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Vortices and extreme black holes: The question of flux expulsion

Filipe Bonjour,* Roberto Emparan,† and Ruth Gregory‡

Centre for Particle Theory, Durham University, South Road, Durham, DH1 3LE, United Kingdom
~Received 29 October 1998; published 24 March 1999!

It has been claimed that extreme black holes exhibit a phenomenon of flux expulsion for Abelian Higgs
vortices, irrespective of the relative width of the vortex to the black hole. Recent work by two of the authors
showed a subtlety in the treatment of the event horizon, which cast doubt on this claim. We analyze in detail
the vortex–extreme black hole system, showing that, while flux expulsion can occur, it does not do so in all
cases. We give analytic proofs for both expulsion and penetration of flux, in each case deriving a bound for that
behavior. We also present extensive numerical work backing up, and refining, these claims, and showing in
detail how a vortex can end on a black hole in all situations. We also calculate the back reaction of the vortex
on the geometry, and comment on the more general vortex–black hole system.@S0556-2821~99!04608-1#

PACS number~s!: 04.70.Dy, 11.27.1d
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I. INTRODUCTION

The story of black hole hair is an ongoing and interest
one. It was thought for some time that black holes w
relatively bland objects, classified by very few paramete
charge, mass, and angular momentum. This picture
changed significantly in the past decade with the discov
of various types of solutions which carry other, more exo
charges—such as the colored black holes@1#—and solutions
with dressed horizons@2#. What is clear is that when a non
trivial topology is allowed for the matter fields, so-calle
‘‘no-hair’’ theorems can often be evaded. In this paper,
are interested in the question of Abelian Higgs hair, wh
may occur because a U~1! vortex can pierce, or even end, o
a black hole@3#. This particular phenomenon is interestin
both from the point of view of hair for the black hole as we
as providing a decay channel for the disintegration of oth
wise stable topological defects@4–8#.

Briefly, the results of@3# showed that is was possible fo
a vortex solution of the U~1! Abelian Higgs model—a
Nielsen-Olesen vortex@9#—to thread a Schwarzschild blac
hole, and that the matter fields reacted very little to the pr
ence of the event horizon. Inclusion of back reaction of
vortex on the geometry revealed that it was an appropr
smooth version of the Aryal-Ford-Vilenkin geometry@10#
discovered some years previously. Further work@7# showed
that the conical singularities in other more complicated
ometries could be smoothed over by the vortex, which
lows the exact vacuum instanton for the splitting of a coni
defect @11# to be used to construct a smooth instanton
splitting of physical topological defects@4–6#. A technical
feature of these smooth gravitational instantons was that
contained two U~1! fields, the broken U~1! of the Abelian
Higgs vortex, and an unbroken U~1!, electromagnetism
needed to give a regular Euclidean section for the instan
~although not needed for regularity of the Lorentzian s
tion!. Naturally this raised the question as to whether
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results of@3# were still valid in the presence of this extr
field. In the papers of Chamblinet al. @12# it was argued that
while the results of@3# were qualitatively the same for non
extremal black holes, in the extremal limit a completely ne
phenomenon occurred, and the flux of the vortex was
pelled from the black hole, rather like flux is expelled from
superconductor.

The evidence presented in@12# was of the form of ana-
lytic arguments for high winding vortices, and numeric
work representing a black hole–vortex system for a vari
of relative sizes of black hole to the string in which the flu
lines of the vortex appeared to consistently wrap the bl
hole. In a previous Comment@13#, two of us pointed out that
there were some difficulties with the numerical evidence
stated, and that while expulsion was possible for thick,
high winding, vortices, it did not appear to occur for th
vortices. This would apparently solve a puzzle noted
Chamblinet al., namely that one could, in principle, take
vortex terminating on a near-extreme black hole~see@14# for
a detailed discussion of selection rules for terminating vo
ces! and then charge the black hole up to extremality. T
would appear to be in contradiction with the principle of flu
expulsion. However, if flux expulsion is not mandatory, th
such a puzzle never arises. There is, however, another p
lem if flux is always expelled. It appears that very thin vo
tices have a higher energy wrapping the black hole tha
there were no black hole present at all. This would mean
the system is unstable and the string expels the black h
which then raises a physical paradox. A string outside
black hole reacts to the black hole’s gravitational field, the
fore we might expect it to be attracted. On the other ha
the vortex is not charged under the massless U~1!, therefore
it has no reason to feel any repulsion, except for the puta
flux expulsion force. It is therefore not easy to see what
equilibrium solution of a vortex–black-hole system wou
be. Of course this is a rather naive argument, as it igno
any effects due to the conical deficit geometry of a gravit
ing cosmic string, which does produce a repulsive force
charges@15#, as well as an attractive force on masses@16#, a
point which we return to in the conclusion after we ha
explored the issue of gravitational back reaction of the v
tex.
©1999 The American Physical Society22-1
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In this paper, we submit the Abelian Higgs vortex
extreme black hole system to an exhaustive analysis, w
the intent of pinning down precisely when, or inde
whether, flux expulsion can or cannot occur. We give a
lytic arguments for flux expulsion in certain regions of p
rameter space, and flux penetration in others, and back up
analysis with a wealth of numerical data. We discuss
problems of numerical integration of this system~and how
our work differs from that presented in@12#! and how we
have avoided these and ensured accuracy of the integrat
We also consider in detail the vortex terminating on t
black hole. We then include a discussion of gravitatio
back reaction before concluding.

II. THE ABELIAN HIGGS VORTEX

We start by reviewing the U~1! vortex in order to estab
lish notation and conventions. The action for an Abeli
Higgs system is

S15E d4xA2gFDmF†DmF

2
1

4
G̃mnG̃mn2

1

4
l~F†F2h2!2G , ~1!

where F is a complex scalar field,Dm5¹m1 ieBm is the
usual gauge covariant derivative, andG̃mn the field strength
associated withBm . We use units in which\5c51 and a
mostly minus signature. It is conventional to express the fi
content in a slightly different manner in which the physic
degrees of freedom are made more manifest by defining
fields X,x andPm by

F~xa!5hX~xa!eix~xa! ~2a!

Bm~xa!5
1

e
@Pm~xa!2¹mx~xa!#. ~2b!

These fields represent the physical degrees of freedom o
broken symmetric phase;X is the scalar Higgs field,Pm the
massive vector boson, andx, being a gauge degree of free
dom, is not a local observable, but can have a globally n
trivial phase factor which indicates the presence of a vor
The existence of vortex solutions in the Abelian Higgs mo
was argued by Nielsen and Olesen@9#, and in the presence o
a vortexrdx52pN, whereN is the winding number of the
vortex.

In terms of these new variables, the equations of mot
are

¹m¹mX2PmPmX1
lh2

2
X~X221!50 ~3a!

¹mGmn1
X2Pn

b
50, ~3b!

where b5l/2e2 is the Bogomol’nyi parameter@17#, and
Gmn is the field strength ofPm .

The simplest possible vortex solution is that in flat spa
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X5X~R!, Pm5NP~R!]mf, ~4!

whereR5rAlh, $r ,f% are polar coordinates, andX andP
satisfy the coupled second order ordinary differential eq
tions ~ODE’s!

2X92
X8

R
1

XN2P2

R2 1
1

2
X~X221!50 ~5a!

2P91
P8

R
1

X2P

b
50. ~5b!

