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Propagation in a thermal graviton background
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It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion
relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced
radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibil-
ity, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a
thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and
which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly,
however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found
that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
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[. INTRODUCTION energy astroparticle physics that we could already see the
effects of a violation of the Lorentz symmetry. In particular
In recent years modified dispersion relations which breaknodified dispersion relations have been used in order to pro-
Lorentz invariance have appeared in different contexts o¥ide an explanation for observations of ultrahigh-energetic
gravitational physics. cosmic raygwith energies higher than i0eV) beyond the
On the one hand, they appeared in several works whickpreisen-Zatsepin-KuzmitGzK) cutoff [19-22. As in the
address the so-callettans-Planckian problem{1-3]. In trans-PIanc_kian _proplem, sever_al dispersion relations have
black hole physics the modes responsible for Hawking radiaP€en exploited, inspired by various approaches to quantum
tion reach arbitrarily high energies near the black hole horigravity [23,24, string theory[25], noncommutative field
zon when measured by a free-falling observer. This observgheory [26], variation of couplings[27], and multiverses
tion has lead some authors to study the robustness 428]. Modified dispersion relations often break the energy
Hawking radiation when modifyingfrom the outsetthe dis- ~ degeneracy for a given three-momentum: the particle energy
persion relation beyond the Planck scfde-7]. A similar ~ ¢an become helicity dependdi23,24 and light can become
problem appears in inflationary cosmology: the modes rebirefringent[29,30.. A popular form for these modified dis-
sponsible for the large-scale structure had length scales mud@grsion relations below the Planck scale is, in the cosmologi-
smaller than the Planck length in the early stages of inflationc@l rest frame,
Therefore it is of interest to determine to what extent the

properties of the fluctuation spectrum are sensitive to modi- E2=m2+ | p| 2+ E . [p|" R
fications of the dispersion relation at the Planck s¢aiell]. =3 "M gI—Z’

In these works, the introduction of a nontrivial dispersion
relation has been originally suggested by formal analogiesvhereMp, is Planck’s mass ang,, are coefficients of order
with condensed matt¢d,12—15. However, the main physi- 1 if the Planck mass is the relevant scale. Jacoletaal.
cal motivation is that unknown effects of quantum gravity have studied the constraints on the possible values of the
(such as radiative correctionsight introduce nontrivial dis- parametersy, based on current astrophysical observational
persion relations in these contexts. Following 't Hoof$]  data[31-34. It is important to notice that both the real and
observation that strong gravitational interactions in the nearimaginary parts;; are already observationally constrained to
horizon region might alter the semiclassical description ofbe much smaller than 1. This shows that the “natural” as-
black hole evaporation, a first dynamical realization of thissumption that then,, should be of order 1 is perhaps too
line of thought has been pursued in Refs7,18. naive. The possibility of quadratic modifications of the dis-
On the other hand, there have been hints from highpersion relation is also strongly constraif@®,30.
As we learned from particle physics, Lorentz invariance is
a key element in renormalized quantum field the[3¥,36.

