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Vortices and extreme black holes: The question of flux expulsion
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It has been claimed that extreme black holes exhibit a phenomenon of flux expulsion for Abelian Higgs
vortices, irrespective of the relative width of the vortex to the black hole. Recent work by two of the authors
showed a subtlety in the treatment of the event horizon, which cast doubt on this claim. We analyze in detail
the vortex—extreme black hole system, showing that, while flux expulsion can occur, it does not do so in all
cases. We give analytic proofs for both expulsion and penetration of flux, in each case deriving a bound for that
behavior. We also present extensive numerical work backing up, and refining, these claims, and showing in
detail how a vortex can end on a black hole in all situations. We also calculate the back reaction of the vortex
on the geometry, and comment on the more general vortex—black hole syS@566-282199)04608-]

PACS numbdrs): 04.70.Dy, 11.27A-d

I. INTRODUCTION results of[3] were still valid in the presence of this extra
field. In the papers of Chambligt al.[12] it was argued that
The story of black hole hair is an ongoing and interestingwhile the results of3] were gualitatively the same for non-
one. It was thought for some time that black holes wereextremal black holes, in the extremal limit a completely new
relatively bland objects, classified by very few parametersphenomenon occurred, and the flux of the vortex was ex-
charge, mass, and angular momentum. This picture hagselled from the black hole, rather like flux is expelled from a
changed significantly in the past decade with the discoverguperconductor.
of various types of solutions which carry other, more exotic, The evidence presented [d2] was of the form of ana-
charges—such as the colored black hglgs—and solutions lytic arguments for high winding vortices, and numerical
with dressed horizong2]. What is clear is that when a non- work representing a black hole—vortex system for a variety
trivial topology is allowed for the matter fields, so-called of relative sizes of black hole to the string in which the flux
“no-hair” theorems can often be evaded. In this paper, welines of the vortex appeared to consistently wrap the black
are interested in the question of Abelian Higgs hair, whichhole. In a previous Commeft3], two of us pointed out that
may occur because a(l) vortex can pierce, or even end, on there were some difficulties with the numerical evidence as
a black hole[3]. This particular phenomenon is interesting stated, and that while expulsion was possible for thick, or
both from the point of view of hair for the black hole as well high winding, vortices, it did not appear to occur for thin
as providing a decay channel for the disintegration of othervortices. This would apparently solve a puzzle noted by
wise stable topological defecf4—8]. Chamblinet al, namely that one could, in principle, take a
Briefly, the results of3] showed that is was possible for vortex terminating on a near-extreme black hlee[ 14] for
a vortex solution of the (1) Abelian Higgs model—a a detailed discussion of selection rules for terminating vorti-
Nielsen-Olesen vortef@]—to thread a Schwarzschild black ceg and then charge the black hole up to extremality. This
hole, and that the matter fields reacted very little to the preswould appear to be in contradiction with the principle of flux
ence of the event horizon. Inclusion of back reaction of theexpulsion. However, if flux expulsion is not mandatory, then
vortex on the geometry revealed that it was an appropriatsuch a puzzle never arises. There is, however, another prob-
smooth version of the Aryal-Ford-Vilenkin geometf§0] lem if flux is always expelled. It appears that very thin vor-
discovered some years previously. Further wiatkshowed tices have a higher energy wrapping the black hole than if
that the conical singularities in other more complicated gethere were no black hole present at all. This would mean that
ometries could be smoothed over by the vortex, which althe system is unstable and the string expels the black hole,
lows the exact vacuum instanton for the splitting of a conicalwhich then raises a physical paradox. A string outside a
defect[11] to be used to construct a smooth instanton forblack hole reacts to the black hole’s gravitational field, there-
splitting of physical topological defec{gl—6]. A technical fore we might expect it to be attracted. On the other hand,
feature of these smooth gravitational instantons was that thee vortex is not charged under the massleéb),therefore
contained two 1) fields, the broken () of the Abelian it has no reason to feel any repulsion, except for the putative
Higgs vortex, and an unbroken (U, electromagnetism, flux expulsion force. It is therefore not easy to see what the
needed to give a regular Euclidean section for the instantosquilibrium solution of a vortex—black-hole system would
(although not needed for regularity of the Lorentzian seche. Of course this is a rather naive argument, as it ignores
tion). Naturally this raised the question as to whether theany effects due to the conical deficit geometry of a gravitat-
ing cosmic string, which does produce a repulsive force on
charged15], as well as an attractive force on masgEs|, a

*Email address: Filipe.Bonjour@durham.ac.uk point which we return to in the conclusion after we have
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0556-2821/99/5@8)/08402216)/$15.00 59 084022-1 ©1999 The American Physical Society



FILIPE BONJOUR, ROBERTO EMPARAN, AND RUTH GREGORY PHYSICAL REVIEW 59 084022

In this paper, we submit the Abelian Higgs vortex— b= ——= T
extreme black hole system to an exhaustive analysis, with N ™ o //'X
the intent of pinning down precisely when, or indeed 08| \\ / /
whether, flux expulsion can or cannot occur. We give ana- \ ,“%’\
lytic arguments for flux expulsion in certain regions of pa- 06 - \ / AN /
rameter space, and flux penetration in others, and back up the ’ ‘>( AN ,/
analysis with a wealth of numerical data. We discuss the 7\ N /
problems of numerical integration of this systéemd how 047 A\ A
our work differs from that presented {12]) and how we / N //' N
have avoided these and ensured accuracy of the integrations. 0.2 / N
We also consider in detail the vortex terminating on the / //' Sl P
black hole. We then include a discussion of gravitational oLl =SSt
back reaction before concluding. 0 2 4 T 6 8 10
Il. THE ABELIAN HIGGS VORTEX FIG. 1. The Nielsen-Olesen vortex f@r=1 and forN= 1 (solid

L . lines), N=3 (long-dashed lingsandN= 10.
We start by reviewing the (1) vortex in order to estab- ) (long ¢

lish notation and conventions. The action for an Abelian

Higgs system is X=X(R), P,=NP(R)d, ¢, 4

whereR=r\ 7, {r,¢} are polar coordinates, arXland P

Sl=f d4x‘/—g[DM<I>TD”d> satisfy the coupled second order ordinary differential equa-
tions (ODE’s)
1. - 1 ' 2p2
_Z v_ T 212 X XN°Ps 1

7 CunC =7 NPT =797, @) —X— et g 5 X(X2-1)=0 (5a)
where @ is a complex scalar field),=V ,+ieB, is the P’ x2p
usual gauge covariant derivative, a@;v the field strength —P'+ —+4+ —=0. (5b)
associated witfB,,. We use units in whiclh=c=1 and a R B

mostly minus signature. It is conventional to express the fiel
content in a slightly different manner in which the physical
degrees of freedom are made more manifest by defining re
fields X, x andP,, by

ci:or N=1, this is the Nielsen-Olesen solution, and gives an
iﬁolated vortex for all@. The vortex core consists of two
%omponents—a scalar core where the Higgs field differs
from vacuum, roughly of width 4/\ z, and a gauge core of
B (x%) = pX(x*) XX (2a)  thickness Oﬁl’zl\/f_n)_. For higherN, the solutions were
given in[18], the principal differences th=1 being that the
1 X-field is flattened X~RN) near the core, and the string is
B (x%)= E[Pu(x“)—VMX(x“)]. (2b) correspondingly fattened. An additional difference is that for
B>1, higher winding strings are unstable to separation into