For N51, this is the Nielsen-Olesen solution, and gives
isolated vortex for allb. The vortex core consists of two
components—a scalar core where the Higgs field diff
from vacuum, roughly of width 1/Alh, and a gauge core o
thickness O(b1/2/Alh). For higherN, the solutions were
given in@18#, the principal differences toN51 being that the
X-field is flattened (X;RN) near the core, and the string
correspondingly fattened. An additional difference is that
b.1, higher winding strings are unstable to separation i
N unit winding vortices@17#. Figure 1 presents some solu
tions for b51.

In this paper however, we are interested in nontrivial s
lutions in curved space, specifically in the presence o
charged black hole. This means that our set-up now has t
length scales, the two string core widths as already m
tioned, and the new scale—the black hole’s outer horiz
radius:

wHiggs;mHiggs
21 5

1

Alh
~6a!

wgauge;mgauge
21 5

1

A2eh
~6b!

r H5Gm1AG2m22Gq2 ~6c!

wherem is the Arnowitt-Deser-Misner~ADM ! mass of the
black hole, andq its charge (A05q/r ). We now setlh2

51, which considerably streamlines our analysis and eq

FIG. 1. The Nielsen-Olesen vortex forb51 and forN51 ~solid
lines!, N53 ~long-dashed lines! andN510.
2-2
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VORTICES AND EXTREME BLACK HOLES: THE . . . PHYSICAL REVIEW D 59 084022
tions of motion. The gauge width of the core has alrea
been replaced byAb, and we now replace the mass a
charge of the Reissner-Nordstro”m black hole by M
5Gm/wH and Q25Gq2/wH

2 . This simply means that we
have chosen to set the Higgs mass, rather than the Pl
mass, to unity. There are now no dimensionful quantiti
and Newton’s constant,G, is a ~small! number which we
will represent bye, wheree58pGh2. For a grand unified
theory ~GUT! string e5O(1026), and represents the grav
tational strength of the string, which will be used in Sec. V
when we consider the gravitational back reaction of the v
tex.

For now, however, we ignore the gravitational back re
tion of the vortex and, as in@12#, treat the vortex in the
background Reissner-Nordstro”m geometry:

ds25S 12
2M

r
1

Q2

r 2 Ddt22S 12
2M

r
1

Q2

r 2 D 21

dr2

2r 2@du21sin2udf2#. ~7!

For the moment, it is irrelevant whether the geometry is
result of an electric or magnetic potential since we only
quire the equations for the vortex fields in the Reissn
Nordstro”m geometry. Substituting Eq.~7! in Eqs.~3a!, ~3b!,
and assuming the form~4! for the Pm-field gives

2
1

r 2 ] r„~r 222Mr 1Q2!] rX…2
1

r 2 sinu
]u~sinu]uX!

1
XN2P2

r 2 sin2u
1

1

2
X~X221!50 ~8a!

] rF S 12
2M

r
1

Q2

r 2 D ] r PG1
sinu

r 2 ]uF ]uP

sinuG2
X2P

b
50.

~8b!

In general, these equations are intractable analytically, h
ever, as in@3# we can extract some information in a partic
lar limit—the ‘‘thin string limit’’ where we assumeM@1;
the value ofQ is irrelevant. First note that if we writeR
5r sinu, and make the assumption thatX5X(R), P
5P(R), then Eq.~8! becomes

2X92
X8

R
1

XN2P2

R2 1
1

2
X~X221!

5
R2

r 2 S 2M

r
2

Q2

r 2 D FX91
X8

R G ~9a!

2P91
P8

R
1

X2P

b
5

R2

r 2 FQ2

r 2 S P922
P8

R D2
2M

r S P92
P8

R D G .
~9b!

However, note that the right-hand side~RHS! of each of
these equations has the formR2/r 2 times terms of order
unity. Near the coreR is order unity, hence the RHS i
O(M 22), thus we have the flat space equations~5a!,~5b! for
which the solutions are well known, and have the prope
08402
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that away from the core the vortex fields tend to th
vacuum values exponentially rapidly. Therefore, by the ti
the premultiplying term in the RHS of Eqs.~9a!,~9b! be-
comes significant, the fields are essentially in vacuum, so
corrections will be negligible. We can therefore regard t
flat space solutions~as functions ofR5r sinu) as a good
approximation to the true solution in the thin string lim
Note that this form of the solution pierces the horizon a
does not depend on the value ofQ, therefore, using this
argument, one would expect that thin stringsalways pen-
etrate the event horizon of a black hole, whether or not i
extremal.

The argument developed so far starts from the thin str
limit, but there is another limit in which considerable info
mation can be extracted analytically, and which leads to
expectation that vortices are expelled from extremal ho
zons. This regime, which can be regarded as a ‘‘thick str
limit’’ complementary to the one above, is attained for lar
winding numberN. As shown in@18#, whenN is large the
size of the vortex grows likeAN, and the unbroken phas
inside the core is approached increasingly faster,X;RN.
Consider then a black hole that sits well inside the vor
core. There, the field is expected to be very close to
symmetric phase, so it seems reasonable to neglect the
term in Eq.~8b!. Then the equation can be solved by

P'12p~r 22Q2!sin2u, ~10!

with p'1/(2NAb) @12#. From here we see that, in the e
tremal limit in which the horizon is atr 5Q, the magnetic
flux across the horizon, given byGuf5]uP, vanishes. More-
over, it is possible to solve for the Higgs fieldX by setting
X5@b(r )sinu#N, and keeping only leading terms in 1/N. One
finds, near the horizon,

d~ logb!}
dr

Ar 222Mr 1Q2
5

dr

A~r 2r 1!~r 2r 2!
, ~11!

so that, if the black hole is extremal (r 15r 2) then b;r
2r 1 . Hence,X vanishes as well on the extremal horizo
Furthermore, a study of the energy of the configurat
shows that it is favorable for the black hole to remain ins
the vortex core@12#.

Indeed, the behavior of magnetic fields in the vicinity
extremal horizons has been studied in more generality in@19#
and the expulsion of the flux—a phenomenon remarka
analogous to the Meissner effect in superconductors—
been argued to be generic. Extremal horizons tend to re
magnetic fields, at least if the latter are in, or approach
phase of unbroken symmetry, like in the core of the vort
The argument above for largeN vortices, however, is no
fully conclusive, since it remains the possibility that corre
tions of higher order inM or in 1/N spoil the exact expulsion
phenomenon.

III. ANALYTIC ARGUMENTS AND BOUNDS

In the previous section we summarized the arguments
@12# in favor of flux expulsion, and extended the thin strin
2-3
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arguments of@3# which seemed to indicate flux penetratio
Both of these arguments appear compelling, and we m
examine the system closely to see what definite informa
can be extracted. First, note that all methods are in ag
ment that there is flux penetration for nonextremal bla
holes, therefore for the rest of this section, we will only
considering extremal black holes, for which the metric is

ds25S 12
M

r D 2

dt22S 12
M

r D 22

dr22r 2du22r 2 sin2udf2.

~12!

This gives the vortex field equations

2
1

r 2 ] r@~r 2M !2] rX#2
1

r 2 sinu
]u~sinu]uX!

1
XN2P2

r 2 sin2u
1

1

2
X~X221!50 ~13a!

] rF S 12
M

r D 2

] r PG1
sinu

r 2 ]uF ]uP

sinuG2
X2P

b
50,

~13b!

which as before are not analytically soluble, however,
can extract quite a bit of information about the solutions d
to the nature of the geometry nearr 5M .