*Electronic address: darteaga@ub.edu Nevertheless, it might be broken by quantum gravity at a
"Electronic address: Renaud.Parentani@th.u-psud.fr fundamental level, or, alternatively, it may be broken in an
*Electronic address: verdague@ffn.ub.es effective way in nontrivial backgrounds only. Indeed in
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backgrounds which possess a preferred reference frame, rapproximation has been carried out by Borgman and Ford
diative corrections to self-energies might contain termg73]. They study the fluctuations in the focusing of a bundle
which effectively break thélocal) Lorentz invariance—i.e., of geodesics, propagating in a spacetime with metric pertur-
the Lorentz invariance in the tangent plane. Let us emphasizZeations induced by a thermal scalar field. To our knowledge,
that this second possibility does not imply any kind of fun-the higher-order corrections to the self-energy have not yet
damental breaking of the Lorentz symmetry or any newbeen computed in the quantum field theoretical framework.
physics. Rather by “effective breaking of the Lorentz invari- ~ Gravity-mediated modifications of the dispersion relation
ance” we mean that radiative corrections to the dispersiofj/@ve been also considered by Burgesal. [74]. Working in
relation may contain terms which depend on vector or tensoi€ context of brane-world scenarios, these authors compute
fields characterizing the background. the change to the dispersion relation of photons and fermions
In this paper we explore a model in the framework of thisgene_rated by interaction W_|th four-dlmen5|o_nal _effectlve
second alternative. We consider the propagation of a scal@avitons. In that case the primary source of violation of the
particle immersed in a thermal bath of gravitons. Our aim is-0rentz symmetry is the modification of the dispersion rela-
to determine how the inertia of the thermal bath affects thdion of effective four-dimensional gravitons induced by cer-
propagation of the scalar particle through radiative correct@in extra-dimensional configurations. Similarly to our case,
tions. To this end, we shall compute the thermal correctiondhis modification is communicated to brane-bound particles
to its self-energy. The real part of the self-energy gives thdnrough gravitational interactions. -
thermal mass shift and might introduce as well a nontrivial, "€ plan of the paper is the following: In Sec. Il we
dispersion relatiofi37]. The imaginary part instead gives the introduce the action for the system considered—namely, a
rate of approach to thermal equilibriui8s]. scalar field coupled to gravity. In Sec. lll we compute per-
In fact it is well known that quantum effects evaluated inturbatlv_ely the leading correction to the self-energy of the
nontrivial backgrounds induce non-Lorentz-invariant termsScalar field at zero temperature. In Sec. IV we assume that
in the dispersion relation. For instance, the self-energy of éhe scalar field and gravitons are in thermal e.qumbrlum at a
charged fermion immersed in a thermal bath of photons hagiven temperature and compute the corrections to the re-
been computed in Ref§37,39-41, and the effects of the tardedl self-energy. Flnglly, in Sgc. V we analyze the resglts
thermal bath on the speed of light have been studied in Ref@nd discuss the physical significance of the terms which
[42—44). Let us mention also that electromagnetic imerac_break_Lorenz invariance. The Append|x_es contain refere_nce
tion in curved spacetimes also leads to modifications of thénaterial as well as some technical details of the calculation.
dispersion relations. The effect of QED vacuum polarization" APpendix A we present the Feynman rules for the scalar
on the speed of light in nontrivial spacetimes has been studi€ld coupled to linearized gravity. In Appendix B we give
ied in Refs[45—49. However, most calculations done so far the results of the calculation of some integrals in dimensional
do not concern gravitational interactions. Gravity-induced€gularization. In Appendix C we give a brief account of the

corrections should be dominant at energies approaching tH&&!-ime approach to thermal field theory. Appendix D is
Planck scale, hence relevant for the situations concerngostly technical and is devoted to the calculation of certain

with the trans-Planckian problem. Additionally notice that integrals that appear in the calculation of the thermal contri-

gravitational interactions are universal and not limited toPution to the self-energy. _
charged particles. .Throughout this paper we shall use a syst_em Qf units

Two important points concerning our approach should bVith 7=c=kg=1. The signature of the metric will be
mentioned. On the one hand, since gravitational interactions™» 1, 1).
are nonrenormalizable, the system of the scalar field coupled
to gravity should be conceived as an effective field theory Il. SYSTEM
[36,50. Although the full theory is nonrenormalizable, low- Wi i inimall led | lar f ¢
energy predictions which do not depend on the Planck scale € consider a minimally coupled reail scaiar igkdo .
behavior of gravity can be extract¢f1-53. On the other massm propa_gatmg na ;pac_eﬂme characterized by a metric
hand, since thermal corrections do not affect the ultraviolefxr- The action for the field is
properties of the theory, thermal field theory fits well with 1 1
the effective theory approach. At a technical level, we shall Sy.g= —j d4x\/—_g(§gwaﬂ¢(?y¢+ §m2¢>2 , (28
incorporate the thermal effects through the real-time descrip-
tion of thermal field theory54—56, which can be seen as a
particular application of the closed-time patBTP) method
in field theory[57-59.

We should also emphasize that we shalllcompute only the ngij d4x\/—_gR, (2b)
lowest-order corrections. Hence, we deal with free gravitons; K?
i.e., we neglect the backreaction of the scalar field on the
metric perturbations. The modifications to the metric propawhereR is the Ricci scalarg is the determinant of the met-
gator can be computed both in the framework of stochasticic, and k= /327G = \/327Lp, is the gravitational coupling
gravity [60—69 or in the largeN limit of quantum gravity = constant, withG being Newton’s constant antp being
[70] (both approaches can be seen to be equivdlEn72). Planck’s length. Assuming that the metric is a small pertur-
A computation along these linedut in the semiclassical bation of Minkowski spacetimey,,, = 7,,,+ «h,,,, the com-

and the action for the metric is

uvo
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plete actionS=S, 4+ S, can be decomposed into the free p—k k
scalar field, graviton, and interaction actions&sS,+ S,
+S,t. These actions, expanded in powerskofare
S,=| d* —Ea a“—lzz 3
1 FIG. 1. The two Feynman diagrams needed for the calculation
S,= j d“x( — iﬁahwé’ahw"‘ 9,h* 73N, of the self-energy, respectivel,;,(p) andX ,(p).
1 the other hand, we do not introduce counterterms to the in-
—d,ha, h#"+ E&“haﬂh +0(«k), (3b)  teraction action because we shall not compute vertex correc-
tions.
5 Additionally the graviton action(3b) must be supple-
Sim:f d4x(£T“”h L gmraBy p ) mented with a gauge-fixing term. We will work with the
2 k4 pviab harmonic gauged, h*’—(1/2)d*h=0, whose appropriate

