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Induced quantum metric fluctuations and the validity of semiclassical gravity
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We propose a criterion for the validity of semiclassical gravity~SCG! which is based on the stability of the
solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point
quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctua-
tions. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of
stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the
metric perturbations which agree, to leading order in the largeN limit, with the quantum correlation functions
of the theory of gravity interacting withN matter fields. The homogeneous solutions of the Einstein-Langevin
equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution
of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations,
which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from
the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only
be obtained from the Einstein-Langevin equation~the inhomogeneous term!. These equations exhibit runaway
solutions with exponential instabilities. A detailed discussion about different methods to deal with these insta-
bilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based
on SCG is a valid approximation in that case.

DOI: 10.1103/PhysRevD.70.044002 PACS number~s!: 04.62.1v, 03.65.Sq, 05.40.2a
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I. INTRODUCTION

In this paper we discuss the conditions underlying
validity of semiclassical gravity~SCG!, emphasizing the role
of metric fluctuations induced by quantum matter sourc
SCG is based on self-consistent solutions of the semicla
cal Einstein equation for a classical spacetime driven by
expectation value of the stress tensor operator of quan
matter fields. We propose a criterion based on stocha
semiclassical gravity@1,2# and compare it with a recentl
proposed criterion by Andersonet al. @3# based on linear
response theory. To do this we need to reexamine all rele
factors old and new contributing to this issue, such as
reduction of higher derivative equations, intrinsic and
duced fluctuations, and the relation between stochastic
quantum correlations. It also necessitates some clarifica
of the relation between our approach based on stocha
dynamics and the linear response approach and differe
with the approach pursued by Ford and co-workers@4–11#
based on the normal-ordering and integration-by-parts pro
dures on the stress-energy bitensor. The connection clar
and the bridges built in this process are beneficial to furt
development of ‘‘bottom-up’’ approaches to quantum grav
starting from SCG@12–15#.

a. Metric fluctuations. SCG accounts for the average
back reaction of quantum matter fields and can be rega
as a mean field approximation that describes the dynamic
the mean spacetime geometry. However, it does not acc
for the effects of the fluctuations of spacetime geome
which can also be very important. Consider, for instance,
metric fluctuations induced by the vacuum fluctuations of
1550-7998/2004/70~4!/044002~24!/$22.50 70 0440
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inflaton field in inflationary cosmological models. Thos
fluctuations play a crucial role in the generation of the p
mordial inhomogeneities which gave rise to the large sc
structure of the present universe as well as the obse
anisotropies of the cosmic microwave background of rad
tion.

This paper focuses on the effects of the quantum fluct
tions of the metric. We will restrict our treatment to sma
metric perturbations around a given background geome
~Of course, a full treatment of those fluctuations would
quire a complete theory of quantum gravity.! We will linear-
ize and quantize those metric perturbations including th
interaction with the quantum matter fields. This can be
scribed more precisely in terms ofN identical matter fields.
Our approach corresponds then to computing the quan
correlation functions for the metric perturbations to leadi
order in a 1/N expansion.

In fact, one can show that the leading order contribut
to the quantum correlation functions in a largeN expansion
is equivalent to the stochastic correlation functions obtain
in the context of stochastic semiclassical gravity. Wher
SCG is based on the semiclassical Einstein equation w
sources given by the expectation value of the stress te
operator of the quantum matter fields, stochastic semicla
cal gravity is based on the Einstein-Langevin equati
which has in addition sources due to the noise kernel. T
noise kernel is the symmetrized connected part of the t
point quantum correlation function of the stress tensor ope
tor with respect to the state of the matter fields and descr
their stress-energy fluctuations.

Making use of the equivalence between quantum and
©2004 The American Physical Society02-1
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chastic correlation functions in stochastic semiclassical g
ity, one is naturally led to separate the symmetrized quan
correlation function for the metric perturbations~to leading
order in 1/N) into two separate contributions:intrinsic and
inducedfluctuations. The former are connected to the disp
sion of the initial state of the metric perturbations, where
the latter are proportional to the noise kernel and are indu
by the quantum fluctuations of the matter field stress ten
operator.

b. Validity of semiclassical gravity. Different aspects con
cerning the validity of the description provided by SCG
the case of free quantum matter fields in the Minkow
vacuum state propagating on Minkowski spacetime h
been studied by a number of authors. Most of them con
ered the stability of such a solution of SCG with respect
small perturbations of the metric. Horowitz was the first o
to analyze the equations describing those perturbati
which involved higher order derivatives~up to fourth order!,
and found unstable solutions that grow exponentially w
characteristic time scales comparable to the Planck t
@16,17#. This was later reanalyzed by Jordan with simi
conclusions@18#. However, those unstable solutions were
garded as an unphysical artifact by Simon, who argued
they lie beyond the expected domain of validity of the theo
and emphasized that only those solutions which resu
from truncating perturbative expansions in terms of
square of the Planck length are acceptable@19,20#. Further
discussion was provided by Flanagan and Wald@21#, who
advocated the use of an order reduction prescription first
troduced by Parker and Simon@22# but insisted that even
nonperturbative solutions of the resulting second order eq
tion should be regarded as acceptable. Following these
proaches Minkowski spacetime is shown to be a stable s
tion of SCG with respect to small metric perturbations.

Anderson, Molina-Parı´s and Mottola have recently take
up the issue of the validity of SCG@3# again. Their starting
point is the fact that the semiclassical Einstein equation
fail to provide a valid description of the dynamics of th
mean spacetime geometry whenever the higher order ra
tive corrections to the effective action, involving loops
gravitons or internal graviton propagators, become impor
~see Refs.@23–26# for some attempts to include those e
fects!. Next, they argue qualitatively that such higher ord
radiative corrections cannot be neglected if the metric fl
tuations grow without bound. Finally, they propose a cri
rion ~a necessary condition! to characterize the growth of th
metric fluctuations, and hence the validity of SCG, based
the stability of the solutions of the linearized semiclassi
equation.

c. Our criterion. In this paper we address the issue of t
stability of semiclassical solutions with respect to sm
quantum corrections. When the metric perturbations
quantized, the semiclassical equation can be interprete
the equation governing the evolution of the expectation va
of the operator for the metric perturbations. We introduc
stability criterion based on whether the metric fluctuatio
grow without bound or not by considering the behavior
the quantum correlation functions of the metric perturb
tions. Furthermore, we emphasize that one should cons
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not only the intrinsic fluctuations, but also the induced on
In fact, the induced fluctuations play a crucial role wh
considering the stability of simple open quantum systems
several reasons. First, those systems usually exhibit a c
acteristic relaxation time so that for much larger times
contribution from the intrinsic fluctuations becomes neg
gible. Second, after that transient period the stability arou
an equilibrium configuration is the result of a balance b
tween the energy dissipated by the system and the fluc
tions induced by the environment, which is encoded in
so-called fluctuation-dissipation relation connecting the d
sipation and the noise kernels.

It is true that the effect of intrinsic fluctuations can b
deduced from an analysis of the solutions of the pertur
semiclassical Einstein equation, but in general one can
retrieve the effect of the induced fluctuations from it. Th
effect can be properly accounted for in the stochastic se
classical gravity framework. Both intrinsic and induced flu
tuations are innate in the Einstein-Langevin equation.

d. Ford’s program. Ford @4# was among the first to hav
noted the importance of quantum fluctuations in these iss
An earlier criterion put forth by Kuo and Ford@5# used the
variance of the fluctuations of the stress tensor operator c
pared to the mean value as a measure of the validity of S
As pointed out by Hu and Phillips@27,28# ~see reply by Ford
and Wu@7#! such a criterion should be refined by consideri
the back reaction of those fluctuations on the metric. F
and collaborators also considered both intrinsic~‘‘active’’ !
@9–11# and induced~‘‘passive’’! @4–8# fluctuations, but they
did not treat them in a unified way and did not discuss th
precise relation to the quantum correlation function for t
metric perturbations. Furthermore, they did not include
full averaged back reaction of the matter fields se
consistently, and the contributions from vacuum fluctuatio
in Minkowski space were discarded. As these issues h
been discussed before by both groups of Ford and Hu,
will only make a few remarks at the end of this paper.

Here, our attention will be focused on comparing the c
teria based on the linear response approach propose
Andersonet al. and our stochastic gravity approach. Sin
the differences in the two ways to address the issue of
validity of SCG are rooted in the difference between line
response theory and stochastic dynamics as applied to S
we hope that this work can also serve the purpose of offe
a comparison between these two important approaches
ploring the validity of the mean field approximation. In th
examples provided, we will specialize the matter fields to
case of free scalar fields, but generalization to vectoria
fermionic fields should not pose major difficulty.

e. Terminology and organization. To avoid unnecessary
ambiguities or confusion in interpretation, it is useful
clarify the use of some terminology here.

First, a comment on the difference between thestochastic
gravity program in general and its present implementatio
status in particular. Stochastic semiclassical gravity can
understood as the Gaussian approximation to stochastic g
ity. Although technically the actual implementations of st
chastic gravity so far~to which our present discussion ap
plies! have been restricted to linear metric perturbatio
2-2
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around the background geometry and a Gaussian stoch
source, the theoretical construct of the stochastic gravity p
gram has a much broader meaning beyond these limitati
It refers to the range of theories based on second and hi
order correlation functions. Noise can be defined in fu
nonlinear theories~e.g. correlation noise@29# in the
Schwinger-Dyson equation hierarchy! to some degree,1 but
one should not expect the simple Langevin form with Gau
ian and additive noise to prevail. Thus, stochastic gravity
this broad sense entails the whole hierarchy of correla
functions, which would imply going beyond order 1/N in the
generating functional. It could in principle provide the mea
@similar to the Bogoliubov-Born-Green-Kirkwood-Yvo
~BBGKY! hierarchy in kinetic theory# to access the full
theory of quantum gravity@14,15#. It is in this sense that we
say stochastic gravity is the intermediate theory betw
SCG ~a mean field theory based on the expectation value
the energy momentum tensor of quantum fields! and quan-
tum gravity ~understood as the full hierarchy of correlatio
functions retaining complete quantum coherence!.

Second, the precise meaning in our use of the termsper-
turbations and fluctuations. By perturbations of the metric
we mean deviations of the perturbed metric from a ba
ground metric. Perturbations are purely classical and de
ministic in general relativity and SCG. In stochastic gravi
they are classical but stochastic~with a vanishing statistica
expectation value! so that the background configuration c
be regarded as the expectation value of a stochastic metr~a
complete gauge fixing is required to meaningfully talk abo
the expectation value of a metric!. In linear quantum gravity,
perturbations are quantum operators. For a state with a
ishing expectation value, the background metric can then
regarded as the expectation value of the metric oper
~again a complete gauge fixing is required! times the identity
operator. On the other hand, the termfluctuations is em-
ployed only to refer to the statistical fluctuations of the m
ric perturbations when they correspond to a stochastic
cess or to the quantum fluctuations of the met
perturbations when they are treated as a quantum opera

Third, by leading orderin the largeN limit we mean the
lowest order in 1/N with a nonvanishing contribution. Hence
as we will see, the leading order for the source of the se
classical Einstein equation, which is proportional to the
pectation value of the stress tensor operator, is 1/N0, whereas
the leading order for the quantum two-point correlation fun
tions is 1/N.

The paper is organized as follows. In Sec. II we brie
review the fundamental aspects of SCG and how one
study linearized perturbations around a background solu
of SCG. This is generalized to incorporate the metric flu
tuations in Sec. III, where the key elements of stocha
semiclassical gravity are introduced and the equivalence
tween stochastic and quantum correlation functions is
plained. In Sec. IV we propose a generalized stability cr

1In general, it might be necessary to extend the concept of
chastic process to that of processes with a real and norma
distribution functional but not necessarily positive definite.
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rion that includes the metric fluctuations, which is th
applied to the specific case of a Minkowski background.
conclude by summarizing and discussing the main result
Sec. V.

A number of additional details and technical points a
left for the Appendixes. In Appendix A we illustrate the bas
aspects of intrinsic and induced fluctuations using a sim
quantum Brownian motion model. In Appendix B we pr
vide the expressions for the dissipation and noise kernels
Minkowski spacetime and the vacuum state. Some of
main steps to show the equivalence between stochastic
correlation functions using a largeN expansion are summa
rized in Appendix C. The physical interpretation of the si
gular coincidence limit for the noise kernel and possib
ways to deal with it are explained in Appendix D. Finally,
Appendix E we discuss the existence of runaway solution
SCG and stochastic semiclassical gravity as well as meth
to deal with them.

Throughout the paper we use natural units with\5c51
and the (1,1,1) convention of Ref.@30#. We also make
use of the abstract index notation of Ref.@31#. Latin indices
denote abstract indices, whereas Greek indices are empl
when a particular coordinate system is considered.

II. SEMICLASSICAL GRAVITY AND LINEAR RESPONSE
THEORY

A possible first step when addressing the interplay
tween gravity and quantum field theory is to consider
evolution of quantum matter fields~matter field is referred to
here as any field other than the gravitational one! on a clas-
sical spacetime with a nontrivial geometry, characterized
a metricgab . As opposed to the situation for a Minkowsk
spacetime, there is in general no preferred vacuum state
the fields and particle creation effects naturally arise, such
Hawking radiation for black holes, cosmological particle cr
ation and the generation of primordial inhomogeneities
inflationary cosmological models.Quantum field theory in
curved spacetimes~QFTCST! is by now a well-established
subject~at least for free fields and globally hyperbolic spac
times! @32,33#.