The first observation is that if we setr 5M , then the equa-
tions for the horizon actuallydecouplefrom the exterior ge-
ometry:

2
1

sinu
]u~sinu]uX!1

XN2P2

sin2u
1

1

2
M2X~X221!50 ~14a!

sinu]uF ]uP

sinuG2
M2X2P

b
50,

~14b!

a phenomenon which does not occur in the nonextre
case. This means that the vortex equations on the horizon
now ODE’s and therefore easier to handle. Note that the
expulsion solution (X50,P51) always solves Eqs.~14a!,
~14b!, therefore we cannot use any analysis of these eq
tions to demonstrate flux expulsion, but we can potentia
show the nonexistence of a penetration solution.

Therefore, assume that a piercing solution to the vor
equations does exist throughout the spacetime, this m
that a piercing solution must exist on the horizon. This
quires a nontrivial solution@X(u),P(u)# which is symmetric
aroundu5p/2 at which pointX has a maximum andP a
minimum. LetXm andPm be the extremal values ofX andP
attained. In addition, expanding Eqs.~14a!,~14b! near the
poles indicates thatP,u50 at the poles. Therefore, there e
ists au0 (,p/2) such thatP,uu50 at u0, andP,u(u0),0.

The structure of the proof is as follows; we use the pro
erties of the solution atp/2 to derive an upper bound onP
andP,uu there. Then we use the behavior ofP,u to derive a
08402
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lower bound onP,uu . At the very least, these must be co
sistent for a piercing solution to exist, therefore, if the i
equalities are incompatible we conclude that the core s
tion is the only solution on the horizon and therefore fl
expulsion must occur.

To provide the upper bound, consider theX equation at
u5p/2. Since X,uu,0, Eq. ~14a! implies Pm

2 , 1
2 (M2/

N2)(12Xm
2 ), 1

2 (M2/N2) and hence

P,uu~p/2!5
M2

b
Xm

2 Pm,
M3

A2bN
Xm

2 ~12Xm
2 !1/2,

A2

3A3

M3

bN
,

~15!

where the final inequality is obtained by maximizing ov
Xm .

For the lower bound, on the other hand note that
u0uP,uu takes its largest value,uP,u0

u5(M2/b)X2P tanu0

,(M2/b)tanu0, and hence

M

A2N
.Pm.12

p

2
uP,u0

u⇒uP,u0
u.

2

pS 12
M

A2N
D . ~16!

Assuming M,A2N, this gives p/22u0<cotu0

,pM2/2b(12M/A2N). But then for M2Xm
2 ,2b one can

show thatP,uu has a maximum atp/2, hence

P,uu~p/2!>
P,u~p/2!2P,u~u0!

p/22u0
.S 2

p D 2 b

M2S 12
M

A2N
D 2

.

~17!

Therefore, by comparing Eqs.~15! and ~17!, we see that an
absolute minimum requirement for a piercing solution is t
consistency of these two bounds, i.e.

A2p2M5.12A3b2NS 12
M

A2N
D 2

.

Turning this around therefore, and writingM5M /A2N,
we may conclude that the vortex flux linesmustbe expelled
from an extreme Reissner-Nordstro”m black hole if

M 5

~12M!2
,

3A3

2p2

b2

N4 .
b2

4N4 . ~18!

For N5b51, this givesM,0.7; note that this is a rathe
weak bound, in fact we would expect flux expulsion to
mandatory forM somewhat in excess of 0.7, but this meth
at least provides an analytic proof giving a definite bound
M . Numerical work~Sec. IV! actually places this bound a
about 1.9~see Fig. 4!.

It is interesting to note the variation of this bound withN
and b. For largeN, M 5,O(N24), or M,O(N1/5). This
means that the largerN, the larger the black hole can be an
still have flux expulsion. This is in agreement with the o
servation that largeN vortices are thicker than their singl
winding number counterparts, therefore we would exp
2-4
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flux expulsion to occur more readily. Indeed, this is how@12#
originally argued for flux expulsion.

For b→0 we see thatM<O(b2/5), i.e., that flux expul-
sion only occurs for extremely small black holes. To und
stand this, recall that the fall-off of theP field is P
.e2R/Ab therefore asb→0, the magnetic flux core of the
string is getting smaller asAb. This is consistent with the
above bound. It is therefore interesting to look at largeb,
since in this limit, the magnetic core becomes very diffu
and we are left with the Higgs core, which is no long
exponentially cut-off, but follows a power law cut-off ap
proaching that of the global string. For largeb, the bound
~18! gives M,12O(b22), hence M,A2N1O(b22).
Therefore, for small charge Higgs scalars, or global strin
we expect flux expulsion to occur forM of order the winding
number of the string.

Having shown that flux expulsion must occur for suf
ciently thick strings, what of the argument of the previo
section, which appeared to indicate that a thin string wo
pierce the event horizon? Obviously, since the core is alw
a solution to the horizon system of equations, we cannot
an argument based on this system to argue flux penetra
but instead we must look at the full partial differential equ
tion ~PDE! system of equations in the exterior region of t
horizon, Eqs.~13a!,~13b!.

Now, assume that there is a flux expulsion solution, th
on r 5M , X50 and P51. Therefore, nearr 5M , M2X2

!1 and@(r 2M )2X,r # ,r.0; hence

1
2 M2X sin2u1sinu]u sinu]uX,XN2P2,XN2 ~19!

in this region. Now, we know thatX is symmetric around
p/2, peaking at some maximumXm , and also that sinu]uX
vanishes at 0,p/2 and p; therefore letu0 be the value at
which ]u sinu]uX50, which must satisfy1

2 M2 sin2u0,N2. If
M,A2N, then this inequality is clearly satisfied, so we no
takeM.A2N, and leta.u0 be defined byM2 sin2a52N2.

Integrating Eq.~19! on the range (u,p/2), for u.a gives

X,u~u!.X~u!@ 1
2 M2 cotu1N2 cscu ln tanu/2#. ~20!

But since X,uu,0 on @u0 ,p/2#, we can deduceX,u(u)
,@X(u)2X(u0)#/(u2u0),X(u)/u2a, hence for consis-
tency with Eq.~20!

1

N2.~u2a!@csc2a cotu1cscu ln tanu/2# ~21!

must hold over the rangeuP(a,p/2) for the expulsion so-
lution to hold. The actual bound onM is then obtained by
plotting these curves and determining for whichM this in-
equality is always satisfied. ForN5b51 we find that for
M2.8.5, this inequality is violated, hence the vortexmust
pierce the horizon in this case.

For largerN, the lower bound onM for a piercing solu-
tion to be forced does increase, however, the ratioM /N ac-
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tually decreases. The LHS of Eq.~21! is N22 and it is easy to
see that this requiresa5p/22O(N21/2). From this, we
therefore obtainM.A2N@11O(N21)#. Note that this argu-
ment does not depend onb. This means that for largeb we
still get piercing solutions for the same range ofM . Since
b→` corresponds to the global string, this should not be
surprising. Forb→0, although we expect some drop in th
value ofM , this method is unable to detect this.

When the vortex radius is much larger than the black h
radius one can find approximate explicit solutions for t
fields near the horizon. Indeed, one can construct these s
tions for arbitrary winding numberN, therefore generalizing
the solutions in@12#.

The solution for the magnetic field is readily found b
noticing that ifM ~or better,M /Ab) is very small, then in-
side the vortex and close to the horizon the gauge field
well approximated by the solution to the massless field eq
tion @12,19#

P.122Mp~r 2M !sin2u, ~22!

wherep is an integration constant equal to twice the ma
netic field strength at the center of the core. Next, by look
at the Higgs field equation, we can see that close to
horizon the potential term1

2 X(X221) is suppressed by a
factor M2 which we are taking to be small. Therefore it ca
be neglected. After settingP'1, the resulting equation ca
be solved withX a function exclusively of (r 2M )sinu,

X.k@~r 2M !sinu#N, ~23!

wherek is another integration constant. We see that on
horizon both the gauge and the Higgs field are expell
Comparison between these approximate solutions and th
sults of the numerical calculations in the next section sho
good agreement.