+0O(x), (30 gauge-fixing action i$75,76|

whereh=h* , T,, is the stress tensor of the scalar field,

Syi= d* h*” ! “h M ! h 7
gf = — x| d, —5(9 J “*_Eaf‘ . (D

1 1
T v=0,09,p— 5 v0a -5 sz 21 4
pr=Iu®dv® 2w ¢°¢ 27 ¢ @ No Faddeev-Popov ghost fields are needed since we will not

consider graviton self-interactions.

and
Upvap=— 27000, hdsb+ 1,000,560 ll. ZERO TEMPERATURE
1 1 - The aim in this section is to compute the leading contri-
T\ 3 Muap™ 7 MuvMap (07¢d Pp+m=g°). bution to the vacuum self-energy of the scalar particle. At

zero temperature the self-energ§' =) (p?) is related to the
(5)  Feynman propagatds! ~(p) through

Indices are raised and lowered with the background metric .

7., We have kept only the free terms in the action for the GU=9(p)= —|
gravitonsS,, because we shall only compute the lowest-order F P p2+m2+3(T=0)(p?) '
corrections of the self-energy of thg field.

i r:—()rrﬁor?npmril tkruise czrrelcgic\)/nsr Wﬁ needs'itg mtrodruce for:]Jr}Ne recall that the self-energy can be computed as the sum of
erterms in order 1o cance ergences. ce our system Ly, one-particle irreducible diagrams with amputated external

polrtljr(irr]\ormallzallble, it has to be gndetz_rstoo;j as an ?ﬁegt'vf%gs[%,%,?z. In order to regulate divergences appearing in
€ eory, a low-energy approximation or-a more unda-y,, “c5cylation we will use dimensional regularization
mental theory at the Planck scdl@6,51-53. In order to (78,79

compute to a given precisidi'«", whereE is the energy of The two diagrams which may contribute to order are

the process, one has to introduce all poss_it_)le counterterng%own in Fig. 1. One must also take into account the contri-
compatible with the symmetry whose coefficients are of or-

. bution of the counterterms:
der " at most. In our case the most general action for the
counterterms for the scalar field action up to orgémwhich

is compatible with the Poincagymmetry is 3(T=0)(p?)=(m§—m?)+(Z—1)(p>+m?) + k*Cop*
+3) 2(pA)+ 25y P (pA) +0(k%).  (9)

®

1 2 2\ 42 1 )
S (M=) 62+ 2 (2= 1)(0, 00"

Scount= — f d*x
We first concentrate on the first diagraify; *(p?). Apply-

1 ing the Feynman rules described in Appendix A we findglin

+MEH?) 4 7 1*Col(3,,0" $)? | +O (), ©) sp?acetimeydimensions, i
wheremy=m+ O(«?) is the bare masg,=1+ O(«?) is the d
field renormalization parameter, adg=C+O(1) is a bare —iEEI):O)(pZ):mf 5 Tu(P.K) Tap(K, D)
four-derivative coefficient. The finite coefficie@tis a priori (27)
unknown and constitutes an external input of the theory. The i puvas .
value of C should be determined by experiments or by % ! ! (10)
knowledge of the underlying more fundamental theory. On (p—k)2—ie kK2+mP—ie’
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wheree=4-d, P,,,z and7,,(p,k) are given in Appendix tional condition on the derivative of the self-enel@b,3¢.

A, and u is an arbitrary mass scale. Developing the productddiowever this second condition is found to be singular due to
in the numerator we find the divergence of the logarithms when evaluated on shell.
This kind of singularity is generic for theories with interact-
ing massless particles because of the absence of well-defined
asymptotic regions in the presence of long-range forces. For
> 4 a discussion of this point in the case of QED see R&5).

— k' m(1+e/4)l(p)+0(e),  (11) Anyway in the paper we are just interested position of the
pole, which is always well defined.

Note that the only divergence arises from the field renor-
malization. In particular, the four-derivative coefficie@t
does not get renormalized: there are no logarithmic correc-
me mep? tions to thep* term in the self-energyl3), andC coincides
—+2m*+ ——+2m?p? with its classical valueC,. Therefore it would have been
€ € consistent not to include the four-derivative counterterm and
simply takeC=0 from the beginning.

