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Cosmological perturbations in the 5D big bang
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Bucher has recently proposed an interesting brane-world cosmological scenario where the ‘‘big bang’’
hypersurface is the locus of collision of two vacuum bubbles which nucleate in a five-dimensional flat space.
This gives rise to an open universe, where the curvature can be very small provided thatd/R0 is sufficiently
large. Here,d is the distance between bubbles andR0 is their size at the time of nucleation. Quantum
fluctuations develop on the bubbles as they expand towards each other, and these in turn imprint cosmological
perturbations on the initial hypersurface. We present a simple formalism for calculating the spectrum of such
perturbations and their subsequent evolution. We conclude that, unfortunately, the spectrum is very tilted, with
a spectral indexns53. The amplitude of fluctuations at the horizon crossing is given by^(dr/r)2&
;(R0 /d)2SE

21k2, whereSE@1 is the Euclidean action of the instanton describing the nucleation of a bubble
andk is the wave number in units of the curvature scale. The spectrum peaks on the smallest possible relevant
scale, whose wave number is given byk;d/R0. We comment on the possible extension of our formalism to
more general situations where a big bang is ignited through the collision of 4D extended objects.
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I. INTRODUCTION

The possibility of having gravity localized@1,2# on a
brane which moves in a higher dimensional space has
cently stimulated the search for alternatives to the stand
inflationary paradigm@3–5#. In these alternative scenario
the big bang would result from the collision of 4-dimension
extended objects propagating in five dimensions. Pionee
work in this direction @4# did not use the localization o
gravity as an essential ingredient, but this was at the expe
of a somewhat singular behavior at the moment of collis
@6#, when the ‘‘bulk’’ in which the branes propagate mome
tarily disappears.

The generic predictions of inflation seem to be in go
agreement with current cosmological data, and therefore
alternative proposal has to measure up to high standard
particular, it is important to clarify the mechanisms by whi
cosmological perturbations are generated, since at the
ment these provide the finest tests for any theory of ini
conditions. The purpose of this paper is to consider this pr
lem in the context of the model proposed in Ref.@3#, where
it seems to be best posed~see also@7#!.

The paper is organized as follows. In Sec. II we brie
review Bucher’s scenario, describing the geometry of
problem. In Sec. III we derive the expression for the prim
dial cosmological perturbations in terms of the physical
rameters of the model. In Sec. IV we discuss the subseq
evolution of such perturbations, and in Sec. V we summa
our conclusions.

II. A BIG BANG FROM BUBBLE COLLISION

In Bucher’s model one starts with a metastable~or
‘‘false’’ ! vacuum in five dimensions, which is flat space o
0556-2821/2002/65~10!/103506~7!/$20.00 65 1035
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very mildly expanding de Sitter space. This decays throu
bubble nucleation into an anti–de Sitter~AdS! phase, where
the five-dimensional cosmological constant is negative. T
model requires the existence of degenerate discrete
vacua. Upon collision of two bubbles corresponding to d
ferent vacua, a domain wall forms, where gravity is localiz
in the manner of Randall and Sundrum@1#. The ‘‘big bang’’
hypersurface is the locus where the world sheets of the
bubbles meet, and the domain wall, or ‘‘local brane,’’ is t
place where we are supposed to live.

Let us use coordinatesXA5(Xi ,W,T) in the original 5D
Minkowski space, where a pair of bubbles of radiusR0
nucleate atT50, separated by a distance 2d. The radiusR0
is a fixed parameter of the theory, which is related to
bubble wall tensions and to the energy gape between the
original Minkowski phase and the final AdS phases@8# ~this
relation, however, will not be needed in the following di
cussion.! Let us choose the origin of coordinates to be at
center of one of the bubbles. After nucleation, the bub
wall expands with constant acceleration, following a hyp
bolic trajectory which can be parametrized as

T5R0sinhb, ~1!

R5R0coshb, ~2!

whereR[(uXW u21W2)1/2, andb is the boost parameter of th
bubble wall

v5dR/dT5tanhb.

The collision takes place on the planeW5d, along the hy-
perboloid
©2002 The American Physical Society06-1
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T22uXW u25d22R0
2 . ~3!

To the future of this hyperboloid, and on the planeW5d, a
domain wall forms where gravity is four dimensional@1,9#.
Throughout this paper we shall assume that, locally, the
lision process is almost instantaneous compared with
length scales of our interest, and that a fixed fraction of
energy of the collision is channeled into the degrees of fr
dom which live on the local brane. We shall also assume
usual fine tuning between the tension of the local brane
the AdS radius, so that the effective 4D cosmological c
stant is sufficiently small.

