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Superconductingp-branes and extremal black holes
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In Einstein-Maxwell theory, magnetic flux lines are ‘‘expelled’’ from a black hole as extremality is ap-
proached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus,
extremal black holes are found to exhibit the sort of ‘‘Meissner effect’’ which is characteristic of supercon-
ducting media. We review some of the evidence for this effect and present new evidence for it using recently
found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions,
which arise naturally in string theory, which arenon-superconducting extremal black holes. We present a nice
geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations
from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic
objects in string theory~such asp-branes! can also display superconducting properties. In particular, we argue
that the relativistic London equation will hold on the world volume of ‘‘light’’ superconductingp-branes
~which are embedded in flat space!, and that minimally coupled zero modes will propagate in the adS factor of
the near-horizon geometries of ‘‘heavy,’’ or gravitating, superconductingp-branes.@S0556-2821~98!09518-6#

PACS number~s!: 04.70.Bw, 04.40.Nr, 04.50.1h, 11.27.1d
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I. INTRODUCTION

As is well known, the phenomenon known as ‘‘superco
ductivity’’ was first discovered~and named! in 1911 by H.
Kammerlingh-Onnes. Kammerlingh-Onnes, in the course
studying the electric resistance of certain metals which w
cooled to liquid helium temperatures, found that the res
tance of mercury dropped drastically as the temperature
reduced from 4 K to 3 K. Later authors found that the te
perature range over which the drop in resistivity occurs
extremely small. Thus, scientists were led to discover
first well-understood property of superconducting media: B
low a certain critical temperature (Tc), the electric resistance
of the medium is zero~to within experimentally relevan
bounds!. This behavior is of course the origin of the term
‘‘superconductor.’’

On the other hand, given a superconducting medium
some temperatureT,Tc , it is always possible to get rid o
the superconductivity by applying a minimum magnetic fie
B.Bc , whereBc(T) is some critical value of the magnet
field which depends on the temperatureT. The destruction of
superconductivity by a sufficiently strong magnetic field,
gether with the fact that the superconductor has zero re
tance, leads one inevitably to the conclusion that the m
netic induction must vanish inside a superconductor, i.eB
50. This property of superconductors, which is actually e
perimentally observed~i.e., a magnet will ‘‘float’’ above a
superconducting medium!, is known as the ‘‘Meissner ef
fect.’’ The Meissner effect is succinctly expressed by t
statement that a superconductor displays perfect diama
tism. It is this property of superconducting media which
0556-2821/98/58~8!/084009~11!/$15.00 58 0840
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the principal focus of this paper. In fact, in this paper w
shall use the terms ‘‘perfect diamagnet’’ and ‘‘supercondu
or’’ interchangeably, even though technically perfect co
ductivity is only a necessary~not sufficient! condition for
perfect diamagnetism.

One may view superconductivity at various levels. O
may begin by constructing a purely phemonological mac
scopic theory in which Maxwell’s equations are taken
fundamental and one supplements them with constitutive
lations, of which the most useful is the London equatio
One may then pass to a classical thermodynamic formula
of the phenomenon. Finally one may attempt to identify t
quantum mechanical microscopic degrees of freedom
sponsible. In this paper we shall mainly be concerned w
the phemonological theory. We will establish the existen
in classical supergravity theories of an analogue of the us
Meissner effect. We will also have some suggestions a
how the purely phenomenological theory may be extende
a thermodynamic and quantum mechanical theory.

In fact the behavior of magnetic field lines in the presen
of strong gravitational fields has been under investigation
some time by many authors~see, e.g.,@1–5#!. In particular,
in 1974 Wald@1# studied the behavior of Maxwell test field
in the presence of a rotating black hole described by the K
solution. Using the fact that a Killing vector in a vacuu
spacetime acts as a vector potential for the Maxwell t
field, it is not hard to see that as the hole is ‘‘spun up’’ a
approaches extremality, the component of the magnetic fi
B normal to the horizon tends to zero; thus, the flux lines
expelled in the extremal limit and the hole behaves like
perfect diamagnet.
© 1998 The American Physical Society09-1
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This effect was noticed and then confirmed in Einste
Maxwell theory, to linear order in the magnetic field, b
Bičák and Dvořák @5#. In particular, they studied Reissne
Nordström holes in the presence of magnetic fields induc
by current loops. In@5# very nice pictures are presented f
the field lines around a hole as it approaches extremality
that the emergence of the Meissner effect can actually
seen. More recently, the authors of@6# considered an Abelian
Higgs vortex in the Reissner-Nordstro¨m background. It was
shown that in the extreme limit~but not near extremality! all
of the fields associated with the vortex~both the magnetic
and scalar degrees of freedom! are expelled from the horizon
of the black hole. The magnetic and scalar fields alw
‘‘wrap around’’ the horizon in the extremal limit.

In this paper we shall first review the evidence that~light!
p-branes are superconducting~Sec. II!, and then attempt to
extend the analysis to include the effect of self-gravitat
~Sec. III!. The appearance of a form of the Meissner eff
on the extremal horizon of a brane~Sec. IV! leads us to
perform a comprehensive analysis of magnetic fields in
vicinity of extremal horizons~Sec. V!. We establish the ex
istence of this effect in widely generic settings, which i
clude Kaluza-Klein and string theories. Moreover, we a
present some exact solutions for extremal black holes in
ternal fields which exhibit this Meissner effect. These sho
serve to dispel the notion that the effect is an artifact of
linearized approximation to the theory which could disapp
after including the back reaction. We also address~Appendix
B! some subtle examples where apparently the field ex
sion breaks down. A closer examination shows, howev
that in those examples one should not have expected
expulsion to happen in the first place, because of an inte
tion induced by the presence of a Chern-Simons term.