2 . . .
p . The self-energy develops a negative imaginary part for
) —p?>m2,

2
. _ K
—iX{1y (p?) = 5 P71 ,(P) — K*MPPH1,(P)

where the momentum integralgp), 1,(p), andl ,,(p) are
defined and computed in Appendix B. The result for
{1y 2(p?) is

{1, 2(p?)=

—le

+O(8), ImE(T:O)(p2)=9(—p2—m2)K_

(12 (16)

where 1% =2/s — y+In 4. The second diagralﬁg)zo)(pz)
is a massless tadpole, and these are identically zero in dime
sional regularizatioh78].

Once we include the counterterms and take the lignit
—0 the renormalized self-energy is found to be

which, according to the optical theoreW7], accounts for

the probability of a scalar particle with momentynio de-

cay into an on-shell scalar and an on-shell graviton. Notice
that on shell p?=—m?) the imaginary part of the self-
energy vanishes, because there is no phase space available
for the spontaneous emission of a graviton.

K2 m6 m4 p2
3(M=0(p?)= - —+—|In| 1+ = —ie
(4m)2?\2p% 2 m2 IV. FINITE TEMPERATURE
2 24 m? In this section we compute the thermal contribution to the
— 5 (m*+ m2p2)ln( S e) self-energy working within the real-time approach to thermal
(4m) 2 field theory. In this approach, which is briefly explained in
+Cr2(p2+m?)2+O(k%), (13) Appendix C, the number of degrees of freedom is doubled,

and one has to consider four propagators organized in a
where we have absorbed divergences in the following way:2 % 2 matrixGay(p). The self-energy also becomes a matrix
>25(p). We will concentrate on the retarded propagator
— - . Ggr(p)=G11(p) —G1o(p) for the following reasons: First, it
mp=m*—Cxm"+ O(«"), (148 s the one that exhibits simple analytical properties at finite
temperaturganalyticity in the uppep® plane; second, as
shown in Appendix C, it is directly connected with the re-
+O(xY), tarded self-energ¥ g=3(p) +>'(p) through

’m2 (1
Z=1+2CK2m— = ~+2
(4m)%\ &
(14b) »

Gr(p)= (17
P

2 2 :
Co=C+0(k%. (149 e 2e(p)

In order to relate the bare and the renormalized parameteemnd, finally, the position of its poles have well-defined inter-
we have imposed the on-shell renormalization condition  pretations in terms of energies and thermalization rates. Fur-
thermore, the retarded propagator is the one that is naturally
3(T=0)(—m2)=0, (15)  obtained from analytic continuation from the Euclidean
propagator in the imaginary-time formalism. For more de-
which fixes the position of the pole to me?. The complete tails we refer to Appendix C and to Ref&4-56. A quan-
specification of the on-shell renormalization scheme also intum mechanical model where this point will be studied in
volves fixing the residue of the pole, which implies an addi-detail will be presented elsewher@0].
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A. Self-energy: Real part

Let us proceed to the calculation of the real part of
Sr(p). Since R&x(p)=Rex(p) [see Eq.(C19], we
shall compute the real part &(p) instead. We have to

PHYSICAL REVIEW D70, 044019 (2004

2
Re3(p)=Re T~9(p?)~ [ A(p) +B(p)+ C(p?)]

+0(k%), (24)

consider both diagrams sketched in Fig. 1, where now inter-

nal propagators are taken to be thermal and of type 11:

S (p)=(mj—m?) +(Z—1)(p?+m?) + k’Cop*+ 3 11)(p)

where3 (T=9(p?) is the T=0 self-energy[see Eqs(9) and
(13)] and where the integral&(p), B(p), and C(p?) are
defined through

+3.5(p) +O(x%). (18
d4k 0 0 2
The first diagran® 7,(p) is given by A(D)ZJ 2 )Sn(lp =k’ ((p—k)?)
v
i 2 d?k 1 X g1(p? k? p-k)P; (259
st~ K e
2 (2m)? (p—k)*—ie
+2min([p° =k 8((p—K)?) || 57— d'k
i me-ie B(p)= | ——sn(lkarke+m?)
(2m)?
+2min([k%) 8(k?—m?) |g;(p*,k?,p-k), (19 1
X g1(p? k% p-K)P——, (25b)
(p—k)
where
2 2 2 dk 0 2
91(p2. K2, p-K)= = = 7,,(,K) T (K, p) P F C(p*)=0s(p*) (2W)3n(|k (k). (250
K
=k?p?=2(k-p)m*=2(1+e/4m*, with “P” meaning principal value. We have set=4 be-
(20 cause thermal contributions are ultraviolet finite. Note that
the same renormalization process which makes Tke0
the functionn(E) is the Bose-Einstein distribution, self-energy finite also renormalizes tHe>0 self-energy;
there is no need to introduce additional temperature-
1 dependent counterterms. Hereafter we will concentrate in the
nE)y= ——, (21)  on-shell resultp’=E,= Jm?+[p|?, since these are the ones
1—ef/T we will need afterwards for the calculation of the thermal

