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Bubbles in Kaluza-Klein theories with spacelike or timelike internal dimensions
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Bubbles are pointlike regular solutions of the higher-dimensional Kaluza-Klein equations that appear as
naked singularities in four dimensions. We analyze all such possible solutions in five-dimen&bpal
Kaluza-Klein theory that are static and spherically symmetric. We show that they can be obtained by taking
unusual choices of the parameters in the dyonic black hole solutions, and find that regularity can only be
achieved if their electric charge is zero. However, they can be neutral or possess magnetic charge. We study
some of their properties, both in theories where the internal dimension is spacelike as well as timelike. Since
bubbles do not have horizons, they have no entropy, nor do they emit any thermal radiation, but they are, in
general, nonextremal objects. In the two-timing case, it is remarkable that nonsingular massless monopoles are
possible, probably signaling a new pathology of these theories. These two-timing monopoles connect two
asymptotically flat regions, and matter can flow from one region to the other. We also pr&séypesolution
that describes neutral bubbles in uniform acceleration, and we use it to construct an instanton that mediates the
breaking of a cosmic string by forming bubbles at its ends. The rate for this process is also calculated. Finally,
we argue that a similar solution can be constructed for magnetic bubbles, and that it can be used to describe a
semiclassical instability of the two-timing vacuum against production of massless monopole pairs.
[S0556-282(197)01702-3
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[. INTRODUCTION features described here should also be present in more gen-
eral theories with compact dimensions.

The solitonic solutions of the gravitational field equations We will describe two ways in which a naked singularity
have always been a focus of interest, much more in recertan be regularized when “blown up” to reveal the higher
times after the recognition of their relevance towards a nondimensional structure of spacetime. In one situation, the in-
perturbative understanding of string thedyl. We refer to  ternal space closes up smoothly—in the microscopic region
solitons in a broad sense, as localized solutions of the clagepresenting the point particle—avoiding in this way the
sical equations of motion that are nonsingular or possiblyreaching of the singular origin. Geodesic completeness is
have singularities hidden behind a horizon, the latter correpreserved by leaving a nonsingular “hole” in space. In the
sponding to black holes, or more generally, black branesother case, the pointlike particle turns out to be a tiny micro-
Certainly, to qualify as particle states one would also like thescopic region bridging two asymptotically flat spacetimes
solutions to be stable. However, it has been proven for ghrough *“chronology horizons.”
wide range of solutions that nonextrempadbranes (with Solutions of this kind have been known for some time as
p=1) are classically unstabl]. Nonetheless, though un- “bubbles,” and this is the name we will adopt throughout
stable, many of these solutions are interesting on their owrthis paper. An early realization of the importance of bubbles

Most of the solitons that have been considered are oWas found by Witten in4], where it was argued that the
black hole type, i.e., objects with horizons and, correspondKaluza-Klein vacuum can decay by spontaneously forming
ingly, an associated entropy—in some cases, though, the hbubbles that exponentially expand after their creation. In this
rizon area vanishes in the extremal limit, and singularitiegpaper, however, we will exclusively focus on nonexpanding
appear. However, there also exists an interesting class dfubbles. An interesting feature of all bubbles is that they do
solutions that, even if they look like naked singularities innot have horizons, and therefore are zero-temperature objects
four dimensions, their singularity can be resolved by goingwith zero entropy.
to a higher dimension. This resolution of singularities is Bubbles appear when the internal isometry along which
purely classical, not involving any quantum smearing of thethe dimensional reduction is performed contains fixed points.
region surrounding the singularity, and it has been shown t@he Gross-Perry-Sorki(GPS monopol€5,6] is an example
smooth the inner singularity inside some black holes anaf a bubble in which the fixed point set consists of a single
black branes of intere$8]. If applied to resolve naked sin- point and the bubble has zero size. In general, however, the
gularities, the outcome is a completely regular geometry fofixed point set will be higher dimensional, and the bubble
a pointlike object, though, as we will see, it is often an un-will have finite size. Several bubble solutions of five-
stable one. Throughout the paper we will be working in thedimensional5D) Kaluza-Klein theory(with spacelike inter-
simplest theory in which these solutions can appear, namelgal dimensioh were already noticed ifi5,6], and also dis-
five-dimensional Kaluza-KleinKK) theory. Many of the cussed in[7,8]. In this paper we aim at determining in a
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complete way all the possible static spherical bubble soluThe latter amounts to makingf, the square of the electric
tions of 5D Kaluza-Klein theory, clarify their relationship charge, take on negative values, i.e., the coupling constant
with the already thoroughly studied black hole solutions ofhas been continued to an imaginary value and objects with
the theory, and analyze bubble pair production and its conequal sign charges attract each other. This method will allow
sequences. Parallelly, we will study a much less exploredis to easily generate bubble solutions of two-timing theories.
issue, that of the solitonic objects in KK theories in which However, even if formally similar, the two-timing bubbles
the internal dimension is timelike. will differ considerably in their properties from ordinary
Theories with internal timelike dimensions have been &aubbles.

subject of interest for some time, and, in a rather modified
way, have been recently revived in the context of string
theory(* F theory”) [9]. However, not much is known about
the classical vacuum solutions of two-timing theories. Re-

cently, a full classification of the possible isometry groups of Wwe want to find all the topologically nontrivial regular
compact Lorentzian manifolds has been achieMd@l, and  solutions of 5D KK theory that appear as static, spherically
this may be of relevance in determining the properties okymmetric, points acting as sources of the Maxwell field.
compactifications in such theories. For the moment, howComplete analyses of the static, spherically symmetric solu-
ever, we will restrict ourselves to the simplest case of ajons of 5D KK theory have been given in different forms,
single internal timelikeSt. see e.g.[14,16, and alsd15], but the focus has been gen-
The timelike character of an internal direction gives riseerally on the black hole solutions. However, we will find that
to several pathological features, the most conspicuous @ubble solutions correspond to unconventional choices of the
which may be the fact that excitations of the internal dimen-parameters in black hole solutions with both electric and
sions have negative norm. Experimental lower bounds omnagnetic charge. It is convenient to illustrate this first in the
possible violations of unitarity put a limit on the maximum simplest example where the magnetic charges are zero.
radius of the internal timelike directidrd 1]. If one wants to It has been known for some time that, by taking the
preserve unitarity in a higher energy range, these degrees gichwarzschild solution and boosting it in the fifth direction,
freedom must be somehow frozen out or gauged away. Athe entire family of electrically charge@nagnetically neu-

additional problem is that, as we will see in a moment, theral) KK black holes is generated. The five-dimensional met-
coupling constant coming from the compactification modu-ric in this case is

lus is imaginary. Oppositely charged objects then repel, and,

by an old argument due to Dyson, one would expect the

vacuum to be unstable against pair production of charged

particles[12]. An instability of this kind was sought ifiL3], ds’=

where it was noticed that the two-timing theory contains

massless black holes, and solutions describing a pair of them 1-2m/r

accelerating apart can be found. However, due to peculiar T 14 2msintBS~/r t

: : ; Q

thermal properties of these black holes, an instanton describ-

ing their pair creation could not be constructed. One of the

aims of this paper is to show that this obstruction can be msinh28

surmounted if instead of massless black holes one considers At=2 152msi h?(S e

massless monopole bubhlés be constructed below. r msinfr oo /r)
Our analysis of the bubble solutions in theories with in-

ternal time will be greatly simplified by noticing their rela- Here the electric charg® is a function of the boost param-

tion with solutions with internal space: given a solution of eterdq:

the 5D Kaluza-Klein equations with spacelike internal di-

mension,

II. BUBBLES IN 5D KALUZA-KLEIN
WITH INTERNAL SPACELIKE DIRECTION

2msint? 5,
(1+ —Q)(dx5+2Atdt)2

2

2+ r
1-(2m/r)