II. SUPERCONDUCTING EXTENDED OBJECTS:
LIGHT BRANES

We begin with a description of the superconducting pro
erties of light branes. That is, in this section we ignore t
coupling of thep-branes to gravity, so that we may think o
the branes as extended, sheet-like objects~of zero thickness!
moving in a flat spacetime background, with dynamics
scribed by a Dirac-Born-Infeld action. In the next section,
will consider the superconducting properties of spacetim
describing gravitating branes. The superconducting pro
ties of light branes have been discussed previously
Nielsen and Olesen@7,8# and by Balachandranet al. @9# ~su-
perconducting vortices with non-zero thickness, such
those examined in@10#, will not be discussed here!. Before
reformulating their ideas in a geometrical language wh
generalizes to the case of heavy branes we recall for
readers’ convenience some basic facts about the Meis
effect.

Phenomenological accounts of superconductivity dis
guish carefully betweenperfect conductivity, i.e. s→`⇔E
5 j /s50, andperfect diamagnetism, i.e. m→`⇒B50. The
former merely implies that]B/]t50 which in turn implies
that an arbitrary amount of flux may be frozen into t
sample depending upon initial conditions. The latter howe
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goes some way to implying the Meissner effect, i.e. that fl
is expelled from the material so that the superconduct
state is independent of initial conditions.

One may regard the Meissner effect as a consequenc
the so-called Becker-Heller-Sauter equation

E5l2]
j

]
t ~2.1!

for some constantl. This yields~on use of charge conser
vation! the freezing of magnetic flux:

]

]t
~B1l2curl j !50. ~2.2!

The strictly stronger non-relativistic London equation

l2curl j1B50 ~2.3!

implies the Meissner effect more directly and yields, on u
of Faraday’s law curlE52]B/]t,

curl~E2l2j !50⇒E2l2j52gradc ~2.4!

for some scalar fieldc.
In a relativistic generalization of the London equation

2
1

l2 Fmn5]mJn2]nJm ~2.5!

or

Jm52
1

l2 Am1]mL ~2.6!

for some functionL. Because¹mFmn52Jn , we have

2¹2J2
1

l2
50 ~2.7!

and so the mass of the vector field is given as 1/l2. If
L50 and in the absence of charges Eq.~2.5! is equivalent to
Eqs.~2.1! and~2.3!. In what follows we shall adopt Eq.~2.5!
as our criterion for superconductivity.

Balachandranet al. @9# have argued that Eq.~2.5! typi-
cally holds on the world volumeS of extended objects and
Nielsen has shown, in the context of Kaluza-Klein theo
that the relativistic London equation will hold on the wor
volume of extended objects carrying Kaluza-Klein curre
@7#. The basic idea behind Nielsen’s observation is that ifKa

is a Killing vector field generating a circle subgroup of th
Kaluza-Klein groupG of isometries of a higher dimensiona
Kaluza-Klein manifoldE, p:E→M is the projection onto
the spacetime manifoldM and

Fab5¹aKb2¹bKa, ~2.8!

then p!Fab is the Kaluza-Klein field strength on spacetim
M. Now if x:S→E is an immersion or embedding of a (p
11)-dimensional submanifold or braneS andxp5p+x the
projection down to spacetimeM, then the pullbackJ
9-2
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SUPERCONDUCTINGp-BRANES AND EXTREMAL BLACK HOLES PHYSICAL REVIEW D 58 084009
5x!K of the Killing vector fieldK to the world volumeS
yields ~via Noether’s theorem and the field equations for
embeddingx) a conserved currentJ on the world volume.
But clearly pulling back Eq.~2.8! to the world volume shows
that p!F andJ satisfy the London equation onS; i.e., S is
superconducting with respect to the the Kaluza-Klein c
rent. We shall refer to this type of superconductivity
Nielsen superconductivity.

So far we have not used any field equations, either for
brane or for the background in which it moves. For lig
branes in some fixed background the equations of motio
a brane with vanishing Born-Infeld field on the world vo
ume and vanishing Ramond-Ramond fields in the bulk
quire that it be a minimal submanifold, a particular case
which is a totally geodesic submanifold. In the next sect
we shall see that some self-gravitating branes satisfying
Einstein equations may be identifed with totally geode
submanifolds. We can then see to what extent they exh
Nielsen superconductivity.

III. SUPERCONDUCTING SELF-GRAVITATING
EXTENDED OBJECTS

In the last section we investigated the superconduc
aspects of extended objects which have decoupled f
gravity. This limit, where the branes are ‘‘light’’ so that on
may focus strictly on the world volume terms in the actio
has been extensively studied by recent authors@11#. In this
section we consider the complementary description of
tended objects in supergravity theories, which comes fr
focusing on the ‘‘bulk’’ action terms, which describe th
fields which propagate in the bulk away from the bran
These bulk terms are of course just the effective supergra
Lagrangian terms which are obtained from the low ene
limit of string theory and/or M-theory. One may therefo
approximate the gravitational fields ofp-branes, at leas
semi-classically, by looking for solutions of the supergrav
equations of motion with the relevant symmetries.

Generically, these solutions will have event and Cauc
horizons, and there will no longer exist any ‘‘brane wor
volume.’’ A natural question, then, is where the degrees
freedom associated with the brane are located. Before t
ling that question we shall consider some examples wh
the location of the brane is relatively unambigous.

One of the simplest such self-gravitating brane solutio
is the 6-brane of 11-dimensional supergravity. Geometric
this is a product

E[MTNk
3E6,1, ~3.1!

where MTNk
is the multi-Taub-Newman-Unti-Tamburin

~multi-Taub-NUT! metric with k centers,

ds25V21~dt1v idxi !21Vdxidxi , ~3.2!

with V511(@1/(ux2xi u)#. The groupG5U(1). The 6-
branes are located atx5xi . These are fixed point sets of th
the Killing field ]/]t and hence, by a standard result, tota
geodesic submanifolds. Not only does the Killing field va
ish on the branes but so does the two-form~2.8!.
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Consider now two orthogonally intersecting sets of
branes. Geometrically we have the product

E[MTNk

x 3MTNk8

x8 3E2,1. ~3.3!

There are now two Kaluza-Klein U~1! Killing fields, i.e. G
5U(1)3U(1)8. One Killing field vanishes atx5xi and the
other atx85xi8 . However, apart from at the intersection, on
U~1! Killing vector potential and the associated two-for
~2.8! are non-vanishing on the 6-brane of the other type.