QFTCST is only an approximation in that the matter fiel
are treated as test field evolving on a given spacetime. E
stein’s theory requires the spacetime dynamics to determ
and be determined by the matter fields. Thus one need
consider the back reaction of the quantum matter fields
the dynamics of the spacetime geometry, which natura
leads to thesemiclassical theory of gravity, where the evo-
lution of the spacetime metricgab is determined by the semi
classical Einstein equation

Gab@g#1Lgab2aAab@g#2bBab@g#5k^T̂ab@g#& ren8 ,
~1!

where gab is the spacetime metric,Gab@g# is the Einstein
tensor and the matter source corresponds to the renorma
expectation value of the stress tensor operator of the ma
fields ~a prime was used to distinguish it from that intr
duced below after absorbing some terms!. Here, L is the

o-
ed
2-3
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renormalized cosmological constant andk58pG, with G
[1/mp

2 being the Newton constant andmp the Planck mass
a andb are renormalized dimensionless coupling consta
associated with tensorsAab@g#,Bab@g# needed for the renor
malization of the logarithmic divergences.2 The expectation
value of the stress tensor operator exhibits divergences w
are local and state independent. Introducing a covariant re
larization and renormalization procedure, those divergen
can be absorbed into the cosmological constant, the New
constant multiplying the Einstein-Hilbert term and the gra
tational action counterterms quadratic in the curvature. T
finite contributions from those counterterms give rise to
covariantly conserved tensorsAab andBab which result from
functionally differentiating with respect to the metric th
terms *d4xA2gCabcdCabcd and *d4xA2gR2 respectively,
where Cabcd is the Weyl tensor andR is the Ricci scalar.
Those contributions were explicitly written on the left-ha
side of Eq.~1!, but from now on will be included in the
renormalized expectation value of the stress tensor ope
so that the semiclassical Einstein equation becomes

Gab@g#5k^T̂ab@g#& ren. ~2!

The field operators appearing in the stress tensor operato
the quantum matter fields are in the Heisenberg picture
satisfy the corresponding equation of motion, which co
cides with the classical field equation for fields evolving
that spacetime. In particular, if we consider a free sca
field, the field operator in the Heisenberg picture will satis
the corresponding Klein-Gordon equation for that geome

Given a manifoldM and a metricgab which characterize
a globally hyperbolic spacetime, and a density matrixr̂
which specifies the state of the quantum matter fields o
particular Cauchy hypersurface, the triplet (M,gab ,r̂) con-
stitutes a solution of SCG if it is a self-consistent solution
both the semiclassical Einstein equation~2! and the equa-
tions of motion for the quantum operators of the matter fie
evolving on the spacetime manifoldM with metric gab .
Those operators enter in turn into the definition of the str
tensor operator appearing in the semiclassical Einstein e
tion.

The semiclassical Einstein equation has been justifie
at least two different ways. One possibility is to argue,
assuming a number of reasonable axioms, that it is the o
consistent way to extend the classical Einstein equation
couple the quantum matter fields to a classical me
@21,33#. Alternatively, it can be derived by consideringN free
matter fields weakly coupled to the gravitational field in t
sense that the gravitational coupling constant times the n
ber of fieldsNG remains constant in the limitN→` @34#.
The semiclassical Einstein equation can then be show

2The renormalized coupling constants are running coupling c
stants which depend on some renormalization scalem. However,

since^T̂ab@g#& ren8 has the same dependence onm, the semiclassica
Einstein equation is invariant under the renormalization gro
which involves changes in the renormalization scalem.
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correspond to the dynamical equation for the evolution of
expectation value of the metric in the limit of largeN.3 Of
course, in realityN is finite and the semiclassical Einste
equation can only be understood as the lowest order co
bution in a 1/N expansion.

Functional methods based on path integrals are usefu
only in the rendition of ideas but also in actual computatio
However, the usualin-out formalism suitable for computing
transition matrix elements in scattering problems is not
propriate to deal with back-reaction problems in which one
interested in the causal evolution of true expectation val
from their initial values. The closed-time-path~CTP! formal-
ism, which naturally yields true expectation values a
causal evolution equations for their dynamics@35–39#,
should be used instead. This formalism has been applie
study a number of situations involving gravitational bac
reaction effects of quantum fields@40–44#. ~See also Ref.
@45# for an interesting application to an analogous situat
in QED, where the back reaction of charged quantum fie
on the dynamics of the expectation value of the electrom
netic field was considered.! This includes minisuperspac
models which restrict the possible geometries to Roberts
Walker metrics and consider perturbative deviations from
massless conformal case for the matter fields@42–44#, as
well as small metric perturbations~of a less restricted form!
around self-consistent solutions of SCG@40,41#.

More specifically, given a background metricgab which is
a solution of the semiclassical Einstein equation in SCG,
can compute the CTP effective action on the perturbed m
ric g̃ab5gab1hab up to quadratic order in the metric pertu
bations hab . Taking the functional derivative of the CT
effective action with respect tohab , one gets the perturbe
version of Eq.~2! to linear order in the metric perturbation

Gab
(1)@g1h#5k^T̂ab

(1)@g1h#& ren, ~3!

where the superindex~1! was used to denote that only term
linear in hab should be considered. The linearized Einste
tensorGab

(1)@g1h# comes from the Einstein-Hilbert term i
the gravitational action. On the other hand, the contribut
to the CTP effective action which results from functiona
integrating the matter fields and involves the expectat
value

-

,

3One could be concerned that such a derivation was purely for
due to the impossibility of having a well-defined expectation va
for the metric~at least without a complete gauge fixing!, the diffi-
culties in defining a measure for the path integral free of proble
related to the gauge freedom under diffeomorphisms, and the is
related to the nonrenormalizable character of perturbative gra
Nevertheless, in the limitN→` the contribution from the graviton
loops vanishes so that the last two problems become irrelev
whereas the fluctuations of the metric around a given backgro
are completely suppressed and, hence, the first problem also d
pears.
2-4
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and two-point correlation functions of the stress tensor
erator on the background geometry yields the following
sult for the linearized expectation value of the stress ten
operator:

^T̂(1)ab@g1h;x!&522~H•h!ab~x!22~M•h!ab~x!, ~4!

where we have introduced the notationA•B
[*d4yA2g(y)Aab(y)Bab(y), and the kernelsH andM are
given by

Habcd~x,y!52
1

4
Im^T* T̂ab@ŵ,g;x!T̂cd@ŵ,g;y!&

1
i

8
^@ T̂ab@ŵ,g;x!,T̂cd@ŵ,g;y!#&, ~5!

Mabcd~x,y!52
1

2 S 1

A2g~x!

d~^T̂ab@ŵ,gab ;x!&!

dgcd~y! D ,

~6!

where the notationT* was employed to indicate that th
spacetime partial derivatives appearing in the time-orde
operators also act on the theta function implementing
time ordering. The functional derivative appearing on t
right-hand side of Eq.~6! should be understood to accou
only for the explicit dependence on the metric: the impli
dependence through the field operatorŵ@g# is excluded.4

The previous result for the expectation value of the str
tensor when small metric perturbations around a backgro
solution of SCG are considered has been obtained in
ways:~1! by applying the usual techniques of linear respon
theory ~see, for instance,@46#! to SCG@3,47,48# and ~2! by
applying the influence functional formalism@49,50# to linear-
ized metric perturbations regarded as an open quantum
tem interacting with an environment constituted by the qu
tum matter fields@51,52#. The influence functional approac
also provides the noise kernel which underscores the stoc
tic nature of the dynamics for the metric perturbations.
will employ this method in the next section.

The explicit expression for the linearized expectati
value^T̂(1)ab@g1h;x)& in the particular case of a Minkowsk
background spacetime and a free scalar field in
Minkowski vacuum state was obtained in Refs.@16# and@21#
for a massless field and in Refs.@3,53,54# for a field with an

4The kernelsH andM both exhibit divergences, but they can b
removed by the standard procedure for renormalizing the expe
tion value of the stress tensor in an arbitrary spacetime„after all

they are related to the terms in̂T̂ab@g1h;x)& that are linear in
hab…, which involves renormalizing the cosmological constant a
the Newton constant in the bare gravitational action as well as
cluding counterterms quadratic in the curvature. More precisely
evaluating all the counterterms in the bare gravitational action
the perturbed metric and keeping the terms quadratic in the m

perturbations, which give rise to linear terms in^T̂ab@g;x)&, the
divergences in the CTP effective action arising from the kernelH
andM are exactly canceled.
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arbitrary mass. For our discussion we have included them
Appendix B, where a global inertial coordinate system$xm%
for the Minkowski background is used. According to E
~B6!, ^T̂(1)ab@g1h#& ren can be written entirely in terms o
the linearized Einstein tensorG(1)ab. Taking that into ac-
count, the expression for the linearized semiclassical E
stein equation~3! in Fourier space becomes

Fab
mn~p!G̃(1)ab~p!50, ~7!

where

Fab
mn~p!5F1~p!d (a

m db)
n 1F2~p!p2Pmnhab , ~8!

with

F1~p!5112kp2@H̃A~p!22ā#, ~9!

F2~p!52
2k

3
@H̃A~p!13H̃B~p!22ā26b̄#. ~10!

whereā and b̄ are some constants which include the ren
malized parametersa and b in Eq. ~1!, and the kernels
H̃A(p) andH̃B(p) are defined in Eqs.~B3! and~B4! of Ap-
pendix B. The solutions of Eq.~7! were analyzed in Refs
@16# and@21# for the massless case and Ref.@3# for the gen-
eral case. There is an obvious solution forG̃ab

(1)(p)50,
which corresponds to linear gravitational waves propaga
in Minkowski spacetime. In addition, there are solutions
the form G̃mn

(1)}d(p22p0
2) for particular values ofp0

2 ~posi-
tive or negative! comparable tomp

2 . Since they exhibit char-
acteristic time scales or length scales comparable to
Planck scale, where semiclassical gravity is not expecte
be reliable anymore, they are usually regarded as unphys
A more detailed discussion of this kind of solutions is giv
in Sec. IV and Appendix E.

In fact, as will be explained in Sec. IV, if one quantize
the linearized metric perturbations, Eq.~7! coincides with the
equation governing the evolution of the expectation value
the operatorĥab for the metric perturbations. Therefore, a
analysis of the stability of the solutions of linearized sem
classical Einstein equation~7! can be equivalently under
stood in terms of the evolution for the expectation value
ĥab . In Sec. IV we will argue that a stability analysis fo
solutions of SCG with respect to small quantum correctio
based solely on the expectation value of the metric pertu
tions is incomplete and should be extended to take into
count the metric fluctuations as well. Stochastic semicla
cal gravity is particularly well suited to study the fluctuatio
of the metric and will play an important role in our late
discussions. Therefore, in the next section we briefly rev
the formalism based on the Einstein-Langevin equation
small metric perturbations around semiclassical soluti
within the framework of stochastic semiclassical gravity.
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III. EINSTEIN-LANGEVIN EQUATION FOR METRIC
PERTURBATIONS AROUND A GIVEN BACKGROUND

The semiclassical Einstein equation, which takes into
count only the mean values, is inadequate whenever the
tuations of the stress tensor operator are important. An
proved treatment is provided by the Einstein-Lange
equation ofstochastic gravity, which contains a~Gaussian!
stochastic source with a vanishing expectation value an
correlation function characterized by the symmetrized tw
point function of the stress tensor operator. This theory
been discussed by a number of authors@1,2,42–44,51,55,56#.
Consider a globally hyperbolic background spacetime and
initial state for the quantum matter fields~one usually re-
stricts to free fields! which is a self-consistent solution o
SCG; i.e., it satisfies the semiclassical Einstein equation w
the expectation value of the stress tensor operator obta
by considering the evolution of the matter fields on the sa
background geometry. The Einstein-Langevin equation g
erning the dynamics of the linearized perturbationshab
around the background metricgab is given by

Gab
(1)@g1h#5k^T̂ab

(1)@g1h#& ren1kjab@g#, ~11!

where the Gaussian stochastic sourcejab@g# is completely
characterized by its correlation function in terms of the no
kernelNabcd(x,y), which accounts for the fluctuations of th
stress tensor operator, as follows:

^jab@g;x!jcd@g;y!&j5Nabcd~x,y!

[
1

2
^$ t̂ ab@g;x!, t̂ cd@g;y!%&, ~12!

where t̂ ab[T̂ab2^T̂ab& and ^•••& is the usual expectation
value with respect to the quantum state of the matter fie
whereaŝ •••&j denotes taking the average with respect to
possible realizations of the stochastic sourcejab . Note that
any local term quadratic in the curvature arising from fin
contributions of the counterterms required to renormalize
bare expectation value of the stress tensor operator has
absorbed into its renormalized version^T̂ab

(1)@g1h#& ren. It
should also be emphasized that solutions of the Einst
Langevin equation for the metric perturbations are class
stochastictensorial fields, not quantum operators.

The precise meaning that should be given to these
chastic metric perturbations and the relation of the co
sponding stochastic correlation functions to the quant
fluctuations resulting from quantizing these metric pertur
tions will be discussed below. Before doing so, it is, ho
ever, useful to mention some of the basic properties of
Einstein-Langevin equation~a more detailed discussion ca
be found in Refs.@1,2,51#!. First, when taking the average o
the Einstein-Langevin equation~11! with respect to all the
possible realizations of the stochastic source, we recove
semiclassical Einstein equation~3!, as follows straightfor-
wardly from the vanishing expectation value of the stoch
tic source. Second, the integrability of the Einstein-Lange
equation is guaranteed, in the same way as in the semi
sical Einstein equation, by conservation of the mat
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sources. Conservation of the expectation value of the st
tensor operator follows immediately from the fact that t
divergence~with respect to the covariant derivative! of the
stress tensor operator vanishes when the equation of mo
of the matter field operators is satisfied~e.g. the Klein-
Gordon equation for a scalar field!. On the other hand, the
fact that^¹ajab(x)&j50 and^jab(x)¹cjcd(x)&j50, which
completely characterize the Gaussian stochastic fi
¹ajab(x), guarantees the conservation of the stocha
source~unless otherwise stated, from now on all the cova
ant derivatives are taken in the background metric and in
ces are raised and lowered using also the background
ric!. The previous two equalities are, respectively,
consequence of the vanishing expectation value of the
chastic source and the fact that¹at̂ ab(x)50. Finally, the
Einstein-Langevin equation is invariant under gauge tra
formations corresponding to infinitesimal diffeomorphism
characterized by an arbitrary vector fieldzW (x), which gener-
ates transformations for the metric of the formhab→hab
1¹azb1¹bza . This fact can be seen by realizing that th
stochastic source does not depend on the metric pertu
tions, whereas the terms depending on the metric pertu
tions are all together gauge invariant. This is because t
correspond to perturbing the semiclassical Einstein equa
for the background metricgab , which is automatically satis-
fied since the background configuration under considera
for the metric and the state of the matter fields is a solut
of SCG.