These fields represent the physical degrees of freedom of tf Unit winding vortices[17]. Figure 1 presents some solu-
broken symmetric phasé is the scalar Higgs field?,, the ~ tions for5=1. _ _ o
massive vector boson, and being a gauge degree of free- In this paper however, we are interested in nontrivial so-
dom, is not a local observable, but can have a globally nonlutions in curved space, specifically in the presence of a
trivial phase factor which indicates the presence of a vortexcharged black hole. This means that our set-up now has three
The existence of vortex solutions in the Abelian Higgs model€ngth scales, the two string core widths as already men-
was argued by Nielsen and Oleg®i, and in the presence of tioned, and the new scale—the black hole’s outer horizon
a vortexgdy = 27N, whereN is the winding number of the adius:

vortex.
In terms of these new variables, the equations of motion 1
are g Whiiggs™ Muiggs™ \/—Tﬂ (63)
V VAX—P P*X+ M72X(X2 1)=0 (33 1
_ 7 1) = L
H M 2 Wgaugé™ Mgaugé™ \/5677 (6b)
2pv
V,G*+ =0, (3b) ry=Gm+/G?’m?’-Gg? (60)
where B=\/2e? is the Bogomol'nyi parametef17], and wherem is the Arnowitt-Deser-MisnefADM) mass of the
G, is the field strength oP, . black hole, andy its charge Ay=gq/r). We now set\ 2

The simplest possible vortex solution is that in flat space=1, which considerably streamlines our analysis and equa-
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tions of motion. The gauge width of the core has alreadythat away from the core the vortex fields tend to their
been replaced by(/E, and we now replace the mass andvacuum values exponentially rapidly. Therefore, by the time
charge of the Reissner-Nordatmo black hole by M the premultiplying term in the RHS of Eq$9a),(9b) be-
=Gm/w, and Q2=Gq2/WE|- This simply means that we comes significant, the fields are essentially in vacuum, so any
have chosen to set the Higgs mass, rather than the Plan€Rrrections will be negligible. We can therefore regard the
mass, to unity. There are now no dimensionful quantitiesflat space solutiongas functions ofR=r sin¢) as a good
and Newton’s constan, is a (smal) number which we approximation to the true solution in the thin string limit.
will represent bye, wheree=87G %% For a grand unified Note that this form of the solution pierces the horizon and
theory (GUT) string e=0(10 ), and represents the gravi- does not depend on the value @ therefore, using this
tational strength of the string, which will be used in Sec. VI, argument, one would expect that thin stringlsvays pen-
when we consider the gravitational back reaction of the voretrate the event horizon of a black hole, whether or not it is
tex. extremal.

For now, however, we ignore the gravitational back reac- The argument developed so far starts from the thin string
tion of the vortex and, as ifil2], treat the vortex in the limit, but there is another limit in which considerable infor-
background Reissner-Nordétnogeometry: mation can be extracted analytically, and which leads to the

expectation that vortices are expelled from extremal hori-

) 2M Q%7 zons. This regime, which can be regarded as a “thick string
dt—{ 1- T+ ra dr limit” complementary to the one above, is attained for large

winding numberN. As shown in[18], whenN is large the
(7) size of the vortex grows like/N, and the unbroken phase
L _ inside the core is approached increasingly fasker;RN.
For the moment, it is irrelevant whether the geometry is thecgnsider then a black hole that sits well inside the vortex
result of an electric or magnetic potential since we only re-5e. There, the field is expected to be very close to the

quire the equations for the vortex fields in the Reissnergymmetric phase, so it seems reasonable to neglect the last
Nordstron geometry Substituting Eq(7) in Eqs.(38), (3b),  term in Eq.(8h). Then the equation can be solved by
and assuming the forré4) for the P ,-field gives

2M
d52:(1—7+—2

—r?[d#%+sirfod¢?].

P~1-p(r2—Q?)sirt, (10

1
— 59,((r2=2Mr +Q? — ———d,(si . .
20 (1= 2Mr + Q%) X) = 7 g o( SN 696X) with p~1/(2N+/B) [12]. From here we see that, in the ex-
tremal limit in which the horizon is at=Q, the magnetic

XN2p2 5 flux across the horizon, given I§y,,= J,P, vanishes. More-
+ m+§ X(X*=1)=0 (89 over, it is possible to solve for the Higgs fieXiby setting
X=[b(r)sin6], and keeping only leading terms in\L/One
2M Q2 sing [a9,P] X2P finds, near the horizon,
(9r[(1—7+?2‘ WP+ 290 Ging)| B
(8b) dr dr

d(logb)«

(12)

2 2 - !
r<—2Mr+ r—=ro)(r—r_

In general, these equations are intractable analytically, how- v Q" +)( )

ever, as in 3] we can extract some information in a particu- g that, if the black hole is extremat (=r_) thenb~r

lar limit—the “thin string limit” where we assumeM>1;
the value ofQ is irrelevant. First note that if we writ®
=rsing, and make the assumption that=X(R), P
=P(R), then Eq.(8) becomes

< X" XN?P2? (X2 1
X R T TR R XD

n x,
Z\ 72| X R (93

_R¥2m Q?
T2 R

. P’+X2P_R2 Q? oo | _2M( L, P
R B r?r? R/ R/

(9b)

However, note that the right-hand sidRHS) of each of
these equations has the forRf/r? times terms of order

unity. Near the coreR is order unity, hence the RHS is

O(M~2), thus we have the flat space equati¢da,(5b) for

—r, . Hence,X vanishes as well on the extremal horizon.
Furthermore, a study of the energy of the configuration
shows that it is favorable for the black hole to remain inside
the vortex cord12].

Indeed, the behavior of magnetic fields in the vicinity of
extremal horizons has been studied in more generalit¥9h
and the expulsion of the flux—a phenomenon remarkably
analogous to the Meissner effect in superconductors—has
been argued to be generic. Extremal horizons tend to repel
magnetic fields, at least if the latter are in, or approach, a
phase of unbroken symmetry, like in the core of the vortex.
The argument above for largd vortices, however, is not
fully conclusive, since it remains the possibility that correc-
tions of higher order itM or in 1N spoil the exact expulsion
phenomenon.

Ill. ANALYTIC ARGUMENTS AND BOUNDS

In the previous section we summarized the arguments of

which the solutions are well known, and have the property12] in favor of flux expulsion, and extended the thin string
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arguments of3] which seemed to indicate flux penetration. lower bound onP ,,. At the very least, these must be con-
Both of these arguments appear compelling, and we mugistent for a piercing solution to exist, therefore, if the in-
examine the system closely to see what definite informatiorequalities are incompatible we conclude that the core solu-
can be extracted. First, note that all methods are in agreeion is the only solution on the horizon and therefore flux
ment that there is flux penetration for nonextremal blackexpulsion must occur.

holes, therefore for the rest of this section, we will only be  To provide the upper bound, consider tKeequation at
considering extremal black holes, for which the metricis  §=/2. Since X ,,<0, Eq. (148 implies P2<i(M¥

N2)(1—X2)<%(M?/N?) and hence
m.