In the unperturbed setup, the 4D Minkowski space on
planeW5d is matched into an open FRW model along t
hypersurface~3!. Along this hyperboloid, the metric is con
tinuous, although its derivative is not~this jump in the ex-
trinsic curvature corresponds to the jump in the Hubble r
accross the surface!. It is convenient to use Milne coordi
nates to describe the 4D Minkowski space before the co
sion:

(4)ds252dt21t2dVH
2 , ~4!

where thet5const surfaces have the hyperbolic geome
described bydVH

2 . In terms of Minkowski coordinates

Milne time is given byt5(T22uXW u2)1/2. This form of the
metric is valid fort,R0cosh21(d/R0).

For t.R0cosh21(d/R0), the 4D metric on the ‘‘local
brane’’ is given by

(4)ds252dt21a2~ t !dVH
2 .

The local brane separates the interiors of the two vacu
bubbles, which have already collided and continue to
pand. Due to theO(3,1) symmetry of the process, the bu
metric on both sides of the local brane is given
Schwarzschild-AdS@9,10#. The evolution of the scale facto
after collision is given by the usual Friedmann equation

H2'
k2

3
r1

1

a2 . ~5!

Here, H5ȧ/a, k258pG is the effective 4D gravitationa
coupling andr is the matter energy density which is depo
ited on the local brane after collision. This will also includ
some ‘‘dark radiation’’@9# because a significant fraction o
the energy of the colliding bubbles may not stick to t
brane; it may just fly into the bulk contributing to the effe
tive mass of the Schwarzschild-AdS. In Eq.~5! we have also
neglected ‘‘brany’’ corrections in the right-hand side, prop
tional tok4r2l 2. These will be unimportant provided that th
AdS radiusl in the bulk is sufficiently small. The discussio
of cosmological perturbations with these corrections
cluded is significantly more complicated and it is left f
future research.

From Eq.~3!, the spatial curvature scale of the open u
verse at the moment of collision is given by (d22R0

2)1/2, so
the flatness problem is solved provided thatd is sufficiently
large~as discussed in Sec. III A, this gives a lower bound
10350
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d/R0). Of course, the homogeneity problem is also solv
due to the residualO(3,1) symmetry of the colliding bubble
setup along the hyperboloid~3!. Thus, in principle, Bucher’s
scenario seems to provide an attractive starting point fo
brane-world cosmology.

III. INITIAL PERTURBATIONS

Aside from solving the homogeneity and flatness pro
lems, a serious candidate for a theory of initial conditio
should explain the origin of the primordial cosmological pe
turbations. In brane collision scenarios these may be see
by preexisting fluctuations in the shape of the collidi
branes. These produce distortions of the ‘‘big bang’’ hyp
surface as well as initial perturbations in the distribution
the energy density. In this section we estimate this effect
the case of colliding bubbles.

Quantum fluctuations on expanding vacuum bubbles h
been studied in Refs.@11#. For a bubble which is centered a
the origin of coordinates, the perturbed worldsheetX̃A is
conveniently parametrized as

X̃A~jm!5XA~jm!1NA~jm!x~jm!5~11x/R0!XA.

Here,NA is the unit normal to the unperturbed worldsheet
the bubble, which has the internal geometry of a 4D de Si
space of radiusR0 , jm are a set of coordinates in this spa
and XA stands for the unperturbed worldsheet~2!. It is
known @11# that the normal displacementx behaves like
a worldsheet scalar field with the tachyonic massm2

524R0
22, which obeys an equation of the form1

2hx24R0
22x50. ~6!

Here, h is the covariant d’Alembertian in a 4D de Sitte
space.