+r2dQ2,

(2.1

m .
Q= EsthﬁQz m

1%
, (2.2
_ _ 1-v?
ds?=e 4 3(dx®+ 2A ,dx*) 2+ e?#3g , dx“dx”,

(& wherev is the boost velocity. By taking€v <1 we obtain,

upon reduction, the spectrum of purely electric black holes.
The limit v—1 (which requiresm— 0, keeping the charge
and mass finitedescribes an extremal singular solution.
What is less well known is what happens when we take
v>1. Even if the boost paramet@k, in these solutions is
complex, with imaginary pariw/2, we still find real solu-

where ¢ is the scalar modulug‘dilaton™ ), A, the Maxwell
four-potential, andy,,, the effective four-dimensional metric
(m,v=0,...,3), a solution of the two-timing theory can be
readily obtained by Wick rotating,

X5 —ix>, (1.2 tions. The four-dimensional reduced metric does not contain
a horizon any more, but, rather, a naked singularity. How-
and, accordingly, in order to keep the solution real ever, we must analyze if this singularity is also present in the

full five-dimensional geometry.
For all the values ¥v<« we have an electrically
A,—iA,. 1.3 charged solution for which the internal circles close at
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v? and the electric and magnetic charges and ADM mass are
r=rBEZm—2_—l. (2.3
v Q= msinhdocoshsocoshp,

This closing of the internal space is the characteristic feature
of bubbles with internal spacelike directions. However, for
any finitev >1 the curvature is singular af. This can be
easily seen from the fact that, even if the length of the inter- M= T(cosﬁ5Q+cosﬁ&P—sinhzéQsinhzap). (2.9
nal circles goes to zero at that point, their proper radius does 2
not. Additionally, theg,; term diverges badly at the bubble.

The singularity disappears only for—o. Of course, this He_rem corresponds to the mass parameter of t_he Schwarzs-
is equivalent to interchanging the roles of the internal andhild solution used to generate the whole family. Extremal
time coordinates in the Schwarzschild solution: solutions correspond to limits wheme— 0, while sending a
boost angle to infinity to keep the mass and some of the
charges fixed. To avoid Taub-NUT Newman-Unti-

P=m(2—cosi &g)sinhdpcoshsp, (2.9

2

ds2= —dt2+ 1_2_m (dx5)2+ dr +r2dQ§. Tamburino terms in the reduced metric we must keep
r 1-2m/r msinh25gtanhs,=0.
(2.9 The horizons correspond to the zeros fothat are not

L . . simultaneously zeroes of,Y. For cosRé,=1 there is al-
This is simply the product of the Euclidean Schwarzschild,,,q 5 hOI‘iZO?’/l at=0. These solutions a?e black holes, and
SO'““.O” with a trivial time d|rec§|on, and is a cqrnpletelx therefore we will concentrate on solutions with electric boost
no_nsmgular geometry. It descnbes_ a neutra_l _bUbble_'veIocity greater than 1, i.e., co’s%so. The form of the
p0|ntsr_<2m are exqsed from _spgc.enmg,.but this is done Mmetric coefficientgss andg,, tells us that bubbles will ap-
a nonsingular way—if the periodicity of> is chosen to be pear wherf andX have a common zero, which must also be

8m, the '”tef_”?' space smaothly closesrgtz_m. In the ._bigger than the roots of since these, in general, are singu-
reduced description, it corresponds to a pointlike naked sing, o However, just as in the magnetically neutral case,

gularity, with Arnowitt-Deser-MisnefADM) mass equal to and for the same reasons, the metric will be singular if there

m/2. is a nonvanishing electric term. Thus we shall set

Notice that the Schwarzschild solution, and all the eIec-COSth:O_ Notice that the neutral solution obtained by set-

trically charged black holes can in turn be obtained by bOOStfing the electric and magnetic charge to zero by making

ing the neutral bubble with velocity>1. In a sense, the . s — 0shso=0 is singular. Therefore we consider
Schwarzschild solution and the neutral bubble are at 0pp03it805ﬁ§P¢o P '

endpoints of the electrically charged spectrum. This will also
be true when we add magnetic charge.

The general static, spherically symmetric solution with
both electric and magnetic charges can be found in differe aub-NUT metric. It can be written in a more familiar way
parametrizations if14—16, and we will use them to study e n . ; e -
the most general static spheric bubbles. We find it Conve?y shifting r + 2mcosHig,—r and then identifying the mag

nient to use the parametrization [A6]. This is given in netic chargeP as the Euclidean nut parameter:

Remarkably, when coglh=0 we havef =X and the five-
metric is the direct product of a “trivial” time with a Eu-
lidean four-geometry. The latter is, in fact, the Euclidean

terms of the two boost parameters applied to the Schwarzs- ds = — dt?+ U(r)(dx*+ 2Pcosfd )2
child solution with massn, and it is more closely related to (5) ¢
the analysis above. For completeness, we discuss in Appen- dr2 y )
dix A how the bubbles appear when the metric coefficients + U(r)+(r —P)dQ3, (2.10
are expressed directly in terms of the physical parameters
M,P,Q, and the scalar charge as|[it5]. r2— AMr + P2

The five-dimensional geometry of the solutiong1§] u(r)= ——pr (2.1

X f Y
ds(zs)=7(dx5+2Ade“)2— idt2+?dr2+YdQ2, (we stress that the parametst here is the mass of the

2.5 monopole, and not the usual “mass parameter” of the four-
' dimensional Taub-NUT metric, which is in factv®). We

r+2m still have to impose further regularity conditions on this so-
A=0Q o A,=Pcos, (2.6) lution, but for the moment note that this covers all the static,
where . . : . -
10ur conventions differ slightly froni16]: with our definitions,
X:(r+2m)(r+2mcosf‘?5Q) the Maxwell field is one-half of theirs, and o4ADM) mass is
one-fourth of their parametevl. Also, what we callép is their
Y =r2+2m[(2— cost 5q)costt 5p+ cosif o ]r 41, and ourm is their 5.
’There is a family of neutral solutiori§], of which the Schwarzs-
+4m2COSf?6p, (2.7 child black hole and the neutral bubble are particular cases, that is

not contained in general if6]. However, neither these nor their
f=r(r+2m), boosted counterparts yield new regular solutions.
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asymptotically flat, spherically symmetric, regular solutions.bolt monopoles comes from the fact that fermions rule them
They represent localized lumps of energy that are sources aiut, since the topology CP-{0} does not admit any spin
a monopolar magnetic field. structure.