M2 M) 2
— o 2_ o 2_ .2 2__ v2 o 2
ds? (1 -] dtt—{1 r) dr?—r2d6?—r?sirfod ¢?. o vz M3 e 2 M2
12 P yo(7l2)= —X P, <—X,(1-X <— —,
( ) ,00 ,3 m' m \/EEN m m 3\/§ ,BN
This gives the vortex field equations (15
1 1 where the final inequality is obtained by maximizing over
— = d,[(r—=M)?9,X]— —5—=——=034(SiN 09 ;X) Xm-
e ' résing”’ ’ For the lower bound, on the other hand note that at
6o|P | takes its largest valugP ,|=(M? B)X?P tan6,
XN?P? 1 <(M?/B)tané,, and hence
o 2_1y— 0
+ rasts X(XP-1)=0 (139
B AT N T Rl LIS PP
M2 sing [9,P] X?P I AU L ke :
ar[(l——) 9P|+ Zgm g | = —— =0, V2N 2 T\ V2N
r r siné B

(13  Assuming M<\2N, this gives w/2—6,<coté,

_ _ <mM?%2B(1—M/\/2N). But then for M?X2<2B one can
which as before are not analytically soluble, however, wegpqaw thatP 4o has a maximum atr/2, hence

can extract quite a bit of information about the solutions due
to the nature of the geometry neae M.

_ 2 2
The first observation is that if we set M, then the equa-  p po(l2)= P.o(m/2) =P (o) (3) ﬁz 1— M )
tions for the horizon actualldecouplefrom the exterior ge- ' /12— 6y M V2N
ometry: (17
2p2 1 Therefore, by comparing Eq§l5) and(17), we see that an
— ———0,(SiNBIX) + ———+=M2X(X?~1)=0 (143  absolute minimum requirement for a piercing solution is the
siné sirg 2 consistency of these two bounds, i.e.
oa | 9P] AP M5 1258 M )2
SIN0dy| ———|— =0, 27°M°>123B8°N| 1— —| .
sing] B B N

(14b

a phenomenon which does not occur in the nonextremal Turning this around therefore, and yvriting{=M/\/§N,
cage. This means that the vortex equations on the horizon a¥l\ée may conclude thf’ﬂ the vortex flux Ilnmustb_e expelled
now ODE'’s and therefore easier to handle. Note that the flux o & extreme Reissner-Nordsticblack hole if

expulsion solution X=0,P=1) always solves Eqg143a,

(14b), therefore we cannot use any analysis of these equa- M® <ﬁ 3_2~ 5_2 (18)
tions to demonstrate flux expulsion, but we can potentially (1-M)2 2m° N* 4N*

show the nonexistence of a penetration solution.

Therefore, assume that a piercing solution to the vorteXor N=8=1, this givesM <0.7; note that this is a rather
equations does exist throughout the spacetime, this meamgak bound, in fact we would expect flux expulsion to be
that a piercing solution must exist on the horizon. This re-mandatory foM somewhat in excess of 0.7, but this method
quires a nontrivial solutiohX(8),P(6)] which is symmetric  at least provides an analytic proof giving a definite bound for
around = /2 at which pointX has a maximum an® a M. Numerical work(Sec. IV) actually places this bound at
minimum. LetX,, andP,, be the extremal values & andP  about 1.9(see Fig. 4.
attained. In addition, expanding Eq&l4a,(14b near the It is interesting to note the variation of this bound with
poles indicates tha® ,=0 at the poles. Therefore, there ex- and 8. For largeN, M°<O(N~4), or M<O(N). This
ists @y (<w/2) such that »,=0 at 8y, andP 4(6,)<O0. means that the largét, the larger the black hole can be and

The structure of the proof is as follows; we use the prop-still have flux expulsion. This is in agreement with the ob-
erties of the solution atr/2 to derive an upper bound dd  servation that largé\ vortices are thicker than their single
andP g, there. Then we use the behavior®f, to derive a  winding number counterparts, therefore we would expect
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flux expulsion to occur more readily. Indeed, this is Ha&]
originally argued for flux expulsion.

PHYSICAL REVIEW D 59 084022

tually decreases. The LHS of EQ1) isN~ 2 and it is easy to
see that this requirese=m/2—O(N~Y?). From this, we

For B—0 we see thaM<0O(8%"), i.e., that flux expul-  therefore obtaiM > y2N[1+O(N~2)]. Note that this argu-
sion only occurs for extremely small black holes. To under-ment does not depend g& This means that for largs we
Starj‘g{/ g"s’ recall that the fall-off of thé field is P sl get piercing solutions for the same rangeMt Since
=e 7" therefore ag3—0, the magnetic flux core of the 5_, o corresponds to the global string, this should not be too
string is getting smaller ag3. This is consistent with the surprising. For3—0, although we expect some drop in the
above bound. It is therefore interesting to look at lae  51ue of M . this method is unable to detect this.
since in this limit, the magnetic core becomes very diffuse, \yhen the vortex radius is much larger than the black hole
and we "?"ﬁ left W'ftfh tt)he lellggs core, Wh'fh IS no fll?ngerradius one can find approximate explicit solutions for the
exponentially cut-off, but follows a power law cut-off ap- goqs near the horizon. Indeed, one can construct these solu-

proaching that of the global string. For large the bound tions for arbitrary windi -
. - 5 5 y winding numbeN, therefore generalizing
(18) gives M<1-0(B?), hence M<\2N+O(B7?). o colutions 12l

Therefore, for small charge Higgs scalars, or global strings, The solution for the magnetic field is readily found by

we expect flux expulsion to occur fiv of order the winding noticing that ifM (or better,M/</3) is very small, then in-

number of the string. ) , .
Having shown that flux expulsion must occur for suffi- side the vortex and close to the horizon the gauge field is

ciently thick strings, what of the argument of the previous"_"e” approximated by the solution to the massless field equa-
section, which appeared to indicate that a thin string wouldion [12,19
pierce the event horizon? Obviously, since the core is always

a solution to the horizon system of equations, we cannot use

an argument based on this system to argue flux penetration,

but instead we must look at the full partial differential equa-

tion (PDE) system of equations in the exterior region of the

P=1-2Mp(r—M)sir?e, (22

horizon, Egs(13a),(13b).

Now, assume that there is a flux expulsion solution, therwherep is an integration constant equal to twice the mag-

onr=M, X=0 and P=1. Therefore, near=M, M?2X?
<1 and[(r—M)3X,],>0; hence

IM2X Sirf6+sin 89, sin 09 X<XN?P2<XN? (19

in this region. Now, we know thaX is symmetric around
/2, peaking at some maximui,,, and also that sifidgX
vanishes at 0;/2 and =; therefore letd, be the value at
which d,sin 89,X=0, which must satisfys M2 sir?6,<N2. If

M < /2N, then this inequality is clearly satisfied, so we now

take M > 2N, and leta> 6, be defined byM? sirPa=2N2.
Integrating Eq(19) on the range ¢, w/2), for 6> « gives
X o(8)>X(0)[3M? cotd+N?cschdIntand/2].  (20)
But since X 44<<0 on [y, 7/2], we can deduceX ,4(6)
<[X(0)—X(6p) /(06— 60y)<X(8)/ 6— a, hence for consis-
tency with Eq.(20)

1
—> (60— a)[csCa coth+csch Intan /2] (2D

NZ
must hold over the rangé@e («a,7/2) for the expulsion so-
lution to hold. The actual bound oMl is then obtained by
plotting these curves and determining for whikhthis in-
equality is always satisfied. Fod=8=1 we find that for
M2>8.5, this inequality is violated, hence the vortewst
pierce the horizon in this case.