We must also consider the second bubble, whose cent
at a distance 2d from the first. For perturbations which ar
symmetric with respect to the planeW5d, the collision will
still take place on this plane, the second bubble being ju
mirror image of the first. In what follows, we shall restri
our attention to such ‘‘Z2 symmetric’’perturbations. It is easy
to show, following a calculation similar to the one present
below, that the antisymmetric mode has an amplitude co
parable to that of the symmetric mode, but does not cont
ute to cosmological perturbations to linear order, so its eff
seems to be much smaller than that of the symmetric mo

An important observation is that, by conservation of m
mentum, the fluid lines will be orthogonal to the perturb
surface of collision, which is therefore a comoving, or v

1Here, and in the following discussion, we are neglecting the s
gravity effect of the bubble walls on the perturbations. Doma
walls produce a repulsive constant gravitational force which cau
an acceleration of order (Gs)21, whereG is the five-dimensional
Newton’s constant ands is the wall tension. If this length is very
large compared with the inverse of the proper acceleration of
bubble wall, given byR0

21, then the self-gravity of the wall will be
negligible.
6-2
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COSMOLOGICAL PERTURBATIONS IN THE 5D BIG BANG PHYSICAL REVIEW D65 103506
locity orthogonal surface@12#. It is known ~see next section!
that thegrowing mode of the curvature perturbationRc on
comoving surfaces is a constant of motion on scales la
than the Hubble rate, and henceRc will be a quantity of
interest to us. In the present case, however, it will be equ
important to consider thedecayingmode, since its initial
amplitude is comparable to that of the growing mode. The
fore in order to characterize the initial perturbation we w
also need the density perturbationdc on the same initial sur-
face.

A. Initial value of Rc

Due to local shiftsdt in the time of collision caused by
fluctuations of the bubble shape, the big bang surface wil
longer be the smooth hyperboloid~3!. As explained in the
preceeding paragraphs, we can restrict attention to pertu
tions which are symmetric with respect to the planeW5d.
Then, to linear order indt, the metric induced on the big
bang surface is easily obtained from Eq.~4!, and it is given
by

(3)ds25S 112
dt

t D t2dVH
2 .

Since we live in an almost flat universe, we shall be int
ested in length scales which are short compared to the
vature scale of the unperturbed surface. On these scalesdVH

can be replaced with a flat metric. Then, the intrinsic cur
ture (3)R of the perturbed surface is easily found to be

(3)R5
4

t2 DRc5
4

t2 D
dt

t
,

whereD is the comoving Laplacian. The first equality is ju
the conventional definition of the curvature perturbation u
by most authors@16#. In a flat Friedmann-Robertson-Walke
~FRW! with arbitrary scale factor and in an arbitrary gau
this definition takes the form

(3)R[
4

a2 DR, ~7!

where now(3)R is the perturbation of the intrinsic curvatur
scalar in the constant time surfaces of the correspond
gauge.

To proceed, we must finddt as a function of the norma
displacementx. Since all points on the unperturbed hype
boloid are equivalent, we may just consider the vicinity
the pointXW 50, wheret5T. It should be noted that the fiel
x lives on the unperturbed bubble, which hits the collisi
plane at some valuebd of the unperturbed boost paramet
determined byd5R0coshbd . However, the actual collision
does not take place at that time, but at the time when
perturbed bubble reachesW5d, at some valuebc of the
unperturbed boost parameter given byd5(R01x)coshbc .
Thus, the shift in the time of collision is given by
10350
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dt5dT5T̃2T

5~R01x!sinhbc2R0sinhbd

'2
x

sinhbd
.

We conclude that the curvature perturbation on the initial
moving surface is given by

Rc( i )5
dT

T
52

x

R0sinh2bd
. ~8!

Let us now estimate the size of this effect.
As mentioned above,x satisfies the equation for a scal

field on the worldsheet de Sitter space, Eq.~6!. The corre-
sponding canonical fieldf with dimensions of mass is re
lated tox by @11#

f5s1/2x,

wheres is the tension of the wall. As is well known, when
given mode of a nearly massless scalar field crosses th
Sitter horizonR0

21, it ‘‘freezes’’ with some amplitudefk

;R0
21. However, in our case this amplitude does not s

constant. Due to the tachyonic massm2524H2 in Eq. ~6!, a
mode with wave numberk grows proportionally toeb as

xk~b!;s21/2R0
21eb2bk, ~9!

wherebk is the value of the time-like boost parameter@see
Eq. ~2!# at which the physical wavelength of the mod
k21R0eb becomes larger than the inverse expansion rate
the bubble,R0. Here we adopt the convention that the c
moving curvature scale corresponds tok;1. It is easy to see
that at the time of collision we have exp(bd2bk)
;k21(d/R0), and therefore,

xk~bc!;s21/2
d

R0
2 k21.

Using expbd'd/R0 in Eq. ~8! we find that by order of mag-
nitude,

Rc( i )~k!;S 1

SE
D 1/2R0

d
k21. ~10!