The Einstein-Langevin equation had been previously
rived making use of a formal analogy with open quantu
systems and employing the influence functional formali
@49,50#. This form was also justified in Ref.@57# by arguing
that it is the only consistent generalization of the semicla
cal Einstein equation which takes into account the low
order effects due to the fluctuations of the stress tensor
erator. In fact, making use of a largeN expansion, one can
show that the stochastic correlation functions for the me
perturbations obtained from the Einstein-Langevin equat
coincide with the leading order contribution to the quantu
correlation functions in the largeN limit. The details of the
derivation will be given in Ref.@58# and are summarized in
Appendix C for the particular case of a Minkowski bac
ground, to which we will restrict in the present discussion.
particular, the two-point stochastic correlation function
equivalent to the symmetrized quantum correlation funct
to leading order in 1/N provided that one also averages ov
the initial conditions for the solutions of the Einstein
Langevin equation distributed according to the Wigner fun
tional characterizing the initial state of the metric perturb
tions @see Eq.~C11! in Appendix C for the definition of the
Wigner functional#. It is, therefore, convenient to express th
solutions of the Einstein-Langevin equation as

hab~x!5Sab
(0)~x!1k̄~Gret•j!ab~x!, ~13!

wherek̄5Nk is the rescaled gravitational coupling consta
introduced in Appendix C,Sab

(0)(x) is a solution of the ho-
mogeneous part of the Einstein-Langevin equation~11! con-
2-6
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taining all the information about the initial conditions@by
homogeneous part we mean Eq.~11! excluding the stochastic
source, which coincides with the semiclassical Einst
equation~2!#, andGret(x,x8) is the retarded propagator wit
vanishing initial conditions associated with that equation~see
Appendix E 3 for important remarks on the propagator!. Us-
ing Eq. ~12!, we can then get the following result for th
symmetrized two-point quantum correlation function:

1

2
^$ĥab~x!,ĥcd~x8!%&5^Sab

(0)~x!Scd
(0)~x8!&S

ab
( i ) ,P

( i )
cd

1
k̄2

N
„Gret•N•~Gret!

T
…abcd~x,x8!,

~14!

where the Lorentz gauge condition¹a(h̄ab21/2habhc
c)50

as well as some initial condition to fix completely the r
maining gauge freedom of the initial state should be imp
itly understood, and the stochastic source was rescaled
cording to Appendix C so that^jab@g;x)jcd@g;y)&j

5(1/N)Nabcd(x,y), where Nabcd(x,y) is the noise kerne
for a single field.

This result is analogous to that obtained in Ref.@59# for
linear QBM models and briefly summarized in Appendix
It should be emphasized that, similar to that case, there
two different contributions to the symmetrized quantum c
relation function. The first one is connected to the quant
fluctuations of the initial state of the metric perturbations a
we will refer to it asintrinsic fluctuations. The second con-
tribution, proportional to the noise kernel, accounts for
fluctuations due to the interaction with the matter fields, a
we will refer to it asinduced fluctuations. In the next section
we will formulate a generalized stability criterion for th
solutions of SCG which involves the quantum fluctuations
the metric. In particular we will see that the induced fluctu
tions will play an important role on that issue.

The noise kernel that we need for our discussions is
the particular case of a Minkowski background spaceti
with a scalar field in the Minkowski vacuum. It was obtain
in Ref. @54# and is given by Eq.~B7! in Appendix B.

IV. STABILITY CRITERION FOR SOLUTIONS
OF SEMICLASSICAL GRAVITY

In this section we will propose a criterion for analyzin
the stability of a given solution of SCG with respect to sm
quantum corrections, associated with quantized metric
turbations around a background geometry. As an impor
example, we will apply this to the particular case of
Minkowski background with N scalar fields in the
Minkowski vacuum state.

A. Stability of Minkowski space: Previous criteria

The stability of metric perturbations around a Minkows
spacetime interacting with quantum matter fields in th
Minkowski vacuum state was first studied in the context
SCG by Horowitz@16#. He considered massless conforma
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coupled scalar fields and found exponential instabilities
the linearized metric perturbations with characteristic tim
scales comparable to the Planck time. Those solutions
closely related to the higher derivative countertems requ
to renormalize the expectation value of the stress tensor
erator ~see, however, Appendix E for further comments
this point! and are analogous to the runaway solutions co
monly present in radiation reaction processes such as t
considered in classical electrodynamics@60,61#. It is gener-
ally believed that the runaway solutions obtained by Ho
witz are an unphysical artifact since they involve scales
yond the regime where SCG is expected to be reliable~in
fact, this statement can be naturally formulated when rega
ing general relativity as a low energy effective theory!.

Since the existence of terms with higher derivatives
time implies an increase in the number of degrees of freed
~in an initial value formulation, not only the metric and i
time derivative should be specified, but also its second
third order time derivatives!, it seems plausible that, by re
stricting to an appropriate subspace of solutions of the se
classical Einstein equation, one can reestablish the u
number of degrees of freedom in general relativity and, at
same time, get rid of all the unphysical runaway solutio
Following this line of thought Simon proposed that o
should restrict to solutions which result from truncating
order\ an analytic expansion in\ ~or equivalently inl p

2 , the
Planck length squared! @19,20#. Together with Parker he als
introduced a prescription to reduce the order of the semic
sical Einstein equation which was computationally conv
nient in order to obtain solutions corresponding to such tr
cated perturbative expansions in\ @22#.

On the other hand, Flanagan and Wald argued that
mon’s criterion based on truncating to order\ solutions
which correspond to analytic expansions in\ seemed too
restrictive since it only allowed small deviations with respe
to the classical solutions of the Einstein equations@21#. In
particular, one would miss those situations in which t
small semiclassical corrections build up to give significa
deviations at long times, such as those corresponding to
evaporation of a macroscopic black hole~with a mass much
larger than the Planck mass! by emission of Hawking radia-
tion. Furthermore, they illustrated with simple examples t
there are cases in which one expects that no solutions o
semiclassical equation are analytic in\. Therefore, they sug-
gested that, rather than trying to restrict the subspace of
ceptable solutions, one should simply transform the se
classical equation, by making use of Simon and Park
order reduction prescription, to a second order equa
which were equivalent to the original equation up to t
order in \ ~or l p

2) under consideration. All the solutions o
the second order equation should then be regarded as ac
able, even if they are not analytic in\. Obviously, one could
only extract physically reliable information from those sol
tions for scales much larger than the Planck length.

Yet another prescription was proposed by Anders
Molina-Parı´s and Mottola@3# on the stability of small metric
perturbations around the Minkowski spacetime. They got
2-7
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of the unphysical runaway solutions by working in Four
space and discarding those solutions which corresponde
4-momenta with modulus comparable or larger in abso
value than the Planck mass. However, it is not clear how
procedure could be generalized to situations where work
in Fourier space is not adequate, as in time-dependent b
ground spacetimes.

The consequences of both the order reduction prescrip
introduced by Simon and Parker and advocated by Flana
and Wald and the procedure employed by Andersonet al.are
rather drastic, at least when applied to the case o
Minkowski background, since one is just left with the sol
tions of the sourceless classical Einstein equation co
sponding to linear gravitational waves propagating
Minkowski spacetime. In fact, the situation was not co
pletely trivial for Flanagan and Wald, who were interested
analyzing whether the averaged null energy condit
~ANEC! was satisfied in SCG by considering perturbatio
of the Minkowski solution, because they also perturbed
state of the matter fields. The order reduction prescript
also seems to exclude those solutions which correspon
inflationary models driven entirely by the vacuum polariz
tion of the quantum matter fields@62#, such as the trace
anomaly driven inflationary model initially proposed by Sta
obinsky@63#. To keep this kind of models, Hawking, Herto
and Reall considered a less drastic alternative to deal
the runaway solutions@64,65#. Their procedure, which is
analogous to some methods previously employed in class
electrodynamics for radiation reaction problems@60#, is
based on discarding solutions which grow without bound
late times~see Appendix E for further discussions on this a
related issues!.

B. Generalized stability criterion

How does one characterize the quantum state of the m
ric perturbations? The first candidate is the expectation va
for the operator associated with the perturbation of the m

ric, ĥab . In fact, using a largeN expansion, Hartle and
Horowitz showed that the semiclassical Einstein equa
can be interpreted as the equation governing the evolutio
the expectation value of the metric to leading order in 1N
@34#. Taking that result into account, the study of the stabi
of a solution of SCG by linearizing the semiclassical Einst
equation with respect to small metric perturbations arou
that solution can be understood in the following way: Ta
an initial state for the metric perturbations with a small no
vanishing expectation value for the operatorĥab , let it
evolve, and see if the expectation value grows with
bound.

However, in addition to the expectation value ofĥab the
state of the metric perturbations will also be characterized
its fluctuations. In fact, if there was no interaction with ma
ter fields so that the state for the metric perturbations evol
unitarily, the set of quantum correlation functions~for the
operator ĥab) evaluated at equal times would complete
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characterize the quantum state of the metric perturbatio5

Let us now suppose that the evolution of the expectat
value is stable~i.e. that it does not grow unboundedly wit
time! or even that it vanishes for all times. It is clear that t
semiclassical solution cannot be regarded as stable with
spect to small quantum corrections if the fluctuations of
state for the metric perturbations grow without bound. The
fore, the stability criterion stated in Ref.@3# should be gen-
eralized: one also needs to take into account the fluctuati
According to Ref.@3#, a necessary condition for the stabilit
of a solution of SCG requires that no gauge invariant sca
quantity constructed just from the linearized metric pertur
tion hab ~which satisfies the semiclassical Einstein equat
linearized around the semiclassical solution under consi
ation! and its derivatives grows without bound. This criterio
can be interpreted as a condition on the stability of the
pectation value of the operatorĥab for the state of the metric
perturbations. We claim that, in addition, then-point quan-
tum correlation functions for the metric perturbations~start-
ing with n52) should also be stable. Considerations ba
on gauge-invariant variables will not be necessary beca
we will be dealing with expressions where the gauge fr
dom has been completely fixed.

As explained in Appendix C, to leading order in 1/N the
CTP generating functional for the metric perturbations exh
its a Gaussian form provided that a Gaussian initial state
the metric perturbations with vanishing expectation value
chosen. All then-point quantum correlation functions ca
then be obtained, to leading order in 1/N, from the two-point
quantum correlation function. Furthermore, any of the tw
point quantum correlation functions can in turn be expres
in terms of the symmetrized and antisymmetrized correlat
functions~the expectation values of the commutator and
ticommutator of the operatorĥab). To leading order in 1/N
the commutator is independent of the initial state of the m
ric perturbations and is given by 2ik@Gret(x8,x)
2Gret(x,x8)#. On the other hand, the expectation value
the anticommutator is given by Eq.~14! and is the sum of
two separate contributions: intrinsic and induced fluctu
tions.

The first contribution in Eq.~14! to the correlation func-
tion for the metric perturbations involves the solutions of t
homogeneous part of the Einstein-Langevin equation~11!,
which actually coincides with the linearized semiclassi
equation for the metric perturbations around the backgro
geometry. Similarly,Gret corresponds to the retarded prop
gator ~with vanishing initial conditions! associated with the

5Nevertheless, since the metric perturbations constitute an o
quantum system due to the interaction with the matter fields, t
state should be described by a density matrix~the reduced density
matrix obtained by taking the density matrix for the who
system—metric perturbations plus matter fields—and tracing
the matter fields! which exhibits a nonunitary and even non
Markovian evolution. Therefore, as explained in Ref.@59#, the cor-
relation functions involving different times may contain informatio
which cannot be obtained just from the correlation functions eva
ated at equal times.
2-8
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linearized semiclassical equation. Thus, solving the p
turbed semiclassical Einstein equation not only accounts
the evolution of the expectation value of the metric pert
bations, which will exhibit a nontrivial dynamics as long
we choose an initial state with nonvanishing expectat
value, but also provides nontrivial information, even for
state with a vanishing expectation value, about the com
tator as well as the intrinsic fluctuations of the metric. Th
implies that the analysis about the stability of the solutions
SCG can also be used to determine the stability of the me
perturbations with respect to intrinsic fluctuations.

The new observation we make here is that the indu
fluctuations can be important as well. Both the retard
propagator and the solutions of the linearized semiclass
Einstein equation depend, through the kernelH, on the ex-
pectation value of the commutator of the stress tensor op
tor on the background geometry and on the imaginary par
its time-ordered two-point function. However, they do n
involve the expectation value of the anticommutator, wh
drives the induced fluctuations. Furthermore, although
expectation values of the commutator and anticommut
are related by a fluctuation-dissipation relation in some p
ticular cases@51,54#, that is not true in general and the in
duced fluctuations need to be explicitly analyzed.

To sum up, when analyzing the stability of a solution
SCG with respect to small quantum corrections, one sho
also consider the behavior of both the intrinsic and indu
fluctuations of the quantized metric perturbations. Wher
information on the stability of the intrinsic fluctuations ca
be retrieved from an analysis of the solutions of the p
turbed semiclassical Einstein equation, the effect of the
duced fluctuations is properly accounted for only in the s
chastic semiclassical gravity framework based on
Einstein-Langevin equation.

C. Stability of Minkowski space from our criterion

We now turn to the application of the criterion propos
in the previous subsection to the particular yet important c
of Minkowski spacetime. As explained there, the existi
results in the literature can be interpreted as analysis of
stability of the expectation value of the operator associa
with the metric perturbations ~see, however, Refs
@17,34,66#!. On the other hand, we also need to include
our consideration the fluctuations, characterized by the t
point quantum correlation function.

Before proceeding to analyze the two-point quantum c
relation functions it is convenient to decompose the me
perturbations around Minkowski spacetime in the followi
way @3#:

hab5fhab1~¹(a¹b)2habh !c12¹(avb)1hab
TT , ~15!

whereva is a transverse vector andhab
TT is a transverse and

traceless symmetric tensor, i.e.¹ava50, ¹ahab
TT50 and

(hTT)a
a50. Similarly, any vector fieldza characterizing an

infinitesimal gauge transformation can be decomposed
za5¹az1Va, whereVa is a transverse vector field. It is the
clear that the vectorial and one of the scalar parts of
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metric perturbation corresponding tova and c respectively
can be eliminated by choosing a gauge transformation s
that Va52va and z52c/2 ~this will also imply a change
for f: f→f12hz).