Clearly, away from the intersection, there is no expuls
of a gauge field from the brane of the other type. The int
section, which is itself a brane, is superconducting relative
both types of flux.

The example we have just given may be readily exten
to the case of configurations of branes intersecting at an
discussed in@12#.

So far we have not used the Einstein equations. To do
we suppose that the Killing vector fieldK is everywhere
tangent to some submanifoldB of E. We may regardK as a
Killing field of B. Of courseB could be all of the spacetime
manifold.

We now apply the Ricci identity to the Killing vector field
K to give

¹ iF
i j 52RB

i j K j , ~3.4!

where1 RB
i j is the Ricci tensor ofB. Thus onB we have the

London-like relation

Ji52RB
i j K j . ~3.5!

Moreover,

¹2Ki52RB
i j K j . ~3.6!

As an example, suppose that the spacelike submanifoldB is
spacelike, compact and has negative Ricci curvature; the
simple integration by parts argument shows thatK must van-
ish everywhere onB. If B is Ricci-flat, thenK need not
vanish, but if it does not, then it must be covariantly co
stant. This means that locally at leastB is the metric product
of a circle with a submanifold of one dimension less th
that ofB.

The result we have just sketched is responsible for
well-known fact that closed Einstein manifolds with negati
cosmological constant do not admit any Killing fields. How
ever, we would like to view it in a a different way.

If K vanishes onB, then necessarily the restriction toB of
F5dK must also vanish. Thus the submanifoldB might be
said to exhibit a kind of Meissner effect. Because the ma

1Our conventions are that the signature is (211•••1), and that
the sign of the curvature is given by (¹ i¹ j2¹ j¹ i)K

m5Rni j
m Kn.
9-3
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A. CHAMBLIN, R. EMPARAN, AND G. W. GIBBONS PHYSICAL REVIEW D58 084009
ematical theorem we are appealing to is a particular case
Bochner vanishing theorem, it seems appropriate to refe
this effect as the Bochner-Meissner effect.

We now turn to spacetimes with event horizons.
Clearly the brane is located somewhere in the vicinity

the horizon. For a generic non-dilatonicp-brane, the near-
horizon geometry is a standard compactification of the fo
(adS)p12 3 SdT21, wheredT is the dimension of the trans
verse space@13,14# ~far from the brane the geometry is us
ally asymptotically flat, unless some global identification h
been performed!.

Now the metric on (adS)p12 may be written in so-called
horosphericalcoordinates (t,xp ,z):

ds25
1

z2
@2dt21dxpdxp1dz2#. ~3.7!

These coordinates then provide a foliation of (adS)p12 by
flat timelike hypersurfacesz5const, which are called the
‘‘horospheres.’’ If one embeds (adS)p12 as a quadric in
Ep11,2, then the horospheres are the intersection of the qu
ric with a family of null hyperplanes.

@The notation here reflects the fact that in the case
hyperbolic spaceHp12, which is the Euclidean section o
anti–de Sitter~adS! space, the analytic continuation of th
constantz slices of Eq.~3.7! is literally flat spheres, termed
horospheres in the mathematics literature years ago. If
regards Hp12 as the mass-shell in (p13)-dimensional
Minkowski spacetimeEp12,1, then horospheres are also th
intersections of the quadric with a family of null hype
planes.#

Now each horosphere may be thought of as a static
p-brane which solves the Dirac-Born-Infeld equations
motion of a p-brane coupled to thep11 potential Ap11

whosep12 field strengthFp125dAp11 is proportional to
the volume form of (adS)p12 @15#. In this way we obtain a
particularly vivid picture of how the heavy supergravi
brane is composed of many stacked light branes.

The limiting brane asz→0 corresponds to the caus
boundary of (adS)p12 . This conformal boundary has the to
pology ofS1 3 Sp, where theS1 is the timelike factor and
the Sp is spacelike. In fact the boundary coincides~possibly
up to a discrete identification! with the conformal compacti-
fication of (p11)-dimensional Minkowski spaceEp,1 and
the isometry group SO(p11,2) of (adS)p12 acts by confor-
mal transformations on the boundary. Thus, one is led
study the singleton and doubleton representations2 of the
group SO(p11,2), in the hope of understanding the confo
mally invariant quantum field theory~QFT! on the boundary.
In fact, this boundary QFT has precisely the same degree
freedom as the world volume fields of the correspond
p-brane. A natural proposal is then that the lowest sca

2Singleton representations of the adS group require asingleset of
oscillators transforming under the fundamental representation o
maximal compact subgroup of the covering group of the adS gro
doubletons require two such sets of oscillators.
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component of the boundary field theory represents the tra
verse fluctuations of thep-brane. Indeed, most recently it ha
been conjectured@16# that information about the dynamics o
superconformal field theories~in the largeN limit ! may be
obtained by studying the region near the horizon of cert
D(p)-branes. Thus, the conjecture implies a corresponde
between gauge theories in the largeN limit and compactifi-
cations of supergravity theories. The correspondence is o
called ‘‘holographic’’ @17# because the superconformal fie
theory~SCFT! resides on the causal boundary of adS spa

It is now natural to propose that a gravitatingp-brane is
‘‘superconducting’’ if the field theory on the boundary of th
adS factor of the near-horizon geometry exhibits behav
characteristic of a superconducting phase. Typically, giv
any specimen in a superconducting phase we expect to
zero modes, i.e. minimally coupled eigenmodes of so
wave operator which correspond to the unimpeded mo
ment of charge in the medium. Thus, we are led to look
zero modes which ‘‘skim along’’ the horospheres in the a
factor.

From what we have said above, it is natural to look f
such zero modes in the singleton~or doubleton! supermulti-
plets. After all, the singleton~or doubleton! field theories
generically contain a number of massless scalar and sp
fields, which are trapped on the boundary of adS space~the
‘‘core’’ of the brane!. ~For an explicit discussion of the ma
ter content of the superconformal multiplet of the M5-bra
see e.g.@18#.! The precise form of these multiplets is n
important. What is important is that these massless mo
skimming along the horosphere at infinity will natural
couple to any Kaluza-Klein currents on the brane. Put
other way, if we wrap the brane on a circle~taking care to
avoid any fixed-point singularities@19#!, then the massles
fermions on the dimensionally reduced brane will natura
couple to the Kaluza-Klein charge—these modes will indu
a superconducting current on the reduced brane.