and we recall that =4—d and thatr,,,(p,k) andP*"*P are

mass and the modified dispersion relation.
The integralsA(p) andC(p?) take into account the effect

given in Appendix A. On the other hand, at finite temperature®f the thermal gravitons on the scalar particle. In the on-shell

the tadpole diagran¥ 5,(p) no longer vanishes since its
temperature-dependent part gives a finite contribution,

d*k
(2m)*

K2
2(121)(p)=—793(p2)f 278(k*)n(|K?)),

where
2\ — 2i uvaf — 2 2
gs(p )——;Vﬂmg(p,p)P =10m=+4p~,

with V,,,.5(P.K) given in Appendix A.
To orderx? one has

case it is possible to give an explicit expression for these
integrals valid at any temperatuféne details of the calcula-
tion can be found in Appendix D

(22) 1
A(Ep.p)=— gm*T?, (26)
1
C(—-m?)= Em2T2. (27)
(23

Notice that A(E,,p) does not depend on the three-
momentump. This is a surprise since ER539 is not mani-
festly Lorentz invariant. This simplification, which is also
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found in electrodynamic§37], will have important conse- contribution to the self-energy. At high temperatufies m,
guences when computing the modified dispersion relation. the leading contribution to the integral is given by
The integralB(p) takes into account the effect of the

thermal scalars in the heat bath. For temperatures well below B(E. .p) m?T2\m?+|p|? . 2\m?+|p|*—|p|
the masam there are almost no scalar particles in the bath, poP)= 24)p| 2 Jm2+ o2+
and this indeed shows up in an exponential suppression of m*+[pl+ Ip|
B(E,,p) at low temperature¥<m: 1
P + §m2T2, T>m. (29
m5T3{ m?+2/pl> | -
B(E,,p)~ e ™" T<m. ; ; . .
p 2773 \3m2+4|p|2 The details of the calculation for both the low- and high

(28) temperature limits are given in Appendix D.
Summarizing, according to Eq&24) and (26)—(29) the
For temperatures of the order of the magsthere are ther- real part of the on-shell self-energy in the low- and high-
mal scalar particles in the bath and they give a significantemperature regimes is given by

513 2 2
_ EKZmZTZ_ m>T KZe*m/T m +2|p| T<m,
ReZ(E. .p) 6 V g3 3m?+4|p|? 0
e p)=
e V2Pl [ 2m?+[pl2+ |pl
— k’m?T?| — 11+ n . T>m
48 |p| 2Jm?+ [p[2—|p|

Notice that from the high-temperature result we can deduce that for massless particles the on-shell self-energy is exactly zero.

B. Self-energy: Imaginary part whereD(p) is defined by
Now we want to compute IR g(p). Similarly to the pre- 4
vious subsection we could computd(p) and then make D(p):f d'k F(p°,k%)g,(p? k2, p-k)
use of Eq.(C19; however, it is somewhat easier for us to (217)2 ' nE-
compute3 4 p) and3?Y(p) and make use of relatiofC18) i ia o
instead. The self-energy*¥(p) is given by X 8((p—k)9)a(k+me), (34
with
2 4
R )=iK— n(k%sgr(k®n(p°—k°) 0 1,0 0 0_10 0 0_ 10
PIZI2 ] (g S9N (%) =sorliysgrp® k{2 +n(k) +n(@* 0],
5
X sgn(p®—k°%) 8((p—k)?)8(k?>+ m?
ortp )olp=l7)al ) which can be developed to give
X g1(p?K?,p-k), (31
1 0 O_kO kO
where we used the property 8(—p°+n(|p°) F(p° k%= Esin){g—_r) cscl{%) csc)’(%).
=sgnE°)n(p®). In a similar way we find, fo& %, (36
N After manipulating the integraD(p) (the details can be
3H(p)=i 7J (277)2[1+n(k°)]sgr(k°) found in Appendix D the imaginary part of the self-energy
can be expressed as the following phase-space integral:
X[1+n(p°—k%]sgnp®—k?%) &((p—k)?)
K’m?(m?+2p?)| Q2 0
X 8(k?>+m?)g,(p? k2,p-Kk), (32 IMXp(p)=——mr f dQF(p”,Q)|. (37)
327T|p| Q1

where now we used9(p0)+n(|p0|):§gn(p0)[1fn(po)]. Let us now evaluate the integral in E@7) for an arbi-
Thus from Eq.(C18) and the two previous equations we get 5y temperature. For simplicity, we restrict ourselves to the
case p°>|p|, but including both p°)2>m?+|p|2 and
(p%)?<m?+|p|2. In this situation the integral can be per-
(33) . _
formed analytically to give

