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Cosmological perturbations in the 5D big bang
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Bucher has recently proposed an interesting brane-world cosmological scenario where the “big bang”
hypersurface is the locus of collision of two vacuum bubbles which nucleate in a five-dimensional flat space.
This gives rise to an open universe, where the curvature can be very small providddRhas sufficiently
large. Here,d is the distance between bubbles aRgl is their size at the time of nucleation. Quantum
fluctuations develop on the bubbles as they expand towards each other, and these in turn imprint cosmological
perturbations on the initial hypersurface. We present a simple formalism for calculating the spectrum of such
perturbations and their subsequent evolution. We conclude that, unfortunately, the spectrum is very tilted, with
a spectral indexng=3. The amplitude of fluctuations at the horizon crossing is given{§p/p)?)
~(R0/d)28g1k2, whereSg>1 is the Euclidean action of the instanton describing the nucleation of a bubble
andk is the wave number in units of the curvature scale. The spectrum peaks on the smallest possible relevant
scale, whose wave number is given oy d/Ry. We comment on the possible extension of our formalism to
more general situations where a big bang is ignited through the collision of 4D extended objects.
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[. INTRODUCTION very mildly expanding de Sitter space. This decays through
bubble nucleation into an anti—de Siti@&xdS) phase, where

The possibility of having gravity localizedl1,2] on a the five-dimensional cosmological constant is negative. The
brane which moves in a higher dimensional space has renodel requires the existence of degenerate discrete AdS
cently stimulated the search for alternatives to the standardacua. Upon collision of two bubbles corresponding to dif-
inflationary paradign{3-5]. In these alternative scenarios, ferent vacua, a domain wall forms, where gravity is localized
the big bang would result from the collision of 4-dimensionalin the manner of Randall and Sundridi. The “big bang”
extended objects propagating in five dimensions. Pioneeringypersurface is the locus where the world sheets of the two
work in this direction[4] did not use the localization of pyubbles meet, and the domain wall, or “local brane,” is the
gravity as an essential ingredient, but this was at the expensgfiace where we are supposed to live.
of a somewhat singular behavior at the moment of collision | et us use coordinate$”=(X',W,T) in the original 5D
[6], when the “bulk” in which the branes propagate momen- Minkowski space, where a pair of bubbles of radig
tarily disappears. o _ nucleate af =0, separated by a distance.2The radiusR,

The generic predictions of inflation seem to be in goodis a fixed parameter of the theory, which is related to the
agreement with current cosmological data, and therefore any,pple wall tensiorr and to the energy gap between the
alternative proposal has to measure up to high standards. H}iginal Minkowski phase and the final AdS pha$8s (this
particular, it is important to clarify the mechanisms by which rejation, however, will not be needed in the following dis-
cosmological perturbations are generated, since at the m@yssjon) Let us choose the origin of coordinates to be at the
ment these provide the finest tests for any theory of initialenter of one of the bubbles. After nucleation, the bubble
conditions. The purpose of this paper is to consider this probypa|| expands with constant acceleration, following a hyper-

it seems to be best posésee alsd7]).

The paper is organized as follows. In Sec. Il we briefly T=R,sinhg, )
review Bucher’s scenario, describing the geometry of the
problem. In Sec. Il we derive the expression for the primor- R=R,coshg, 2)

dial cosmological perturbations in terms of the physical pa-

rameters of the model. In Sec. IV we discuss the SUbsequeWhereRE(|>?|2+W2)1’2 and is the boost parameter of the
evolution of such perturbations, and in Sec. V we summariz%ubble wall '

our conclusions.

II. A BIG BANG FROM BUBBLE COLLISION v=dR/dT=tanhg.

In Bucher’s model one starts with a metastaljts  The collision takes place on the plaké=d, along the hy-
“false” ) vacuum in five dimensions, which is flat space or aperboloid
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T2—|>?|2:d2—R(2). 3) d/Ry). Of course, the homogeneity problem is also solved,
due to the residuaD(3,1) symmetry of the colliding bubble
To the future of this hyperboloid, and on the planve=d, a  Setup along the hyperboloi@®). Thus, in principle, Bucher’s
domain wall forms where gravity is four dimensiorjal9].  Scenario seems to provide an attractive starting point for a
Throughout this paper we shall assume that, locally, the colbrane-world cosmology.
lision process is almost instantaneous compared with the
length scales of our interest, and that a fixed fraction of the IIl. INITIAL PERTURBATIONS