We are thus led to a pleasing microscopic description
the superconducting properties of self-gravitating bran
Since the supercurrent seems to reside right at the horizo
the brane, we would expect the horizon to display the Me
ner effect. In the next few sections we will present a num
of examples which confirm this effect for the horizons
extreme black holes. It would be interesting to perform sim
lar tests for higher dimensional extremal self-gravitati
branes.

Of course, all of this structure will break down fornon-
extreme black branes. As you approach the outer horiz
there is no splitting of the spacetime geometry into an a
factor and a compact factor. Furthermore, it is not possible
think of a non-extreme black brane as a stack of light bran
all hovering just outside of the horizon. We would not expe
the outer horizon of a non-extreme brane to support a su
conducting current, and therefore we would not expect s
an object to display superconducting properties. These
pectations are borne out when we consider non-extre
black holes. It is always possible to penetrate non-extre
black hole horizons with magnetic flux; superconductivity,
seems, is generically broken whenever we break extrema
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p;
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IV. MEISSNER EFFECT FOR SUPERCONDUCTING
STRINGS

In the preceding sections we have seen that the w
volume ofp-branes behaves like a superconducting med
with respect to gauge fields of Kaluza-Klein origin. In pa
ticular, a form of the London equation appears which impl
the possibility of stationary currents in the absence of
external electric field. Another consequence of these ma
scopic equations is that magnetic fields vanish inside
world volume, i.e. the Meissner expulsion of magnetic fiel
As a matter of fact, the magnetic fields have a vanish
normal component to the world volume. Of course, in ord
for the magnetic field to be interpreted as a vector field,
must restrict ourselves to four spacetime dimensions.

When the effects of self-gravitation are included, it b
comes less clear where the brane is localized. Thus, it is
so evident where the Meissner surface, where magnetic
expulsion takes place, should be located. The argumen
the previous section suggest that, at least for non-dilato
branes, this should be in the near-horizon adS throat. D
tonic branes are singular at the horizon, and the adS-S
correspondence becomes less clear, but the singular ho
~or the close vicinity of it! would be the natural place for th
brane. In this and the following sections we will argue th
the Meissner surface is always precisely at the horizon.

The reader may feel that there is an apparent conflatio
objects of different dimensionalities here. Consider a stri
which we will wrap on a circle in the Kaluza-Klein fashion
The world volume viewpoint of the previous sections wou
lead to the conclusion that the string carries a supercond
ing current along itself. In the reduced spacetime the str
world volume will look like a point, and it does not mak
much sense to speak about the field being expelled fro
point. However, when we include gravity in the picture, t
string will develop a horizon, which~in D54) will be seen
as a 2-sphere~the fact that this might be singular will b
dealt with later!. Our claim is that magnetic Kaluza-Klei
fields are expelled from the horizon.

Hence, our starting point is a string inD55 which is
wrapped to yield a black hole. The metric, in the Einste
frame, inD55 is

ds25H21/3~2 f dt21dz2!

1H2/3S dr2

f
1r 2du21r 2sin2udw2D , ~4.1!

where

H511
q

r
, f 512

r 0

r
. ~4.2!

For r 0Þ0 there is an event horizon atr 5r 0 . When r 050
the string is extremal.

If we compactify this geometry along the string directio
z, we obtain a dilatonic black hole solution inD54. In the
previous sections we have seen that the string is super
ducting with respect to the Kaluza-Klein gauge fieldF gen-
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erated along this isometry.3 Our aim is to show that the ho
rizon behaves as a Meissner surface for this field in
extremal limit.

There is an obvious point of concern when dealing w
the extremal limit of the solution~4.1!: the proper size of the
horizon is zero as measured in the Einstein frame. Howe
in four dimensions the gauge field equation is conforma
invariant. This means that the field does not distingu
whether we are working in the Einstein, string, or any oth
conformal frame related to the one above by an overall r
caling of the metric by a factor of the dilaton. In particula
there exists a frame, namelyH4/3ds2, in which the metric
does not become singular at the horizon. In this frame
makes perfect sense to consider whether the field penet
or not the horizon.

There is a well-known procedure to generate, upon red
tion, an exact solution with an axisymmetric magne
Kaluza-Klein field~see, e.g.,@20# or @21#!. Instead of identi-
fying points along the orbits of]/]z, we twist the compac-
tification direction to be along orbits of

q5
]

]z
1B

]

]w
. ~4.3!

This is most easily done by changing to the adapted coo
nate w→w2Bz, such thatqw50. Here B will be the
asymptotic value of the magnetic field along the axis of
tube. The Kaluza-Klein gauge potentialAm reads, in terms of
the original metric,

A5
qw

uqu2
dw5B

gww

gzz1B2gww

dw. ~4.4!

This is clearly a conformally invariant expression. For t
case under consideration,

A5B
Hr 2sin2u

11B2Hr 2sin2u
dw. ~4.5!

We want to find the magnetic flux across a portionS of the
black hole horizon. This is given by the line integral*]SA
on the horizon. If the horizon is atr 5r 0Þ0, then we find a
non-vanishing flux across any portion of it. But in the e
tremal limit the horizon is atr 50, whereA vanishes. So no
magnetic flux penetrates the extremal horizon. The field
expelled from it: this is the Meissner effect. In Fig. 1 w
have plotted the lines of force of the magnetic field for no
extreme and extreme configurations.

We would like to emphasize the fact that this analysis h
been carried out at a level where the supergravity equat
have been treated in an exact form. In particular, the fi
~4.5! is an exact field configuration inD54 ~together with
the corresponding metric and string winding field!.