K2
ImER(p)=—ZD(p),
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Sin% (p°+ |p|)2+ mz) Sink( (p°)2—|p|2—m2)
«*Tm?(m?+2p?) AT(p%+|p|) 4T(p°~1p|)

Im3x(p)= In (39
N =P | (%= pl—n?
sin o sin 5
4T(p"=Ipl) 4T(p°+|p))
|
Making use of the property mal functionF(p®,0) diverges. Hence the nonvanishing re-
_ _ 2l sult we obtained is a direct consequence of the infrared di-
In(sinhx)~[x|—=In2—i76(—x)—e X, |x|>1, vergence of the Bose-Einstein distribution. When regulating
) ) . . the infrared behavior—for instance, by giving a tiny mass to
we easily obtain the low-temperature approximation the graviton—no imaginary part is found pt= —m?. Ad-

ditionally, had we worked in an arbitrary gauge we could
have verified that the result of E¢42) is not even gauge
invariant[41,81.1

2 .2 w? [ mP m* 2.2
Im3g(P)=6(—p=—m )@ 2—p2+7+m p

-m/T
+0(e ), (39 V. DISCUSSION OF THE RESULTS

which is in agreement with the zero-temperature result of Eq. At zero temperature, the position of the pole of the propa-
(16). At zero temperature the imaginary part of the self-gator gives the energy of the state and hence defines the
energy gives a net decay rate, but at finite temperature it igispersion relation, according to th€ lia-Lehmann specral
related to the raté’ at which a particle approaches thermal representatiofi35,36,77. The position of the pole is found
equilibrium [38]: to be

02— m2+ |p|2+ S (T=0)( — m2) = m2=+ | p|2
r=rd—rc=—%|mzR. “0) (p%)2=m+[p[*+ 3= (=m?) =m*+[p|?, (43

P where the second equality is a consequence of the renormal-
ization condition(15). The dispersion relation is clearly Lor-
entz invariant, as expected.
Similarly, at finite temperature it can be sho\sv] that
e “effective” dispersion relation of the particle, given by
the location of the poles of the retarded propagator, deter-
mines the inertial properties of the particle. The location of
the poles is given by

In this expressiod’y andT . are, respectively, the annihila-
tion and creation rates of particles with energ$, which
take into account stimulated absorbtion and emission by tth
thermal bath. An arbitrary ensemble of particles with distri-
bution function f(E,t) approaches thermal equilibrium
through

1 0y2 2_ 2 0

f(E,t)=eE/T—_1+c(E)e reEe (41) (p°)?=[pl*=m*+ ReXr(p°,p). (44)
The thermal mass is obtained by settimg O:

where c(E) depends on the initial conditions. Hence the

imaginary part of the self-energy corresponds to an observ- m$:m2+ ReX gr(my,0). (45

able guantity.

To order«? a real particle can neither emit nor absorb aln a Lorentz-invariant situation one would simply have
real graviton, because these processes are kinematically fqip®)?=m2+|p|2, but in general there can be additional de-
bidden. Hence, at this order, the imaginary part of the selfpendence on the three-momentpnon the right-hand side:
energy must vanish on shell. However in the on-shell limit

p°—E,=[p[>+m?, we obtain, from Eq(38), (p°)%=més+|p|?+ F(k,T,m,p). (46)
. K2mAT ( Vm?+|p|?+|p| The Lorentz-breaking additional term in the dispersion rela-
m2g(P) —— — n : tion leads to modifications of the group velocity of the par-

32 Jm2 2_
p’—Ep 7Pl m*+pl*=p| ticles v=dp®/dp:
(42)
which is nonzero ifT#0. V= L E (47)
This nonzero result for the on-shell self-energy is an arti- p® 2p° p

fact of not having introduced an infrared regularization; see

Refs.[41,81]. To illustrate this point one can take the on-

shell limit directly in Eq.(37): in this limit Q;,Q,—0, so We are grateful to A. Weldon for drawing our attention to this
that the phase space of the integral vanishes while the thepoint.
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Let us find the explicit form of the thermal mass andthat Eq.(52) shows that there is no modification to the dis-
Lorentz-breaking terms in both the low- and high- persion relation for massless scalars.
temperature regimes. Equatio®) can be solved perturba- The Lorentz-breaking term is negative in the low-
tively: temperature case, which implies that the speed of propaga-
0o 5 A tion is lowered with respect to the standgrd relativistic case.
(p°)?=m?+|p|*+ ReXr(E,,p) + O(x%), (48)  In contrast, the Lorentz-breaking corrections have a positive

sign at high temperatures, so that the speed of propagation is
where we recall thaE,=ym*+[p|*. At low temperatures j,creased. However, it is always lower than the speed of

the modified dispersion relation, according to E(@9) and light, as can be seen by expanding E&f) in the ultrarela-