When the Lorentz gauge¹a(hab21/2habhc
c)50 is im-

posed, we get the following conditions on the metric pert
bations: hvb50 and ¹bf50 ~which implies f5const).
Any vector field characterizing the remaining gauge transf
mations compatible with the Lorentz gauge satisfies the c
dition hza50, which implieshVa50 and¹ahz50. We
can see that a vectorial gauge transformation compat
with the Lorentz gauge can still be used to eliminate
vectorial part~now bothva andVa must be solutions of the
D’Alambertian equation!. On the other hand, a scalar gau
transformation such thathz52f5const. ~this is always
possible for Minkowski spacetime with a trivial—simpl
connected—topology! can be introduced to getf50. More-
over, an additional scalar gauge transformation compat
with the Lorentz gauge and leavingf invariant, which is
characterized by az which satisfies the D’Alambertian equa
tion hz50 @or, equivalently, z̃(p)50 for p2[pmpnhmn

Þ0 in Fourier space#, can be used to eliminate those cont
butions toc which correspond to Fourier modesc̃(p) with
p250 while leaving the remaining contributions unmodifie
From now on we will assume that the Lorentz gauge h
been imposed and that the additional gauge transformat
just mentioned have been carried out so that we are left o
with the tensorial components as well as those modes of
scalar componentc with p2Þ0 in Fourier space.

One could select the gauge mentioned in the previ
paragraph imposing suitable conditions on the redu
Wigner functional characterizing the initial state for the m
ric perturbations; see Appendix E for some additional co
ments on this point. However, as explained in Appendix
asymptotic initial conditions should be considered in order
get a finite result for the metric correlation functions. The
fore, rather than fixing the gauge for some initial state
some finite initial time, we will work in Fourier space im
plicitly assuming asymptotic initial conditions and fixing th
gauge as described above.

In order to analyze the two-point quantum correlati
function for the metric perturbations, we will make use of t
results mentioned in Sec. III and described in some m
detail in Appendix C. In particular, we will exploit the fac
that the stochastic correlation functions obtained with
solutions of the Einstein-Langevin equation coincide w
the quantum correlation functions for the metric perturb
tions. Moreover, according to Eq.~14!, the symmetrized two-
point quantum correlation function has two different cont
butions: intrinsic and induced fluctuations. We proceed n
to analyze each contribution separately.

1. Intrinsic fluctuations

The first term on the right-hand side of Eq.~14! corre-
sponds to the fluctuations of the metric perturbations due
the fluctuations of their initial state and is given by

^Sab
(0)~x!Scd

(0)~x8!&S
ab
( i ) ,P

( i )
cd, ~16!
2-9
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where we recall thatSab
(0)(x) is a solution of the homoge

neous part of the Einstein-Langevin equation~once the Lor-
entz gauge has been imposed! with the appropriate initial
conditions.

As mentioned in Sec. III and Appendix C, the homog
neous part of the Einstein-Langevin equation actually co
cides with the linearized semiclassical Einstein equation~7!.
Therefore, we can make use of the results derived in R
@3,16,21#, which are briefly summarized in Appendix E. A
described there, in addition to the solutions withGab

(1)(x)
50, there are other solutions that in Fourier space take

form G̃mn
(1)(p)}d(p22p0

2) for some particular values ofp0
2,

but they all exhibit exponential instabilities with Planckia
characteristic timescales.

In order to deal with those unstable solutions, one po
bility is to employ the order reduction prescription. We a

then left only with the solutions which satisfyG̃mn
(1)(p)50

~see Appendix E! . The result for the metric perturbations
the gauge introduced above can be obtained by solving

the Einstein tensor in that gauge:G̃ab
(1)(p)5(1/2)p2@ h̃mn(p)

21/2hmnh̃r
r(p)#. Those solutions forh̃mn(p) simply corre-

spond to free linear gravitational waves propagating
Minkowski spacetime expressed in the transverse and tr
less ~TT! gauge. When substituting back into Eq.~16! and
averaging over the initial conditions we simply get the sy
metrized quantum correlation function for free gravitons
the TT gauge for the state given by the reduced Wigner fu
tion. As far as the intrinsic fluctuations are concerned, i
clear that the order reduction prescription is rather drastic
least in the case of Minkowski spacetime, since no effe
due to the interaction with the quantum matter fields are l
The method employed in Ref.@3#, although slightly different,
yields the same result.

A second possibility, proposed by Hawkinget al. @64,65#,
is to impose boundary conditions which discard the runaw
solutions that grow unboundedly in time and correspond
special prescription for the integration contour when Fou
transforming back to spacetime coordinates~see Appendix E
for a more detailed discussion!. Following that procedure we
get, for example, that for a massless conformally coup

scalar field withā506 andb̄.0 the intrinsic contribution to
the symmetrized quantum correlation function coincid
with that of free gravitons plus an extra contribution for t
scalar part of the metric perturbationsf which renders
Minkowski spacetime stable but plays a crucial role in p
viding a graceful exit for inflationary models driven by th
vacuum polarization of a large number of conformal fie
~such a massive scalar field would not be in conflict w
present observations because, for the range of param
usually considered, the mass would be far too large to h
observational consequences@64#!.

6For the massless case one can always haveā50 by choosing the
appropriate value of the renormalization scale, as explained in
pendix B.
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2. Induced fluctuations

The second term on the right-hand side of Eq.~14! corre-
sponds to the fluctuations of the metric perturbations indu
by the fluctuations of the quantum matter fields and is giv
by

k̄2

N
„Gret•N•~Gret!

T
…abcd~x,x8!

5Nk2
„Gret•N•~Gret!

T
…abcd~x,x8!, ~17!

where Nabcd(x,x8) is the noise kernel accounting for th
fluctuations of the stress tensor operator, a
(Gret)abcd(x,x8) is the retarded propagator with vanishin
initial conditions associated with the integro-differential o
eratorLabcd(x,x8) defined in Eq.~C10! of Appendix C.

As shown in Appendix C, the symmetrized two-poi
quantum correlation function coincides with the stochas
correlation function obtained from solutions of the Einste
Langevin equation. In fact, the contribution corresponding
the induced quantum fluctuations, given by Eq.~17!, is
equivalent to the stochastic correlation function obtained
considering just the inhomogeneous part of the solution
the Einstein-Langevin equation: the second term on
right-hand side of Eq.~13!. Taking all that into account, it is
clear that we can make use of the results for the metric c
relations obtained in Ref.@54# by solving the Einstein-
Langevin equation~the homogeneous part of the solutio
was not considered there!. In fact, one should simply take
N51 to transform our expressions to those of Ref.@54# and,
similarly, multiply the noise kernel in the expressions of th
reference byN so that they can be used here, which follow
straightforwardly from the fact that we haveN independent
matter fields.

The same kind of exponential instabilities in the runaw
solutions of the homogeneous part of the Einstein-Lange
equation~the linearized semiclassical Einstein equation! also
arise when computing the retarded propagatorGret. In order
to deal with those instabilities, similar to the case of t
intrinsic fluctuations, one possibility is to make use of t
order reduction prescription. The Einstein-Langevin equat
becomes thenGab

(1)5kjab . The second possibility, following
the proposal of Hawkinget al., is to impose boundary con
ditions which discard the exponentially growing solutio
and translate into a special choice of the integration cont
when Fourier transforming back to spacetime coordinates
expression for the propagator. In fact, it turns out that
propagator which results from adopting that prescription
incides with the propagator that was employed in Ref.@54#.
However, it should be emphasized that this propagator is
longer the retarded one since it exhibits causality violatio
at Planckian scales. A more detailed discussion on all th
points can be found in Appendix E.

Following Ref. @54#, the Einstein-Langevin equation ca
be entirely written in terms of the linearized Einstein tens
G̃mn

(1)(p) as follows:

Fmnab~p!G̃(1)ab~p!5k̄ j̃mn~p!, ~18!
p-
2-10
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INDUCED QUANTUM METRIC FLUCTUATIONS AND THE . . . PHYSICAL REVIEW D 70, 044002 ~2004!
which simply corresponds to adding the stochastic sourc
the linearized semiclassical Einstein equation~7!, where
Fmnab(p) was given by Eq.~8!. One can then solve th
stochastic equation forG̃mn

(1)(p) and obtain its correlation
function @54#:

^G̃mn
(1)~p!G̃rs

(1)~p8!&j

5k̄2D̃mnab~p!^j̃ab~p!j̃gd~p8!&jD̃rsgd~p8!

5
k̄2

N
D̃mnab~p!Ñabgd~p!D̃rsgd~2p!~2p!4d~p1p8!,

~19!

In the last equality we have taken into account translatio
invariance. The noise kernelÑabgd(p) is given by Eq.~B7!

in Appendix B, andD̃mnab(p) is the propagator that result
from inverting Fmnab(p) ~see Appendix E for a discussio
on the uniqueness of this propagator! and is given by

D̃mnab~p!5
1

F1~p!
hm(ahb)n2

F2~p!

F1~p!F3~p!
p2Pmnhab ,

~20!

with Pmn5hmn2pmpn /p2, F1(p) andF2(p) given by Eqs.
~9! and ~10!, and F3(p)5F1(p)13p2F2(p). On the other
hand, if we make use of the order reduction prescription,
get

^G̃mn
(1)~p!G̃rs

(1)~p8!&j5k̄2^j̃mn~p!j̃rs~p8!&j

5
k̄2

N
Ñmnrs~p!~2p!4d~p1p8!.

~21!

Note that Gmn
(1)(p) is gauge invariant when perturbing

Minkowski background because the background tensorGab
(0)

vanishes and, hence,LzWGab
(0) also vanishes for any vecto

field zW .
Finally, using the expression for the linearized Einste

tensor in the Lorentz gauge,G̃mn
(1)5(1/2)p2h̃̄mn with h̄mn

5hmn2(1/2)hmnha
a , we obtain the correlation function fo

the metric perturbations in that gauge:

^ h̃̄mn~p! h̃̄rs~p8!&j5
4k̄2

N

1

~p2!2
D̃mnab~p!Ñabgd~p!

3D̃rsgd~2p!~2p!4d~p1p8!

~22!

or

^ h̃̄mn~p! h̃̄rs~p8!&j5
4k̄2

N

1

~p2!2
Ñmnrs~p!~2p!4d~p1p8!,

~23!
04400
to
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if the order reduction prescription is employed. It should
emphasized that, contrary to the linearized Einstein ten
Gab

(1) , the metric perturbationhab is not gauge invariant. This
should not pose a major problem provided that the gauge
been completely fixed.

The correlation functions in spacetime coordinates can
easily derived by Fourier transforming Eq.~22! or ~23!.
However, there is apparently an infrared divergence atp2

50, at least for the massless case. For the massive cas
result is finite because the noise kernelÑabgd(p) is propor-
tional to u(2p224m2), so thatm2.0 guarantees thatp2

50 lies outside the domain of integration. On the other ha
in the massless case the terms of the formpmpnprps /(p2)2

appearing when substituting the noise kernel in Eqs.~22! and
~23!, give rise to infrared divergences when computing t
Fourier transform. In fact, even if we exclude the massl
case, the result would be finite, but it would become lar
and larger as we chose a positive but arbitrarily small ma
In any case, such an infrared divergence seems to be ju
gauge artifact.7

We can conclude that, once the instabilities giving rise
the unphysical runaway solutions have been properly d
with, the fluctuations of the metric perturbations around
Minkowski spacetime induced by the interaction with qua
tum scalar fields are indeed stable~if instabilities had been
present, they would have led to a divergent result when F
rier transforming back to spacetime coordinates!. It should
be emphasized that no ultraviolet divergences related to
coincidence limit of the noise kernel appeared in the pre
ous analysis because we implicitly assumed asymptotic
tial conditions when working in Fourier space, as explain
in Appendix D. Furthermore, in contrast to the intrinsic flu
tuations, even when using the order reduction prescrip
there is still a nontrivial contribution to the induced fluctu
tions due to the quantum matter fields.

V. DISCUSSION

In this paper we make the point that an analysis of
stability of any solution of SCG with respect to small qua

7This is suggested by the fact that neither the correlation func
of the linearized Einstein tensor nor that of the linearized Riem
tensor exhibits those divergences. The finite result for the corr
tion function of the Einstein tensor follows immediately from Eq
~19! and~21!, whereas for the Riemann tensor the potentially div
gent contributions coming from the terms proportional
pmpnprps /(p2)2 in the correlation function for the metric pertur
bations involve exterior products withpa and, thus, vanish~of
course the finite result for the Einstein tensor could also have b
inferred from the finite result for the Riemann tensor!. Alternatively,
one can eliminate the terms giving rise to divergences in Eqs.~22!
and ~23! by performing a gauge transformation of the for

h̃mn(p)→h̃mn(p)1pmpn /p2, which is generated by a vector fiel

z̃m(p)5pm/p2 @consisting of just a scalar partz̃(p)51/p2]. Such a
gauge transformation does not preserve the Lorentz condit
Therefore, it seems that the infrared divergence is simply indica
a singular massless limit for the Lorentz gauge in the case un
consideration.
2-11
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tum corrections should consider not only the evolution of
expectation value of the metric perturbations around that
lution, but also their fluctuations, encoded in the quant
correlation functions. Making use of a largeN expansion,
where N is the number of matter fields, the symmetriz
two-point quantum correlation function for the metric pertu
bations can be decomposed into two distinct parts: intrin
fluctuations due to the fluctuations of the initial state of t
metric perturbations itself and fluctuations induced by th
interaction with the matter fields. The stability of the fir
contribution turns out to be closely related to the stability
linearized perturbations of the semiclassical Einstein eq
tion, whereas the second contribution is equivalent to
stochastic correlation functions in stochastic semiclass
gravity obtained from solutions of the Einstein-Langev
equation.

As a specific example, we analyzed the two-point qu
tum correlation function for the metric perturbations arou
the Minkowski spacetime interacting withN scalar fields ini-
tially in the Minkowski vacuum state. Once the ultraviol
instabilities~discussed in Appendix E! which are ubiquitous
in SCG and are commonly regarded as unphysical have b
properly dealt with by using the order reduction prescript
or the procedure proposed in Refs.@64,65#, both the intrinsic
and the induced contributions to the quantum correlat
function for the metric perturbations are found to be stab
In fact, one gets an infrared divergence for the massless
when computing the inverse Fourier transform for the
duced contribution to the correlation function of the metr
but that seems to be purely a gauge effect, as argue
footnote 7.