Here SE;sR0
4@1 is the Euclidean action of the instanto

describing the nucleation of the bubble.
This perturbation is rather minute even on scales com

rable to the curvature scalek;1. An upper bound onR0 /d
can be obtained as follows. The spatial curvature radius
our present universe is much larger than the present Hu
radiusH0

21. Taking into account that the curvature radius
the initial surface was given byd, this leads to the constrain

zid*H0
21 ,

wherezi is the redshift at which the collision surface is. Th
redshift is given by
6-3
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zi'S r i

r0
D 1/4

&S s
d

R0

k2

H0
2D 1/4

,

where we assume radiation dominance for most of the c
mological evolution. In the last inequality we have used
fact that the energy density after collision will not be larg
than the input energy density, which is of orders coshbd .
From the two previous inequalities we find

R0

d
&10224SE

1/5.

Therefore, we have

Rc( i )~k!&10224SE
23/10k21. ~11!

If there was no initial density perturbation, then this quant
would stay nearly constant until horizon reentry~see the next
section!. This would lead to an amplitude of perturbatio
smaller than the observed value by some 20 orders of m
nitude. As we shall see, the bound~11! still applies to scales
comparable to the curvature scale. However, on sma
scales the initial density perturbationdc( i ) induces a much
larger perturbation onRc by the time of horizon reentry
Unfortunately, this comes at the prize of a very tilted sp
trum, which is not compatible with observations.

B. Initial value of dc

To evolve the cosmological perturbations, two initial co
ditions are needed for each wavelength. In addition to
initial curvatureRc we will also need the density perturba
tion dc . By assumption, a fixed fraction of the energy of t
collision goes into the brane, and therefore the density at
moment of collision is proportional to the Lorentz factorg

5coshb̃. Since the boost parameter is additive, the pertur
one will be given by

b̃5bc1ẋ,

where

ẋ5
1

R0

]x

]b

is the derivative of the perturbation with respect to the pro
time t5R0b measured by an observer on the bubble. Th
the change in the boost parameter is given to linear orde

db5b̃2bd5ẋ2
x

R0
cothbd .

With these relations, we obtain the density perturbation at
moment of collision as

dc( i )5tanhbddb5ẋtanhbd2
x

R0
. ~12!

As noted above, in the case of our interest, the rms fluc
tion in x grows exponentially fast withb. However, the
10350
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combination which entersdc annihilates the leading term in
this exponential dependence, and leaves only a contribu
which decays withb. From this argument alone, it should b
clear that the spectrum ofdc will not be scale invariant, and
that it will have opposite tilt to the spectrum ofRc . To
extract the spectral index, we need to look at the deta
form of the mode functions.

For definiteness, we shall use the open chart on the
Sitter worldsheet of the bubble. The conclusion, however
independent of our slicing since we are interested only
wave-lengths much smaller than the curvature scale. In
chart, Eq.~6! for the evolution ofx reads

ẍk1
3

R0
cothbẋk2

4

R0
2 xk1

11k2

R0
2sinh2b

xk50. ~13!

The quantum state of perturbations on a nucleating bubb
uniquely determined by de Sitter invariance@13#. It is given
by the so-called Bunch-Davies vacuum~also known as the
Euclidean vacuum!. The corresponding modes in the ope
chart have been studied by@14,15#, and for a scalar field with
massm2524R0

2 they are given by

xk~b!}
P2

ik~coshb!

sinhb
,

where P2
ik are the Legendre functions with the branch c

from 21 to 1 on the real axis. In the above equation we ha
ignored a contribution proportional to the decaying mod
which is accompanied by the factore2pk and which is there-
fore irrelevant at wavelenths much shorter than the curva
scale. Expanding the Legendre function for largeb, we have

xk~b!;
s21/2R0

21

sinhbk
Fsinhb1

k214

6 sinhb
1O~e23b!G .

~14!

Here, the normalization is fixed as in Eq.~9!, the only dif-
ference being that we have been careful to keep more te
in the expansion because the leading one clearly does
contribute to Eq.~12!. Substituting Eq.~14! in Eq. ~12! and
using expb'd/R0 we have

dc( i );S 1

SE
D 1/2R0

d
k. ~15!

For k;1, this is of the same order as the curvature per
bation given in Eq.~10!, where both are very small. How
ever, Eq.~15! can be much larger on small scales. Unfort
nately, this is due to a strong tilt in the power spectru
corresponding tons53 in the standard notation.