For largerN, the lower bound oM for a piercing solu-
tion to be forced does increase, however, the rigtidN ac-

netic field strength at the center of the core. Next, by looking
at the Higgs field equation, we can see that close to the
horizon the potential terndX(X?—1) is suppressed by a
factor M? which we are taking to be small. Therefore it can
be neglected. After settinB~1, the resulting equation can
be solved withX a function exclusively of (—M)sin 6,

X=Kk[(r—M)sind]N, (23

wherek is another integration constant. We see that on the
horizon both the gauge and the Higgs field are expelled.
Comparison between these approximate solutions and the re-
sults of the numerical calculations in the next section shows
good agreement.

IV. NUMERICAL RESULTS

To solve Egs.(8a), (8b) numerically, we have used the
technique developed i8], which consists of relaxing initial
configurations of the fieldX and P on the (rectangularly
discretized planer¢6)— (ri=r , +idr,6;=jd ). We there-
fore replace the fields by their values on this gy, 6)
—X; j=X(r;,6;) (and similarly forP), and the differential
operators by suitably discretized versions. Adopting the no-
tation of [3] and [12] (that is, Xgo=X; ; , X+0=Xj=1; and
Xo+ =X j+1), we find that the discretized version of Egs.
(8a),(8b) is Xog— Xp5" s Poo— Pgg"» Where
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2 M X+0—X,0+ cotd Xy —Xo_ 1 2M +Q2 Xo++Xo—  Xoy+Xo_
T r)  2Ar 12 2A0 T 2] Ar2 r2A 92
Xag"= (243
1 2M+Q2 2+ 2 +1x2 NPgo
r r2 [ Ar2  r2A 42 7 X0 ) rsing
2 2P, o—P_ Por—Po_ 2M  Q?\Pg,+Po. Py +Po_
< M—Q— +0 O—COtB 0+ 0 +11=-22 Q 0+ 0 0+ 0
2 r 2Ar r2A 62 rr2 Ar? r2A 6°
Poe"= > (24b
1 2M . Q% 2 2 X&o
r r2/Ar? r2A¢> B
|
There is, however, a subtlety in this process: relaxatiorp,— phew
methods usually require that the values of the fields be fixed
at all the boundaries of the domain of integration, and al-
though we know the asymptotic values XfandP atr—oo P.o Poi+Po_ Pos —Po_
(the vacuum and at §— 0,7 (the string core valugs the VMZ—QZA—J}JF - 5~ —cotd ;Aa
configuration at the horizon=r , is in fact the main result _ 240
we expect from this numerical calculation. The solution to YM2-Q? 1 + U2
this problem conceived if8] was to update the values of the T Ar A_02 ﬁxoo
fields at the horizon immediately after updating the interior (26b)

of the grid. Note that this still requires an initial guess for the
fields on the horizon—a crucial point we will return to later.

Replacing =r .. in Eqgs.(8a),(8b) we obtain equations on the The process of updating the interior of the grid and then the

horizon:
r,—r_oXx 1 2,(SiN63,X)
— =— sin
r2or| r2sing !
r—r+
+ 1X(x2 1)+ i (259
2 r2 sirfg
ry—r_dpP _ sing (60P>+X2P'
2 gr 12 “sing ’
rs - rs B
(25b)

clearly, these equations reduce to E({=la),(14b) in the ex-

tremal case. We discretize this in the same way that we dis-

cretized the equations on the interior of the giedcept that

we must now take discretized differential operators that do

not depend orX_, or P_). The resulting equations are

X00—>X88W
\/MTQZXHJ Xo+ 1 Xo- to 0+~ Xo-
Ar 2A 62 4A 0
S UMET=Q2 1 1, 1/ NP\ 2
+——+— (X5~ 1)+ = =
Ar A 62 4 Koo~ 1) 2(sm0

(26a

horizon at each iteration was carried on until the modulus of
the largest relative correction on the grid became smaller
than somes:

XXl | Pl
ma m <e.
j |

Id ! Id
x| Py

(27)

(i andj run over the entire grid, including the horizon.

The results obtained by our implementation of this
method were compared with the plots[8f, and we found a
satisfactory agreement; for instance, Fig. 2 shows the con-
tours of X and P for M =10, 8=1/2 andN=100; it can be
directly compared with Fig. 3 frorf3]. (r, is the maximum
value forr, approximatingr —«.)

-40 -40 -
30 -30 - Uw
20 .., 220 -
-10- 0.
0- 0 ;
10- 10-
20 20 -
30 30- m
406 10 2030 4o 406 10 20'30 40
X P

FIG. 2. Contours ofX and P for M=10,Q=0, g=1/2,N
=100, e=10* andN,=N,=r,,=100. (The dashed semi-ellipse
represents the horizon.
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-40 -40 configuration isalways an exact solutiomn the horizon;

-30 -30 bearing in mind that the relaxation method updates the fields
20 -20 from a user-supplied initial guess, we see that if the initial
-10 -10 guess made on the horizon is core, then the horizon will

0- 0- neverbe updated. In facf,12] always started from this guess
10 10 on the boundary, and therefore always obtained wrapping
20 20 solutions in the extremal case.

30 30 Obviously, this choice of initial conditions is important,

400" 10" 2030 40 400" 10" 2030 40 moreover, sin_ce we are dealing with a n_o_nlinear_ syste_m of
X P PDE's, there is no reason for different initial configurations

to relax to the same solution. For this reason, we have con-

-40 -40 sidered the following three initial data sets on the horizon:

-30 -30 Core: X=0,P=1,

-20 -20 Vacuum: X=1,P=0,

105 105 Sinusoidal: X(6)=sin§,P=1.

0- ; 0- ; (The sinusoidal guess was chosen because it interpolates
10~ 10 g~ smoothly, and in a simple and convenient way, the strings
20 20 attached to the North and South poles of the black hole.

30 30 Figure 3 displays the solutions obtained from the three
405 10" 20 30 40 405" 102030 40 initial conf_igurations. By computing and _comparing the_z en-
X P ergy densities and total energies of the fields on the grid, we

were able to determine thaside the gridthe three solutions

FIG. 3. Contours oK andP for a core guesé&op) and a vacuum  were identical; on the horizon, however, the solution relaxed
(or sinusoidal initial guess. The parameters dve=Q=10,8=N  from the core guess was a string core, whereas the solutions
=1,6=10""% N,=N,=100. obtained from the vacuum and the sinusoidal guesses were

both the vacuum. The comparison also showed that the

As in [3], we have found that the thin string approxima- wrapping solution had a higher total energy than the piercing
tion is excellent for thin vortices, and is a reasonable apone; the difference is of course due to the jump of the fields
proximation even for thicker vortices, which tend to pinch from the horizon to the interior of the gridMaking the
slightly near the horizon. stepsizedr smaller failed to smooth out this sharp jump.