The symmetrized quantum correlation function for t
metric perturbations obtained is in agreement with the r
part of the propagator obtained by Tomboulis in Ref.@67#
using a largeN expansion8 ~he actually considered fermioni
rather than scalar fields, but that just amounts to a chang
one coefficient!. Tomboulis used thein-out formalism rather
than the CTP formalism employed in this paper. Nevert
less, his propagator is equivalent to the time-ordered C
propagator when asymptotic initial conditions are conside
because in Minkowski spacetime there is no real part
creation and thein andout vacua are equivalent~up to some
phase which is absorbed in the usual normalization of
in-out propagator!. The use of a CTP formulation is, how
ever, crucial to obtaining true correlation functions rath
than transition matrix elements in dynamical~nonstationary!
situations~such as in an expanding Robertson-Walker ba
ground geometry!, where thein-out scattering matrix might
not even be well defined at all.

As we pointed out in the Introduction, Ford and collab
rators have stressed the importance of the metric fluctuat
and investigated some of their physical implications@4–11#.
They have considered both intrinsic@6,9–11# and induced

8The imaginary part can be easily obtained from the expecta
value for the commutator of the metric perturbations, which
given by 2ik@Gret(x8,x)2Gret(x,x8)#, as briefly explained in Ap-
pendix C.
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fluctuations@4–8#, which they usually refer to asactiveand
passivefluctuations respectively. However, they usually co
sider these two kinds of fluctuations separately and have
provided a unified treatment where both of them can be
derstood as different contributions to the full quantum cor
lation function. Moreover, they always neglect the nonlo
term which encodes the averaged back reaction on the m
perturbations due to the modified dynamics of the ma
fields generated by the metric perturbations themselv9

Their justification is by arguing that those terms would be
higher order in a perturbative expansion. That is indeed
case when considering a Minkowski background if the or
reduction prescription is employed, but it is not cle
whether it remains true under more general conditions.
fact, as mentioned in Ref.@68#, for the usual cosmologica
inflationary models the contribution of the nonlocal term
can be comparable or even larger than that of the remain
terms. Finally, in order to deal with the singular coinciden
limit of the noise kernel, in Ref.@5# Kuo and Ford opted to
subtract a number of terms including the fluctuations for
Minkowski vacuum. Even when no such subtraction w
performed~because a method based on multiple integrati
by parts was used instead! @6,69,70#, they usually discard the
fluctuations for the Minkowski vacuum. Therefore, the info
mation on the metric fluctuations around a Minkowski bac
ground when the matter fields are in the vacuum state
missing in their work.

We close this section by recalling a couple of partia
open issues for which either a better understanding or a
ter treatment would be desirable. The first issue is the sin
lar coincidence limit for the noise kernel. It seems clear th
when properly treating the noise kernel as a distribution
finite result for the metric correlation function is obtaine
except for some divergent boundary terms at the initial tim
There is a natural physical interpretation: the completely
correlated initial state that was considered becomes pa
logical when the number of modes of the environment
infinite. A simple way to overcome this problem and obtain
finite result for the correlation function is to switch on th
interaction smoothly so that the modes of the environm
with arbitrarily high frequencies become correlated with t
system in a nonsingular way. However, in order to prese
the conservation of the source in the Einstein-Lange
equation, which guarantees the integrability of the equat
through the Bianchi identity, the interaction has to be turn
on adiabatically and asymptotically past initial conditions a
required. Therefore, other procedures should be devise
address situations that require specifying the initial con
tions at a finite initial time.

The other question which deserves further study is
procedure employed to deal with the runaway solutions d
cussed in Appendix E. The order reduction prescription
rather drastic as its net outcome is to discard entirely
contribution from the dissipation kernel~as far as the expec
tation value and the symmetrized two-point correlation fun
n

9In those references dealing with stochastic gravity this term
usually called the dissipation term by analogy with QBM model
2-12
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INDUCED QUANTUM METRIC FLUCTUATIONS AND THE . . . PHYSICAL REVIEW D 70, 044002 ~2004!
tion are concerned!, which encodes the averaged back re
tion of the matter fields on the metric perturbations. As
the method employed by Hawkinget al. in Refs.@64,65#, we
find the fact that the choice of the physical solutions a
given instant of time depends on the far future somew
unsatisfactory, and discarding solutions which grow u
boundedly in time could get rid of other possible instabiliti
which are physically meaningful. Furthermore, it is not cle
whether both procedures could be implemented in a gen
case.

To gain insight into some of the previous aspects, an
teresting possibility is to consider an analogous situation
QED with the electromagnetic field regarded as an o
quantum system interacting with an environment constitu
by the charged quantum fields. In fact, the analogy betw
SCG and the equation for the expectation value of the e
tromagnetic field to leading order~order 1! in a largeN ex-
pansion forN charged quantum fields has been discussed
a number of authors@17,18,34#. One step further was con
sidered in Ref.@45#, where the evolution of the expectatio
value of the electromagnetic field was considered to nex
leading order in 1/N ~order 1/N). The two-point quantum
correlation functions~the CTP propagators! for the electro-
magnetic field to leading order in 1/N ~order 1/N), which
play a crucial role there, are completely analogous to
quantum correlation functions for the metric perturbatio
considered here.
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APPENDIX A: INTRINSIC AND INDUCED
FLUCTUATIONS IN A SIMPLE QUANTUM BROWNIAN

MOTION MODEL

In this appendix we illustrate the importance of the flu
tuations induced by the environment when considering
quantum fluctuations for an open system. As an example
will use a simple model which was analyzed in some de
in Ref. @59#: a linear quantum Brownian motion~QBM!
model that consists of a harmonic oscillator, which will
referred to as the system, bilinearly coupled to a set of h
monic oscillators, which constitute the environment.

In Ref. @59# it was shown that a stochastic descripti
based on a Langevin type equation could be used to
information on the quantum properties of the open system
particular, the symmetrized two-point quantum correlat
function for the system turns out to be equivalent to
correlation function obtained in the context of the stocha
description:

1

2
^$x̂~ t1!,x̂~ t2!%&5^^X~ t1!X~ t2!&j&Xi ,pi

, ~A1!
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where ^•••& denotes the expectation value with respect
the quantum state of the system,x̂(t) is the position operator
for the system in the Heisenberg picture,^•••&j denotes the
average over all possible realizations of the stochastic so
j(t) and ^•••&Xi ,pi

is the average over all possible initia
conditions for the solutions of the Langevin equation distr
uted according to the reduced Wigner function for the init
state of the system. The functionsX(t) appearing inside the
stochastic averages are solutions of the Langevin equa
L•X5j, where L(t,t8)5M (d2/dt21V ren

2 )d(t2t8)
1H ren(t,t8), with H ren being the renormalized kernel ap
pearing in the real part of the influence action and•[* t i

t fdt

throughout this appendix. Herej(t) is a Gaussian stochasti
source with vanishing expectation value and correlat
function ^j(t)j(t8)&j5N(t,t8) where N(t,t8) is the noise
kernel, being the kernel appearing in the imaginary part
the influence action~see Ref.@59# for further details!. When
the environment is initially in a thermal equilibrium state, th
noise kernel is explicitly given by N(t,t8)
5*0

`dvI (v)cothbv cosv(t2t8), whereI (v) is the spectral
density function, which characterizes the frequency distri
tion of the oscillators in the environment.

The solution of the Langevin equation can be written
X(t)5X0(t)1(Gret•j)(t), whereX0(t) is a solution of the
homogeneous part of the Langevin equation which conta
all the information about the initial conditions andGret(t,t8)
is the retarded propagator with vanishing initial condition
Substituting the previous expression forX(t) into Eq. ~A1!
and using the properties of the stochastic source, one ob
the following result for the two-point quantum correlatio
function:

1

2
^$x̂~ t1!,x̂~ t2!%&5^X0~ t1!X0~ t2!&Xi ,pi

1@Gret•N•~Gret!
T#~ t1 ,t2!, ~A2!

where the first contribution corresponds to theintrinsic fluc-
tuations connected to the dispersion of the initial state of
system, and the term proportional to the noise kernel refle
the fluctuationsinducedby the system’s interaction with th
environment. Note the close analogy between Eq.~A2! and
the expression for the symmetrized two-point quantum c
relation function in the gravitational case, given by Eq.~14!.

Let us specialize to the case of an ohmic environment,
the case in which the spectral distribution function for t
frequencies of the oscillators in the environment is of t
form I (v)5Mgv, whereM is the mass of the system ha
monic oscillator andg is some constant proportional to th
square of the system-environment coupling constant. T
the kernel H ren becomes local withH ren(t,t8)5Mgd8(t
2t8) and the homogeneous solutionX0(t) takes on the fol-
lowing simple form:

X0~ t !5e2 ~g/2!(t2t i )FXicosṼ~ t2t i !

1S pi

MṼ
1

g

2Ṽ
Xi D sinṼ~ t2t i !G , ~A3!
2-13
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where Ṽ5AV ren
2 2(g/2)2 and we considered the unde

damped case (V ren.g/2). A similar result also holds for the
overdamped case with the trigonometric functions repla
by the hyperbolic functions. As a result of the exponen
factor, X0(t) and hence the intrinsic fluctuations will deca
at times much larger than the relaxation time 2g21.10 In fact,
if we take the limit t i→2`, the contribution to the two-
point correlation function from the intrinsic fluctuation
completely vanishes and one is just left with the induc
fluctuations. If the initial state of the environment were
thermal state, the dissipation kernel@the antisymmetric par
of H ren(t,t8)] and the noise kernel are related by
fluctuation-dissipation relation which characterizes the b
ance between the noise induced by the environment and
dissipation effect so that the two-point correlation functi
remains bounded in time.

From the example employed in this appendix, it is cle
that the induced fluctuations play an important role wh
considering correlation functions in open quantum syste
In fact, for asymptotically past initial conditions they becom
the entire contribution to the correlation function since t
intrinsic fluctuations are completely damped by the dissi
tion. In a more general context, such as the gravitatio
case, the dissipation kernel will not damp the intrinsic flu
tuations, but the induced ones will still play an importa
role.

APPENDIX B: DISSIPATION AND NOISE KERNELS
IN MINKOWSKI SPACETIME

In this appendix we provide the expressions for the dis
pation and noise kernels of a free real scalar field whe
Minkowski background spacetime is considered and the s
of the fields is the Minkowski vacuum. The details of the
derivation can be found in Ref.@54#. All the expressions in
this appendix are given in Fourier space and derived by m
ing use of the translational invariance in terms of the iner
coordinates employed for the Minkowski background. Giv
any expressionÃ(p), the corresponding expression in spac
time coordinatesA(x2y) can be simply obtained from

A~x2y!5E d4p

~2p!4
eipxÃ~p!. ~B1!

The linear combination22(M1H) with M andH given
by Eqs.~5!,~6! is commonly referred to as the polarizatio
tensor in an analysis based on linear response theory. We
use the term ‘‘dissipation kernel,’’ by analogy with the usu
terminology employed in the context of open quantu
systems.11 In the case under consideration the local ker

10The existence of such a decay still holds for the overdam
case provided thatV renÞ0, otherwise there is a constant contrib
tion that does not decay in time.

11Strictly speaking, the term dissipation kernel commonly refers
the antisymmetric part of the kernel2H ren. Making an abuse of
language, we will employ this term to refer to the whole kern
22H ren plus the local and symmetric kernel22M ren.
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M ren
mnab(x2y) is proportional to the Einstein tensor and c

be absorbed in a finite renormalization of the gravitatio
coupling constant. The expression in Fourier space for
nonlocal kernelH ren

mnab(x2y) is

H̃ ren
mnab~p!5

1

2 S PmaPnb2
1

3
PmnPabD @H̃A~p!22ā#

1PmnPab@H̃B~p!22b̄#, ~B2!

whereā andb̄ are constants which include the renormaliz
parametersa andb appearing in Eq.~1!, Pmn is the projector
orthogonal topm, given byPmn5hmn2pmpn /p2, and

H̃A~p!5
1

1920p2 H S 114
m2

p2 D 2F2 ip sgnp0

3u~2p224m2!A114
m2

p2
1w~p2!G2

8

3

m2

p2 J ,

~B3!

H̃B~p!5
1

288p2 H F3S j2
1

6D1
m2

p2 G 2F2 ip sgnp0

3u~2p224m2!A114
m2

p2
1w~p2!G2

1

6

m2

p2 J ,

~B4!

wherej is the parameter characterizing the coupling of t
scalar field to the spacetime curvature through a term of
form 2(j/2)Rf2 in the matter Lagrangian, andw(p2) is
given by

w~p2!5E
0

1

da lnU11
p2

m2
a~12a!U

5221A114
m2

p2
lnUA114

m2

p2
11

A114
m2

p2
21
U

3uS 114
m2

p2 D 12A2124
m2

p2

3arccotanSA2124
m2

p2
D uS 2124

m2

p2 D .

~B5!
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Using the renormalized version of Eq.~4! in Fourier space,
the dependence on the metric of the renormalized expe
tion value of the stress tensor operator can be written enti
in terms of the linearized Einstein tensor as follows:

^T̂mñ@g1h;p!& ren

52PmnS 2
1

3
H̃A~p!1

2

3
ā2H̃B~p!12b̄ D ~G̃(1)!a

a~p!

1
2

3
Pa

a@H̃A~p!22ā#~G̃(1)!mn. ~B6!

Following Ref. @54#, we have employed a renormalizatio
scheme in which the renormalization scale is fixed tom2

5m2. This is, of course, not possible for the massle
case. Nevertheless, the expression for the massless
can still be obtained by adding a term ln(m2/m2)
to Eq. ~B5! and subtracting (1920p2)21ln(m2/m2) and
(j21/6)2(96p2)21ln(m2/m2) respectively from 2ā and 2b̄
in Eqs. ~B2! and ~B6! before taking the limitm2→0. The
renormalized parameters will then depend on the arbitr
scalem. If desired, it is always possible to chooseā50 by
fixing the renormalization scalem to some appropriate value

Finally, the expression for the noise kernel in Four
space is given by

Ñmnrs~p!

5
1

2880p
u~2p224m2!A11

4m2

p2 H 1

4 S 11
4m2

p2 D 2

3~p2!2~3Pm(rPs)n2PmnPrs!110F3S j2
1

6D
1

m2

p2 G 2

~p2!2PmnPrsJ . ~B7!