IV. EVOLUTION OF THE PERTURBATIONS

Equations~8! and ~12! provide the initial conditions~po-
sition and momentum, as it were! for the evolution of cos-
mological perturbations in the FRW phase. As mention
above, since our universe is reasonably flat, the scale
6-4
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interest to us will be much smaller than the curvature sc
and it is a good approximation to consider perturbations t
flat FRW universe.

In an arbitrary gauge, the perturbed metric for scalar p
turbations can be written as@16#

ds̃25a2~h!2$2~112AY!dh222BYidhdxi

1@~112DY!d i j 12EYi j #dxidxj%,

where Y}eikx is the appropriately normalized plane wav
and summation over modes with different wave numberk is
omitted. The vector and the traceless tensor constructed
Y are defined byYi52k21Y, j , and Yi j 5k22Y,i j 1

1
3 d i j Y.

We also use convenient combinations of metric perturbati
defined by

R5D1
1

3
E,

~16!

ksg5E82kB,

where a prime denotes differentiation with respect toh. R is
the quantity related to the perturbation of the spatial sc
curvature of a time slice through Eq.~7!, andsg is related to
the shear of the hypersurface normal vector field.2 The famil-
iar gravitational potential in the Newton gauge is gauge
variantly defined as

F52R1Hk21sg , ~17!

whereH5a8/a.
The energy momentum tensor of a perturbed perfect fl

is given by

T̃mn5~ r̃1 P̃!ũmũn1 P̃g̃mn, ~18!

with r̃5r1Ydr, P̃5P1YdP, ũ05a21(12AY), and ũi

5a21vYi . We shall assume that the fluid consists of a sin
component. Then the ratio between the density and pres
perturbations becomes a function of the background ene
density. We denote this ratio bycs

25dP/dr.
In the comoving gauge, in whichv2B50, the perturbed

Einstein equations become

HA5Rc8 , ~19!

and

H~ksg!2k2Rc52
k2a2

2
dr, ~20!

2For the present discussion, the geometric interpretation ofsg will
be irrelevant, it will just be used as a convenient variable.
10350
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~ksg!812H~ksg!2k2S Rc8

H 1RcD 50, ~21!

H82H 2

H Rc85
k2a2

2
dP.

~22!

Equations~20!, ~21! and ~22! have already been simplifie
by using Eq.~19!. For reference, we also quote the bac
ground equations

H852
k2a2

6
~r13P!, H 25

k2a2

3
r. ~23!

Equations~19! and~20! give the following expression for the
gauge invariantF in terms of the density perturbationdc :

F52
3H 2

2k2 dc . ~24!

The value ofF is larger thandc by the factor ofH 2/k2, and
hence this is not a particularly illuminating variable on ve
large scales.

The evolution equations for given initial values forRc
and dc can be obtained by combining Eqs.~20!, ~21! and
~22!:

dRc

dN
52cs

2 dc

~11w!
, ~25!

H
a2

d

dN
~a2Hdc!5k2~11w!Rc , ~26!

wherew5P/r is the parameter characterizing the equat
of state anddN5Hdh.

To discuss the evolution of perturbations it is useful
formally integrate the second equation,

dc5
1

a2HE
Ni

N

~a2H!
k2

H 2 ~11w!RcdN1
1

a2H ~a2Hdc!( i ) .

~27!

The functiona2/H is an increasing function, so provided th
Rc stays approximately constant at late times~which will be
a self-consistent assumption!, the integral in the right-hand
side is dominated by the contribution from the neighborho
of the upper boundary of integration. If we consider a sim
case in whichcs

25w5const, the scale factor andH are given
by

a5~h/h0!2/(113w), H5
2

113w
h21. ~28!

Performing the integral in Eq.~27! we have
6-5
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dc'
212w

513w

k2

H 2Rc1
1

a2H ~a2Hdc!( i ) , ~29!

where we have assumedRc'const at late times.3 Initially,
Rc&dc and consequently the first term in the right-hand s
is suppressed with respect to the second at least by a fact
(k2/H 2)!1. Substituting the dominant part into Eq.~25!,
we have

Rc( f )'Rc( i )2~a2Hd!( i )E
h i

`dh

a2

cs
2

11w
. ~30!

Then, this integration is performed to obtain

Rc( f )'Rc( i )2
2w

3~12w2!
dc( i ) . ~31!