energy of the collision is channeled into the degrees of free- Aside f ina the h it d flat b
dom which live on the local brane. We shall also assume th Side from soiving the€ homogeneily and Tatness prob-
ms, a serious candidate for a theory of initial conditions

usual fine tuning between the tension of the local brane an X - . d .
the AdS radius, so that the effective 4D cosmological Con_should explain the origin of the primordial cosmological per-

stant is sufficiently small. turbations. In brane collision scenarios these may be seeded

In the unperturbed setup, the 4D Minkowski space on th y preexisting fluctuatioqs in_the shape qf the colliding
planeW=d is matched into an open FRW model along the ranes. These produce distortions of the “big bang” hyper-

hypersurfaca). Along (s Pyperbood, the metc i con- SUT1SCE 85 e, 8 e peribatons i e disiibutor of
tinuous, although its derivative is néthis jump in the ex- 9y Y.

trinsic curvature corresponds to the jump in the Hubble ratéhe case of colhdmg. bubbles. .
accross the surfagelt is convenient to use Milne coordi- Quantum fluctuations on expanding vacuum bubbles have

nates to describe the 4D Minkowski space before the coIIi-been studied in Ref$11]. For a bubble which is centered at

sion: the origin of coordinates, the perturbed worldsh&ét is
conveniently parametrized as
@de?=—dt?+1t2dQ3, (4) N
XA(E#)=XA(E") + NACE#) X (€)= (1+ x/Ro) X,
where thet=const surfaces have the hyperbolic geometry A _
described bydQZ. In terms of Minkowski coordinates, "r']erﬁ"\t')bl's thﬁ,UE'Lnor?allto the llmperturbedfwoilgsﬁegt_ of
Milne time is given byt=(T2—|X|2)¥2 This form of the L'¢ Pubbie, which has the internal geometry of a 4D de Sitter
- ) 1 space of radiu®,, &* are a set of coordinates in this space
metric is valid fort<Rycosh *(d/Ry). A .
1 . ; and X* stands for the unperturbed worldshe@). It is
For t>Rycosh (d/R,), the 4D metric on the “local K hat th | disol beh lik
brane” is given by nown [11] that the normal displacement behaves like
a worldsheet scalar field with the tachyonic masg
Wd2= —d2+a(1)d?2 . =—4R, 2, which obeys an equation of the fotm
-2 _
The local brane separates the interiors of the two vacuum —Ux=4R, “x=0. ©®
bubbles, which have already collided and continue to ex- , , , o ,
pand. Due to theD(3,1) symmetry of the process, the bulk I;e;g,eD is the covariant d’Alembertian in a 4D de Sitter
metric on both sides of the local brane is given by pace.

: ) We must also consider the second bubble, whose center is
Schwarz'sc';h|Id.-Ad.$9,10]. The evolutlo_n of the scale fgctor at a distance @ from the first. For perturbations which are
after collision is given by the usual Friedmann equation

symmetric with respect to the plaivé=d, the collision will

K2 1 still take place on this plane, the second bubble being just a
H2~ —p+ —. (50  mirror image of the first. In what follows, we shall restrict

3 a our attention to suchZ, symmetric”perturbations. It is easy
. ) ) i . to show, following a calculation similar to the one presented
Here, H=a/a, x“=87G is the effective 4D gravitational pg|oy, that the antisymmetric mode has an amplitude com-
coupling andp is the matter energy density which is depos-paraple to that of the symmetric mode, but does not contrib-
ited on the local brane after collision. This will also include |46 tq cosmological perturbations to linear order, so its effect

some “dark radiation’[9] because a significant fraction of geems to be much smaller than that of the symmetric mode.
the energy of the colliding bubbles may not stick to the  an important observation is that, by conservation of mo-

brane; it may just fly into the bulk contributing to the effec- mentm, the fluid lines will be orthogonal to the perturbed

tive mass of the Schwarzschild-AdS. In Ef) we have also g rface of collision, which is therefore a comoving, or ve-
neglected “brany” corrections in the right-hand side, propor-

tional to x*p?12. These will be unimportant provided that the
AdS radiusl in the bulk is sufficiently small. The discussion
of cosmological perturbations with these corrections in-

cluded is significantly more complicated and it is left for 45 produce a repulsive constant gravitational force which causes
future research. . _an acceleration of ordeiGc) "1, whereG is the five-dimensional