(48), is approximately given by tivistic limit:
(p°)2~m2+|p|2—f<2 mSTsefm/T |pl? p m2[48+ k?T?(In3—1)]
i 27 3m2+4|p|2)’ V=T 1T e T (59
Pl
(49)

We should emphasize that the above breaking of the Lor-
entz symmetry is only effective: if one applies a Lorentz
1 transformation simultaneously to the particle and bath all
ma~m?— €K2m2T2. (50)  results are Lorentz invariant. This can be seen can by intro-
ducing the unit vector* which gives the four-velocity of the
In the high-three-momentum limit the term which modifies th€rmal bath. Then the energy and three-momentum of the
the dispersion relation becomes a constant and can be redp@rticle with respect to the bath are

where the leading contribution to the thermal mass is

sorbed in the thermal mass. The group velocity is modified 0 5
according to Eq(47): p°=—1,p*  [pl=V(,.p*)*+p,p*. (56)
P N In this article for obvious reasons of simplicity we worked in
v~ | 1= = ik (51)  the bath rest frame whet¢=(1,0,0,0).
p V2m3(3m?+4|p|?) For low values of the momentum the effective dispersion

. . relation can be expanded in powerspofFor instance, in the
Notice that at low temperatures the Lorentz-breaking tern]ow-temperature case, for momenta satisfyjpy<m, the

; -m/T Qi
carries a Boltzmann fact_cr_r - This is due to the men- effective dispersion relatio9) can be expanded as
tioned fact that the nontrivial momentum dependence comes

from the thermal scalar particles whose abundance is expo- 25273120 =MIT | 5|2
nentially suppressed at low temperatures. Analogously to (p°%)2~m? 2_ KM € Pl
. ) p°)*~mz+|p|
what happens in electrodynami¢87], the effect of the NPT 3m?
graviton bath only shows up in the thermal mass. - .
At high temperaturd>m, the modified dispersion rela- L m 7% ™7 2|p| N 57
tion is found to be 23 27m?
2212
(p°%)2~m2+|p|?+ KT [E n(ZEP+|p| - } It is worth mentioning the difference between this expansion
T 48 ||p| 2E,— |p| and that of Eq(1). In a fundamental approach to the Lorentz

(52 symmetry breaking one expects each additional power of
momentum to be suppressed by increasing powers of the
Planck mass, whereas in the effective breaking approach we

11 have pursued there are several energy scales. Hence there is
m2~m?— 4—8K2m2T2. (53)  more freedom in the possible values of the suppression fac-
tor. For instance, in the low-temperature regime—i.e., in Eq.

4 ; 32n—mT 21 i
At high three-momentum the modification of the dispersion(‘rﬂ)_the |pl* term is suppressed byT(m)**e”™'<1 in

relation can be also reabsorbed in the thermal mass. Tl.félanck units. The fact that in the latter approach there are

roup velocity is given b more energy scales glso explain; why modifica@ions to the
group yisg y |p|? term are present in E457) while they are not included

and the thermal mass is

P 1 2T2m? in Eq.(1). Notice also that the corrections that we found only
v~ — 11+ on > PN, contain even powers of the momentum and thus are in agree-
p 96 (4m?+3|p|?)|p| ment with the results of Ref82].

In the present universe the effects we discussed are com-
' (54) pletely negligible when applied to electrons or protons, both
because they are proportional to the Planck length square and
because they are exponentially suppressed. To obtain rel-
At high temperature the terms which break the Lorentz symevant effects, one should consider Planckian temperatures.
metry are no longer exponentially suppressed. Notice alsblowever, in this case perturbation theory around a flat-

1 «2T?m?* (2Ep+|p|
5= n
96 |p|3Ep 2E,—|pl
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‘,jf' k P k
rj{j& P
Ly