We then turned our attention towards charged black holes, To summarize, we have thrgpehysical and numerical
comparing now our results with those of Chambéhal. reasons to prefer the piercing solution to the wrapping one
[12]. We found, as they did, that in nonextremal cases thdor thin strings in the extremal limit: it is smooth, numeri-
picture remains qualitatively the same as for uncharged blac&ally more robust, and energetically favorable.
holes. For extremal black holes, however, our results differ To determine how the transition from a piercing to a
from their original claims. As reported i3], we find that wrapping solution occurs as we thicken the string, we take
the claimed expulsion of the matter fields for thin strings inadvantage of the fact that, on the horizon, we now have
this limit is the result of a loophole in the numerical method ODE’s. This allows for much quicker and more accurate
(when applied to extremal black hojesvhich does not take numerical methods; for the following calculations we have
into consideration the decoupling of the horizon from theused the relaxation routineoLvDE of Ref. [20], Chap. 17,
main grid.[ This was shown in Eq$143,(14b) and can also starting from a vacuum guess.
be seen from Eq€2649,(26b): if Q=M, these equations do Figure 4 shows the solutions on the horizon f&=N
not contain the termX,, or P_.] In this case, the core =1. For massive black holgsr, equivalently, thin strings

1

1

"~ M =1.8865

09 | -

0.8 | 08 | .
0.7 1 M=19 -

06 | 0.6 + -
05+ -

04 | 04t -
03 | -

0.2 02t -
o M=1885 0‘(1) |\ M=10 B

0 05 1 1.% 2 25 3 0 05 1 1.% 2 25 3

FIG. 4. FunctionsX(6) (left) andP(6) on the horizon forB=N=1, a vacuum guess aiMd =10, 2.5, 2, 1.9 and 1.8865.
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-5- -5- sider, since it is the main “phenomenological” input to the
instantons mediating defect dec@§—8]. Originally, [12]
supposed that such a configuration may not be able to exist,
however, the thin string arguments indicate that at least for
0- 0- largeM, such a configuration is possible. What we will show
is that while it isalwayspossible for a vortex to end on a
’ ’ black hole, for smalM there is also a phenomenon analo-
gous to flux expulsion: the field is forced to sit in its
5. 5. Coe unbroken phaseX=0) on the horizon, and the field takes
o 2 4 o 2 4 the form of a monopole potential.
X P To see this analytically, consider the horizon equations
FIG. 5. Contours ofX and P for M=Q=18, N=g=1, (143,(14b. These will have the boundary conditioné
£=10"% andN,=N,=100. =0, P=1 at =0, andX=X,,, P=0 at §==. The equa-
tion of motion for P, Eq. (14b), can be integrated to show
the fields adopt a vacuum profile on most of the horizonthat
(symmetrically about the equatdi=/2) and interpolate
smoothly to their fixed core values on the poles. The shapes N(1+cosh)<2P<(1+cosh) (28
of X and P remain the same for all values &fi: X has
non-vanishing#-derivatives at the poles, and a maximum atwhere A\=1— MZX%/,B. This shows that a1?/8—0, P
the equatorP has zero derivatives at the poles, and a mini-approaches its monopole form?  =3(1+cosé). From
mum at the equator. As we thicken the string, the maximunhow on, we will assume thavl 2//3?1|§J/n|2/N2<1 and explore
of X and the minimum of® move away from the vacuum he possible solutions faX. First of all, note thaiX=0, P
valupis. ForN :égd:1l this t_;arl']]smon. IS rg]]egtle at f'(;St’ but — P __is always a solution to the horizon equations, and it is
et e e et e il cal ne exulsion solton. Now suppse
. i that a “piercing” solution exists, then Eq14g implies that
(see Fig. 5 for an example of expelled solujichhis can be X has a local maximum at. which we will denoteX
observed on Fig. 6, which shows the evolutionXqfw/2) Defining 6 by d,(sin X ):'0 we see that a® rF“)é
and P(/2) with the inverse energy of the black hole fora ~¢ 319 %0 n>2/ AN A . 0 0
variety of values ofB. IncreasingB, as we have remarked __(M /Z,N )Sin6p(1—Xp)- SmceM/_N is assumed sma}llé_)o
above, means thickening tietube, and we would therefore Will obviously be close tar, and using the bounds dh it is
expect a heavier black hole to be required to expel this flux€asy o see that
This is indeed what we observe and, naturally, the curve for
P is more affected by this than that fix. M
The same shift of the curves towards higher valueMof J2NA
happens when one increaddsas anticipated from the fact
that this also thickens the string. Figure 7 shows the evoluand soP will be extremely small. Integrating Eq14a be-
tion of the critical masd (defined to be that at which the tween 0 andr then gives
horizon cannot support a penetrating solution any mere

2
;(’ﬁ_ 00)<Sin 60< (29)

function of 8 (for N=1) and ofN (for B=1). = [M?2 ) p2
J' XWsme(l—X )—m
V. STRING ENDING ON A BLACK HOLE fo
2 2
Next, we turn our attention to the case of a string ending — fﬂo P — M—zsine(l—xz)} (30)
on the black hole. This is an important configuration to con- o [siné 2N

1
08 | 08
06 | 06 |
04| 04

02 r 02t

B=112

0

. . . . 0 :
0 01 02 03 04 05 06 0 01 02 03 04 05 06
M M

FIG. 6. Values ofX(7/2) (left) andP(7/2) as functions of the inverse energy of the extremal black hole. This is dome=fdr and the
following values ofg: 500, 100, 20, 10, 5, 2, 1 and 1/2.
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2
19
18 |
17 |
16 |
15 |
14}
13}
12
b sh_

0 02040608 1 12141618 2 1 2 3 4 5 6 7 8
B

FIG. 7. Values of the “critical massM . at which the only solution on the horizon corresponds to the string being expelled, as a function
of B (for N=1) andN (for B=1).

The LHS of this equation can readily be bounded above On the horizon, the single string case differs from the one

using Eq.(29): we have considered previously by the boundary conditions
only. At =0, we must clearly have a string, but @& 7

7 [M2 .. P21 am*x;, nothing forces the fields to assume a vacuum configuration.

LOX Wsmf)(l—x )~ sing STNANZ SN fact, we have found that the only smooth solutions were

such thatX had a vanishing-derivative at the South pole.
The RHS is a little more tricky to bound below, but noting AS Fig. 8 shows, the value of, then depends on the black
that X ,, is positive on [7/2,60], yet negative[X g hole’s mass, which means that if we wish to integrate the
= —M3X,,(1—X2)/4] at 7, we can boundX , on[=/2,7]  €quations on the whole grid, we also have to updateéthe
by ’ = boundary. To find equations of motion on this line, we
assumed thaf/siné—0 and thatX ,—0. The resulting
X 4<X N2 sin?6, (320  equations, however, were particularly unstable against nu-
’ merical errors. We were finally able to tackle this problem by
and hence we can bountibelow on @/2,7) by artificially coupling the horizon to the rest of the grids-
suming continuity for some hundred iterations, and by up-
4mM3 dating the fields a#= = assumingX ,=P ,=0 there. Ex-
1- W} (33 amples of a thin string solution piercing the horizon and of a
thicker string being expelled are shown on Figs. 9 and 10.
Figure 8 shows the variation of the fields on the horizon as
we thicken the string, illustrating that favi =1 the Higgs

X(6)>X,

therefore

6 [ P2 M?2 field is already expelled from the horizon.
f X m— Wsin 0(1—)(2)}
° VI. GRAVITATIONAL BACK REACTION
% [ P2 MZsing - : , . .
>f X————>— We begin this section with a lightning review of a self-
2 | SING 2N gravitating cosmic string. For convenience, we will take