3In order to avoid confusion with other gauge fields that m
appear, throughout this and the following sections we will cons
tently use script letters for the fieldF that experiences the Meissne
expulsion and its potentialA.
9-5
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V. MEISSNER EFFECT IN EXTREMAL BLACK HOLES

It is remarkable that this Meissner effect is not unique
extremal geometries derived fromp-branes. In fact, as we
argue below, it appears to be a rather generic feature of
tremal black holes. Typically, the lines of force of a ma
netic field penetrate the horizon of a non-extremal bla
hole. However, we will see that the lines of force fail
penetrate extremal horizons. Instead, they tightly wrap
black hole.The horizon of an extremal black hole behav
like the surface of a perfectly diamagnetic object.

To be more precise, in a superconducting material
magnetic field penetrates to some small distance from
surface: this is the penetration depth. For extremal bl
holes the penetration depth appears to be zero. Also,
perfectly diamagnetic state of the black hole breaks dow
any finite temperature, i.e. for any deviation from extrem
ity.

To our knowledge, this phenomenon was first pointed
in the literature by Bicˇák and Dvořák in @5#, in the context of
Einstein-Maxwell theory. We believe this to be a gene
phenomenon for black holes in theories with more com
cated field content, although a precise specification of
dynamical situations where this effect is present seems t
out of reach. The results below constitute very strong e
dence that it is true whenever the gauge field couples m
mally to the geometry, or possibly includes dilatonic co
plings.

A. Field expulsion from extremal rotating black hole

A first example~also noticed in@5#! of this Meissner ef-
fect follows from Wald’s analysis@1# of a test magnetic field
in the background of the neutral Kerr black hole. In@1# a
solution for a field aligned with the axis of the black hole
constructed, by using the isometries of the Kerr backgrou
Let us denote the axial and temporal Killing vectors of t
Kerr solution byc[]/]w and h[]/]t. Then a test gauge
field can be constructed as

Am5BS cm1
2J

M
hmD2

Q

2M
hm . ~5.1!

B is the magnetic field along the axis, andQ is the charge
that the black hole acquires, which we want to be zero. T
field can be conveniently written in terms of the vectorx
5VHc1h, which is tangent to the null geodesic generat
of the horizon. HereVH is the angular velocity of the hori
zon. We find~with Q50)

FIG. 1. Field lines of the Kaluza-Klein magnetic fieldF for the
exact solution~4.5!, for the black holes that result from compac
fication of non-extremal and extremal strings. The radius in
~4.5! has been changed to ‘‘Schwarzschild radius’’r→r 2q.
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Am5
B

VH
Fxm2S 12

2VHJ

M DhmG . ~5.2!

In the extremal limit 2VHJ5M , and thereforeAm}xm ,
which vanishes precisely at the horizon. As in the preced
section, the flux along any portionS of the horizon,*]SA,
vanishes. Again, the extremal horizon behaves like a per
diamagnet.

This solution involved the magnetic field as a test fie
only. But it is possible to find an exact generalization of
within Kaluza-Klein theory. Start with the product of th
~neutral! D54 Kerr solution with a five dimensional direc
tion x5. We can now apply the ‘‘twisted reduction’’ proce
dure described in Sec. IV to put theD54 neutral Kerr black
hole in the background of an axisymmetric Kaluza-Kle
magnetic field in an exact way. In order to avoid the prese
of electric charge in the black hole, the compactification
rection must also involve a twist in the time coordinate. Sp
cifically, we identify points along orbits of the vector

q5
]

]x5 1BS c1
2J

M
h D . ~5.3!

The exactKaluza-Klein gauge field that follows is

Am5B

cm1
2J

M
hm

uqu2
, ~5.4!

which reduces to Wald’s field in the linear approximatio
and in the same way can be seen to exhibit the Meiss
effect in the extremal limit. The reader may have noticed t
Wald’s solution does not contain any dilaton field, where
the Kaluza-Klein solution does. But to linearized order in t
test gauge field there is no contribution from a test dila
@see, e.g., Eq.~5.13! below#. Therefore Wald’s solution is the
linear approximation to the axial field configuration forall
Einstein-Maxwell-dilaton theories.4

Finally, in the solutions we have been considering t
magnetic field is aligned with the rotation axis of the bla
hole. According to@5#, the Meissner expulsion can also b
seen for fields where no alignment is assumed.

B. Field expulsion from spherically symmetric extremal
throats

Now we would like to consider other classes of extrem
black holes, and the most obvious candidates are cha
~Reissner-Nordstro¨m! black holes. However, several subtl
ties arise that need to be dealt with care. Consider, as
simplest example that comes to one’s mind, an electric
charged Reissner-Nordstro¨m black hole in the background o
a magnetic field. This configuration was analyzed, in an

4Actually, the Kaluza-Klein perspective provides a simple way
rederive, by linearization in the gauge field, the general techni
used in@1# to construct solutions for test Maxwell fields in bac
grounds with isometries.

.
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SUPERCONDUCTINGp-BRANES AND EXTREMAL BLACK HOLES PHYSICAL REVIEW D 58 084009
act way, in @3#. Naively, according to our conjecture th
magnetic field should be expelled from the horizon in t
extremal limit in this configuration. However, this does n
happen. The puzzle is solved@5# when one notices that th
solution in@3# is actuallyrotating. A rotating electric charge
generates a magnetic dipole moment. The black hole
therefore the source of a magnetic dipolar field. This is
tually the field across the extremal horizon of the solution
@3#.5 The authors of@5# then went on to construct a linearize
solution where the rotation of the charged black hole in
external field could be set to zero, and found it exhibited
Meissner expulsion of the field in the extremal limit.

In this example, the complication arises due to grav
tionally induced non-linear interactions between the elec
field of the black hole and the external magnetic field. Ho
ever, notice that our main reason to have a charge on
black hole is to provide a means to reach the extremal lim
In other words, we are not particularly interested in the d
namical aspects associated with the charge of the black h
Rather, we want to isolate the behavior of the magnetic fi
in thegravitationalfield created by the black hole. As a wa
to disentangle the effect of the charge of the black hole fr
that of the magnetic field, we can think of the charge of
black hole as being coupled to a gauge field that is differ
from the external magnetic gauge field. In other words,
work with a U(1)3 U(1) gauge theory, with two Maxwel
fields. The black hole will be charged with respect to one
the U~1! fields, while the other gauge field will be the ma
netic field that experiences the Meissner effect. This int
duction of a second gauge field may seem unrealistic, bu
should view it as simply a device that provides us with a w
to achieve extremality for the black hole. In particular, it w
be clear in our analysis below that the dynamics of the ga
field associated with the charge of the black hole plays
essential role. Besides, theories with more than one ga
field arise quite naturally in string theory and related co
texts.