In obtaining Eq.~31! we have neglected the contributio
from the first term in the right-hand side of Eq.~29!. It is
easy to check that this term does not have any effect until
wavelength of the mode is comparable to the Hubble rad
k;H. At that time, the second term in Eq.~29! is unimpor-
tant, and the amplitude of density perturbations at horiz
crossing can be read off from the first term

dcuhc'
212w

513w

k2

H 2Rc( f ) . ~32!

Finally, the Newtonian potential at horizon crossing can
found from the relation~24!

Fuhc'2
313w

513w
Rc( f ) . ~33!

Substituting Eq.~31! into the previous two equations an
using Eqs.~10! and ~15! we have

Fuhc;dcuhc;Rc( f );
R0

d
SE

21/2k,

which of course displays the same strong spectral tilt as
initial density perturbationdc( i ) .

V. CONCLUSIONS

In this paper we have discussed the primordial spect
of density perturbations in the brane-world model propo
by Bucher@3#. In this scenario, two bubbles nucleate in t
5-dimensional Minkowski bulk, and their collision forms
brane where gravity is localized. This model solves the
mogeneity and flatness problems, provided that the sep
tion 2d of the bubble nucleation points is sufficiently larg

3Incidentally, even whenRc is not constant, but increasing wit
time, the order of magnitude of the first term in Eq.~29! does not
change.
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compared with the bubble radiusR0.
We have evaluated the initial spectrum of scalar den

perturbations, assuming that they originate from quant
fluctuations on the bubbles. An important observation is t
the surface of collision coincides with the so-called como
ing hypersurface~or velocity orthogonal slicing!. On this ini-
tial surface, we first evaluated the density contrastdc

5dr/r and the spatial curvature perturbationRc @see Eq.
~16! for definition#. The initial valuedc( i ) turns out to have a
very steep spectrum corresponding tons53, while the spec-
tral index for Rc( i ) is ns521. The amplitude of both per
turbations is comparable at wavelengths of the order of
curvature scale, and thereforedc( i ) has a larger amplitude on
scales relevant to present observations.

It is known that the curvature perturbation in the como
ing gauge,Rc , is conserved on scales much larger than
horizon, and therefore this quantity is often used to disc
the evolution of perturbations in the early universe. The c
stancy ofRc , however, does not hold for the decaying mod
In the present case, the initial conditions which arise a
result of bubble collision contain a significant amount
‘‘contamination’’ from the decaying mode. Therefore,Rc

does not stay constant in the subsequent evolution of pe
bations, which is described by two coupled first order diff
ential equations. Given initial valuesdc( i ) and Rc( i ) , we
solved these equations to find that the final value ofRc ~at
the time of horizon crossing! becomes comparable to th
initial value of the density perturbationdc( i ) @see Eq.~30!#.
This final value ofRc also gives the order of magnitude o
the density contrast at horizon crossing. Thus, we concl
that the spectral index for primordial density perturbations
ns53. The estimated amplitude is very small at waveleng
comparable to the curvature scale. Perturbations ofO(1025)
at the present horizon scale may of course be obtained
choosing the ratio between the curvature scale and
present horizon scale appropriately, but the spectrum is
steep to be consistent with observations.

Although in this paper we have investigated a particu
realization of the brane big bang, we may have learned a
lessons which may be useful in more general cases. Firs
the present model the bubble fluctuations are described b
effective 4-dimensional scalar field with a negative ma
squared. Consequently, fluctuations on the bubble worlds
have a red spectrum, which has a larger amplitude for lon
wavelengths. However, the resulting spectrum of density p
turbations turned out to be a blue one. This means tha
principle it may be possible~although perhaps not easy! to
generate a nearly scale invariant spectrum even when
mass of the effective field corresponding to the bubble fl
tuations is not close to zero. Second, we need to be caref
using ‘‘standard’’ results of cosmological perturbation theo
which in some cases neglect the contribution from the dec
ing mode. In order to determine the evolution just after c
lision, two initial conditions must be supplied, and both tu
out to be important.

Note added in proof. This paper was largely motivate
by the work of M. Bucher and J.J. Blanco-Pillado@7#. We
thank these authors for enlightening discussions and for
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couraging us to publish our results independently. In parti
lar J.G. is grateful to M. Bucher for early discussions on
problem of cosmological perturbations generated in bub
collisions, and for sharing an early version of his manusc
during the Cambridge workshop on M-theory Cosmolo
which eventually led to Ref.@7#. After our paper was com
plete a revised and extended version of@7# appeared where
the collision of bubbles which nucleate in a de Sitter ba
ground is also considered.
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