A2 47M3 gM2\ 2 =1 in this section.
1- — (34

>X o . s We can readily extend the vortex to a self-gravitating sys-
1 NA NA tem by using Thorne’s cylindrically symmetric coordinate
. system[21]
Comparing these bounds on the RHS and LHS of @6)
we see that an expulsion solution is the only possible solu- ds?=e?/d2— 2" N(d2+ dR?) — e 2d$? (36)
tion for
wherevy, i,a are all functions oR only.
M4<N4)‘4 _ 4mM3 _8_M2 ? (35) In these coordinates, the energy momentum tensor be-
64 NA3 N?Z\? comes

For N=pB=1 this givesM<0.3. As before, this is a very e2¥x2p2
weak bound, however, the important thing is that it shows To=E=e 20 X2 ———
that there is a lower bound on the valuedvbfor which the a
X-field can vary on the horizon. Fd sufficiently small, the p'2 1
Higgs field is forced to lie in its symmetric phase on the +pe?rm2 1 = (x2-1)? (373
horizon, and we get an expulsion solution. o® 4
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1 "

08 1

06 |

04|

0.2

. . M=1 | .
0 0.5 1 1.5 2 2.5 3
0

PHYSICAL REVIEW 59 084022

08 1

0.6

047

02 r

FIG. 8. FieldsX(#) (left) andP(6) on the horizon for the case of a single string ending on the black hole. The string has a Higgs width
of 1, and we plot the profiles fg8=N=1 and the following values df1: 9, 2, 1.3, 1.1, 1.03, 1.

202 P2 "2
TRo — o= —e 20 0x'24 2 XP _ﬁezw—zwp_z
o o
1 2 2
+7(X*-1) (37b
20 2p2
., e?xep
— —a2(y— 2
Tﬁ__qus_e (r=¥x —
o
P21
— B2 — 4 — (X2 1)? (379
a? 4
Ti=—-P,=T}. (370

To zeroth order ine=87G 7? introduced in Sec. Il
y=v=0,

and conservation of the energy-momentum tensor gives

CY:R, X:XO; P:PO! (38)

(RPgR)' =P 4 . (39

To first order ine the string metric is given bj22]

a=

R
1- ef R(E‘O—POR)dR
0

R
R+ ef R2(€O—POR)dR
0
(409

(40b)

R
y=2¢= ef RPorAR,
0

where the subscript zero indicates evaluation in the flat space
limit. Since the string functionX and P rapidly fall off to

their vacuum values outside the core, the integrals in Eq.
(40) rapidly converge to their asymptotic, constant, values.

Writing

A=f R(E,~ Por)dR,
0

Bzf R% (£ —Pyr)dR and c:f RP n,
0 0 o ©
(41)
then the asymptotic form of the metric is
ds’=e““[dt*~dR*~dZ’] —R*(1- eA)%e™ ““d¢?

=dt2—dRP—dZZ—R2(1—e(A+C))2d¢? (42
where t=eC/%, etc. This is a conical metric with deficit
angle

A=2me(A+ C)ZZTI'GJ RE dR=87Gpu, (43

where u is the energy per unit length of the string. Notice
that the deficit angle is independent of the radial stresses, but
that when the radial stresses do not vanish there is a red/blue-
shift of time between infinity and the core of the string. The
only case in which these stresses do vanish is wheri.

Now we are ready to consider the gravitational effect of
the string superimposed on the black hole. For this we need

FIG. 9. SolutionX(r,6) andP(r,6) for a single string ending on the black hole, add=Q=10, B=N=1, =104 N,=N,=50.
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3 —ZQZ magnetic
2- R.+R_ v g
-1 - AOV: 2Q . (48)
0- ———————4,t electric,
) (Ry+R_+2M)
1 -
g- where
3- R.=(z+A)%+p? (49
4 -
Vo 5. A andA’=M?-Q?%.
4 6 0 2 4 6 Returning to the general system, the relevant equations of
P motion are
FIG. 10. Contours oK andP for a single string ending on the 0=g E'Y+ 9.(aF? 50
black hole, anaVl =Q=1/2, B=N=1, N,=N,=100, r ,= 10. plaFy)tdiaks) (503
@t a'ppz—\/—g(Ti-l-T;) (50b)

to consider a general static axially symmetric solution to the
Einstein-Maxwell-Abelian Higgs equations derived from the
action S;+S,, whereS, is given by Eq.(1), andS, is the
Einstein-Maxwell action

(ah) o+ (ah,) ,=3=09(To=T;= T~ T})
(500
s e S A
— 4 _ 2
Sm- oG ) ATORHFLL @4

where the energy momentum tensor is given by

where for clarity in what follows, we have rescaled the elec- To=Ep+€Ty. (51
tromagnetic field byy/G. We may pick coordinates so that
the metric takes the form The first term is the electromagnetic contribution to the

stress-energy which is given by

ds?=e?/dt?— e?"V(dZ2+dp?) — a’e 2?d¢?, (45) El= _F, FAh g LE2gH (52)

where ¢, y,a are independent df,¢. [Note the deliberate and the last term is the contribution from the string, which
similarities with the Thorne metri¢36).] We then apply an has the explicit form
iterative procedure to solving the field equatidnghe thin

string limit, starting with the Reissner-Nordstno back- o X2p2 | (P? +P%)
ground solution, the Nielsen-Olesen forms>ofand P, and To=V(X)+ — —2y “1 2.2y
expanding the equations of motion in termsesf 877G 72 as ae prate
before.
The usual Reissner-Nordstno metric (7) is of course +(X2 4+ X%) [e 2 (533
written in “spherical” coordinates, whereas, in such an it-
erative process we require it in axisymmetric coordinates.
For future reference the coordinate transformation is ¢ X?pP? (P’29+ P’ZZ)
T¢_V(X) ale—2Y ﬁ—laze—zw
p=+\rZ—2Mr+QZ?sind, z=(r—M)cosd (46)
+(X2,+X7%) e 2 (53b)
and the metric andrescaled electromagnetic gauge poten-
tial (in a suitable gaugeare given by
2p2
TP+ T2=2V(X)+ ﬁ. (530
(R, +R_)2—4A% Pz ale 2V

ds’= dt?

(Ry+R_+2M)? . -
Note that the electromagnetic stress energy always satisfies

Ef+E;=0.
As in [3] we now write = ay+ €a; etc., and solve the
, Einstein-Maxwell and the string equations iteratively. The
_ ,(Ry+R_+2M) 42 (47 main difference td3] is that we now have the electromag-
p (R, +R_)?—4A? ¢% netic gauge potential present, which appears a®D(This

(R.+R_+2M)?
4R,R_

(dp?+dZ?)
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means that to Q{) the geometry is not only affected by the

PHYSICAL REVIEW 50 084022

which implies thatf = f,, a constant. Turning to th¢ equa-

string, but also by the back reaction of the string on thetion, and inputting in this form of, we find

electromagnetic field.

To zeroth order, we have the background solutighg,
(48), X=Xo(R) and P=Py(R) whereR=r sinf=pe % as
before. Using the coordinate transformati@), one finds
that

2 2

2M
1- TSinzﬁ—l— ?—zsinze ~e2(vo—¥0)
(54

" R.R_

2 | n2
R%+ R,

in the core of the string, where séi=O(M~Y). Therefore, in

and near the core of the string, the relevant combinations of
the zeroth order energy momentum tensor of the string are

(T)%=E+0(M~?) (558
(To)?s=—Py+O(M?) (55b)
(To)?,+(To)%=—(PrtPy). (550

As in[3] we will assumgand show subsequently that it is
consistent to do 9dhat the perturbed solutions take the form

a;=pa(R), ¢¥1=¢1(R),

11=71(R), A FHRA .