IV. NUMERICAL RESULTS

To solve Eqs.~8a!, ~8b! numerically, we have used th
technique developed in@3#, which consists of relaxing initial
configurations of the fieldsX and P on the ~rectangularly!
discretized plane, (r ,u)→(r i5r 11 idr ,u j5 jdu). We there-
fore replace the fields by their values on this grid,X(r ,u)
→Xi , j[X(r i ,u j ) ~and similarly forP), and the differential
operators by suitably discretized versions. Adopting the
tation of @3# and @12# ~that is, X005Xi , j ,X605Xi 61,j and
X065Xi , j 61), we find that the discretized version of Eq
~8a!,~8b! is X00→X00

new,P00→P00
new, where
2-5
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X00
new5

2

r S 12
M

r DX102X20

2Dr
1

cotu

r 2

X012X02

2Du
1S 12

2M

r
1

Q2

r 2 D X011X02

Dr 2
1

X011X02

r 2Du2

S 12
2M

r
1

Q2

r 2 D 2

Dr 2
1

2

r 2Du2
1

1

2
~X00

2 21!1S NP00

r sinu D 2
~24a!

P00
new5

2

r 2S M2
Q2

r D P102P20

2Dr
2cotu

P012P02

2r 2Du2
1S 12

2M

r
1

Q2

r 2 D P011P02

Dr 2
1

P011P02

r 2Du2

S 12
2M

r
1

Q2

r 2 D 2

Dr 2
1

2

r 2Du2
1

X00
2

b

. ~24b!
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to
e
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of

ller

is

on-
There is, however, a subtlety in this process: relaxat
methods usually require that the values of the fields be fi
at all the boundaries of the domain of integration, and
though we know the asymptotic values ofX andP at r→`
~the vacuum! and at u→0,p ~the string core values!, the
configuration at the horizonr 5r 1 is in fact the main result
we expect from this numerical calculation. The solution
this problem conceived in@3# was to update the values of th
fields at the horizon immediately after updating the inter
of the grid. Note that this still requires an initial guess for t
fields on the horizon—a crucial point we will return to late
Replacingr 5r 1 in Eqs.~8a!,~8b! we obtain equations on th
horizon:

r 12r 2

r 1
2

]X

]r U
r 5r 1

52
1

r 1
2 sinu

]u~sinu]uX!

1
1

2
X~X221!1

N2XP2

r 1
2 sin2u

~25a!

r 12r 2

r 1
2

]P

]r U
r 5r 1

52
sinu

r 1
2

]uS ]uP

sinu D1
X2P

b
;

~25b!

clearly, these equations reduce to Eqs.~14a!,~14b! in the ex-
tremal case. We discretize this in the same way that we
cretized the equations on the interior of the grid~except that
we must now take discretized differential operators that
not depend onX20 or P20). The resulting equations are

X00→X00
new

5

AM22Q2
X10

Dr
1

X011X02

2Du2
1cotu

X012X02

4Du

AM22Q2

Dr
1

1

Du2
1

r 1

4
~X00

2 21!1
1

2S NP00

sinu D 2

~26a!
08402
n
d
-

r

s-

o

P00→P00
new

5

AM22Q2
P10

Dr
1

P011P02

2Du2
2cotu

P012P02

4Du

AM22Q2

Dr
1

1

Du2
1

r 1

2b
X00

2

.

~26b!

The process of updating the interior of the grid and then
horizon at each iteration was carried on until the modulus
the largest relative correction on the grid became sma
than some«:

max
i , j

UXi , j
new2Xi , j

old

Xi , j
old U ,max

i , j
UPi , j

new2Pi , j
old

Pi , j
old U,«. ~27!

( i and j run over the entire grid, including the horizon.!
The results obtained by our implementation of th

method were compared with the plots of@3#, and we found a
satisfactory agreement; for instance, Fig. 2 shows the c
tours ofX andP for M510, b51/2 andN5100; it can be
directly compared with Fig. 3 from@3#. (r m is the maximum
value for r , approximatingr→`.)

FIG. 2. Contours ofX and P for M510, Q50, b51/2,N
5100, «51024 and Nr5Nu5r m5100. ~The dashed semi-ellipse
represents the horizon.!
2-6



a-
ap
ch

le

th
la
ffe

in
od

he

lds
ial
will
s
ing

t,
of

ns
on-
:

lates
gs

ree
n-
we

ed
ions
ere
the
ing
lds

ne
i-

a
ke
ve
te
ve

VORTICES AND EXTREME BLACK HOLES: THE . . . PHYSICAL REVIEW D 59 084022
As in @3#, we have found that the thin string approxim
tion is excellent for thin vortices, and is a reasonable
proximation even for thicker vortices, which tend to pin
slightly near the horizon.

We then turned our attention towards charged black ho
comparing now our results with those of Chamblinet al.
@12#. We found, as they did, that in nonextremal cases
picture remains qualitatively the same as for uncharged b
holes. For extremal black holes, however, our results di
from their original claims. As reported in@13#, we find that
the claimed expulsion of the matter fields for thin strings
this limit is the result of a loophole in the numerical meth
~when applied to extremal black holes!, which does not take
into consideration the decoupling of the horizon from t
main grid.@This was shown in Eqs.~14a!,~14b! and can also
be seen from Eqs.~26a!,~26b!: if Q5M , these equations do
not contain the termsX10 or P10.# In this case, the core

FIG. 3. Contours ofX andP for a core guess~top! and a vacuum
~or sinusoidal! initial guess. The parameters areM5Q510,b5N
51, «51024, Nr5Nu5100.
08402
-
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e
ck
r

configuration isalways an exact solutionon the horizon;
bearing in mind that the relaxation method updates the fie
from a user-supplied initial guess, we see that if the init
guess made on the horizon is core, then the horizon
neverbe updated. In fact,@12# always started from this gues
on the boundary, and therefore always obtained wrapp
solutions in the extremal case.

Obviously, this choice of initial conditions is importan
moreover, since we are dealing with a nonlinear system
PDE’s, there is no reason for different initial configuratio
to relax to the same solution. For this reason, we have c
sidered the following three initial data sets on the horizon

Core: X50,P51,
Vacuum: X51,P50,
Sinusoidal: X(u)5sinu,P51.
~The sinusoidal guess was chosen because it interpo

smoothly, and in a simple and convenient way, the strin
attached to the North and South poles of the black hole.!

Figure 3 displays the solutions obtained from the th
initial configurations. By computing and comparing the e
ergy densities and total energies of the fields on the grid,
were able to determine thatinside the gridthe three solutions
were identical; on the horizon, however, the solution relax
from the core guess was a string core, whereas the solut
obtained from the vacuum and the sinusoidal guesses w
both the vacuum. The comparison also showed that
wrapping solution had a higher total energy than the pierc
one; the difference is of course due to the jump of the fie
from the horizon to the interior of the grid.~Making the
stepsizedr smaller failed to smooth out this sharp jump.!

To summarize, we have three~physical and numerical!
reasons to prefer the piercing solution to the wrapping o
for thin strings in the extremal limit: it is smooth, numer
cally more robust, and energetically favorable.