From Eq.(3), the spatial curvature scale of the open uni-Newton's constant and is the wall tension. If this length is very
verse at the moment of collision is given by’ R5)¥2 so  |arge compared with the inverse of the proper acceleration of the
the flatness problem is solved provided thias sufficiently  bubble wall, given byR, %, then the self-gravity of the wall will be
large (as discussed in Sec. Il A, this gives a lower bound onnegligible.

IHere, and in the following discussion, we are neglecting the self-
gravity effect of the bubble walls on the perturbations. Domain
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locity orthogonal surfacgl2]. It is known (see next section St=sT=T-T
that thegrowing mode of the curvature perturbatidd. on
comoving surfaces is a constant of motion on scales larger
than the Hubble rate, and hen@&, will be a quantity of
interest to us. In the present case, however, it will be equally
important to consider th&ecayingmode, since its initial ~
amplitude is comparable to that of the growing mode. There-

fore in order to characterize the initial perturbation we will We conclude that the curvature perturbation on the initial co-
also need the density perturbatiégon the same initial sur- moving surface is given by

face.

=(Rp+ x)sinhB.—Rysinh By

X
sinhBy’

oT X
Rc(i):_

T Rgsintgq ®

A. Initial value of R,

Due to local shiftsét in the time of collision caused by | et us now estimate the size of this effect.

fluctuations of the bubble shape, the big bang _surfag:e will N0 As mentioned abovey satisfies the equation for a scalar
longer be the smooth hyperboloi@). As explained in the fie|d on the worldsheet de Sitter space, E8). The corre-

preceeding paragraphs, we can restrict attention to perturbaponding canonical fieldd with dimensions of mass is re-
tions which are symmetric with respect to the plaNe=d.  |ated toy by [11]

Then, to linear order idt, the metric induced on the big

bang surface is easily obtained from Ed), and it is given d=0c"?y,

b

Y whereo is the tension of the wall. As is well known, when a
given mode of a nearly massless scalar field crosses the de
Sitter horizon Rgl, it “freezes” with some amplitudeg,
~R51. However, in our case this amplitude does not stay

- _ 2 .
Since we live in an almost flat universe, we shall be inter-constant. Due to the tachyonic man$— 4H%in Eq.(6), a
de with wave numbek grows proportionally tee? as

ested in length scales which are short compared to the cuf©
vature scale of the unperturbed surface. On these sdflfs
can be replaced with a flat metric. Then, the intrinsic curva-

ture ®)R of the perturbed surface is easily found to be where B, is the value of the time-like boost paramefsee
Eqg. (2)] at which the physical wavelength of the mode
(PR 4 AR.= 4 N ot k™ 1R,e? becomes larger than the inverse expansion rate on
TpRo T the bubble,R,. Here we adopt the convention that the co-
moving curvature scale correspondstel. It is easy to see

. . . i .. . that at the time of collision we have e®B)
whereA is the comoving Laplacian. The first equality is just —k(d/Ry), and therefore,

the conventional definition of the curvature perturbation used
by most author$16]. In a flat Friedmann-Robertson-Walker d
(FRW) with arbitrary scale factor and in an arbitrary gauge x(B)~o~ 1/2¥k—1_
this definition takes the form 0

@)gP=

ot
1+ zT)tZdQﬁ.

xk(B)~a YRy Tef A, (9)

Using expB4~d/R, in Eg. (8) we find that by order of mag-
4 .
(OR= AR, @ nitude,
a
1 l/ZRO
. . o Rc(i)(k)~(5—> FLEE (10
where now®)R is the perturbation of the intrinsic curvature E
scalar in the constant time surfaces of the corresponding|
ere Sg
gauge.
To proceed, we must findt as a function of the normal
displacementy. Since all points on the unperturbed hyper-
boloid are equivalent, we may just consider the vicinity of

~oRg>1 is the Euclidean action of the instanton
describing the nucleation of the bubble.