APPENDIX C: STOCHASTIC AND QUANTUM
CORRELATION FUNCTIONS

It was initially believed that some kind of environmen
induced decoherence mechanism was required to realize
stochastic dynamics described by the Einstein-Lange
equation@51,52#. Later, in Ref.@59# it was shown that, even
in the absence of decoherence, a stochastic description b
on a Langevin type equation contains nontrivial informati
on fully quantum properties of simple linear open quant
systems. In particular, the reduced Wigner function of
system~see, for instance, Ref.@71# for the definition and
properties of the Wigner function! can be expressed as
double average for the solutions of the Langevin equa
with respect to both the different realizations of the stoch
tic source and the initial conditions, which are distribut
according to the reduced Wigner function at the initial tim
This expression can then be used to derive the master e
tion governing the time evolution of the reduced Wign
function ~or, equivalently, the reduced density matrix!. Fur-
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thermore, the stochastic correlation functions for the so
tions of the Langevin equation are actually equivalent
quantum correlation functions for the system observable

Although the previous results were obtained in Ref.@59#
for linear open quantum systems, they can be extended to
case of nonlinear quantum field theories provided that so
kind of Gaussian approximation for the corresponding infl
ence functional is considered. In fact, in Ref.@58# it will be
explained in detail how those results can indeed be show
hold for the metric fluctuations around a given backgrou
spacetime by properly treating the gauge freedom and
corresponding dynamical constraints. More precisely, wh
consideringN free quantum matter fields weakly interactin
with the gravitational field in the sense that the gravitatio
coupling constant times the number of fields remains c
stant in the largeN limit, the stochastic correlation function
can be shown to coincide with the leading order contribut
to the quantum correlation functions of the metric perturb
tions in a largeN expansion.

Here we briefly sketch, in the context of a largeN expan-
sion, some of the key aspects in the derivation of the re
stated above. The details will appear in Ref.@58# and were
partially included in Ref.@72#.

We will consider metric perturbations around a globa
hyperbolic background spacetime~that will be specialized to
Minkowski spacetime at some point! regarded as an ope
quantum system interacting with the quantum matter fie
which constitute the environment. In particular we will co
sider N minimally coupled free scalar fields, but the ma
result can be generalized to nonminimally coupled sca
fields or even vectorial and fermionic fields. The action f
the combined system is the sum of the gravitational actionSg
plus the action for the matter fieldsSm. The gravitational
action is given by the usual Einstein-Hilbert term, the cor
sponding boundary term~which should be included to have
well-defined variational problem and will later be importan!
and the usual counterterms required to renormalize the di
gences arising when functionally integrating the mat
fields:

Sg5
N

2k̄
E

M
d4xA2g̃R~ g̃!1

N

k̄
E

S5]M
d3xAg̃SKa

a~ g̃!

1~counterterms!, ~C1!

where g̃ab5gab1hab is the perturbed metric,gab is the
background metric and the gravitational coupling const
k58p/mp

2 was rescaled tok̄/N so that the product of the
rescaled gravitational constant times the number of fie
remains constant in the limitN→`. The action for the mat-
ter fields is

Sm52(
j 51

N E
M

d4xA2g̃
1

2
~ g̃ab¹aw j¹bw j1m2w j

2!,

~C2!

wherem is the mass of the scalar field. In fact, we will n
take the limitN→`, but rather use the expansion in 1/N as
a useful way to organize our computation and the contri
2-15
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tions that are included. At the very end one can always s
stitute back the rescaled gravitational constant in terms of
physical one.

The CTP generating functional for the metric perturb
tions, from which true expectation values and correlat
functions can be obtained@35,37–41#, is given by

ZCTP@Jab ,Jcd8 #

5E DhabDhcd8 eiSg[h] 2 iSg[h8]eiJ•h2 iJ8•h8r r@hab
( i ) ,hcd8

( i )#

3)
j 51

N E Dw jDw j8e
iSm[w j ,h] 2 iSm[w j8 ,h8]r@w j

( i ) ,w j8
( i )#,

~C3!

where we have used the notation A•B
[*d4yA2g(y)Aab(y)Bab(y). The density matrices for the
initial state of the fields and the metric perturbations, wh
are all assumed to be initially uncorrelated, arer@w j

( i ) ,w j8
( i )#

and r r@hab
( i ) ,hcd8

( i )# respectively. The gauge freedom in th
path integrals for the metric perturbations should be prop
treated, as briefly described below.

The first step is to integrate out the matter fields using
influence functional formalism of Feynman and Vernon
open quantum systems@49,50#. The influence actionSIF is
defined as

eiSIF[h,h8]5)
j 51

N E Dw jDw j8e
iSm[w j ,h] 2 iSm[w j8 ,h8]

3r@w j
( i ) ,w j8

( i )#. ~C4!

Up to quadratic order in the metric perturbations it is giv
by @51,52#

SIF@Sab ,Dab#5NS Z•D1D•~H1M !•S1
i

8
D•N•D D ,

~C5!

where we have introduced the semisum and difference v
ables Sab5(hab1hab8 )/2 and Dab5hab8 2hab , Zab(x)

52(1/2)^T̂ab@ŵ,g;x)& and the kernelsH, M and N were
defined in Eqs.~5!, ~6! and~12!. As explained in Sec. II, the
kernelsH and M exhibit divergences that are canceled
renormalizing the gravitational coupling constant and
cosmological constant in the bare gravitational action as w
as the coupling constants of the counterterms quadratic in
curvature. We will not need terms of higher order in t
metric perturbations because they give contributions to
connected part of the CTP generating functional~given by
WCTP

(LO)52 i ln ZCTP
(LO)) of higher order in 1/N. This is also true

for the terms in the gravitational actionSg , which implies
that we do not have to consider graviton vertices. In orde
show that, when computing the connected part of the C
generating functional to leading order in 1/N, it is indeed
sufficient to keep just those terms in the gravitational act
and the influence action which are at most quadratic in
metric perturbations, one can first compute the genera
04400
b-
e

-
n

h

ly

e
r

ri-

e
ll
he

e

o
P

n
e
g

functional resulting from that approximation,ZCTP
(LO) , and

then show that including terms of higher order in the met
perturbations would yield corrections to the connected p
of the generating functional of higher order in 1/N.

We now specialize to the case of a Minkowski bac
ground, i.e.gab5hab , and consider a family of Cauchy hy
persurfaces which foliate the spacetime into constant t
hypersurfaces of a given inertial frame in Minkowski spac
time. The initial states for the metric perturbations and
matter fields are specified on one of these hypersurfa
which will be denoted bySi . Another hypersurface is chose
as the final hypersurfaceSf so that any spacetime region o
interest lies between them. Then we integrate by parts th
contributions to the Einstein-Hilbert term of the gravitation
action involving two derivatives acting on the same fac

and impose the Lorentz gauge condition¹ah̄ab50 @we recall
that the indices are raised and lowered using the backgro
Minkowski metric, all the covariant derivatives are taken

this background metric andĀab[Aab2(1/2)habAc
c]. The

boundary terms resulting from integration by parts are c
celed by the boundary terms included in the gravitatio

action12 and the expressionS̃g@h,h8#5Sg@h#2Sg@h8# up to
quadratic order in the metric perturbations becomes

S̃g@Sab ,Dcd#5
N

4k̄
E

M
d4xA2g¹aDbc¹aS̄bc

1~counterterms!. ~C6!

Next, we introduce the momentum canonically conjugate
Dab ,13 which is given by

Pab@Scd#5
dS̃g

dḊab

52
N

4k̄
S̄
˙ ab, ~C7!

where we employed the notationȦab[nc¹cAab for the co-
variant derivative with respect to the normalized and futu
directed timelike vectorna orthogonal to the family of
Cauchy hypersurfaces including the initial and final hyp
surfacesSi andSf . Finally, one can integrate again by par
so that

12In general, one should be careful with the contributions from
timelike boundaries as well as the edges connecting the spac
and timelike boundaries@79#. Here we will assume that the timelik
boundaries are infinitely far away and the value of the metric p
turbations decays at large distances so that only the contribut
from the spacelike boundaries are relevant.

13Throughout this section we will neglect the contribution to t
momentum from the counterterms; see Appendix E for further d
cussion of this point.
2-16
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Sg@Sab ,Dcd#52
N

4k̄
E

M
d4xA2gDbc¹a¹aS̄bc

1E
Sf,]M

d3xAgSf
P ( f )

abDab
( f )

2E
Si,]M

d3xAgSi
P ( i )

abDab
( i )1~counterterms!,

~C8!

where the indices~i! and~f! denote quantities evaluated onSi

andSf respectively. It should be emphasized thathab
( i ) or hab

( f )

simply correspond to the spacetime metric evaluated
those hypersurfaces and should not be confused with the
duced metric in the usual Arnowitt-Deser-Misner~ADM !
formulation. Furthermore, the contribution forSf will not be
relevant because, when computing the CTP generating f
tional, we should takehab5hab8 ~which impliesDab50) on
the final hypersurface.

Changing to the new current variablesJab
S 5(Jab

1Jab8 )/2 and Jab
D 5Jab8 2Jab , and functionally integrating

with respect toDcd , one gets the following expression fo
the generating functional:

ZCTP
(LO)@Jab

S ,Jcd
D #

5KE DSabexpF2
N

2k̄2 S L•S2
2k̄

N
JSD •N 21

•S L•S

2
2k̄

N
JSD GeiJD

•SWr@Sab
( i ) ,P ( i )

cd#, ~C9!

where the functional integral with respect toSab is restricted
to those configurations that satisfy the Lorentz gauge co
tion, and we introduced the integro-differential operator

Labcd~x,x8!5~1/2!~hachbd2habhcd/2!hd~x2x8!

12k̄Habcd
(ren)~x2x8!12k̄Mabcd

(ren)~x2x8!.

~C10!

K is some normalization constant which can be eventu
determined by demanding thatZCTP

(LO)@Jab
S ,Jcd

D #51 when we
takeJab

S 5Jcd
D 50, andWr@Sab

( i ) ,P ( i )
cd# is the reduced Wigne

functional for the metric perturbations at the initial tim
which is defined in terms of the reduced density matrix at
initial time as

Wr@Sab
( i ) ,P ( i )

cd#5~1/2p!E dDcd
( i )exp~ iP ( i )

cdDcd
( i )!r r@Sab

( i ) ,Dcd
( i )#.

~C11!

The Lorentz gauge condition does not fix completely
gauge freedom under local diffeomorphisms. However, it
be completely fixed by imposing additional gauge fixi
conditions on the state of the metric perturbations at the
tial time. Thus, from now on it should be understood th
some appropriate condition such as the transverse and t
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less gauge has been imposed on the reduced density m
~or, equivalently, the reduced Wigner functional! at the initial
time.

Introducing a suitable functional change, the CTP gen
ating functional can be rewritten in the following way whe
taking Jab

S 50:

ZCTP
(LO)@Jab

S 50,Jcd
D #5^^eiJD

•S&j&S
ab
( i ) ,P

( i )
cd, ~C12!

where the expectation values^•••&S
ab
( i ) ,P

( i )
cd and ^•••&j are

defined as

^•••&S
ab
( i ) ,P

( i )
cd5E dSab

( i )dP ( i )
cd
•••Wr@Sab

( i ) ,P ( i )
cd#, ~C13!

^•••&j5~2pN/N!21/2E Djab•••e2(N/2)j•N 21
•j.

~C14!

The Sab(x) inside the expectation values in Eq.~C12! satis-
fies the equation

~L•S!ab~x!5k̄jab~x!, ~C15!

with initial conditionsSab
( i ) and Ṡab

( i )52(4k̄/N)P̄ ( i )
cd on the

initial hypersurfaceSi . From Eq.~C14! it becomes clear tha
one can formally interpretjab as a Gaussian stochast
source with a vanishing expectation value and whose co
lation function is given by the noise kernel. Equation~C15!
can then be regarded as a stochastic Langevin equation
coincides with the Einstein-Langevin equation expressed
the Lorentz gauge„when integrated with the metric pertu
bationhab , the first term on the right-hand side of Eq.~C10!
corresponds to the linearized Einstein tensor, whereas the
two terms correspond tôT̂ab

(1)@g1h#&, as follows from Eq.
~4!…. Furthermore,ZCTP

(LO)@Jab
S 50,Jcd

D # is also the generating
functional for the stochastic correlation functions for the s
lutions of the Einstein-Langevin equation and, therefore,
stochastic correlation functions are actually equivalent
quantum correlation functions for the metric perturbation

The solutions of Eq.~C15! can be expressed as

Sab~x!5Sab
(0)~x!1k̄~Gret•j!ab~x!, ~C16!

where Sab
(0) is a solution of the homogeneous equati

(L•S)ab50, which coincides with the linearized semicla
sical Einstein equation for the metric perturbations in t
Lorentz gauge, with all the information on the initial cond
tions, and (Gret)abcd(x,x8) is the retarded propagator assoc
ated with the integro-differential operatorLabcd(x,x8) with
vanishing initial conditions onSi . The CTP generating func
tional for a nonvanishingJab

S can then be written as follows
2-17
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ZCTP
(LO)@Jab

S ,Jcd
D #

5^eiJD
•S(0)

&S
ab
( i ) ,P

( i )
cd

3expS i
2k̄

N
JD

•Gret•JSD
3expS 2

k̄2

2N
JD

•Gret•N•Gret
T
•JDD , ~C17!

where we introduced the notation (AT)abcd(x,y)
[Acdab(y,x).

It is interesting to consider the particular case of the tw
point correlation function. Functionally differentiating twic
with respect toJab

D and then takingJab
D andJab

S equal to zero,
one gets the following result for the symmetrized quant
correlation function for the metric perturbations:

1

2
^$ĥab~x!,ĥcd~x8!%&5^Sab

(0)~x!Scd
(0)~x8!&S

ab
( i ) ,P

( i )
cd

1
k̄2

N
„Gret•N•~Gret!

T
…abcd~x,x8!.

~C18!

