
values ofuy and « determined by the matching conditions.

The left hand side of this equation is constant. In order tdon€ can extend this interpretation by taking the coupling

obtain a nontrivial limit aso,— o while keepinga finite ~ © P& very small and allowing for a superposition of any
we take number of membranes with positive and negative charges. In

this case, the parameterg, and « can be thought of as
k=(127G)*2 (11)  continuous variables, which can be adjusted to satisfy Eq.
(10) for any value ofC and o,
Let us now consider the back reaction of this membrane The instability of flat space pointed out by Vilenkjd]
on the geometry. Einstein’s equations imply the matchinghas an analogue in the regularized theory. Vilenkin’s instan-
condition[8] ton can also be regularized with a membrane near the singu-
larity. Just as in the cosmological case, the Euclidean world
sheet of this membrane is a three-sphere. Upon analytic con-
=—47Gu(p)=—4nG(puo—ae ") (12) tinuation to the Lorentzian regime, this becomes the world
sheet of a spherical membrane which accelerates into the flat
Inside the membrane, the geometry is basically flat, and wassymptotic region. Thus, the instability can be pictured as
have p’/b)~b~*. Outside the membrane, we have

(12w G)Y2

!

b

E% —«C (13) IWe could replaces, by uo+ Be®¢, and thenu, and 8 would

b 3bd also remain finite in the limib(o,,)—0.
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the spontaneous creation of a membrane which is a sourdéere, a prime indicates derivative with respect to the confor-
for the scalar field. Becausgis large near the membrane, its mal coordinateX introduced above. It is straightforward to
effective energy per unit areﬁ(¢)) is negative_ This nega- ShOW that the f|rSt term dominates near the S_ingularity,_ be-
tive energy compensates for the positive energy in the scaldl2ving ask/X?, with k=3/4. Hence, the effective potential
field configuration, so that the total energy is zero and tun9°€S to plus infinity rather than minus infinity near the sin-
neling is allowed. In Ref[4], a massless scalar field was gularity. Interestmgly_, the coefficiel= 3/4 is again a criti-
considered, and there was no minimum gap to be Sur(_:al one[10]. As mentioned above, fde< —1/4 the problem

mounted in order for tunneling to occuthe constantC is”not vv”ell poszd. For 1/S<klf<3{4 the profblim ish;:argin-

could be chosen arbitrarily smallAs mentioned if4], the ally well posed, since oth solutions o .t e S. nger

same seems to be true for an arbitrary potential ',rhe re ue_quatlon are square integrable near the singularity, but only
o yp ' 9%ne has a square integrable kinetic energy. The exception is

larization we suggest here can be applied for any valué of k=0, for which both solutions are well behavéthis case

and in this respect the same construction that would makg ¢ aiscussed if6]). Finally, for k=3/4, the basis of func-

the Hawking-Turok instanton acceptable also makes flaj; : - X ' :

space unstable. There may be models, however, where thq

is a minimum height of the tunneling barrier. These modelsOf the energy. Thus, the singularity behaves as a reflecting
would make flat space metastable at least.

. . . . .., boundary and the problem of quantizing the scalar perturba-
The solution of Hawking and Turok is also special with tions seems to be well posed. In particular, this seems to

. e o preclude the possibility of scalar perturbations “streamin
tions. In the approximation when the gravitational back re€Tp P y P g

. . . . .~ out” from the singularity into the universgs]. The same
action of the scalar field perturbations is neglected, HaWk'”Q:omment applies to gravity waves, for which the correspond-

and Turok[1] have argued that the quantization of fluctua—mg effective potential reduces to the first term in Edj7)
tions is marginally well defined in spite of the singularity. [11]

Indeed, after the rescaJ|m=X/b, and introducing the con- = 14 mmarize, we have shown that the contribution of the
formal coordinateX=[ ‘da/b(c), the field modes obey a singularity to the Euclidean action depends on whether it is
Schralinger equation with a potential that behaves asjiewed as a true boundary of spacetime or whether it is
—(2X) 2 near the singularity. This is again very coinciden- viewed as the limit of a family of regular instantons. The
tal, since with a stronger singularity the quantum mechanicatecond option seems preferable. The Einstein-Hilbert term
problem would certainly be ill poseld,10]. may be a good approximation at low curvature, but near the
Therefore it is important to check what happens whensingularity corrections may be expected and the finiteness of
gravitational back reaction is included. The quantization ofthe action is hard to justify—unless the singularity is dy-
cosmological perturbations i@(3,1)-symmetric geometries namically cut off in the context of a more fundamental
(the analytic continuation of our instanton has this symmetheory. Also, we have pointed out that the quantization of
try) was recently studied in Ref11]. The analysis was done linearized cosmological perturbations is well posed in the
in terms of the variablgxa®/¢’, where® is Bardeen’s singular background. Therefore, the predicted power spectra
gauge invariant potential. The variabte obeys a Schro  will tend to a well-defined limit when the regulator is re-
dinger equation with effective potential given by moved. This suggests that predictions may not be too sensi-
tive to the details of the underlying theory, provided that the
cutoff scale is sufficiently high.
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