This perturbation is rather minute even on scales compa-
rable to the curvature scale~1. An upper bound ofR,/d
2 ) can be obtained as follows. The spatial curvature radius of
the pointX=0, wheret=T. It should be noted that the field - hresent universe is much larger than the present Hubble
x lives on the unperturbed bubble, which hits the collision ;s -1, Taking into account that the curvature radius of

plane at some valugy of the unperturbed boost parameter yq initial surface was given by, this leads to the constraint
determined byd=Rycoshg,. However, the actual collision

does not take place at that time, but at the time when the zd=H,?,

perturbed bubble reaché¥=d, at some values, of the

unperturbed boost parameter given dby (Ry+ x)coshg;. wherez; is the redshift at which the collision surface is. This
Thus, the shift in the time of collision is given by redshift is given by
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<pi>1/4 d «2?
I Po ( Ro H70

va combination which enters, annihilates the leading term in
; this exponential dependence, and leaves only a contribution
which decays withB. From this argument alone, it should be

where we assume radiation dominance for most of the cos:lear that the spectrum @ will not be scale invariant, and
mological evolution. In the last inequality we have used thethat it will have opposite tilt to the spectrum Gt.. To
fact that the energy density after collision will not be larger€Xtract the spectral index, we need to look at the detailed

than the input energy density, which is of ordecoshg,.  form of the mode functions.
From the two previous inequalities we find For definiteness, we shall use the open chart on the de

Sitter worldsheet of the bubble. The conclusion, however, is
Ry ass independent of our slicing since we are interested only in
3510 Se”. wave-lengths much smaller than the curvature scale. In this
chart, Eq.(6) for the evolution ofy reads

Therefore, we have
Y . 3 : 1+k*
Reqiy(K)=10" 245 3% 1, (12) Xkt R_OCOthIBXk_R—(z)Xk+ WXk_O- (13

If there was no initial density perturbation, then this quantity
would stay nearly constant until horizon reentsge the next
section. This would lead to an amplitude of perturbations

smaller than the observed value by some 20 orders of mags  lidean vacuuin The corresponding modes in the open

nitude. As we shall see, the boufttl) still applies to scales chart have been studied b§4,15, and for a scalar field with
comparable to the curvature scale. However, on smallef

2__ 2 H
scales the initial density perturbatia®, induces a much massm-= —4R; they are given by
larger perturbation omR. by the time of horizon reentry.
Unfortunately, this comes at the prize of a very tilted spec-

The quantum state of perturbations on a nucleating bubble is
uniquely determined by de Sitter invariande]. It is given
by the so-called Bunch-Davies vacuu@so known as the

PX(coshp)

trum, which is not compatible with observations. P sinhg
B. Initial value of &, where PY are the Legendre functions with the branch cut

from —1 to 1 on the real axis. In the above equation we have
. . ignored a contribution proportional to the decaying mode,
ditions are needed for each wavelength. In addition to th%%hich is accompanied b?/ tf?e facter ™ and WhiCh)i/S t%lere-

initial curvature?; we will also need the density perturba- fore irrelevant at wavelenths much shorter than the curvature

tion &, . By assumption, a fixed fraction of the energy of thescale. Expanding the Legendre function for lagjeve have
collision goes into the brane, and therefore the density at the

moment of collision is proportional to the Lorentz factpr U*l/ZRal K2

= coshp. Since the boost parameter is additive, the perturbed  x«(8)~ ——=—%—|SiNhB+ ———+ O(e 34|,
X : sinh By 6 sinhp

one will be given by

To evolve the cosmological perturbations, two initial con-

(14

B=Bet X, Here, the normalization is fixed as in E@), the only dif-
ference being that we have been careful to keep more terms
in the expansion because the leading one clearly does not

1 gy contribute to Eq(12). Substituting Eq(14) in Eq. (12) and

where

X= R_o ﬁ using expB~d/R, we have
12
is the derivative of the perturbation with respect to the proper Sriim i) &k (15)
time 7=RyB measured by an observer on the bubble. Thus, ¢\ s d

the change in the boost parameter is given to linear order by
For k~1, this is of the same order as the curvature pertur-
- X bation given in Eq(10), where both are very small. How-
OB=B=Ba=x~ R_OCOthﬁd' ever, Eq.(15) can be much larger on small scales. Unfortu-
nately, this is due to a strong tilt in the power spectrum,
With these relations, we obtain the density perturbation at theorresponding tan,=3 in the standard notation.
moment of collision as