We will start our analysis by treating the magnetic field
a test field in the background of the black hole geome
Therefore, we want to solve the equation

]m~A2gF mn!50, ~5.5!

in some fixed background geometrygmn .
For starters, take the Reissner-Nordstro¨m metric

ds252Vdt21V21dr21r 2~du21sin2udw2!,

V512
2M

r
1

Q2

r 2 . ~5.6!

The outer~event! horizon is atr 5r h5M1AM22Q2, and
extremality is achieved by settingQ5M .

5It is even clearer that, for similar reasons, we should not exp
the extremal Kerr-Newman black hole, which has a magnetic dip
by itself, to expel the magnetic field@4#.
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For the test fieldF5dA we will assume the ansatz

A5 f ~r !sin2u dw, ~5.7!

in terms of which the magnetic flux crossing any surfaceS is
given by*]SA.

With the ansatz~5.7!, the field equation~5.5! becomes

d

drS V
d f

dr D5
2 f

r 2 . ~5.8!

This is easily solved as

f ~r !5r 22Q2, ~5.9!

up to a multiplicative constant, related to the value of t
magnetic field at infinity, which we have arbitrarily fixed
According to Eq.~5.7!, the magnetic flux crossing the hor
zon is proportional tof (r h). This is non-zero for black holes
with M.Q, but it vanishes precisely in the extremal lim
r h5Q.

Now, we want to consider non-rotating extremal bla
holes in more generality. In order to simplify the analys
we will focus only on the region near the horizon of th
black hole, since it is there where the Meissner effect
exhibited. As the most generic characterization of this reg
for spherically symmetric extremal black holes, we will ta
the following:

For some choice of conformal frame, the region near
extremal horizon becomes asymptotically an infinite thr
of constant radius. This is, if we choose the horizon to be
r 50, then

ds2.2S r

l
D 4a

dt21l 2Fdr2

r 2 1du21sin2udw2G .
~5.10!

The freedom in choosing coordinates has been use
simplify the possible forms of the metric and bring the ho
zon tor 50. The parameterl fixes the scale of the geometr
~and is typically related to the charge and mass of the bl
hole!. The exponenta is an arbitrary real number. Within
this class we find, for example, the extremal dilatonic bla
holes of@22# or the stringy black holes in@23#.

As in Sec. IV, the reference to the conformal frame
motivated by the fact that, in the presence of scalar~dilaton!
fields, when we write the metric in the canonical Einste
frame, the throat atr 50 typically pinches down to zero siz
in a singular way. But then we can use the dilaton to perfo
a conformal rescaling of the metric to yield the regular thro
~5.10!. Since the Maxwell field equation~5.5! is, in four
dimensions, invariant under such conformal rescalings,
are allowed to choose to work in the conformal gauge fix
by Eq. ~5.10!. In fact, we may want to consider an equatio
slightly more general than Eq.~5.5!,

]m~A2ge2afF mn!50, ~5.11!

ct
le
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A. CHAMBLIN, R. EMPARAN, AND G. W. GIBBONS PHYSICAL REVIEW D58 084009
where we allow for a coupling of the test field to a dilaton
field f with non-constant background value near the horiz
r .0,

e2af.S l

r D 2b

. ~5.12!

As a further minor generalization, we could consider t
test gauge field to be coupled to atest scalars, with the
standard action~we suppress inessential factors!,

I;E ~]s!21e2sF 2. ~5.13!

However, the field equation fors implies that ifF is linear
in the ~small! applied magnetic field, thens only enters at
quadratic order and is therefore negligible in the approxim
tion we are working. Hence we need not consider explic
such scalars.

In order to solve Eq.~5.11!, we consider again the ansa
~5.7! for the magnetic field, and we find the equation

d

dr
~r 2~a2b!11f 8!52r 2~a2b!21f . ~5.14!

This is a homogeneous equation, which we can solve
choosing~up to a multiplicative constant!

f ~r !5r g, ~5.15!

with

g5A~b2a!2121b2a.0. ~5.16!

What is important here is thatg is never zero. Since the flu
crossing the horizon is proportional tof (r 50), in order to
have a finite, non-vanishing flux we should haveg50. In-
stead, we find that the flux always vanishes at the hori
r 50.6 The Meissner effect, therefore, is a common char
teristic of extremal throats. For completeness, we show
Appendix A that the Meissner effect never takes place
non-extremal horizons.

Finally, notice that in order to solve the equations a
exhibit the Meissner effect we have only needed the me
of the black hole solution. That is, the fact that we may ne
the black hole to be charged for it to be extremal plays
essential role. Besides this, we have assumed that the i
actions of the gauge fieldF are essentially given by Eq
~5.11!. More complicated situations could be envisaged,
from the evidence we have presented here we believe tha
phenomenon is generic. If other couplings of the fieldF
were considered, care should be exercised to ensure tha
additional interactions do not indirectly generate sou
terms for the fieldF, which would produce an outgoing flu
of the field across the horizon. These cases, of course, ca

6The solutions withg,0 have been discarded as pathological
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be used to disprove our conjecture, which clearly requires
absence of magnetic sources inside the black hole. A su
example of how flux can penetrate a horizon of the ty
~5.10!, if the theory contains Chern-Simons couplings i
volving the fieldF, is discussed in Appendix B.

C. Some further exact solutions

In the preceding subsection we have found evidence
magnetic fields are expelled from the horizon of spherica
symmetric extremal black holes. However, the magnetic fi
has been treated as a test field, and its effect on the geom
of the black hole has been neglected. One could worry t
if the back reaction effect of the magnetic field on the geo
etry were accounted for, the behavior of the horizon mig
change and the magnetic field would perhaps penetrate
the black hole, thereby evading the Meissner effect. Th
however, is rather unlikely: the fact that the magnetic fie
vanishes near the horizon leads us to expect a neglig
back reaction in that region. This expectation is confirmed
all cases where exact solutions have been constructed.