The factorized form of the geometf.10 greatly sim- An interesting outcome of the analysis in this section is
plifies the analysis of the regularity of the solutions. Therethe place we have found for the bubbles among the general
are only two completely nonsingular instantons constructedpectrum of dyonic solutions. This will allow us to extend to
out of the Euclidean Taub-NUT solution: the self-dual Taub-bubbles the study of some processes involving black holes.
NUT instanton, and the Taub-bolt instanton. The Eguchi-Before that, we will analyze some striking features of the
Hanson metric can be obtained as a limiting case of Taubbubble solutions when the signature of the internal dimen-
NUT, but, in the KK context, it does not yield an sion is reversed.
asymptotically flat reduced geometry.

The self-dual Taub-NUT solution corresponds to a mini- . TWO-TIMING MONOPOLES
mal value for the masdviy=P/2, and yields just the GPS ) ) . . . .
monopole, which is located at the nut fixed pointgf If we As we saw in the introduction, given a solution to ordi-

allow the mass of the monopole to be greater than the minifa"y KK theory we can easily obtain another solution corre-
mal valueM, then, as shown by Pag#7], there will be a sponding to a two-timing theory. However, in general, their
two-dimensional fixed point set @ (a spherical bojtat the properties, such as the nature of their singularities, are mark-
biggest root ofU(r), r , =2M + J4M?=PZ. A conical sin-  €dly different.

: : ; It is straightforward to see that, upon the continuations
ularity at the bolt can be avoided by choosikig=5P/8. . , . .
%he m)(/atric(z.l() with y (1.2), (1.3), solutions with electric charge have, again, cur-

vature singularities. On the other hand, the magnetic bubbles
we have just described turn into products of th@entzian

r—r )(r—r_ P . - L
Ug(r)= % r,=2P, ro=-. Taub-NUT solution with a trivial time:
(212 ds(s, = —dt?~U(r)(dx’+ 2Pcosfdp)?
is ref_erred toas the “Taub-bolt” solut_ion. It is not self-dual, T ? +(r2+P?)d02, 3.1)
and is topologically CP-{0}. The point that has been re- U(r)
moved from CP is “infinity” ( r—). ) ,
For all other values oM>P/2, M#5P/8, we obtain a U(r) = re—4AMr—Pp (32

conical singularity in the internal direction. This is a very re+p2
mild singularity, and we could change the periodicityxSf S ) ) _ ) _ _
to beAX5:47Tr+ SO as to avoid the conical Singu]arity at the which is a solution with full five-dimensional Slgnature
bolt, but at the same time we should accordingly change thé— — + + +). After reduction, this describes an object with

periodicity of ¢ to Ap=mr, /P to avoid the Dirac string (imaginary magnetic charg® and massv.

singularities. In turn, this would result in a conical defect The metric(3.1) has singularities at
; r=r.=2M=*P?+4M?, (3.3
.
0=2ml 1— — 2.1
Tr( ZP) 213 Notice thatr,>0 andr_<0. There is now an important

difference with the one-timing solutions. As before, the

threading the monopole along the axes=0,7. For length of the internal space generatedXlygoes to zero at
P/2<M<5P/8 the defect is a string, whereas for I'-, but, as pointed out if20], spacetime is easily extended
M>5P/8 it is a strut. Therefore, the former case can reprethrough these surfaces, in a way analogous to the extension
sent, if not new particlelike solutions, configurations of boltthrough a Lorentzian horizon. We summarize the causal
monopoles threaded with cosmic string vortices, reminiscengtructure of the maximal extensior(1) In the region
of similar black hole/cosmic string configurations considered - <r=<r.., the coordinater is timelike and there are no
in [18]. closed timelike curvefCTC’s); (2) in the regiong <r_ and

It is interesting that the GPS monopole appears as an ex=', , the coordinatec® is timelike and there arémicro-
tremal limiting case of two kinds of objects: the magneticscopig CTC's.
black holes and the magnetic bubbles. The black holes can Thus, the surfaces=r . are in fact chronology horizons.
be regarded as thermally excited states of the monopole, #t r=r., U(r)=0 and thus the “length” of the “internal
which they decay by emitting Hawking radiation. The bolt space” generated by goes to zero there. Notice that the
monopole is likely to correspond to another type of excitedmicroscopic bubble regiofil) connects two asymptotically
state, but since it has no horizon it does not emit Hawkindlat regions.
radiation. However, it is known to be classically unstable, Thus, we see that our two-timing Kaluza-Klein monopole
since the spectrum of fluctuations around the Euclideawan also be regarded as a “bubble” of Kleinian signature,
Taub-bolt metric contains a negative mdde®], as does the which exists for all external time, and which is bounded from
Euclidean Schwarzschild solution. It has been specul@ed our part of the universévhere things are effectively Lorent-
that bolt monopoles should evolve to form a black hole,zian by a horizon at =r ;. . Observers “far away” from the
which would then decay to the GPS monopole. In any casesource {r|>r.) will see a magnetic monopole. As we ap-
the most important restriction on the possible relevance oproachr . (from r>r,), the size of the internal space
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shrinks to zero atr=r_,.. As we move into the region ) ) ) 1.
r_<r<r, we see that the internal space is now spacelike. L=—t>~U(r)(xs+2Pcosfg)*+ mfz

The “time” that used to live in the internal space is “un-

compactified” in the regiorr _<r<r, , and so this region +(r2+ P?)(62+sirf0¢?) (3.4

(to a five-dimensional observer, the region is too small to be

detected by a four-dimensional obsepvenuld look like a  where the overdot denotes differentiation relative to any af-
“bubble” of Kleinian signature, i.e., in the ill-defined effec- fine parametes. As usual, for photond =0 whereas for
tive “four-dimensional theory,” the metric seems to changemassive particlek >0. Now, L is cyclic int, x5, andg, and
signature from ¢ —++) to (—+++) as we move from so we obtain three constants of motion:

the regionr _<r<r, to the regionr>r, .

The magnetic charge of these solutions is, as we saw in e=t="energy”
the introduction, imaginary, and like-charged monopoles at-
tract, rather than repel each other. No nonsingular neutral
two-timing bubble exists: the magnetic chafges essential
in allowing the extension of the metric through the interior of
the bubble by preventing the formation of a curvature singu-
larity inside it. Thus, the neutral solution with=0 contains ' . . L

A : The five-dimensional velocity is interpreted by the four-
the usual Schwarzschild singularity et 0. There are more . . .
respects in which the spectrum of two-timing bubbles diﬁersdlmenSK_)nal_o_bserver as electrlc charg_e. ,
f . gy . For simplicity, we restrict our attention to the motion of
rom ordinary one-timing bubbles. For the latter, there is a ) i T )
state with minimal nonvanishing mass. This is the Gpgest particles in th@=(/2) plane, i.e. =0 for all times.
monopole, which is extremal and saturates a Bogomolny-irhusl
bound. No extremal state exists for two-timing monopoles,
ano_l two-tim_ing m_ultimt_)nopolt_e_static configurations neces- L= —iz—U(r)k52+L'r2+(r2+P2)¢2. (3.5
sarily contain conical singularities reflecting the presence of U(r)
net forces between them.