One can see that there are two separate contributions to
two-point correlation function: the first one is related to t
dispersion of the initial state for the metric perturbation
whereas the second one is proportional to the noise ke
and accounts for the fluctuations induced by their interac
with the environment~in this case, the quantum matte
fields!. We refer to these two contributions asintrinsic and
induced fluctuations respectively. Furthermore, taking in
account Eq.~C12!, we see that, under the aforemention
conditions, the symmetrized quantum correlation funct
for the metric perturbations is equivalent to the stocha
correlation function obtained in stochastic semiclass
gravity by solving the Einstein-Langevin equation.

From the expression for the generating functional in E
~C17! one can get the remaining two-point quantum corre
tion functions to leading order in 1/N. In particular the com-
mutator is given by ^@ ĥab(x),ĥcd(x8)#&52ik„Gret(x8,x)
2Gret(x,x8)…, and by combining the commutator and th
anticommutator the rest of two-point functions can be ea
obtained. Moreover, assuming a Gaussian initial state w
vanishing expectation value for the metric perturbations,
expression for the generating functional in Eq.~C17! be-
comes Gaussian and any othern-point quantum correlation
function has a simple expression in terms of the two-po
functions.

The exact CTP generating functional is given by

ZCTP@Jab
S ,Jcd

D #5expS iSintF d

dJab
S

,
d

dJcd
D G D ZCTP

(LO)@Jab
S ,Jcd

D #,

~C19!

where Sint@Sab ,Dcd# corresponds to all the terms in th
gravitational action or the exact influence action of cubic
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higher order in the metric perturbations. In order to consi
and evaluate the different contributions to Eq.~C19!, it is
convenient to introduce the corresponding Feynman ru
and diagrams~in the CTP formulation! as follows: each term
in Sint@d/dJab

S ,d/dJcd
D # gives rise to a vertex with the sam

number of legs as the total power of the functional deriv
tivesd/dJab

S andd/dJcd
D appearing in that term, and the CT

propagators simply correspond to those obtained by fu
tionally differentiating WCTP

(LO)52 i ln ZCTP
(LO) with respect to

the external currents twice. Expanding in powers of 1/N, one
can show that all the diagrams representing the correcti
as given by Eq.~C19!, to the connected part of the genera
ing functional, WCTP52 i ln ZCTP, are of order 1/N2 or
higher @58#. Therefore, one can conclude that the lead
order contribution toWCTP is entirely given byWCTP

(LO) , which
is of order 1/N and from which the leading order contribu
tion to all the quantum correlation functions with an ev
number of points can be obtained. Two particular examp
showing how the corrections due toSint@Sab ,Dcd# contribute
to the two-point quantum correlation functions~correspond-
ing to terms inWCTP which are quadratic in the externa
currents! are provided in Fig. 1. The first diagram involve
vertices with three legs associated with cubic terms in
gravitational action. The second diagram involves a nonlo
vertex with four legs associated with quartic terms in t
influence action. The nonlocal vertex has been represe
by a loop of the matter fields because, if Feynman diagra
are introduced when evaluating the influence action,
terms quartic in the metric perturbations giving rise to t
second diagram in Fig. 1 correspond to a loop of ma

FIG. 1. Two diagrams illustrating the fact that including eith
the vertices for the metric perturbations~as in the first diagram! or
terms from the influence functional evaluated beyond the Gaus
approximation~as in the second diagram! lead to contributions of
higher order in 1/N. In particular, the two diagrams shown he
give contributions of order 1/N2 to the two-point quantum correla
tion function for the metric perturbations. The plain lines repres
the CTP propagators for the matter fields on the background sp
time and the wavy lines correspond to the CTP propagators for
metric perturbations obtained by functionally differentiatingWCTP

(LO)

twice with respect to the external currents.
2-18
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fields with four insertions linear in the metric perturbatio
~there are three other contributions to the influence ac
involving terms quartic in the metric perturbations: one c
responds to a loop of matter fields with two insertions line
in the metric perturbation and a third insertion quadratic
the metric perturbation, a second contribution that cor
sponds to a loop of matter fields with two insertions qu
dratic in the metric perturbation, and a third one correspo
ing to a loop of matter fields with an insertion linear in th
metric perturbation and a second insertion cubic in the me
perturbation!.

APPENDIX D: SINGULAR COINCIDENCE LIMIT
FOR THE NOISE KERNEL

The noise kernel defined by Eq.~12! has in general a
singular coincidence limitx→x8 ~in fact, it is still singular
even forxÞx8 when the two points are connected by a n
geodesic!, which translates into an ultraviolet divergen
when integrating over momenta in Fourier space, as can
seen from Eq.~B7!. The result is, nevertheless, finite whe
xÞx8 ~and they are not connected by a null geodesic!. In
fact, even though the noise kernel is not well defined a
tensor-valued function,14 it is well defined as a tensor-value
distribution and yields finite results when integrated w
suitable test functions.

Let us consider a specific example to illustrate the po
addressed in this appendix: a massless conformally cou
scalar field in Minkowski spacetime. The expression for
noise kernel in spacetime coordinates, which results fr
Fourier transforming Eq.~B7! and is a well-defined distribu
tion, is the following@54#:

Nmnrs~x2x8!}~]m]n]r8]s8 !Pf S 1

~x2x8!2D 2

5
1

16
~]m]n]r8]s8 !hxhx8ln~x2x8!2, ~D1!

wherePf stands for the Hadamard finite part prescriptio
whose precise definition can be found in Refs.@73,74#. How-
ever, the contribution from the induced fluctuations to t
symmetrized two-point correlation function, which is give
by

k̄2

N
@Gret•N•~Gret!

T#~x1 ,x2!, ~D2!

is not necessarily well defined if the time integral in t
center dot (•) involves a finite initial timet i . That is because
in that case the noise kernel is actually convoluted w
Gret(x1 ,x18)u(t182t i), which is not a good test function sinc
it is not differentiable att185t i . The fact that the result fo

14The noise kernel is in general a bitensor, but due to the ho
geneity of Minkowski spacetime and the triviality of the connecti
~and the corresponding parallel transport!, the noise kernel become
in that case a simple tensorial field which depends on (x2x8)m.
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expression~D2! is singular for a finite initial time can actu
ally be seen by using the last equality in Eq.~D1!, substitut-
ing into expression~D2! and integrating by parts. The con
tributions from the boundary terms at the finite timest1 and
t2 are finite, at least whent1Þt2 @the fact thatt1Þt2 may be
required to get a finite result is simply indicating that expre
sion ~D2! is also a distribution#. On the other hand, the
boundary terms that correspond to takingt18 and t28 both
equal tot i are divergent. The fact that all the singular co
tributions can be concentrated at the initial time seems
suggest that the origin of the problem may be related to
initial state that was chosen.

We proceed now to argue that the origin of the singula
ties described in the previous paragraph can indeed be tr
back to the initial state that was considered, with the me
perturbations and the matter fields completely uncorrela
In order to do that, it will be useful to discuss an analogo
situation for QBM models such as that described in App
dix A. In particular, let us consider an Ohmic distribution f
the environment frequencies with an ultraviolet cutoffL,
which can be characterized by a spectral density func
such as I (v)5vu(L2v) or v exp(2v/L) ~the details
about the particular way in which the cutoff is implement
are not important here!. We have an expression analogous
Eq. ~D2! for the induced fluctuations@see Eq.~A2! and Ref.
@59##. If we consider the ground state~thermal state at zero
temperature! as the initial state for the environment, th
noise kernel is given byN(t,t8)5*dvI (v)/v cosv(t2t8).
When taking the limitL→` the noise kernel becomes pro
portional toPf „1/(t182t28)

2
…. To obtain the correlation func

tion we integrate by parts, as described above, in the exp
sion for the induced fluctuations, Eq.~A2!, before taking the
limit L→`. We obtain again a boundary term at the initi
time which diverges as we finally letL go to infinity, and we
end up with an infinite result for the correlation function. O
the other hand, one can show that the result for the corr
tion function of the ground state of the whole system~system
plus environment!, including the system-environment inte
action, is finite~the use of Euclidean path integrals is pa
ticularly convenient in this respect! @75#. This constitutes a
clear example of the fact that initial states in which the s
tem and the environment are suitably correlated give rise
well-defined correlation functions.

Alternatively, when taking a completely uncorrelated in
tial state, one can still get a finite result for the correlati
function by smoothly switching on the system-environme
interaction so that the boundary term at the initial time wh
results from the integration by parts and becomes diverg
in the limit L→` actually vanishes. This reveals again th
the origin of the singularity for the correlation function aris
because the highest frequency modes of the environmen
come correlated with the system in a time scale of the or
of L21. Such a fact is supported by the existence of a
with a characteristic time scaleL21 in the diffusion coeffi-
cients of the master equation which becomes singular w
L→`, as was found in Ref.@76#. In fact, one can show tha
those states in which the high frequency modes of the e
ronment and the system are uncorrelated are unphys
when the environment contains an infinite number of mo

o-
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with arbitrarily high frequencies since their energy becom
infinite asL→`.

Return now to the gravitational case. There are some s
ations, such as the effect of stress tensor fluctuations on
propagation of null geodesics, in which the appropriate w
to deal with the singular coincidence limit of the noise kern
is by integrating over some smearing function@8# ~in general
smearing just along the spatial directions is not enou
smearing in time is needed to get a finite result!. On the other
hand, when computing the correlation functions for the m
ric perturbations, the noise kernel naturally appears in
grated with the retarded propagator. As explained above,
problem still persists at the initial time, which reflects t
unphysical character of the completely uncorrelated ini
state that was employed. Similar to QBM models, a we
defined result for the correlation functions can be obtain
by considering a properly correlated initial state, such as
resulting from the use of Euclidean path integrals that
then analytically continued to Lorentzian time@64#. Roughly
speaking, this would imply the existence of an addition
term in Eqs.~14! and ~C18! due to the existence of correla
tions between the initial conditions for the solutions of t
Langevin equation and the stochastic source, which refl
the initial correlations between the system and the envir
ment.

Alternatively, one can still make sense of the results
tained from assuming an uncorrelated initial state
smoothly switching on the interaction between the me
perturbations and the matter fields so that the high freque
modes can get correlated with the system. However, in c
trast to the QBM case, we have to be careful with switch
on the interaction during a finite period of time since th
would imply that the source of the Einstein-Langevin equ
tion is not conserved and would be in conflict with the B
anchi identity, which guarantees the integrability of the eq
tion. Therefore, the interaction should be turned
adiabatically and asymptotically past initial conditio
should be considered. In fact, in Sec. IV, where we assum
asymptotic initial conditions and worked mostly in Fouri
space, a finite result for the correlation function was obtain
without the need for explicitly switching on the interactio
adiabatically. There are, however, situations~for instance, in
cosmology! in which asymptotic initial conditions are no
adequate. An alternative procedure should be considere
those cases.

APPENDIX E: RUNAWAY SOLUTIONS AND METHODS
TO DEAL WITH THEM

In this appendix we will briefly discuss the existence
runaway solutions in SCG~solutions which grow without
bound in time scales comparable to the Planck time!, their
counterparts at the quantum level, and how their connec
can be understood in the context of stochastic gravity.
will also discuss the existing prescriptions for dealing w
this kind of unstable solution.

1. Runaway solutions in semiclassical gravity

Let us start by considering the linearized semiclass
Einstein equation around the Minkowski spacetime. The
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lutions for the case of a massless scalar field were first
cussed in Ref.@16# and an exhaustive description can
found in Appendix A of Ref.@21#. Taking Eq.~7! and using a
decomposition for the linearized Einstein tensor analogou
that introduced in Sec. IV C for the metric perturbation, t
vectorial part is found to vanish,15 whereas the scalar an
tensorial contributions satisfy the equations

@F1~p!13p2F2~p!#G̃mn
(1)(S)~p!50, ~E1!

F1~p!G̃mn
(1)(T)~p!50. ~E2!

whereF1(p) andF2(p) are given by Eqs.~9! and~10!, and
G̃mn

(1)(S) andG̃mn
(1)(T) denote, respectively, the scalar and ten

rial parts of the linearized Einstein tensor. In order to illu
trate how the runaway solutions arise, we will consider
particular example of a massless and conformally coup
scalar field~see Ref.@21# for the massless case with arbitra
coupling and Refs.@3,54# for the general massive case!. The
previous equations become then

~1112kb̄p2!G̃mn
(1)(S)~p!50, ~E3!

lim
e→01

F11~960p2!21kp2lnS 2~p01 i e!21pW 2

m2 D G G̃mn
(1)(T)~p!

50. ~E4!

In addition to the obvious solutionG̃mn
(1)(S)(p)50 ~the only

solution whenb̄50), whenb̄.0 the solutions for the scala
component exhibit an oscillatory behavior in spacetime
ordinates which corresponds to a massive scalar field w
m25(12kub̄u)21; for b̄,0 the solutions correspond to
tachyonic field withm252(12kub̄u)21: in spacetime coor-
dinates they exhibit an exponential behavior in time
growing or decreasing—for wavelengths larger th
4p(3kub̄u)1/2 and an oscillatory behavior for wavelength
smaller than 4p(3kub̄u)1/2. On the other hand, the solutio
G̃mn

(1)(S)(p)50 is completely trivial since any scalar metr

perturbationh̃mn(p) giving rise to a vanishing linearized Ein
stein tensor can be eliminated by a gauge transformatio
explained in Sec. IV C.

As for the tensorial component, whenm<mcrit

5 l p
21(120p)1/2eg ~or l>lcrit5mcrit

21 in the notation of Ref.
@21#! the first factor in Eq.~E4! vanishes for four complex
values ofp0 of the form 6v and 6v* , wherev is some
complex value, as illustrated in Fig. 2. We will consider he
the case in whichm,mcrit ; a detailed description of the
situation form>mcrit can be found in Appendix A of Ref

15More precisely, decomposing the metric perturbation into sca
vectorial and tensorial parts, as done in Sec. IV C, and compu
the linearized Einstein tensor, one gets a vanishing result for
vectorial part of the metric perturbation; the scalar and tenso
components of the metric perturbation give rise, respectively, to
scalar and tensorial components of the linearized Einstein tens
2-20
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@21#. The two zeros on the upper half of the complex pla
correspond to solutions in spacetime coordinates expo
tially growing in time, whereas the two on the lower ha
correspond to solutions exponentially decreasing in tim
Strictly speaking, these solutions only exist in spacetime
ordinates, since their Fourier transform is not well defin
They are commonly referred to as runaway solutions and
m; l p

21 they grow exponentially in time scales comparab
to the Planck time.