To determine how the transition from a piercing to
wrapping solution occurs as we thicken the string, we ta
advantage of the fact that, on the horizon, we now ha
ODE’s. This allows for much quicker and more accura
numerical methods; for the following calculations we ha
used the relaxation routineSOLVDE of Ref. @20#, Chap. 17,
starting from a vacuum guess.

Figure 4 shows the solutions on the horizon forb5N
51. For massive black holes~or, equivalently, thin strings!,
FIG. 4. FunctionsX(u) ~left! andP(u) on the horizon forb5N51, a vacuum guess andM510, 2.5, 2, 1.9 and 1.8865.
2-7
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FILIPE BONJOUR, ROBERTO EMPARAN, AND RUTH GREGORY PHYSICAL REVIEW D59 084022
the fields adopt a vacuum profile on most of the horiz
~symmetrically about the equatoru5p/2) and interpolate
smoothly to their fixed core values on the poles. The sha
of X and P remain the same for all values ofM : X has
non-vanishingu-derivatives at the poles, and a maximum
the equator;P has zero derivatives at the poles, and a mi
mum at the equator. As we thicken the string, the maxim
of X and the minimum ofP move away from the vacuum
values. ForN5b51 this transition is gentle at first, bu
accelerates suddenly, as if the string had crossed a cri
width at which it is not able to pierce the horizon any mo
~see Fig. 5 for an example of expelled solution!. This can be
observed on Fig. 6, which shows the evolution ofX(p/2)
and P(p/2) with the inverse energy of the black hole for
variety of values ofb. Increasingb, as we have remarke
above, means thickening theP tube, and we would therefor
expect a heavier black hole to be required to expel this fl
This is indeed what we observe and, naturally, the curve
P is more affected by this than that forX.

The same shift of the curves towards higher values oM
happens when one increasesN, as anticipated from the fac
that this also thickens the string. Figure 7 shows the evo
tion of the critical massMc ~defined to be that at which th
horizon cannot support a penetrating solution any more! in
function of b ~for N51) and ofN ~for b51).

V. STRING ENDING ON A BLACK HOLE

Next, we turn our attention to the case of a string end
on the black hole. This is an important configuration to co

FIG. 5. Contours ofX and P for M5Q51.8, N5b51,
«51023 andNr5Nu5100.
08402
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sider, since it is the main ‘‘phenomenological’’ input to th
instantons mediating defect decay@4–8#. Originally, @12#
supposed that such a configuration may not be able to e
however, the thin string arguments indicate that at least
largeM , such a configuration is possible. What we will sho
is that while it isalwayspossible for a vortex to end on
black hole, for smallM there is also a phenomenon anal
gous to flux expulsion: theX field is forced to sit in its
unbroken phase (X50) on the horizon, and theP field takes
the form of a monopole potential.

To see this analytically, consider the horizon equatio
~14a!,~14b!. These will have the boundary conditionsX
50, P51 at u50, andX5Xm , P50 at u5p. The equa-
tion of motion for P, Eq. ~14b!, can be integrated to show
that

l~11cosu!,2P,~11cosu! ~28!

where l512M2Xm
2 /b. This shows that asM2/b→0, P

approaches its monopole form,P
mon

5 1
2 (11cosu). From

now on, we will assume thatM2/b,M2/N2!1 and explore
the possible solutions forX. First of all, note thatX[0, P
[P

mon
is always a solution to the horizon equations, and i

this that we will call the expulsion solution. Now suppo
that a ‘‘piercing’’ solution exists, then Eq.~14a! implies that
X has a local maximum atp, which we will denoteXm .
Defining u0 by ]u(sinuX,u)50, we see that atu0 , P0

2

5(M2/2N2)sin2u0(12X0
2). SinceM /N is assumed small,u0

will obviously be close top, and using the bounds onP, it is
easy to see that

2

p
~p2u0!,sinu0,

4M

A2Nl
~29!

and soP will be extremely small. Integrating Eq.~14a! be-
tween 0 andp then gives

E
u0

p

XF M2

2N2 sinu~12X2!2
P2

sinuG
5E

0

u0
XF P2

sinu
2

M2

2N2 sinu~12X2!G . ~30!
FIG. 6. Values ofX(p/2) ~left! andP(p/2) as functions of the inverse energy of the extremal black hole. This is done forN51 and the
following values ofb: 500, 100, 20, 10, 5, 2, 1 and 1/2.
2-8
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FIG. 7. Values of the ‘‘critical mass’’Mc at which the only solution on the horizon corresponds to the string being expelled, as a fu
of b ~for N51) andN ~for b51).
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The LHS of this equation can readily be bounded abo
using Eq.~29!:

E
u0

p

XF M2

2N2 sinu~12X2!2
P2

sinuG,
4M4Xm

N4l2 . ~31!

The RHS is a little more tricky to bound below, but notin
that X,uu is positive on @p/2,u0#, yet negative @X,uu

52M2Xm(12Xm
2 )/4# at p, we can boundX,u on @p/2,p#

by

X,u,XmN2 sin3u0 ~32!

and hence we can boundX below on (p/2,p) by

X~u!.XmF12
4pM3

Nl3 G ~33!

therefore

E
0

u0
XF P2

sinu
2

M2

2N2 sinu~12X2!G
.E

p/2

u0
XF P2

sinu
2

M2 sinu

2N2 G
.Xm

l2

16F12
4pM3

Nl3 G S 12
8M2

N2l2D 2

. ~34!

Comparing these bounds on the RHS and LHS of Eq.~30!
we see that an expulsion solution is the only possible s
tion for

M4,
N4l4

64 S 12
4pM3

Nl3 D S 12
8M2

N2l2D 2

. ~35!

For N5b51 this givesM,0.3. As before, this is a very
weak bound, however, the important thing is that it sho
that there is a lower bound on the values ofM for which the
X-field can vary on the horizon. ForM sufficiently small, the
Higgs field is forced to lie in its symmetric phase on t
horizon, and we get an expulsion solution.
08402
e

-

s

On the horizon, the single string case differs from the o
we have considered previously by the boundary conditi
only. At u50, we must clearly have a string, but atu5p
nothing forces the fields to assume a vacuum configurat
In fact, we have found that the only smooth solutions we
such thatX had a vanishingu-derivative at the South pole
As Fig. 8 shows, the value ofXm then depends on the blac
hole’s mass, which means that if we wish to integrate
equations on the whole grid, we also have to update thu
5p boundary. To find equations of motion on this line, w
assumed thatP/sinu→0 and thatX,u→0. The resulting
equations, however, were particularly unstable against
merical errors. We were finally able to tackle this problem
artificially coupling the horizon to the rest of the grid~as-
suming continuity! for some hundred iterations, and by u
dating the fields atu5p assumingX,u5P,u50 there. Ex-
amples of a thin string solution piercing the horizon and o
thicker string being expelled are shown on Figs. 9 and
Figure 8 shows the variation of the fields on the horizon
we thicken the string, illustrating that forM51 the Higgs
field is already expelled from the horizon.

VI. GRAVITATIONAL BACK REACTION

We begin this section with a lightning review of a se
gravitating cosmic string. For convenience, we will takeN
51 in this section.

We can readily extend the vortex to a self-gravitating s
tem by using Thorne’s cylindrically symmetric coordina
system@21#

ds25e2cdt22e2~g2c!~dz21dR2!2a2e22cdf2 ~36!

whereg, c,a are all functions ofR only.
In these coordinates, the energy momentum tensor

comes

T0
05E5e22~g2c!X821

e2cX2P2

a2

1be2~g22c!
P82

a2
1

1

4
~X221!2 ~37a!
2-9
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FIG. 8. FieldsX(u) ~left! andP(u) on the horizon for the case of a single string ending on the black hole. The string has a Higgs
of 1, and we plot the profiles forb5N51 and the following values ofM : 9, 2, 1.3, 1.1, 1.03, 1.
ace

Eq.
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t

e
, but
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TR
R52PR52e22~g2c!X821

e2cX2P2

a2
2be2~g22c!