There are more differences between both classes of od-0 be concise, we will only consider the motion of light-like
jects. The background geometry of two-timing monopolesparticles, “photons”; the timelike case is very similar. Thus,
admits fermion structures. More strikingly, in the two-timing assuming-=0 we see that the Lagrangian assumes the form
case the value d¥ is completely unrestricted, and we can
perfectly well setM=0. Thus we find a regulamassless
monopole This case is also especially interesting since the
two different regionsr>P and r<—P connected by the
Kleinian bubble are isometric under-—r. Radial motion of the photon is possible only if

In the massive case the isometry is broken. We can alstdr/d¢)?>0, i.e., if and only if
have negative mass objects. This is surprising, since negative
mass usually implies naked singularities. These are certainly o 2 5
present in the four-dimensional description of these mono- 87> w7 u(r)”
poles, but the full solutions are regular. The significance of
these negative mass solitons is unclear, but the apparent ab- A natural question is whether or not it is possible for a
sence of a lower energy bound is probably one more indicaphoton to escape out to infinity € + ) from the monopole
tion of the pathological behavior of these theories. “core” (i.e.,r=r,). Of course, the answer to this question

The classical stability of these two-timing solutions can-is trivial once one realizes thatetr . , U(r,)=0. That is,
not be inferred from that of their one-timing counterparts,the above inequality becomes
and this remains an interesting problem. The fact that like-
charges attract each other suggests that these monopoles 2> @w2—oo,
would tend to a minimal size. Let us use this admittedly
nonrigorous criterion to analyze which monopole configura-which is trivially satisfied for any values of the energy and
tion is likely to be more stable. The monopoles have twoangular momentum, as long as the “chargéfs nonvanish-
“mouths,” one atr=r _, the other at=r_. The total area ing (even whené is vanishing we can just set the angular
of both mouths isAx (r% +r2 +2P?)=16M?+4P? so that, momentum to zero Thus, any photon starting in the core
for fixed P, the minimal value is attained whevi=0. This  will always make it out ta=«. Likewise, since any photon
would suggest that the massless monopole might be, at leafteginning in the asymptotic region will trivially satisfy
more stable than the massive states, with masses of either> —o0, any such particle can fly through the monopole core
sign. Whether these solutions can evolve to a black hole sta@nd emerge in the other asymptotic region.
is not clear, given the strange properties of black holes in From the point of view of quantum scattering, this pre-
these theoriefl3]. sumably means that the monopole is stable to quantum cor-

It is of some interest to calculate geodesic motion in therections as long as the flux from one asymptotic region is
background of the two-timing monopole. To this end, noteexactly compensated by the flux from the other region. How-
that from the metria(3.1) we recover, via the action prin- ever, as we discussed above, the two asymptotic regions are
ciple, the following Lagrangian: isometric if and only ifM =0. This would seem to provide

w=(r?+P?)p="angular momentum”

5=U(r)xs=“five-dimensional velocity”.

82+ 52 1
w? U(r)a)z

dr\?
(@> =U(r)(r’+P?
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further support to the conjecture that the=0 state would The (singulay electric  bubbles correspond to

be “stable,” and that massive states would want to “settleO<—r_ <—r_, and the neutral bubble appears in the lim-

down” to M=0. iting case where ., =0. In this case, the mass of the bubble
However, the massless two-timing monopole is neitheis M= —r _/4>0, and it is located at=0.

extremal nor does it saturate any Bogomolnyi-type bound. In [22] a dilaton C metric describing magnetically

Therefore we do not expect to find that the background adeharged black holes accelerating apart is given. We particu-

mits N=1 supersymmetry. In other words, there should notiarize to the KK case, and perform a generalized duality

exist any covariantly constant spinor fiedd(by covariantly  transformation

constant we mean constant relative to the Levi-Civita con-

nection on Taub-NUT. To see that this is true simply recall E :Eefg\@q;e Eoo (4.5)
that the only Lorentzian manifolds admitting covariantly wy 2 pypos '
constant spinor fields are thep waves; however, alpp

waves have typ®&l curvature, whereas Taub-NUT is of type p—— ¢, (4.6)

D. In view of this, the precise meaning of our vague argu-
ments about the stability of the solutions is at present unWwhile leaving the effective four-metric unchanged. In this
clear. way we obtain the following five-dimensional metric de-

scribing electrically charged accelerating black holes:

IV. PAIR CREATION OF NEUTRAL BUBBLES o F(x) ) 1 )
d dx’+2Qydt <+ —2—2 F G(y)dt
A. C metric for accelerating bubbles F(y)( X*+2Qydy A“(X 00} GY)
A number of ways of pair producing black holes have F(y) dx2 G(x)
been studied in recent years. In Sec. Il we have seen that —?y)dy2 +F(y)? G(x) F(x) = de ) (4.7

Kaluza-Klein black holes and bubbles form part of the same
family of dyonic solutions. This will allow us to obtain an hereQ=r.r_/2, and
instanton describing pair creation of neutral bubbles. The

bubbles will appear at the ends of a cosmic string that snaps F(&)=1+r_A¢,
into two pieces; after that, they accelerate away pulled by the
string tension. Notice that the same argument that allows a G(&)=1—-&>—r A&, 4.9

topologically stable string vortex to end in a black hole

[18,21 can be extended to a neutral bubble: the nontrivial We will see below how this metric can also describe ac-
topology Rx S?X R? of the neutral bubble allows to con- celerating electri¢singulay or neutral bubbles, but it is first
struct a nonsingular Wu-Yang fibration of the gauge fieldconvenient to briefly analyze the physical interpretation of
carried by the cosmic string, so that it is well defined every-the metric when the parameters are chosen so as to describe
where. black holes.