We have already presented two exact solutions, in S
IV and V A, using the Kaluza-Klein ansatz, where we ha
introduced an axisymmetric magnetic field which exhib
Meissner expulsion. Similar exact fields can be introduc
for different values of the dilaton coupling, by applyin
‘‘Harrison-like’’ @24# solution-generating transformation
@20,25,26# ~dilatonic Melvin flux tubes were discussed
@22#!. In particular, the behavior of black holes in magne
fields, for essentially any valuea.0 of the dilaton coupling,
can be readily analyzed using the solutions in@26#. We will
not give any details, but in all such cases the Meissner ef
can be seen to be present as well. Here we will display
other sort of magnetic fields that can, in a sense, be con
ered as curved space generalizations of the uniform magn
field in flat space. These are the covariantly constant fie
exemplified by the Bertotti-Robinson solution of Einstei
Maxwell theory. There do exist generalizations of such so
tions for the U(1)2 theory of @27# or the U(1)n theories in
@26#.

One should be careful, however, in constructing the so
tions. The field in the Bertotti-Robinson solution is sphe
cally symmetric, and ‘‘emanates’’ from an origin, whic
nevertheless is non-singular since the geometry develop
infinite throat. In the analogous dilatonic solutions, the fie
similarly emanates from an origin, which now is singular
the Einstein frame. In any case, our point here is that, if
want the extremal black hole to expel the field, then it
clear that the ‘‘source’’ should not beinside the black hole.
In other words, the Bertotti-Robinson-like field and the bla
hole mustnot be concentric.

With this proviso, the theory we will consider will be@27#

I 5E d4xA2gFR2
1

2
~]f!22

e2f

2
F 22

ef

2
G2G ,

~5.17!

and the solution we are interested in is, in the Einstein c
formal gauge,
9-8
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ds252
1

DFDG
dt21DFDG~dr21r 2du21r 2sin2udw2!,

F5dA, A5b
rcosu2 l

r 2
dw, G5qsinudu`dw,

~5.18!

ef5
DG

DF
, DG511

q

r
, DF5

b

r 2
,

r 2[Ar 21 l 222lr cosu.

In this form of the solution, both fields are of magnetic typ
The black hole is extremal from the outset, with horizon
r 50 and chargeq. The ‘‘origin’’ of the magneticF field is
at a coordinate distancel along the axisu50, i.e., at r 2
50. Setting q50 yields a geometry that is conformall
equivalent to the product of the linear dilaton vacuum ofD
52 string theory with a sphereS2 and a covariantly constan
field F. The degenerate horizon atr 50 is singular. The
proper size of the extremal black hole is zero if measured
the Einstein metric. However, as discussed in the previ
sections, for the purpose of studying the gauge fields
could just as well work in a conformally related metric whe
the extremal horizon is non-singular. The ‘‘preferred’’ fram
is efds2, in which the extremal black hole area is equal
4pq2.

Once again, the exact value of the flux across constar
surfaces, given by

Fuw5bsinu
r 2~r 2 lcosu!

r 2
3 , ~5.19!

vanishes at the horizon of the black hole,r 50, as we
claimed. The lines of force for the fieldF are plotted in Fig.
2.

With little extra effort we can consider a slightly differen
situation, where we have two extremal black holes, each w
charge coupled to different gauge fields. As before, if we
not want to find a trivial penetration of flux, we have
consider a two-center solution.

FIG. 2. Field lines of the magnetic fieldF for the exact configu-
ration ~5.18!. The radius in Eq.~5.18! has been changed t
‘‘Schwarzschild radius’’r→r 2q. The ‘‘origin’’ of the covariantly
constant field has been put atl 5q/2.
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We can analyze in this way whether the field created
the black hole with chargeq2 in F penetrates the horizon o
the black hole with chargeq. The solution is just like Eqs
~5.18! above, but now with

DF511
q2

r 2
. ~5.20!

The horizon of this second black hole is atr 250. The field
created by it is exactly the same as in the previous exam
Eq. ~5.19!, only changingb→q2 . Thus we find another ex
act solution exhibiting the Meissner effect at the extrem
horizon atr 50. Evidently, by symmetry, the flux created b
the black hole with chargeq does not penetrate the horizo
at r 250, of the other extremal black hole.

In these examples the black hole under study has been
‘‘ a51 dilatonic black hole.’’ In terms of the test field analy
sis performed in the previous subsection, the relevant par
eters area50, b51/2, which yield g52 for Eq. ~5.15!.
This is in precise agreement with the expansion for sm
magnetic fieldb ~and r ) of the exact result~5.19!. Different
values of the dilaton coupling~essentially, any valuea.0)
can be readily analyzed using the solutions in@26#, with no
qualitative differences.

VI. CONCLUSIONS

Superconductivity is a rich and multifaceted subject, w
applications in a variety of physical models, from condens
matter physics to QCD. It is therefore natural to investig
how superconducting phenomena may emerge from the
structure described by M-theory; after all, M-theory is o
only real candidate for a unified description of all physic
phenomena.

In this paper, we have described the superconduc
phases of the solitonic objects of M-theory, thep-branes. In
order to perform such a description, we have concentrate
three of the most elementary and well-known aspects of
perconducting media: the Meissner effect, London the
and the existence of minimally coupled zero modes.

With respect to the Meissner effect, we have presente
number of exact solutions which demonstrate that Kalu
Klein magnetic flux is expelled from the horizon of a gene
extreme black hole. We have extended this analysis to
case of a black string inD55, and again found that Kaluza
Klein flux is expelled. It would be interesting to perform
similar tests for the Meissner effect for higher-dimension
extreme branes. It would also be interesting if we could u
derstandpreciselywhen and how the Meissner effect is br
ken.

Strictly speaking, the Meissner effect follows from th
fact that inside a superconductor the field has to be p
gauge. This, however, is not true for the field in the inter
of the extremal black hole, as can be readily seen from
examples above. We are not claiming, therefore, that
black hole interior is in a superconducting state. Our sta
ments refer to the horizon or, at most, to the near-horiz
region.