(56)

Computing the necessary derivative Bf gives from Eq.
(50b) the following equation foa(R):

R*2M Q%] |

1=z 72| |@'(R)
2 Q* R(3M Q%]
R 20 A7 o) r R

1
=@(Rza')#ouvrz):—(5—7>R)+0(|v|*2),

(57)

which is consistently solved, as in the Schwarzschild case,

by

a(R)z—f R[E—P JdR
1
+§f R’[E—P JdR

B
~— A4 —

= asR— oo,

(58)

Now look at the Maxwell equation for an electric poten-

tial (the magnetic potential can be obtained by a duality

transformation Substituting in the assumed form for the
functions(56), we obtain, forf(R),

fH(R)
R

(R _ o
R2  I°R?

(a'=2¢1)=0(M~?3), (59

. R?/Q? 2M W R2Q%] a’'R/Q? M
‘”1“??‘7” R T Tl
1 Q?
:E(PR+P¢)+r_4[2fo_21//1]- (60)

This is solved by

1 C
1 fRPR~E as R—wo, fy=C/l2 (6]

2

the latter value of ; being set by consistency of thieequa-
tion outside the core. It is then straightforward to check that
v1=21. The magnetic correction is obtained either directly,
or via duality, to be
fu(R)=a(R)— 24, (R)+C/2. (62
As in [3], the corrections are almost the same as for the
self-gravitating cosmic string. After transforming back to

Schwarzschild coordinates, the metric outside the string core
becomes

eC Q2 2 drz 24 pn2
ds’=e 1_7"‘?[ dt_TQz—r de

r r?

—r2sirfg(1— eA)2e <Cd¢?, (63

where we have neglected th& term from a(R) since it
yields a correctiorO(Gu) X O(E~1). The gauge potentials
are

Q(1—cosh)[1—-e(A+C/2)]d,¢6 magnetic,

A= Q

- T[1+ €Cl2]d,t electric.

(64)

If we now rescale the metric so that=e<C%t, etc. (and,
accordingly, rescale the parametdfsand Q) we find

2M Q2 . dr? .
ds?= 1—f+9— dt®— ————r2d¢?
roor? 2M Q2
-t
roor?
—12sirf0(1— eA)2e~2Cd ¢2. (65)

Again, we find a deficit angld =27e(A+C)=87Gu. Be-
sides, the gravitational mass of the black hdlg,, which is
given by the coefficient of 21 in O:;, has been shifted in
the presence of the string ¥ ,=M=e“2M.
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On the other hand, the internal energy of the black holdropy increases, we see that merging is thermodynamically
(its ADM mass, appropriately generalized to asymptoticallyfavored. And more remarkably, we see that, at least to first
locally flat spaces, see e.23]) is now order, the black hole remains extremal after the merger.

M=M(1-eA)e C=M(1-eA)e <2 (66) VII. DISCUSSION

Not only is the mass of the black hole corrected, but the Our analysis in this paper appears to settle the question of

physical charge of the black hole, defined as whether or not a vortex can penetrate an extremal black hole.
1 We have provided analytical proofs that vortices of size
—| F  magnetic, smaller than a certain fractioff order unity of the radius
4 )2 of the black hole will definitely pierce the horizon, whereas
Qph= 1 (67) vortices thicker than a certain lower bound will instead wrap
yp sZ* F electric, the black hole. The numerical analysis confirms this, and, for

N=pB=1, places the transition aM=1.8865, or Gm
=1.8865A/\ 5. For a single string ending on the black hole

becomes the Higgs field presents a similar behavior, i.e., it vanishes

Qun=Q[1-€e(A+C/2)]. (68)  on the horizon only if the black hole is small enough. In that

regime, the magnetic field, instead of being expelled, takes

Notice thatM 4/Qyn>M,;/Qpr=M/Q. the form of a monopole field. Thus we see that single strings

We can now write the first-order corrected solution inare always allowed to end on black holes, which solves one
terms of the physical parametevt ,Qpp, 1, as of the paradoxes that the results [df2] seemed to pose.

Finally, we have computed the back reaction effect of a thin

42 1_646M%+68GMQ_§I1 4i2 vortex on the geometry. This results in the expected conical
p 72 geometry, but we have been able to chgck as well tha_t the
black hole remains extremal after including the corrections
dr2 to the mass and the charge.
— 5 Given that in[19] the expulsion of théunbroken mag-
1 e“G”% + eBGM% netic field was related to a sort of “superconducting” behav-
r 12 ior of the extremal black hole, one would be tempted to
interpret the penetrating solutions as exhibiting the well-
—12d 62— e “Crr2sirtad o2, (690  known breakdown of the superconducting state for strong
enough magnetic fields. However, this does not seem to be
and the case here. [19] exact solutiongwhich account fully for
) the back reaction of the gauge figldre presented for ex-
Qpn(1—cosf)d,¢ magnetic, tremal black holes in magnetic fields, and the expulsion per-
A,= w0 Qpn - _ (70) sists no matter how strong the magnetic fields are taken to
—ettr——9t electric. be.
r As a matter of fact, we can argue that, far from having

The corrected inner and outer horizons exterior to the Corgnything to do with the strength of the magnetic field, it ig
fhstead the presence of a mass for the gauge vector which

are therefore at spoils the expulsion from the extremal horizon. In order to

illustrate this point, consider a massive vectBroca field,

° _ a4G MZ2_02.
ro=emAM = VM= Qpn), 7D with an explicit massw. On the extremal horizon the field

since we are assuming that the string is thin with respect ggauation becomes

the back hole, these expressions will hold except at the poles

of the horizon. Notice that the condition that the black hole is sin 0(90((7_9_P) — u2P=0. (73)

extremal(i.e., its horizon is degenerateis thatM;=Qy,. siné

Finally, we can use the methods [#3] to find the entropy

using the Bekenstein-Hawking formula This equation does not admit a constant solutmpart from

the trivial P=0). ThereforeG,,=d,P,#0 and we find a

(locally) non-vanishing flux of the field across the horizon.
As we have seen, things are subtler when the mass origi-

nates from spontaneous breaking of the gauge symmetry.
Consider now an extremal black hole—cosmic stringThe system has both massive and massless phases, and both

merger. If we keep the internal energy and the charge of thexpulsion and penetration can be found, depending essen-

black hole fixed(i.e., impose microcanonical boundary con- tially on the relative values of the vortex and black hole

ditions), then we find, as ifi3], that the change in the gravi- radii. But the argument above shows that the expulsion of the

tational mass,6My=4GuMy equals the energy of the field can take place only if the symmetry éxactlyrestored

length of string swallowed by the black hole. Since the en-on the horizon. It is therefore quite remarkable that, in cer-

An

S=16

=16me*Crr2 (72)
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tain regimes, the geometry of the extremal horizon can lowould yield a vanishing force, since the gravitational and

cally enforce the exact restoration of the symmetry. electrostatic forces between the particle and its images cancel
The transition from penetration to expulsion can beout.

viewed as a phase transition on the horizon of the black hole. Actually, for extremal black holes this result holds not

In particular, Fig. 6 is reminiscent of the behavior of, say, theonly in the Newtonian approximation, but also exactly in the

magnetization of a ferromagnet as a function of temperaturdull Einstein-Maxwell theory[25]. To see this, recall first

or more genera”y, the order parameter of a System undergéhat the solution for alﬁelectrid extremal black hole can be

ing a second order phase transition. The order parameter is Witten as

this case the value of the Higgs field on the horizénand d?=H"2d2— H2(dx?+ dy?+ d ) (74)
instead of a function of the temperature, the phase transition ’
takes place when we vary t@gverse size of the horizon A,=(H 1=1)a,t.