How do we construct the metric that describes two accel- The root ofF is §;=—1/(r_A), andG has three roots
erating bubbles? The key is the relation that we have found;,&3,&,. It is convenient to analyze them for small A.
between electrically charged KK black holes and neutrallThené, is large and negative, as is algg~—1/(r . A). The
bubbles. For our present purposes this relation takes a momher two roots are of order 1¥3;~—-1, {,~+1. When
convenient form if we first rewrite the metri@.1) by mak- r,=r_=0 their physical meaning can be obtained by con-

ing r~|—2msinhz§QHr, and renaming sidering the following limits.
) (1) We blow up the region neay=¢;,&, by making
r.=2mcosdy, r_=2msinitd,. (41 y=—1/(rA), and A—0. In this case, with the additional

changex=cos and rescaling— At, the metric reduces to
(4.2). Alternatively, instead of saying that we go close to the
20 |2 ; black holes, one could interpret this as the static limit of the
dxS+ —dt) _(1_ —+>dt2 metric, where the acceleration parameter is set to zero and
the conformal factoA™2(x—y) ~2 in front of the four metric
Y is removed.
1— _‘) d0?2. (4.2) (2) While still keepingr -.A<<1, consider now the region
r neary=¢&,~1. This root corresponds to an acceleration ho-
rizon, since in this case, with(y),F(x)~1, the metric be-
comes that of Rindler spad¢hough written in unusual co-
e ordinate$, crossed with a trivial internal space. Points of
_ NIl constanty,x are moving with uniform acceleration. It can
Q . 4.3 - . g
2 also be interpreted as a small particle limit.
This interpretation holds whery lies in the range
The radiir . must satisfyr, —r_=0, andr,r_=0. The  —1/(r_A)<y<x. The endpoints of this interval are singu-
mass of the black holes is lar, and correspond to the singularity inside the black hole
and asymptotic infinity.
M = E( P r_) 4.4 It is also clear that we must keep the coordinateetween
2\t 2 ' the two order 1 roots 06(x), £&3<x<¢§&,. Thenx plays the

The metric for static electric black holes is then
r_ -1
d52= 1—- T

Jr1—r_/r
1-r Ir

dr2+4r?2

with
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role of co® in the angular X, ¢) part of the metric, which is We Wick rotatet—i 7, and analyze what condition must be

topologically a spher&?. However, this sphere is distorted, imposed on the Euclidean time periddr so as to avoid a

and can easily be seen to contain necessarily a conical sigonical singularity at the acceleration horizgs — 1. Note

gularity at one of the poles, reflecting the need for an accelthat there is no other horizon and the bubble has no prefixed

erating force. temperature. Then it is always possible to attain regularity by
From our discussion of the static solution above, it is cleaisetting

what to do to obtain accelerating bubbles. Singular electric 4 FD

bubbles appear for€—r, <—r_, and the regular neutral _amyr(—1)

bubble corresponds to, =0, —r_=4M. In this case =G (—ny  2TVLTAMA. (4.15

F(§)=1-4MA¢,  G(§)=1-¢, (4.9 This Euclidean solution describes the worldsheet of a cosmic

string containing a loophole delimited by a circular bubble

trajectory. The decay process is described as usual: take the

initial configuration to be that of a cosmic strifige., a coni-

cal defect with the required tension in flat space. The Eu-

E; (;(1hg|c;'n$hg’ \;g{hnmﬁ X\Tecrg?é: lonp dosln;s :i)nt?c? t?\??;\rc- clideanC metric above tends asymptotically to this configu-
: y= P 9 ration. Moreover, surfacesr=const of the C-metric

celeration horizon. But now, instead of a black hole horizon. .
we find a bubble located at the zero By) *, ie.. at instanton have the same geometry astth® section of the

y—s — o, where the size of the internal circles vanishes ThiSiLorentzian solution. Since their extrinsic curvature is vanish-
7 ! . ; . ng, w n smoothly “glue” the Eucli n and Lorentzian
is just as expected, since by takigg- —1/(rA) andA—0 g, we can smoothly “glue” the Euclidean and Lorentzia

. . sections and thus describe a process in which a cosmic string
\r/viaorecover the neutral bubble metric, with the bubble atsnaps and bubbles appear at its ends. The semicircular Eu-

. . . . ... __clidean bubble trajectory corresponds to the bubbles tunnel-
We now analyze in more detail the conical smgglarltlesing towards a configuration where they both have zero ve-
that pull the bubble. The relevant part of the metric is locity; at that point, the transition to Lorentzian signature
dé  1-x2 (real time takes place, and the circular motion turns into
2, (4.10 uniformly accelerated hyperbolic trajectories for the pair of
bubbles just created. This breaking of a cosmic string with
formation of neutral bubbles at its ends provides an alterna-
tive to the processes where the string breaks by forming
black holeq24].
It is interesting to notice that we have been able to con-

and all the roots are easily givené;=-—1, &=1,
£3=1/(4AMA). Notice that the ordering of the roots has
changed. Now we take 1<x<1 and—o<y<Xx. The axis

For —1=<x=1 this is topologicallyS?. If the periodicity of
¢ is Ag, there is a conical deficit at each of the poles
x=*1 given by

A struct aC-metric instanton for aeutral object. This is new:
5(+1):27-,< 1_—¢)_ 4.11) usually, charge is needed to lower the black hole horizon
- 2m\F(x1) temperature to match the acceleration temperature. In this

_ _ case, however, we have a neutral object with zenore
We choose to keep regularity along the axis1 joining the  present. Moreover, as far as we know, this is the first nonex-

black holes, so we take tremal pair creation instanton constructed for a theory with
_ dilaton coupling parametexr>1. In these theories, the black
Ap=2m\F(1). (4.12 hole temperature grows without limit as one approaches ex-

tremality, and this precludes the possibility of regularly

A conical defect runs along the axs=—1, i.e,, from each matching the Euclidean time periodicity. Clearly, this ob-

black hole to infinity. We can interpret it as coming from a struction disappears for bubbles
cosmic string with tensiop = 6/(87r), which is pulling the PP '

black holes apart. The mass and acceleration are related to ;)Qgsﬁ])gllg Eilgl) c?c))(r?tz?(ttt(i)nbae v?lgle;ﬁn?lfratts t?]iu:]rjélzgzgfs
the string tension by 9 ; y

of Schwarzschild black holes in a de Sitter univef28].
1 1—4MA However, it is very unlikely that a similar solution for
n= Z( 1- \/m> ~MA, (4.13  bubbles exists within the framework of pure KK theory. No-
tice that a cosmological constafitin five dimensions would

where the last approximate equality is obtained for smaIV'el(,j' upozljblrgduct.lon,. a_four—d|men5|ona_l Liouville-type po-
MA and reproduces Newton’s law as expected. tential Ae“*"**, which is inversely proportional to the length

We require the geometry to be regular at the bubble. Tc?f the internal circles. This potential would diverge at the
do so, we focus on thex¢,y) part of the metric, in the limit position (_)f a bubble, where the internal space closes up.
y——o. In this case, absence of conical singularities re_Such a divergence, however, would come entirely from the

quires the period of® to be cpnformgl chtor i_n the metric and., even h_‘ some\_/vhat qnde—
sirable, it might give no problems in the higher dimensional
AX®=167M. (4.14 ~ metric. We would expect to find a neutral bubble if we had a