X IV. EVOLUTION OF THE PERTURBATIONS
5C<i):tanh'8d5'3:Xtanhﬁd_R_o' 12) Equations(8) and(12) provide the initial conditiongpo-
sition and momentum, as it weréor the evolution of cos-

As noted above, in the case of our interest, the rms fluctuamological perturbations in the FRW phase. As mentioned
tion in xy grows exponentially fast with3. However, the above, since our universe is reasonably flat, the scales of
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interest to us will be much smaller than the curvature scale !
and it is a good approximation to consider perturbations to a (ko) +2H(kaog) — k? 0 +R.|=0, (21
flat FRW universe.
In an arbitrary gauge, the perturbed metric for scalar per- , 5 -
turbations can be written 446] H'—H R =8 o
I=
H 2
(22)

ds?=a%(7)%{—(1+2AY)d7>*—2BY,d pdx
Equations(20), (21) and (22) have already been simplified

+[(1+2DY) & +2EY; JdxXdx'}, by using Eq.(19). For reference, we also quote the back-
o ) ) ground equations
where Yoce'™ is the appropriately normalized plane wave,
and summation over modes with different wave numbés s o -
omitted. The vector and the traceless tensor constructed from H = — ﬁ( +3P) szﬁ 23)
Y are defined byy;=—k 'Y, andY;; =k 2Y ;+55;Y. 6 ° : 3 P

We also use convenient combinations of metric perturbations
defined by Equationg19) and(20) give the following expression for the
gauge invariantb in terms of the density perturbatiof :

1
R=D+ § E, 3H 2
kog=E'—KB, The value of® is larger thans, by the factor ofH 2/k?, and

_ _ o _ . hence this is not a particularly illuminating variable on very
where a prime denotes differentiation with respecytdR is  |arge scales.
the quantity related to the perturbation of the spatial scalar The evolution equations for given initial values f&,

curvature of a time slice through E(f), andog is related to  and 5, can be obtained by combining Eq0), (21) and
the shear of the hypersurface normal vector fieldhe famil- (22):

iar gravitational potential in the Newton gauge is gauge in-
variantly defined as

dR. , Oc 25
= _CS s
_|._
®=—R+Hk Loy, (17) aN (1+w)
whereH=a'/a.
The energy momentum tensor of a perturbed perfect fluid 2 d—N(aZHéc) =Kk’(1+wW) R, (26)

is given by

wherew=P/p is the parameter characterizing the equation
Trr=(p+P)uru’+Pg*, (18)  of state ancdiN=Hdy.
To discuss the evolution of perturbations it is useful to
with p=p+Ydp, P=P+Y5sP, W’=a }(1—-AY), and U’ formally integrate the second equation,
=a 'vY'. We shall assume that the fluid consists of a single
component. Then the ratio between the density and pressure 1 (N K2 1
perturbations becomes a function of the background energy 5°:_j (a?H) —5 (1+w)RdN+ —(327-[5C)(i)_
density. We denote this ratio lsf= 5P/ p. a*HIN H a’H
In the comoving gauge, in which—B=0, the perturbed (27)

Einstein equations become The functiona?/H is an increasing function, so provided that

R. stays approximately constant at late tintegich will be

HA=TR(, (19 a self-consistent assumptiprthe integral in the right-hand
side is dominated by the contribution from the neighborhood
and of the upper boundary of integration. If we consider a simple
case in whicte?=w=const, the scale factor arid are given
, 232 by
H(kog) —k“Re=— 5 op, (20
2
_ 2/(1+3w) _ -1
a=(nlno) , H TTaw” (28)
2For the present discussion, the geometric interpretatian, ofill
be irrelevant, it will just be used as a convenient variable. Performing the integral in Eq27) we have
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242w k2 1 compared with the bubble radil,.
6ﬁmﬁ7€c+2—(a27{6¢)(i), (29 We have evaluated the initial spectrum of scalar density
a’H perturbations, assuming that they originate from quantum

where we have assumé@l.~const at late time3.Initially, fluctuations on thg t.)Ubble.S' An |mpprtant observation is that
the surface of collision coincides with the so-called comov-

R.= 6. and consequently the first term in the right-hand side ! e L
is suppressed with respect to the second at least by a factor b9 hypersurfacéor velocity orthogonal slicing On this ini-

(k¥H?)<1. Substituting the dominant part into E®5) tial surface, we first evaluated the density contraist
we have = dplp and the spatial curvature perturbatidt [see Eq.