2. Quantum mechanical systems with higher order time
derivatives

Before proceeding to discuss the situation in stocha
gravity, it is interesting to make a few remarks about t
quantization of higher derivative theories and the coun
parts of the previous classical instabilities in the quant
context. Let us consider first a free theory with a struct
analogous to that of linearized semiclassical gravity aro
Minkowski spacetime without including the nonlocal term
It is characterized by the following Lagrangian, which co
responds to a harmonic oscillator with a higher derivat
term:

L~q,q̇,q̈!5
t

2
q̈21

1

2
q̇22

1

2
V2q2. ~E5!

To begin with, one can consider a generalization of the us
canonical formalism introduced by Ostrogradski to deal w
theories involving higher order derivatives~see, for instance

FIG. 2. Representation in the complex plane of the values op0

for which the coefficient of the semiclassical Einstein equation
the tensorial components of the Einstein tensor in Fourier sp

vanishes. The casem,mcrit and a particular value ofpW 2 were con-
sidered, but the qualitative structure will remain the same for

other value ofpW 2. The plot also corresponds to the structure of t

poles of the tensorial part of the propagatorD̃mnab(p). The solid
line corresponds to the integration contour when Fourier transfo
ing back to spacetime coordinates which follows from the presc
tion proposed by Hawkinget al. @64# and was chosen in Ref.@54#.
Changing this contour as indicated by the dashed lines, one ob
a strictly retarded propagator, but it exhibits exponential instabili
for large positive time differences associated with the two poles
the upper half of the complex plane.
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Refs. @19,77#!. The theory can then be quantized followin
the standard canonical quantization rules. The correspon
Wigner function~or Wigner functional if a field theory were
considered! can also be introduced. The pathological char
ter of the theory becomes clear by diagonalizing the Ham
tonian and realizing that the result corresponds to two in
pendent harmonic oscillators, but with one of them havin
negative sign in the kinetic term. Fort,0 the potential term
of the harmonic oscillator with the negative kinetic term
also negative and the classical solutions do not exhibit in
bilities. However, in any case the configurations for the h
monic oscillator with the negative kinetic term can ha
negative energies arbitrarily large in absolute value. Mo
over, the frequency for that oscillator is proportional tot21/2

and diverges ast→0. At the quantum level, such a theor
also gives rise to negative eigenvalues of the Hamilton
arbitrarily large in absolute value, but can be alternativ
formulated in terms of a Hamiltonian without negative en
gies by introducing states with negative norm~commonly
referred to as ghosts! @65#. This fact is often argued in a
qualitative way by pointing out that the propagator of t
theory in Fourier space is proportional to

1

v22V2
2

1

v21t21
. ~E6!

It should also be mentioned that Hawking and Hertog ha
suggested a prescription for dealing with that kind of theor
which is based on imposing well-defined boundary con
tions in Euclidean time and then Wick rotating back
Lorentzian time. The results have then a nonsingular li
t→0, so that when the higher order derivative term in t
Lagrangian is small, one essentially recovers the result
the second order theory@65#.

Even though there is a range of parameters (t,0) in
which the free theory described above does not exhibit in
bilities, they arise when a nonlinear self-interaction term
added to the Lagrangian. The reason is that the two Ha
tonian contributions corresponding to a couple of harmo
oscillators, one with a negative energy spectrum and
other with a positive one, can have a stable evolution as l
as they are decoupled. However, adding an interaction t
couples them in such a way that one can acquire nega
energies arbitrarily large in absolute value while the oth
gains large positive energies, which is the source of insta
ity. In general this is reflected in the structure of the prop
gator as a shift of the poles on the real axis to the comp
plane. Hawkinget al. have argued that well-behaved resu
can still be obtained by imposing boundary conditions wh
discard solutions which grow unboundedly in time@64,65#.
Those conditions can be implemented by a suitable choic
the integration contour on the complex plane when comp
ing the inverse Fourier transform of the propagator, but c
sality is violated at small time scales~we will come back to
this point below!. Another possibility, when the parametert
is small, is to make use of an order reduction proced
@21,22,78#, which consists of differentiating the equation
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motion with respect to time, substituting back into the ori
nal equation and discarding the terms of higher order int.
This procedure can be iterated as many times as necessa
get a second order equation valid up to the correspond
order of t. The usual canonical formalism associated w
the second order equation of motion can then be employe
evolve the Wigner function. It should be stressed that,
though we have considered a simple model as an illustra
example, the previous methods have been applied to m
involved situations, including SCG@22,21# and quantum cos
mology @64#.

3. Runaway solutions in stochastic gravity

Let us now address the case of stochastic gravity and
how the instabilities in SCG and the difficulties in quantizi
theories with higher order derivatives are related. First of
we recall that in Appendix C the counterterms quadratic
the curvature were ignored and it was implicitly assum
that the Einstein-Langevin equation was a second o
integro-differential equation whose initial conditions we
completely determined by specifying the metric perturbat
and its normal derivative on the initial Cauchy hypersurfa
If the counterterms quadratic in the curvature, which g
rise to higher order derivative terms, are also taken into
count, the generalized canonical formalism referred to ab
and the corresponding Wigner functional should be used
fact, as a result of the singular behavior of the nonlocal p
of the dissipation kernel at the initial time, specifying initi
conditions at a finite initial time is an even more delica
matter. In any case, since we have to consider asymp
initial conditions to deal with the singular coincidence lim
of the noise kernel, as explained in Appendix D, we do
need to be concerned about the problems associated
finite initial times. Runaway solutions, however, still exi
and some method to deal with them is required. In particu
when computing two-point correlation functions in the co
text of stochastic gravity, the existence of runaway solutio
has implications for both the intrinsic and the induced co
tributions.

One possible method for dealing with the existence
runaway solutions is theorder reductionprescription. As ex-
plained above, the method is based on treating perturbati
the terms involving higher order derivatives, differentiati
the equation under consideration and substituting back
higher derivative terms in the original equation keeping o
terms up to the required order in the perturbative parame
In the case of the semiclassical Einstein equation, the pe
bative parameter employed is\ or, equivalently, the squar
of the Planck lengthl p

25k/8p. If we consider the semiclas
sical Einstein equation for linear metric perturbations arou
Minkowski spacetime and differentiate twice with respect
the background covariant derivative, it becomes clear
the second order derivatives of the Einstein tensor are
orderk. Substituting back into the original equation, we g
the following equation up to orderk2:
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Gab
(1)@g1h#501O~k2!, ~E7!

where no effects from the vacuum polarization of the qu
tum matter fields are left. Since the linearized semiclass
Einstein equation coincides with the homogeneous par
the Einstein-Langevin equation, Eq.~E7! governs the contri-
bution of the intrinsic fluctuations to the quantum correlati
function, which coincides with that of free gravitons. Sim
larly, when making use of the order reduction prescriptio
the Einstein-Langevin equation becomes

Gab
(1)@g1h#5kjab1O~k2!, ~E8!

where the stochastic source, whose correlation function o
depends on the background metric and hence does no
volve higher order derivatives of the metric perturbation,
not affected by the order reduction procedure. Therefore
contrast to the intrinsic fluctuations, there will still be a no
trivial contribution to the induced fluctuations due to the p
larization of the quantum matter fields, but no contributi
from the dissipation kernel is left in the Einstein-Langev
equation. Since all the terms involving higher order deriv
tives, which were associated with the dissipation kern
have been discarded, an ordinary Wigner functional can
introduced without any need to consider generalized Os
gradski momenta. Furthermore, the absence of the diss
tion kernel also allows the possibility of specifying initia
conditions at a finite initial time as far as the homogeneo
solutions~relevant for the computation of the intrinsic fluc
tuations! and the retarded propagator are concerned. Ne
theless, one is still forced to consider asymptotic initial co
ditions in order to get a finite result for the induce
fluctuations due to the singular coincidence limit of the no
kernel, as explained in the previous appendix.

Hawkinget al.have proposed an alternative procedure
dealing with the runaway solutions@64,65#. Their method is
based on imposing final boundary conditions which disc
those solutions that grow unboundedly in time. Let us fi
see how their approach can be applied to the computatio
the intrinsic fluctuations by considering the particular case
a massless and conformally coupled scalar field. From
~E4! and Fig. 2 one can see that, in addition to the solut
Gmn

(1)50, the solutions of the tensorial part grow or decrea
exponentially in time. The exponentially growing solution
are discarded when the final boundary condition is impos
and the contributions from the exponentially decreasing o
also vanish if regular initial conditions are specified at
asymptotic initial time. On the other hand, from Eq.~E3! one
can see that the situation is analogous for the solutions of
scalar part whenb̄,0. For b̄.0 the solutions are oscilla
tory and, hence, are not discarded when the final bound
condition is imposed~in contrast to the situation where th
order reduction prescription is used!.

Let us now apply the previous approach to the compu
tion of the induced fluctuations. When considerin
asymptotic initial conditions, the relevant propagator for e
pressing the linearized Einstein tensor in terms of the s
2-22
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chastic source, can be obtained by invertingFmnab(p) in Eq.
~7!. The resulting propagator,D̃mnab(p), exhibits a number
of poles in the complex plane, as illustrated in Fig. 2. T
expression for the retarded propagator in spacetime coo
nates corresponds to choosing the integration path re
sented by the dashed line in Fig. 2 when Fourier transfo
ing back from momentum space. It exhibits the appropri
causal behavior:Dmnab(x2y)50 for tx,ty , as can be seen
by closing the integration contour on the upper half of t
complex plane. However, fortx.ty it increases exponen
tially in time due to the contributions from the two poles o
the upper half of the complex plane when closing the path
the lower half. Imposing the final boundary conditions whi
discard solutions growing unboundedly in time is equival
to taking a different integration path: that represented b
solid line in Fig. 2. The resulting propagator does not exh
exponential instabilities, but gives rise to causality violatio
since Dmnab(x2y)Þ0 for tx,ty ~the characteristic time
scale of these causality violations is of orderANlp). This
propagator is the only one which has a well-defined Fou
transform. It was employed in Ref.@54#, where it was argued
that any other propagator should yield an equivalent re
for the correlation function obtained by solving the Einste
Langevin equation. This argument is certainly true for pro
gators with a well-defined Fourier transform. However, t
existence of poles off the real axis gives rise to propaga
in spacetime coordinates~they do not have a well-define
Fourier transform because of the exponentially growing
decreasing contributions! which yield inequivalent results fo
the correlation function. Since this choice for the propaga
was made, the results obtained in Ref.@54# correspond to
those that would follow when employing the procedure p
posed by Hawkinget al. In fact, Hawkinget al.applied their
method to quantum propagators, but, as we have describ
can also be used when solving the semiclassical Eins
equation and the Einstein-Langevin equation. The stocha
correlation functions obtained are then equivalent to
quantum correlation functions~CTP propagators! which
would result from the application of the prescription.

4. Estimates of radiative corrections for a single matter field
and a large number of them

SCG is expected to provide reliable results as long as
characteristic length scales under consideration are m
larger than the Planck lengthl p @21#. This can be qualita-
tively argued by estimating the magnitude of the differe
contributions to the effective action~considering the relevan
Feynman diagrams and using dimensional arguments!: the
Einstein-Hilbert term and the radiative quantum correctio
The Einstein-Hilbert term is of orderl p

22R ~the characteristic
curvatureR is simply given byL22, whereL is the charac-
teristic length scale of our problem!, the vacuum polarization
terms involving loops of matter fields are of orderR2, and
higher loop corrections involving internal graviton propag
04400
e
i-
e-
-

e

n

t
a
it
s

r

lt
-
-

rs

r

r

-

, it
in
tic
e

e
ch

t

.

-

tors are of orderl p
2R3 or higher. Thus, we see that the high

order corrections not included in SCG are negligible p
vided thatL@ l p . In that regime, however, the vacuum p
larization terms only yield a small correction to the Einste
Hilbert term and any classical gravitational source wh
were present. The justification of the order reduction p
scription is actually based on this fact. Therefore, signific
effects from the vacuum polarization of the matter fields
only expected when their small corrections accumulate
time, as would be the case, for instance, for an evapora
macroscopic black hole all the way before reaching Plan
ian scales.

The previous estimates for the different terms in the
fective action change in a remarkable way when a large n
ber of fields,N, is considered.16 The vacuum polarization
terms involving loops of matter become of orderNR2 and,
similarly, the higher loop corrections involving interna
graviton propagators are of orderNlp

2R3 or higher~the con-
tributions corresponding to one and two graviton loops a
respectively, of orderR2 andl p

2R3, but are negligible as com
pared to those from matter loops whenN is large!. There is
then a regime in which the vacuum polarization of the ma
fields and the Einstein-Hilbert term are comparable whenL
;ANlp . On the other hand, the higher loop corrections w
still be much smaller ifL@ l p . Both conditions are compat
ible provided that the number of fields,N, is very large. This
is, in fact, the kind of situation considered in trace anom
driven inflationary models@64#, such as that originally pro-
posed by Starobinsky@63#, where the exponential inflation i
driven by a large number of massless conformal fields. T
order reduction prescription would completely discard t
effect from the vacuum polarization of the matter fields ev
though it is comparable to the Einstein-Hilbert term. In co
trast, the procedure proposed by Hawkinget al. keeps the
contribution from the matter fields.

We conclude this appendix by mentioning that it has be
pointed out that a similar kind of instability, which is close
connected to the existence of the Landau pole, is also pre
in scalar QED~as well as ordinary QED! @17,18,34#. Never-
theless, a number of nonperturbative studies on the evolu
of the expectation value of the electromagnetic field usin
largeN expansion have been carried out. In fact, it was s
gested in Ref.@45# that by introducing a finite 3-momentum
cutoff and considering a running coupling constant sm
enough at low energies, the problem with the Landau p
could be circumvented~at least from a practical point o
view!. Yet it seems unlikely that a similar procedure cou
work for the gravitational case due to the existence of hig
derivatives. Moreover, introducing a 3-momentum cut
would break general covariance and that would pose ser
difficulties when implementing a consistent and natu
renormalization scheme in general curved spacetimes.

16The actual physical Planck lengthl p is considered, not the res

caled one,Ak/8p, which is related tol p by 8p l p
25k5k̄/N.
2-23
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