KK cosmological(de Sittej solution containing an electri-
Finally, we study the possibility of constructing a Euclid- cally charged black hole. The bubble would correspond to
ean instanton describing pair production of these bubbledaking the electric charge to be zero in the way described in
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Sec. Il. However, it has been argued[@6] that no such same metric. However, the Schwarzschild black hole has the
charged solutions exist for nontrivial Liouville-type dilaton usual Bekenstein-Hawking entropy, whereas no entropy is
potentials. In principle, this does not rule out completely theassociated to the bubbles. Of course, there is nothing para-
existence of neutral bubble cosmological solutions, sinceloxical here, since the entropy depends on the choice of the
they could exist and not be related to any electric black holgeriodic variable(Euclidean timg that is associated to the

spectrum, but this certainly seems unlikely. asymptotic temperature. For both the Euclidean continuation
t—ir of the bubble solutiorf2.4) and Euclidean Schwarzs-
B. Euclidean actions and pair creation rate childx (dx®)?, the action i8
As usual, by continuing the solutions to Euclidean time, 1
their action can be used to obtain thermodynamical proper- I = EmA T. (4.20
ties or pair creation rates. Upon dimensional reduction, the
five-dimensional action However, for the bubbleMg=m/2, whereas for Schwarzs-

child Mg=m. Then, settingA 7= 33,

1 — 1 —~
|:meV|Q|R—WJM\/|—}T|K, (4.16 1
° o lou=BMe.  lsai=5BM:s. (4.21
(quantities with tildes will correspond to the 5D descripjion
turns to The vectord, has a fixed point at the horizon for the
Schwarzschild solution, but it acts freely on the bubble. In
1 o the latter caseB andM can be varied independently while
16WG4JM\/@[R—2(V¢)2—e 2R remaining on shell. The usual reasoning then leads to zero
entropy for the bubble, and Bekenstein-Hawking entropy
S=A/4 for the black hole. As we have stressed, for both
VIhlK. (417 solutions the only boundary is the surface at infinity.
The action of the analytically continued metric gives

ing the quotient of the five-dimensional boundar&;l. Also,  Ppair production by snapping strings. The calculation requires

the five-dimensional and four-dimensional coupling con-CirefE”y_ matc?inrg]; the .boungarri]es fnear iEfin::y
stants are related b$,=Gg/Ax°. For exact solutions of the x=y=§&=-10 the c metric and the reference back-
Kaluza-Klein equations, the volume term in Hd.16 van- ground(flat space with a cosmic strihgsee e.g.[27]. Then,

ishes and only the boundary term remains. Dimensional reg,traightforward application of the formulas above for the ac-

duction of this term yields tion gives the result

817G, ) o

- M

~¢I\3 T =" T 16M2A2

mk.:me 7 (43 Tgln) I—4A2|F (—D|NF(DF(-1)= A J1-16M2A2.
Vol (4.22

_ “ #1\3 This answer can also be easily obtained by decomposing the
VI[K+\[h[n#a,In(e?3\g), (418 5=
wheren is the normal vector to the boundasM induced 1

by the normah to dM, I=BH-7AA, (4.23
e ?%n, (419  whereH is the physical Hamiltonian andA is the differ-

nce in the areas of the acceleration horizons ofxmeetric

e
Thus we see that the result not only contains the extrinsi¢,q the reference backgroufigl7]. As it turns,H=0, and
curvature boundary term in E¢4.17), but also a surface the gifference in acceleration horizon areas is found to ac-

term involving the scalar field. The latter can be obtained.q nt for the entire actiof4.22. Again, no boundary con-
from Eq. (4.17) on shell by substituting the scalar field equa- gtions have to be imposed at the four-dimensional singular-
tion of mation, as is done if23].

) ity.

_We have remarked that the bubbles are, in the four-" rpq gyxact relation betweeA and u can be inverted to
dimensional effective (_jescrlptlon_, naked singular _po'”tsexpress the action in terms of onliy and :
However, when computing the action one should not include
an additional boundary surrounding the singularity, since this M2 1-4pu
must not be introduced in five dimensions, where the geom- = 1—24"

. . - M M

etry is regular. As we have just explained, once the boundary
terms at infinity have been properly accounted for, the result&or smallu, the leading term is the same as for string break-
should be the same if we work in either 5D or 4D. ing with monopole or black hole formation. Subleading cor-

From the Euclidean continuation of the static metrics in
Sec. Il we obtain their thermodynamical properties, such as—
the entropy. The static KK Schwarzschild solution and the *From now on we se6,=1. ThusAx® does not appear in Eq.
neutral bubble correspond, in the Euclidean regime, to the4.20.

(4.29
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rections are due to graviton and scalar exchange betwedfuclidean instanton describing Dyson’s pair creation of anti-
different points of the Euclidean circular trajectory of the Maxwell massless black holes failed. There are no Einstein—

bubble. anti-Maxwell-dilaton extremal black holes, and it is not pos-
sible to lower down the black hole horizon temperature to a

V. PAIR CREATION OF MAGNETIC BUBBLES value small enough to match the acceleration temperature.
AND DYSON'S INSTABILITY Remarkably enough, this obstruction should be absent for the