P82

a2

1
1

4
~X221!2 ~37b!

Tf
f52Pf5e22~g2c!X822

e2cX2P2

a2

2be2~g22c!
P82

a2
1

1

4
~X221!2 ~37c!

Tz
z52Pz5T0

0 . ~37d!

To zeroth order ine58pGh2 introduced in Sec. II

a5R, c5g50, X5X0 , P5P0 , ~38!

and conservation of the energy-momentum tensor gives

~RP0R!85P
0f . ~39!

To first order ine the string metric is given by@22#

a5F12eE
0

R

R~E
0
2P0R!dRGR1eE

0

R

R2~E
0
2P0R!dR

~40a!

g52c5eE
0

R

RP0RdR, ~40b!
08402
where the subscript zero indicates evaluation in the flat sp
limit. Since the string functionsX and P rapidly fall off to
their vacuum values outside the core, the integrals in
~40! rapidly converge to their asymptotic, constant, valu
Writing

A5E
0

`

R~E
0
2P0R!dR,

B5E
0

`

R2~E
0
2P0R!dR and C5E

0

`

RP
0R,

~41!

then the asymptotic form of the metric is

ds25eeC@dt22dR22dz2#2R2~12eA!2e2eCdf2

5d t̂22dR̂22dẑ22R̂2
„12e~A1C!…2df2, ~42!

where t̂5eeC/2t, etc. This is a conical metric with defici
angle

D52pe~A1C!52peE RE
0
dR58pGm, ~43!

wherem is the energy per unit length of the string. Notic
that the deficit angle is independent of the radial stresses
that when the radial stresses do not vanish there is a red/b
shift of time between infinity and the core of the string. T
only case in which these stresses do vanish is whenb51.

Now we are ready to consider the gravitational effect
the string superimposed on the black hole. For this we n
FIG. 9. SolutionX(r ,u) andP(r ,u) for a single string ending on the black hole, andM5Q510, b5N51, «51024, Nr5Nu550.
2-10
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VORTICES AND EXTREME BLACK HOLES: THE . . . PHYSICAL REVIEW D 59 084022
to consider a general static axially symmetric solution to
Einstein-Maxwell-Abelian Higgs equations derived from t
action S11S2, whereS1 is given by Eq.~1!, andS2 is the
Einstein-Maxwell action

S252
1

16pGE d4xA2g@R1Fmn
2 #, ~44!

where for clarity in what follows, we have rescaled the ele
tromagnetic field byAG. We may pick coordinates so tha
the metric takes the form

ds25e2cdt22e2~g2c!~dz21dr2!2a2e22cdf2, ~45!

where c,g,a are independent oft,f. @Note the deliberate
similarities with the Thorne metric~36!.# We then apply an
iterative procedure to solving the field equationsin the thin
string limit, starting with the Reissner-Nordstro”m back-
ground solution, the Nielsen-Olesen forms ofX and P, and
expanding the equations of motion in terms ofe58pGh2 as
before.

The usual Reissner-Nordstro”m metric ~7! is of course
written in ‘‘spherical’’ coordinates, whereas, in such an
erative process we require it in axisymmetric coordinat
For future reference the coordinate transformation is

r5Ar 222Mr 1Q2 sinu, z5~r 2M !cosu ~46!

and the metric and~rescaled! electromagnetic gauge poten
tial ~in a suitable gauge! are given by

ds25
~R11R2!224D2

~R11R212M !2 dt2

2
~R11R212M !2

4R1R2
~dr21dz2!

2r2
~R11R212M !2

~R11R2!224D2 df2, ~47!

FIG. 10. Contours ofX andP for a single string ending on the
black hole, andM5Q51/2, b5N51, Nr5Nu5100, r m510.
08402
e
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A
0n5H 2Qz

R11R2
]nf magnetic

2Q

~R11R212M !
]nt electric,

~48!

where

R65~z6D!21r2 ~49!

andD25M22Q2.
Returning to the general system, the relevant equation

motion are

05]r~aFr
n!1]z~aFz

n! ~50a!

a ,zz1a ,rr52A2g~T z
z1T r

r! ~50b!

~ac ,z! ,z1~ac ,r! ,r5 1
2 A2g~T 0

02T z
z2T r

r2T f
f!

~50c!

g ,rr1g ,zz52c ,r
2 2c ,z

2 2e2~g2c!T f
f ,

~50d!

where the energy momentum tensor is given by

T b
a5Eb

a1eTb
a . ~51!

The first term is the electromagnetic contribution to t
stress-energy which is given by

En
m52FnlFml1 1

4 F2dn
m ~52!

and the last term is the contribution from the string, whi
has the explicit form

T0
05V~X!1

X2P2

a2e22c
1F ~P,r

2 1P,z
2 !

b21a2e22c

1~X,r
2 1X,z

2 !Ge22~g2c! ~53a!

Tf
f5V~X!2

X2P2

a2e22c
1F2

~P,r
2 1P,z

2 !

b21a2e22c

1~X,r
2 1X,z

2 !Ge22~g2c! ~53b!

Tr
r1Tz

z52V~X!1
2X2P2

a2e22c
. ~53c!

Note that the electromagnetic stress energy always sati
Er

r1Ez
z50.

As in @3# we now writea5a01ea1 etc., and solve the
Einstein-Maxwell and the string equations iteratively. T
main difference to@3# is that we now have the electromag
netic gauge potential present, which appears at O(e0). This
2-11
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means that to O(e) the geometry is not only affected by th
string, but also by the back reaction of the string on
electromagnetic field.

To zeroth order, we have the background solutions~47!,
~48!, X5X0(R) and P5P0(R) whereR5r sinu5re2c0 as
before. Using the coordinate transformation~46!, one finds
that

R,z
2 1R,r

2 5
r 2

R1R2
S 12

2M

r
sin2u1

Q2

r 2 sin2u D.e2~g02c0!

~54!

in the core of the string, where sinu5O(M21). Therefore, in
and near the core of the string, the relevant combination
the zeroth order energy momentum tensor of the string a

~T0!0
05E1O~M 22! ~55a!

~T0!f
f52Pf1O~M 22! ~55b!

~T0!r
r1~T0!z

z52~PR1Pf!. ~55c!

As in @3# we will assume~and show subsequently that it
consistent to do so! that the perturbed solutions take the for

a15ra~R!, c15c1~R!, g15g1~R!, A
1m5 f ~R!A

0m.
~56!

Computing the necessary derivative ofR gives from Eq.
~50b! the following equation fora(R):

F12
R2

r 2 S 2M

r
2

Q2

r 2 D Ga9~R!

1F 2

R
2

Q2

2r 4 2
R

r 2S 3M

r
2

Q2

r 2 D Ga8~R!

5
1

R2 ~R2a8!81O~M 22!52~E2PR!1O~M 22!,

~57!

which is consistently solved, as in the Schwarzschild ca
by

a~R!52E R@E
0
2P

0R
#dR

1
1

RE R2@E
0
2P

0R
#dR

;2A1
B

R
asR→`. ~58!

Now look at the Maxwell equation for an electric pote
tial ~the magnetic potential can be obtained by a dua
transformation!. Substituting in the assumed form for th
functions~56!, we obtain, forf (R),

f 9~R!