~M ™1, Beyond a certain critical valugl *=M_?!, the _ o _ _ _ _
symmetry is restored throughout the horizon. Notice that thé/Vritten in this fashion, the Einstein-Maxwell equations only
transition takes place when the energy scale set by the bladRquire thatH is a harmonic function in the flatx(y,z)

2 .
hole, M, is similar to the Higgs energyX ». In a sense, this SPaceVs, ,H=0. The extremal black hole is recovered by

would be the natural expectation, singesets the energy S€tting

scale for symmetry restoration. But it should be stressed that

this expectation is only realized for extremal black holes: the H=1+ Q ' (75)
symmetry is never restored on non-extremal horiZofts. V(X—X0)?+ (Y—Yo) 2+ (z— 20)?

might be interesting to pursue this analogy further, and

. . _ 2
study, e.g., critical exponents near the transition point, sucRnd the horizon is atx(y,z)=(xo.,Y0,20)." If we want to
B ~ . include the cosmic string, then we just have to solve the
as X~|M—M.|? (and see, e.g., hoy varies, or not, at

) . . Laplace equation foH, this time in a space with a straight
different points on the horizon b quat 1S me | P w '9

. : K _ conical line. The relevant solution has been given in many
Another interesting question that can be explored in mor%laces see e.g., in the context of cosmic strifigd]. In

geperality is the interaction between the straight Cosmi%ylindrical coordinates ,z, ¢) centered on the string, with
string and the extremal black hole. The set up we have be€gynical deficit such that € ¢=<2/p, if we put the black
considering so far places the vortex in perfect alignment withygje atp—=p,, ¢=0 andz=0, then

a black hole axis. If the black hole and the vortex are dis-

placed relative to each other, the symmetry of the system Hy(z,p,é:p0)

decreases and complication increases greatly. We can, how-

ever, analyze in some detail the interactions between the ex- 14 Q * du

tre_mal black hole and the cosmic st_rlng when the strlng_ls W\/pro uo\/coshu—coshuo
thin enough to allow us to effectively integrate out the details

of the core structure. We can proceed in several levels of p sinhpu

approximation. A very crude approximation would be taking XM*

the black hole as a test particle in the background of a self-

gravitating cosmic string, i.e., in a flat spacetime with a coni-whereu, is defined by

cal defect. As is well known, since the spacetime is locally
flat the test particle does not experience any force.

We can improve on this by accounting for the gravita-
tional field of the black hole. In the Newtonian approxima- _ . _ . _
tion, we would be solving the Poisson equation for the New-T his _solut|or_1 is nonsingular, away from the conical line and
tonian potential in a conical spacetime. The effect of thetn€ Singularity of the black hole. Thus, there are no forces
conical defect on a massive neutral particle can be undefR2€tween the extremal black hole and the cosmic string.
stood by viewing the particle as subject to a force coming At distances much larger thaw, the harmonic function
from the “images” produced by the conical defect. This P#COMES
results in the neutral particle being attracted towards the
string [16] (see alsg24]). In contrast, when applied to a Ho 1+ Qp (79)
charged “extremal particle,” such that=q, this argument N

Since p~1+4Gu, we see that we reproduce the gravita-
tional and electric potentials in Eq&69), (70), with the pa-

Notice as well that it would be incorrect to think that the resto- - -
ration of the symmetry comes about as an effect of the thermarl":“‘nen-:‘rQ equaling both the internal energyl, and the

properties of black holes. For one thing, an extremal black hole has

zero temperature. Moreover, the thermality is only seen when ac-

counting for quantum effects, whereas here we work at the classical?The “Schwarzschild coordinates” used in Ed2) correspond to
level. settingr —M =[ (x—Xo)*+ (Y~ Yo) >+ (2 20)?]*

(76)

pP+22+p5

2ppo (77

coshug=
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physical chargeQ,, we had introduced earlier. The result, extreme black hole—vortex configuration. As is well known,
however, is independent of whether the string and the blackn the absence of the cosmic string, the Reissner-Nomistro
hole are merged or not. Whenever the black hole is in thdlack hole can be embedded iN€2) supergravity, and the
presence of a cosmic string, the lines of force are “focused, extremality conditionM =Q appears then as the BPS condi-
resulting in an increase of the gravitational and electric potion for the existence of unbroken supersymmetry generators
tentials at long distances. [26]. Similarly, the Nielsen-Olesen vortex wifh=1 admits
The same conclusion regarding the absence of a forca supersymmetric embedding in=R supergravity in three
between the two objects can be reached again from anothéimensiong27], and the solution preserves half of the Kill-
perspective. This time, neglect the gravitational back reacing spinors of the flat vacuum. A natural question to ask is
tion of the string, and consider a Nambu-Goto string in thewhether the merger configuration will be supersymmetric as
background of the extremal black hole, with metric as in Eq.well. Although we have not analyzed this point in any detail,
(74). The static interaction potential(x,y,z) experienced our analysis indicates that when the vortices are infinitely
by a string can be read off from the string actidg,g  thin, the system exhibits some of the features characteristic
~[d7V(x,y,2). If we take a straight string along, say, the ©0f Bogomol'nyi-Prasad-SommerfielBPS configurations,
axis, this is,T=7, Z=o, X,Y=const, then the action is including the equality of the ADM mass and the physical
charge,M,=Q, (which was actually obtained for finite, if
V small, width strings as well as the absence of forces and
ING:_’“I drdo—detg,,,daX"3pX :_'“Lf dr, vanishing binding energy between the two objécven
(79 when the vortices have a finite width, we suspect that it is
. L . . also possible to maintain another feature of BPS systems,
(L is the length of the stringi.e., the static force vanishes. namely the reduction of the equations of motion to a first
With a bit more work it is easy to see that if the string iS order ‘system. Although at first sight this seems unlikely
given a velocity transverse to its axis, then its motion iSgiyen the lack of symmetry, it was shown in Anderseiral.
slowed down as it approaches the black hole. _ [28] that for a general world sheet embedding, such a reduc-
Clearly, in all these arguments we have been neglectingqn, 1 g first order system does occur. In this case we have a
the effect of the bl_ack hole on the string core. But neverthexved geometry, nonetheless, preliminary indications are
less we seem to find that, at least if they are well separatedy 4 generalization of this method will work. However, the
a straight string and an extremal black hole hardly feel eacly astic change in the behavior that takes place as the vortex

other's presence. grows thicker(from penetration to expulsiorwould make it

These results appear to imply that the binding energy bejgery syrprising that supersymmetry be present in general.
tween the infinitely thin string and the extremal black hole is

zero. It appears difficult to make a clear comparison between ACKNOWLEDGMENTS
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particular, since the string has an infinite lenggind hence,

infinite energy, one should specify a regularization, and

choose how to fix a large but finite length of the string before 3The fact that entropy is generated in the merger is known to

and after the merger. happen as well in BPS composite black holes, and is typically ac-
We conclude by mentioning that it should be interestingcompanied by a reduction of the number of supersymmetry genera-

to include fermion fields and study the supersymmetry of theors that are preserved.
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