monopole bubbles, since they have no horizon and no pre-
Now that we know how to pair create neutral bubbles, itfixed temperature. Thus, the two-timing vacuum would not
would be natural to try and look for pair creation of magneticdecay by production of massless black holes, but rather by
bubbles. Such a process could be readily described if we haidrming zero mass monopole pairs.
a KK C metric fordyonicblack holes. Our analysis in Sec. Il For a general massive two-timing monopole, if no back-
shows that magnetic bubbles are easily obtained from dyoniground field is introduced and, therefore, the monopoles are
black hole solutions by sending the electric charge to zero ipulled by strings, we expect the action of the instanton to be
the appropriate way, i.e., by taking an infinite velocity boostgiven by the usual effective low energy result
in the internal direction. As we have just seen in the previous
section, this method certainly works fdZ-type metrics. 2
Thus, we believe that @ metric for magnetic bubbles can be | = 7
constructed.
However, the Kaluza-Klein dyoni€ metric is likely to
be very complicatedz since it must cqmbjne the intricaci(_es Of/vhere, we recallP is the magnetic charge. The massless
both the static dyonic solutioni$o which it must reduce in - ynonole configuration is smoothly connected to the posi-
the I|m.|t A—>Q), and of- the_C metrics. The full .dyon_lc tive mass solutions. However, in the massless limit the lead-
C-metric solution must simplify greatly when particularized ing term 7M/A in the action vanishes, and the qualitative
to describe accelerating magnetic bubbles, so one could tiyanavior of creation rates changes. It is no longer of the
to find first the metric for the latter, which, by the way, is the ;g ,a exponentially damped Schwinger form, and is domi-
situation of interest to us now. Even with this simplification, 4ieq by theD(P?) terms, which without explicit computa-
the solution is probably not as simple as any of the knownion we cannot determine. However, these terms come from
C metrics, and we have not found it yet. Some steps towardg ojomb corrections due to graviton, photon, and scalar ex-
its construction are described in Appendix B. _ change between different points of the circular trajecfory.
Although we do _not_ have the e_pr|C|t form of the solgtlon, For, e.g., gravitating monopoles, this terma®2/2, which is
we can semiquantitatively describe several features it mugfositive due to particle-antiparticle attraction. Hence, for
certainly have. Just like in the neutral case, tBismetric  y0timing monopoles it would be reasonable to expect this
must contain conical singularities pulling apart the bubbles;a y, 1o be— wP2/2, and we would finchegative actiorin
Since the bubbles are magnetically charged, these singulake massless case. In fact, recently a Euclid@ametric in-
ties can be removed by introducing a background magnetigianion with massless black holes has been found to have
field B asymptoting to the Kaluza-Klein Melvin solution, ,recisely an action of this kinf28]. The repulsion between
which then prowdgs the required forge. In Ka_luza-_KI_ethO oppositely charged two-timing monopoles makes it not
theory there is a simple way to do this: when identifying yery surprising to find an enhancémstead of suppressgd
points in the internal direction, introduce a twist along thepair creation rate. Pair creation of massless two-timing
axial rotation axi§22]. The solution thus obtained could be monopoles would thus imply a crass instability of the two-
used to describe a new decay mode of magnetic fields iﬂming vacuum.
Kaluza-Klein theory. To leading order, the action of the in- o the other hand, we could also consider a solution with
stanton should be given by the Schwinger value accelerating negative mass monopoles. This solution can as-
ymptote to the two-timing flat vacuum if we allow for a
(5.1) conical deficit in between the monopoles: the singularity
would pull them together, but, since they have negative
mass, they accelerate in the opposite direction. The conical
and would be smallest for the minimal mass bubbile, i.e., theleficit can operationally be replaced by a cosmic string such
extremal GPS monopole. Also, the entropy enhancement fa@s in[30], and in this way we would find a decay of the
tors of nonextremal black holes should be absent. two-timing vacuum by spontaneously producing cosmic
Having a metric that describes two accelerating magnetistrings with negative mass monopoles at their ends.
bubbles, then, as we have seen, we could easily obtain from
it a metric corresponding to two accelerating two-timing
monopoles. In particular, the massless case is of great inter#it has been pointed out by Hawking that this absence of an ex-
est, since no force is needed to accelerate the monopoles, amemal limit is not as odd as it may appear: in anti-Maxwell theory,
therefore, no conical singularities should appear. That thishe photons emitted by a black hole have negative energy, and
no-external-force condition can actually be met for masslesgherefore a black hole should increase its mass by radiating them
objects has been explicitly verified for accelerating masslessut [29].
black holes if13,28. The anti-Maxwell theories considered SThe following heuristic discussion can be easily generalized to
in [13] include the two-timing KK theory for a specific value include pair creation in external fields.
of the dilaton. However, the attempt at constructing a regular 8For black holes, the entropy enters also at this order.

M
+0(P?)= T+0(Pz), (5.2

mM?
= + ...

! PB '
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Notice that in two-timing decay processes the tunnelingpole in the two-timing theory. It is likely that massless ob-
takes place through a path that, though effectively Euclideafects are a rather general feature of theories with internal
in four dimensions, is Lorentzian in the full five-dimensional times. Usually, the mass and charges are expressable as sums
picture. In this case it is not completely clear how the clas-and products, respectively, of several characteristic radii,
sical action contributes to the leading terms of the decay ratesuch as in Eqs4.3) and (4.4). The imaginary charge asso-

A possible resolution is to simply take the point of view of ciated with an internal time may be obtained by changing the
the effective four-dimensional description and write sign of one of these radii, and this, in turn, may lead to
r~e'. regions of parameter space where the mass can be set to zero.

As usual, assuming a supersymmetric vacuum will rule  On the other hand, classical massless black hole solutions
out the decay of the vacuum via the n@metric instanton have been recently found in the context of string thd&8).
that we have attempted to find here. More explicitly, theThey exhibit a number of peculiar features, most of them
instanton will simply be connected and so the only spinassociated to the fact that they are nakedly sind@af. Our
structure allowed will be the one for which the fermions massless monopoles exhibit also a singularity in four dimen-
satisfy aperiodic boundary conditions as they are parallesions, but this is harmless since we know how to handle it by
propagated around the internal space. However, for supegoing to the regular five-dimensional manifold. Another sig-
symmetry we would require the fermions to be periodic onnificant difference is that, whereas the stringy massless holes
the internal space, and therefore it would not be possible tare supersymmetric, the two-timing massless monopoles are
match the fermion structures when trying to construct thenot. As a consequence, they are expected to acquire mass by
pair creation instanton. As if4], this is the most natural quantum corrections. Given the presence of negative mass
mechanism for suppressing this pathological behavior. states, it is not clear what the quantum corrected mass spec-

trum of monopoles would be. As we have argued, the mass-
less monopole could be stabilized due to the symmetry be-
V1. DISCUSSION AND CONCLUSIONS tween the two asymptotic regions it connects. However, the
The bubble solutions of the form —(dt?) quantization of the two-timing theory is certainly bound to

X Euclidean—Taub-NUT in Sec. Il were already constructecEXnibit all kinds of pathologies. , ,
some time ag$5,6]. However, our approach to constructing . inally, we have presented evidence that theories with
them by identifying the solutions in the parameter space ofnternal time qllrect|0ns can give rise to pair _product_lon of
dyonic black hole solutions is much more general. It hagnassless parycles out qf the vacuum. This ewdencg is based
allowed us to extend the class of pair creation processes stu@l the following facts:(i) The 5D KK theory contains a

ied till now. Interestingly, we have found that nonextremalnonsingular massless monopole, which can be obtained by
pair creation instantons are indeed possible in a theory wit@PPropriately choosing parameters in the general dyonic so-

dilaton couplinga>1. Another application of our method lution; (ii) dilaton C metrics for both electric gn_d magn(_atic
for finding bubbles is to other theories containing internalPlack holes are known, so we expect that a similar metric for

dimensions. In this way one can find bubbles—includingdyonic black holes must existii ) we have explicitly shown
also bubble strings—as solutions of the low energy effectivénat it is possible to construct, using tizmetrics already
equations of string theory, and of other higher dimensionakn@Wn, instantons for pair production of bubbles.

theories. These will be discussed elsewhere. It should be kept Thus, theories with extra times are expected to suffer
in mind that, like many extended black objects, ifuae- rom an instability that in some sense is even worse than

timing) bubbles studied here suffer from classical instabili-th0se previously known. Pathologies caused by negative
ties. norm fluctuations of the internal dimension can be kept be-