R
1

f 8~R!

R2
5

r2

r 2R2 ~a822c18!5O~M 22!, ~59!
08402
e
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y

which implies thatf 5 f 0, a constant. Turning to thec equa-
tion, and inputting in this form off , we find

c19F11
R2

r 2 S Q2

r 2 2
2M

r D G1
c18

R F12
R2Q2

r 4 G1
a8R

r 2 S Q2

r 2 1
M

r D
5

1

2
~PR1Pf!1

Q2

r 4 @2 f 022c1#. ~60!

This is solved by

c15
1

2 E RPR;
C

2
as R→`, f 05C/2 ~61!

the latter value off 0 being set by consistency of thec equa-
tion outside the core. It is then straightforward to check t
g152c1. The magnetic correction is obtained either direct
or via duality, to be

f M~R!5a~R!22c1~R!1C/2. ~62!

As in @3#, the corrections are almost the same as for
self-gravitating cosmic string. After transforming back
Schwarzschild coordinates, the metric outside the string c
becomes

ds25eeCF S 12
2M

r
1

Q2

r 2 Ddt22
dr2

12
2M

r
1

Q2

r 2

2r 2du2G
2r 2 sin2u~12eA!2e2eCdf2, ~63!

where we have neglected theB term from a(R) since it
yields a correctionO(Gm)3O(E21). The gauge potentials
are

An5H Q~12cosu!@12e~A1C/2!#]nf magnetic,

2
Q

r
@11eC/2#]nt electric.

~64!

If we now rescale the metric so thatt̂5eeC/2t, etc. ~and,
accordingly, rescale the parametersM andQ) we find

ds25S 12
2M̂

r̂
1

Q̂2

r̂ 2 D d t̂22
dr̂2

12
2M̂

r̂
1

Q̂2

r̂ 2

2 r̂ 2du2

2 r̂ 2 sin2u~12eA!2e22eCdf2. ~65!

Again, we find a deficit angleD52pe(A1C)58pGm. Be-
sides, the gravitational mass of the black hole,Mg , which is
given by the coefficient of 2r̂ 21 in gt̂ t̂ , has been shifted in
the presence of the string toMg5M̂5eeC/2M .
2-12
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On the other hand, the internal energy of the black h
~its ADM mass, appropriately generalized to asymptotica
locally flat spaces, see e.g.,@23#! is now

MI5M̂ ~12eA!e2eC5M ~12eA!e2eC/2. ~66!

Not only is the mass of the black hole corrected, but
physical charge of the black hole, defined as

Qph55
1

4pES2
F magnetic,

1

4pES2
* F electric,

~67!

becomes

Qph5Q@12e~A1C/2!#. ~68!

Notice thatMg /Qph.MI /Qph5M /Q.
We can now write the first-order corrected solution

terms of the physical parametersMI ,Qph ,m, as

ds25S 12e4Gm
2MI

r̂
1e8Gm

Qph
2

r̂ 2 D d t̂2

2
dr̂2

12e4Gm
2MI

r̂
1e8Gm

Qph
2

r̂ 2

2 r̂ 2du22e24Gm r̂ 2 sin2udf2, ~69!

and

An5H Qph~12cosu!]nf magnetic,

2e4Gm
Qph

r̂
]n t̂ electric.

~70!

The corrected inner and outer horizons exterior to the c
are therefore at

r̂ 65e4Gm~MI6AMI
22Qph

2 !, ~71!

since we are assuming that the string is thin with respec
the back hole, these expressions will hold except at the p
of the horizon. Notice that the condition that the black hole
extremal~i.e., its horizon is degenerate!, is that MI5Qph .
Finally, we can use the methods of@23# to find the entropy
using the Bekenstein-Hawking formula

S5
Ah

4G
516pe4Gm r̂ 1

2 . ~72!

Consider now an extremal black hole–cosmic str
merger. If we keep the internal energy and the charge of
black hole fixed~i.e., impose microcanonical boundary co
ditions!, then we find, as in@3#, that the change in the grav
tational mass,dMg54GmMg equals the energy of th
length of string swallowed by the black hole. Since the e
08402
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tropy increases, we see that merging is thermodynamic
favored. And more remarkably, we see that, at least to fi
order, the black hole remains extremal after the merger.

VII. DISCUSSION

Our analysis in this paper appears to settle the questio
whether or not a vortex can penetrate an extremal black h
We have provided analytical proofs that vortices of s
smaller than a certain fraction~of order unity! of the radius
of the black hole will definitely pierce the horizon, where
vortices thicker than a certain lower bound will instead wr
the black hole. The numerical analysis confirms this, and,
N5b51, places the transition atM51.8865, or Gm
51.8865/Alh. For a single string ending on the black ho
the Higgs field presents a similar behavior, i.e., it vanish
on the horizon only if the black hole is small enough. In th
regime, the magnetic field, instead of being expelled, ta
the form of a monopole field. Thus we see that single strin
are always allowed to end on black holes, which solves
of the paradoxes that the results of@12# seemed to pose
Finally, we have computed the back reaction effect of a t
vortex on the geometry. This results in the expected con
geometry, but we have been able to check as well that
black hole remains extremal after including the correctio
to the mass and the charge.

Given that in@19# the expulsion of the~unbroken! mag-
netic field was related to a sort of ‘‘superconducting’’ beha
ior of the extremal black hole, one would be tempted
interpret the penetrating solutions as exhibiting the we
known breakdown of the superconducting state for stro
enough magnetic fields. However, this does not seem to
the case here. In@19# exact solutions~which account fully for
the back reaction of the gauge field! are presented for ex
tremal black holes in magnetic fields, and the expulsion p
sists no matter how strong the magnetic fields are take
be.

As a matter of fact, we can argue that, far from havi
anything to do with the strength of the magnetic field, it
instead the presence of a mass for the gauge vector w
spoils the expulsion from the extremal horizon. In order
illustrate this point, consider a massive vector~Proca! field,
with an explicit massm. On the extremal horizon the field
equation becomes

sinu]uS ]uP

sinu D2m2P50. ~73!

This equation does not admit a constant solution~apart from
the trivial P50). ThereforeGuf}]uPfÞ0 and we find a
~locally! non-vanishing flux of the field across the horizon

As we have seen, things are subtler when the mass o
nates from spontaneous breaking of the gauge symme
The system has both massive and massless phases, and
expulsion and penetration can be found, depending es
tially on the relative values of the vortex and black ho
radii. But the argument above shows that the expulsion of
field can take place only if the symmetry isexactlyrestored
on the horizon. It is therefore quite remarkable that, in c
2-13



lo

be
ol
th
ur
rg
is

itio

th
la

th
th

n
uc

or
m
e
it
is

te
ho

e
i

il

ng
e
ni
ll

ta
a-
w

th
de
in
is
th
a

nd
ncel

ot
he

ly

y

the
t
ny

nd
es

a-

to
m
h
a

sic

FILIPE BONJOUR, ROBERTO EMPARAN, AND RUTH GREGORY PHYSICAL REVIEW D59 084022
tain regimes, the geometry of the extremal horizon can
cally enforce the exact restoration of the symmetry.