(16) for definition]. The initial valued, turns out to have a

< 2 very steep spectrum correspondingite= 3, while the spec-

— = (30)  tral index for Ry is ng=—1. The amplitude of both per-
nas 1+w turbations is comparable at wavelengths of the order of the

curvature scale, and therefofg;y has a larger amplitude on

scales relevant to present observations.

It is known that the curvature perturbation in the comov-
Soir (31) ing gauge,R., is conserved on scales much larger than the
3(1—-w?) e horizon, and therefore this quantity is often used to discuss
the evolution of perturbations in the early universe. The con-

In obtaining Eq.(31) we have neglected the contribution :
from the first term in the right-hand side of E@9). It is stancy ofR, however, doe_s_r_lot hold fqrthe de_caymg mode.
In the present case, the initial conditions which arise as a

easy to check that this term does not have any effect until theesult of bubble collision contain a significant amount of
wavelength of the mode is comparable to the Hubble radiu§ L . 9
contamination” from the decaying mode. Therefor&,

k~H. At that time, the second term in E(9) is unimpor-

tant, and the amplitude of density perturbations at horizoffl0€S Not stay constant in the subsequent evolution of pertur-
crossing can be read off from the first term bations, which is described by two coupled first order differ-

ential equations. Given initial valued;y and Ry, we
solved these equations to find that the final valueRgf(at
(32)  the time of horizon crossingbecomes comparable to the
initial value of the density perturbatiofi,, [see Eq.(30)].
This final value ofR. also gives the order of magnitude of
Ghe density contrast at horizon crossing. Thus, we conclude
that the spectral index for primordial density perturbations is
n,=3. The estimated amplitude is very small at wavelengths
D~ — 3+3WR (33) comparable to the curvature scale. Perturbatior®(d0°)
he™ 543w e at the present horizon scale may of course be obtained by
choosing the ratio between the curvature scale and the
Substituting Eq.(31) into the previous two equations and present horizon scale appropriately, but the spectrum is too
using Egs(10) and (15 we have steep to be consistent with observations.
Although in this paper we have investigated a particular
Ro 1 realization of the brane big bang, we may have learned a few
D|pe~ 5c|hc~Rc(f)~FSE K, lessons which may be useful in more general cases. First, in
the present model the bubble fluctuations are described by an

which of course displays the same strong spectral tilt as thgffective 4-dimensional scalar field with a negative mass

Rc(f)“Rc(i)_(azH@(i)j
Then, this integration is performed to obtain

2w
Rery~Regiy—

2+2w k2
elne™ 533 77700l

Finally, the Newtonian potential at horizon crossing can b
found from the relatior(24)

initial density perturbatiord,, . squared. Consequently, fluctuations on the bubble worldsheet
have a red spectrum, which has a larger amplitude for longer
V. CONCLUSIONS wavelengths. However, the resulting spectrum of density per-

turbations turned out to be a blue one. This means that in
In this paper we have discussed the primordial spectrunprinciple it may be possibl¢although perhaps not easto
of density perturbations in the brane-world model proposedjenerate a nearly scale invariant spectrum even when the
by Bucher[3]. In this scenario, two bubbles nucleate in the mass of the effective field corresponding to the bubble fluc-
5-dimensional Minkowski bulk, and their collision forms a tuations is not close to zero. Second, we need to be careful in
brane where gravity is localized. This model solves the housing “standard” results of cosmological perturbation theory,
mogeneity and flatness problems, provided that the separahich in some cases neglect the contribution from the decay-
tion 2d of the bubble nucleation points is sufficiently large ing mode. In order to determine the evolution just after col-
lision, two initial conditions must be supplied, and both turn
out to be important.
SIncidentally, even wherR, is not constant, but increasing with Note added in proof This paper was largely motivated
time, the order of magnitude of the first term in E89) does not by the work of M. Bucher and J.J. Blanco-Pillafif]. We
change. thank these authors for enlightening discussions and for en-
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