Given the finite size of bubbles. it is natural to ask 0w a certain level by, for example, taking the internal radius

whether rotating bubbles exist. However, this does not seerif be sufficiently small. On the other hand, the instability of
likely to occur, at least in 5D KK. If we consider the rotating the ordinary KK vacuum described [d] is suppressed for
dyonic solutions of this theor§82], then any way of elimi- Iarge_ |r_1ternal rad|u§.lr_1 contrast, production of massless
nating the electric charge to obtain bubblesch as taking tWo-timing monopoles is, as we argued, probably enhanced.
boostsy — ) also sends the angular momentum of the soWork tpwards the explicit construction of the correspondmg
lution to zero. In fact, the bubble solutions thus obtained tak& Metric, as well as the more general KK dyofianetric, is
the form of (—dt?) X Euclidean—Kerr-Taub-NUT. These do 'N' Progress.
not correspond to rotating bubbles, but, rather, to objects in
background magnetic fieldg31]. When the “Euclidean-
rotation” parameter) is small as compared to the inverse
compactification scale, the four-dimensional description is A.C. was supported by Grant No. NSF PHY94-07194.
that of a distorted bubble in a background magnetic fieldR.E. was partially supported by FPI through MESpain),
The bubble has a magnetic dipole moment, in addition to thand by Grant Nos. CYCIT AEN-93-1435 and UPV 063.310-
monopolar charge it may already have. On the other hand, iEB225/95.
() is comparable to the inverse compact radius, then the ap-
propriate picture is in terms of two GPS monopoles at an-
tipodal points of the Euclidea$? bolt, with, in general, "Notice that this decay mode cannot be generalized to the two-
charges of different magnitude. In all these configurationstiming theory, since by Wick rotating the internal direction of the
conical singularities appear so as to keep the whole set statimstanton we find the 5orentzianSchwarzschild solution, which

A peculiar outcome of our analysis is the massless monais not regular.
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APPENDIX A

For some purposes, it is useful to write the soluti@rb),
(2.7) as it is done in[15], in terms of the more physical
parameterdM,P,Q, and the scalar chargg. The latter is
obtained asp—3/r+O(r ~?) and is not an independent pa-
rameter, but rather it must satisfy

QZ P2
=3 = + .
37 3-3M S+.3M

The functions(2.7), after a linear shift of, are given by

(A1)

X=(r—3/\3)%+ %
Y=(r+3/\3)%+ %, (A2)
f=(r—M)>=(M?+32-Q*-P?),
and
= X
A,=Pcod. (A3)

This representation has the advantage that the electric-

magnetic duality(4.5) of the four-dimensional description is
evident from the symmetry und€«P, > ——3.
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changes may be needed. We will rewrite all these metrics in
a way that a unified form of all of them is possible.

Start first with the static limit, i.e., Taub-NUT(—dt?).
Writing it as

(r

—r)(r—r_
ds?=—dt?+ rzi)r( . )[dX5+2\/r+I’_COS6'ng]2
LI
P dQ?2 B1
+m re+(re—ror_) , (B1)
we change to the coordinate
= —1 B2
Y= " rvr)A (B2)

(other choices are possible, such &s=—1/(rA) or
y=—1[(r=r_)A], but this one is quite convenient since it
will allow for the simplest form of the off-diagonal term in
the C metrics with magnetic chargeln this static metric the
parameterA has no special meaning, and simply has the
dimensions of an inverse length.

Then, the metridB1) is

_H(y)E(y)
=3y

Jy) dy* J(y)
TRy)E(y) AY* T A%y?

(dx°+2r,r_co9dgp)?—dt?

dO?,

(B3)

At first sight, it is not clear how to obtain the bubble where we have defined the following polynomial functions:

sector of the solution, since if we directly $g&=0 we only

find the magnetically charged black holes. However, a dif-

ferent solution is obtained if we sef@—0 and simulta-
neouslyS— /3M, while keeping the rati®Q?/ (3 — 3M)
finite and fixed by Eq(A1). In this limit we find

X=f = (r — M — VAMZ=P2)(r - M+ VaMZ—P?),
Y=(r+M—P)(r+M+P). (A4)

Shifting nowr +M—r we find the same metric as in Eq.

(2.10.

APPENDIX B

In this appendix we find a unified form for the several

H(&)=1+2r A¢,

E()=1+(r +r_)A¢, (B4)

JE=1+2r Aé+r (r.—r_)A%&.

The following cases are especially interesting.

(1) For ro=r_ we have H(y)=E(y)=J(y)=1
+2r  Ay. The nut is aty=—1/(2r . A).

(2) For r,=0, we have H(y)=J(y)=1, E(y)=1
+r_Ay. The bubble is ay=—1/(r _A).

() For r_=0, E(y)=1+r,Ay, J(y)=E(y)?. The
bubble is aty=—1/(2r . A).

We can now rewrite the KKC metrics with bubbles or

known limits that theC metric for magnetic bubbles must Gpg monopoles in a way that the bubbles or monopoles are
satisfy. The full solution has not been found yet, but we thinkjy:aq at precisely these same valueg.dFhis requires that

that the results presented here may be useful for further i
vestigations.

The KK C metric for magnetic bubbles will depend on
three parameters, namely ,r _ ,A. It must certainly satisfy
the following limits: (1) For vanishingr, or r_ it must
reduce to the neutral bubb& metric;(2) for r . =r _ it must
reproduce theC metric describing creation of GPS mono-

h the C metrics we make coordinate changes of the form

y_]'*)y_lﬁ‘roA,

X IoxTT4rpA, (B5)

poles[23]; (3) for A—0 it must reduce to the static general where by adequately choosimg we can locate the bubbles

Taub-NUT solution across a trivial time.

where required.

Of course, these metrics need not be reproduced in pre- After some straightforward manipulations, we can write

cisely the form given above or 23], and some coordinate

all these metrics in the following unified form:
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H(Y)E(y)J(x) K(§)=H(§)*— & (B9)
ds?=—""—"——(dx°+2xyr r_de)?
HOOE0OI) or-de)
. 1 H(x)E Whatever theC metric for magnetic bubbles is, it must be
A%(x—y)? CIBX) possible to write it in a way that these solutions are found.

Additionally, the static limitA—O0 requires that, for large
K(y)d— J(y) dyz) y, K(y)~—vy?, and for x~1, K(x)~1—x2. Notice that
E(y)H(y)K(y) there are two forms of a neutral bubl® metric; they are
related by a coordinate change such as in(B&). Alterna-
d z” (B6) tive forms are possible, but the magnetic potential term gets
more complicated. Unfortunately, we have not found any

) ) o simple enough function that reproduces the above limits and,
The functionsH,E,J, are as given above. Despite its com- ginitaneously, solves the five-dimensional Einstein equa-
plicated aspect, this metric easily reproduces all the requiregy,g.

limiting solutions if the functiorK is properly chosen. Pre-
cisely, one must take the following.
(D) Forr =r_,

X

(dx2 K(X)E(X)H(x)
O Ko T T I

If we tried to aim at finding only the most interesting case,
the solution containing massless monopoles, the approach
just described might not be adequate, and other simplifica-
tions may be more useful. For massless objects, the polyno-
=& (B7) mial functions in theC metric have to be evefor, more

H(¢) properly, one expects them to be even for at least some

choice of coordinatgsThis property can easily be seen to be
related to the no-external-force condition in thed) part of
K(&)=E(&)%— &2 (B8 the metric, or equivalently, the vanishing of the mass in the
(static limit of the (t,y) part (see[28]). However, even in
(3) Forr_=0, this particular case the solution has remained elusive.

K(¢)

(2) Forr, =0,
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