The transition from penetration to expulsion can
viewed as a phase transition on the horizon of the black h
In particular, Fig. 6 is reminiscent of the behavior of, say,
magnetization of a ferromagnet as a function of temperat
or more generally, the order parameter of a system unde
ing a second order phase transition. The order parameter
this case the value of the Higgs field on the horizon,X, and
instead of a function of the temperature, the phase trans
takes place when we vary the~inverse! size of the horizon
;M 21. Beyond a certain critical value,M 21>Mc

21 , the
symmetry is restored throughout the horizon. Notice that
transition takes place when the energy scale set by the b
hole,M , is similar to the Higgs energyAlh. In a sense, this
would be the natural expectation, sinceh sets the energy
scale for symmetry restoration. But it should be stressed
this expectation is only realized for extremal black holes:
symmetry is never restored on non-extremal horizons.1 It
might be interesting to pursue this analogy further, a
study, e.g., critical exponents near the transition point, s

as X;uM2Mcu b̃ ~and see, e.g., howb̃ varies, or not, at
different points on the horizon!.

Another interesting question that can be explored in m
generality is the interaction between the straight cos
string and the extremal black hole. The set up we have b
considering so far places the vortex in perfect alignment w
a black hole axis. If the black hole and the vortex are d
placed relative to each other, the symmetry of the sys
decreases and complication increases greatly. We can,
ever, analyze in some detail the interactions between the
tremal black hole and the cosmic string when the string
thin enough to allow us to effectively integrate out the deta
of the core structure. We can proceed in several levels
approximation. A very crude approximation would be taki
the black hole as a test particle in the background of a s
gravitating cosmic string, i.e., in a flat spacetime with a co
cal defect. As is well known, since the spacetime is loca
flat the test particle does not experience any force.

We can improve on this by accounting for the gravi
tional field of the black hole. In the Newtonian approxim
tion, we would be solving the Poisson equation for the Ne
tonian potential in a conical spacetime. The effect of
conical defect on a massive neutral particle can be un
stood by viewing the particle as subject to a force com
from the ‘‘images’’ produced by the conical defect. Th
results in the neutral particle being attracted towards
string @16# ~see also@24#!. In contrast, when applied to
charged ‘‘extremal particle,’’ such thatm5q, this argument

1Notice as well that it would be incorrect to think that the res
ration of the symmetry comes about as an effect of the ther
properties of black holes. For one thing, an extremal black hole
zero temperature. Moreover, the thermality is only seen when
counting for quantum effects, whereas here we work at the clas
level.
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would yield a vanishing force, since the gravitational a
electrostatic forces between the particle and its images ca
out.

Actually, for extremal black holes this result holds n
only in the Newtonian approximation, but also exactly in t
full Einstein-Maxwell theory@25#. To see this, recall first
that the solution for an~electric! extremal black hole can be
written as

ds25H22dt22H2~dx21dy21dz2!, ~74!

Am5~H2121!]mt.

Written in this fashion, the Einstein-Maxwell equations on
require thatH is a harmonic function in the flat (x,y,z)
space,¹x,y,z

2 H50. The extremal black hole is recovered b
setting

H511
Q

A~x2x0!21~y2y0!21~z2z0!2
, ~75!

and the horizon is at (x,y,z)5(x0 ,y0 ,z0).2 If we want to
include the cosmic string, then we just have to solve
Laplace equation forH, this time in a space with a straigh
conical line. The relevant solution has been given in ma
places, see e.g., in the context of cosmic strings@16#. In
cylindrical coordinates (r,z,f) centered on the string, with
conical deficit such that 0<f<2p/p, if we put the black
hole atr5r0 , f50 andz50, then

Hp~z,r,f;r0!

511
Q

pA2rr0

E
uo

` du

Acoshu2coshu0

3
p sinhpu

coshpu2cospf
, ~76!

whereu0 is defined by

coshu05
r21z21r0

2

2rr0
. ~77!

This solution is nonsingular, away from the conical line a
the singularity of the black hole. Thus, there are no forc
between the extremal black hole and the cosmic string.

At distances much larger thanr0, the harmonic function
becomes

Hp→11
Qp

Ar21z2
. ~78!

Since p'114Gm, we see that we reproduce the gravit
tional and electric potentials in Eqs.~69!, ~70!, with the pa-
rameterQ equaling both the internal energyMI and the-

al
as
c-
al2The ‘‘Schwarzschild coordinates’’ used in Eq.~12! correspond to
settingr 2M5@(x2x0)21(y2y0)21(z2z0)2#1/2.
2-14
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physical chargeQph we had introduced earlier. The resu
however, is independent of whether the string and the bl
hole are merged or not. Whenever the black hole is in
presence of a cosmic string, the lines of force are ‘‘focuse
resulting in an increase of the gravitational and electric
tentials at long distances.

The same conclusion regarding the absence of a fo
between the two objects can be reached again from ano
perspective. This time, neglect the gravitational back re
tion of the string, and consider a Nambu-Goto string in
background of the extremal black hole, with metric as in E
~74!. The static interaction potentialV(x,y,z) experienced
by a string can be read off from the string action,I NG
;*dtV(x,y,z). If we take a straight string along, say, thez
axis, this is,T5t, Z5s, X,Y5const, then the action is

I NG52mE dtdsA2detgmn]aXm]bXn52mLE dt,

~79!

(L is the length of the string! i.e., the static force vanishes
With a bit more work it is easy to see that if the string
given a velocity transverse to its axis, then its motion
slowed down as it approaches the black hole.

Clearly, in all these arguments we have been neglec
the effect of the black hole on the string core. But nevert
less we seem to find that, at least if they are well separa
a straight string and an extremal black hole hardly feel e
other’s presence.

These results appear to imply that the binding energy
tween the infinitely thin string and the extremal black hole
zero. It appears difficult to make a clear comparison betw
the energy of a finite-radius vortex before and after
merger. On the one hand, when the vortex penetrates
horizon, a hole is cut out from space, where a part of
string is missing. As we have seen in the previous sect
the energy of the missing link equals the change in the gr
tational mass of the black hole. On the other hand, since
geometry along the string changes in the process, one sh
be careful about how to define the total energy change
particular, since the string has an infinite length~and hence,
infinite energy!, one should specify a regularization, an
choose how to fix a large but finite length of the string befo
and after the merger.

We conclude by mentioning that it should be interest
to include fermion fields and study the supersymmetry of
ys
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extreme black hole–vortex configuration. As is well know
in the absence of the cosmic string, the Reissner-Nordst”m
black hole can be embedded in (N52) supergravity, and the
extremality conditionM5Q appears then as the BPS cond
tion for the existence of unbroken supersymmetry genera
@26#. Similarly, the Nielsen-Olesen vortex withb51 admits
a supersymmetric embedding in N52 supergravity in three
dimensions@27#, and the solution preserves half of the Kil
ing spinors of the flat vacuum. A natural question to ask
whether the merger configuration will be supersymmetric
well. Although we have not analyzed this point in any deta
our analysis indicates that when the vortices are infinit
thin, the system exhibits some of the features character
of Bogomol’nyi-Prasad-Sommerfield~BPS! configurations,
including the equality of the ADM mass and the physic
charge,MI5Qph ~which was actually obtained for finite, i
small, width strings!, as well as the absence of forces a
vanishing binding energy between the two objects.3 Even
when the vortices have a finite width, we suspect that i
also possible to maintain another feature of BPS syste
namely the reduction of the equations of motion to a fi
order system. Although at first sight this seems unlike
given the lack of symmetry, it was shown in Andersonet al.
@28# that for a general world sheet embedding, such a red
tion to a first order system does occur. In this case we ha
curved geometry, nonetheless, preliminary indications
that a generalization of this method will work. However, t
drastic change in the behavior that takes place as the vo
grows thicker~from penetration to expulsion! would make it
very surprising that supersymmetry be present in genera
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