Of course, the Meissner effect is just one property exh
9-9
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A. CHAMBLIN, R. EMPARAN, AND G. W. GIBBONS PHYSICAL REVIEW D58 084009
ited by superconducting media; ultimately, we want to co
struct a phenomenological model which attempts to desc
what is going on. The theory of London goes beyond
simpleobservationof the Meissner effect, and proposes a
of field equations which imply various things about the m
croscopic theory which underlies the entire phenomen
Thus, in order to have a macroscopic phenomenological
scription of a superconductingp-brane, we have followed
Nielsen, Balachandranet al. and others by proposing that
p-brane is in a superconducting phase if and only if the re
tivistic London equation holds on the world volume of th
brane. For a test brane, this definition is not ambiguous s
it is clear where the brane is located; i.e., the brane is
some extended object moving in a background spacet
from which it has decoupled. The motivation for our defin
tion is then clear, since the London equation will hold on t
world volume of any extended object which is carryin
Kaluza-Klein currents. For self-gravitating branes, we ha
proposed that a brane is in a superconducting phase if
only if this ‘‘Nielsen’’ type condition holds on the boundar
of the adS factor of the near-horizon geometry of the bra

Given all of this structure, it is then natural to propose th
the microscopic degrees of freedom which lead top-brane
superconductivity are precisely the zero modes, associ
with the singleton superconformal multiplets, which prop
gate on the boundary of the adS factor of the near-hori
geometry. These zero modes naturally couple to any Kalu
Klein currents, and so they literally represent the unimpe
flow of charge far down the throat of a self-gravitating bran

Of course, in this analysis we have neglected a numbe
other theories and approaches to superconductivity. It wo
be interesting to investigate whether or not it is possible
define p-brane superconductivity using the ideas of the
other theories. Research on these and related problem
currently underway.
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APPENDIX A: ABSENCE OF THE MEISSNER EFFECT
IN NON-EXTREMAL HORIZONS

In order to complete our general analysis oftestmagnetic
fields in the vicinity of spherically symmetric black hole
here we solve the equations in the presence of non-extre
horizons. In this case, close enough to the horizon the ge
etry is of the Rindler form

ds252r2dt21dr21R2~du21sin u2dw2!. ~A1!

R is a constant measuring the radius of the horizon, whic
at r50. We now solve Eq.~5.5! for a test Maxwell field in
this background using the same ansatz~5.7!.7 The solution

A5I 0SA2r

R D sin2u dw ~A2!
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is expressed in terms of the Bessel function of order ze
such thatI 0(0)51; i.e., there is a non-vanishing flux cros
ing any portion of the horizon. There is no Meissner exp
sion from non-extremal horizons.

APPENDIX B: A ‘‘COUNTEREXAMPLE’’ TO THE
MEISSNER EFFECT AND ITS RESOLUTION

Consider the five-dimensional action

I 55E d5xA2ĝH R̂2
1

2
~ ]̂f!22

1

12
e2A2/3fĤ2

2
1

4
e1A2/3fF̂2J . ~B1!

Five-dimensional quantities will be careted.Ĥ and F̂ are
3-form and 2-form field strengths, obtainable from the 2- a
1-form potentialsB̂,Â, Ĥ5dB̂, F̂5dÂ. Very similar ~but
not exactly the same! actions can be derived from compa
tified string–M-theory. The fieldsĤ and F̂ admit the inter-
pretation of fields with string and particle sources. Actual
the solution we discuss below can be seen as a bound
~at threshold! of a string and a particle.

The equations of motion of this theory admit the soluti

dŝ252
dt2

D2 1D2~dr21r 2dV2
2!1dx5

2 ,

D511
q

r
, ~B2!

B̂5D21dt`dx5 , Â5D21dt. ~B3!

The scalarf is zero ~or constant! for this solution.8 The
metric is precisely equal to the product of theD54 ex-
tremal, electric Reissner-Nordstro¨m ~RN! black hole with the
real line2`,x5,`. Hence, Kaluza-Klein reduction alon
x5 yields the extremal RN black hole, with no electroma
netic Kaluza-Klein field.

We can now generate a background Melvin flux tube
performing a Kaluza-Klein reduction as described in Sec.
change the polar variable tow→w2Bx5 , and reduce toD
54 by consistently identifying points alongx5 . The Kaluza-
Klein gauge potential is

A5B
D2r 2sin2u

11B2D2r 2sin2u
dw. ~B4!

7We could also have included scalar fields, as in Eq.~5.11!, but
these typically take finite, non-zero values on non-extremal h
zons and do not alter the results.

8It would be easy to construct a more general solution with d
ferent harmonic functionsDF ,DH for the particle and string tha
would yield non-constantf, but we prefer to keep things simpler a
this level.
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This doesnot vanish on the extremal horizonr 50. The
Meissner effect is not present for this solution. Neverthele
the geometry near the horizon is of the form required in E
~5.10!.

The resolution of this puzzle comes from examining t
actual couplings of the Kaluza-Klein gauge fieldA in the
effective D54 theory. For details of the reduction proc
dure, see, e.g.,@28#. The important point here is that th
non-vanishing component of the fieldB̂ along x5 , B̂m5
[Bm , yields a Chern-Simons-like coupling in theD54 ac-
tion of the form

~dB`A!2 ~B5!

~times factors involving the scalarf and Kaluza-Klein sca-
A

Re

.K

ss

an

08400
s,
.

lar, which are inessential for this discussion!. The conse-
quence is that the effective equation forF in D54 differs
now from Eq.~5.11! by the presence of an extra source ter

In this indirect way, theĤ-charge of the black hole is re
sponsible for the appearance of an induced magnetic di
for the black hole in the presence of an external fieldF. This
is the source of the flux coming out of the horizon. This is,
a way, similar to the absence of the Meissner effect in
solutions considered in@3#, in that subtle non-linear interac
tions induce dipolar sources for the black hole.

This extra term is also present in the compactification
the string that we analyzed in Sec. IV. However, in that ca
its value in the extremal limit is zero, and so it does not sp
the Meissner effect.
’’

,’’

ys.
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