FIG. 2. Diagrams such as the one depicted on the left would FIG. 3. On the left, the two-scalar—one-graviton vertex, denoted
contribute to ordex? to the thermalization rate at finite temperature PY 7.,(P). On the right, the two-scalar—two-graviton vertex, de-
and hence to the imaginary part of the self-energy. However, alNot€d byV,,,.4(p).
those one-vertex diagrams are identically zero because of kinemati-
cal reasons. The first nonvanishing contribution would be due to ACKNOWLEDGMENTS
Compton-like diagrams such as the one depicted on the right, and
hence it would be a&* contribution.
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the imaginary part accounts for the dissipative effects an3000-00131.
gives the thermalization rate. As we have already com-
mented, at the ordet? the imaginary part pf the self—e!’lergy APPENDIX A: FEYNMAN RULES
is zero. We do not see the thermalization effect since all
processes which could contribute to it, such as the one shown At zero temperature the free propagator for the scalar field
in Fig. 2 (on the lef), are kinematically forbidden. In order is
to account for thermalization effects we should compute the
imaginary part of the self-energy to ordef. At this order,
the particle can exchange momentum with the thermal bath GOT=9p)= ——
through processes such as the one to the right of Fig. 2, p2+m?—ie
which would correspond to the Compton scattering in elec-
trodynamics. Notice herg a significant difference with respect \q the free propagator for the gravitons in the harmonic
to the vacuum case: while at zero temperature the s,elf—energ@/auge is[51,52,76
is purely real to all orders of perturbation thegbecause the T
particle is stablg at finite temperature it will acquire an
imaginary contribution to ordex?. (T=0)
Let us end with a short summary of the main points of the (AR) e (P)=
paper. We have illustrated with a particular example how
local Lorentz symmetry is effectively violated because of the
interactions with a nontrivial ensemble of metric fluctua- where
tions, even if Lorentz symmetry holds at a fundamental level.
We have also shown how this effective violation can be ad- 1 2
dressed at low energies within standard physics. The main PMM;:E DuaMvpt NupMva™ G=2 Tuv7ap (A3)
quantitative result of the paper are E¢$9) and(52), which
explicitly show the modifications of the dispersion relation.
As in the electromagnetic case, this effect is exponentiallyn d spacetime dimensions. In four dimensior8,,, .z
suppressed at low temperatures. Moreover, the modifications (7, 7.5+ 7,.57va™ Muv Map)/2-
of the dispersion relation are suppressed when the three- The two-scalar—one-graviton vertex, shown in Fig. 3, is
momentum of the massive partidldefined in the heat bath given by[52]
rest frame is much larger than the temperature and mass.
This last result is somewhat unexpected since the gravita- i«
tional c_ouplmg grows Wlth. the energy, unI|I§e t.he electro— T (P.K) = E[pnkﬁ p,k,—(p-k) 77W_mzmw],
magnetic case. Therefore, in spite of the derivative coupling,
no violation of Lorenz invariance is found in the high-
momentum limit, at least at one loop. Finally we have also
shown that gravitational interactions do not generate a fourand the two-scalar—two-graviton vertex, also shown in Fig.
derivative term in the scalar field action. 3, is given by[52]

! (A1)

—iP e
—E (A2)
pe—ie

(A4)
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: 2 p?2 m* Tm? 4p?
Voas(PK) = =163 1ol (pPkT+ pok?) /U LR LI L
vaf v\ caf V( ) — — +
: mr wA P am?| 25 6s 6p2 6 9
1 6 4 2 2 2
+ = + PKo m m
Z(WMVIQBPU Nap) uvpo) PPK _(FJFF)”] 1+—2—i6)— —+ —
p p m
1 1 5
2 IMVaB_EnMVnaﬁ (p-k+m)|, <In p2+m2—ie) PPy i_m_G
(AS) ,LL2 (47T)2 3e 3p6
2 1 2+m2
where XIn 1+p—2—ie)—§ln P > le
m M
_= m* m? 13
Iﬂvaﬁ_z(nﬂanvﬁ+ nﬂﬁnva)' X+—4——2+— +O(8), (BG)
At finite temperature the free propagators for the scalagypere
field are given by Eq(C11) and the free propagators for the
gravitons are Aa_b)waﬁ(p)=PﬂyaﬁGg%)(p)|m:0_. Vertices 1 2
type 1 are described by,, andV,,,s and vertices type 2 ~=——vy+Indmx.
are described by-7,, and — V5. e ®
APPENDIX B: INTEGRALS IN DIMENSIONAL APPENDIX C: REAL-TIME THERMAL FIELD THEORY

REGULARIZATION For the benefit of those readers who might be unfamiliar

In Eq. (11) we need the integrals with the subject we give in this appendix a brief account of
' those aspects of real-time thermal field theory which are
needed in the paper. For a complete introduction to the ther-

1(p)= d’k 1 mal field theory we address the reader to RE54.—56; see
P)=n (2m)9 [k2+m2—ie][(p—k)2—i€]’ also Ref.[83] for an approach similar to ours.
(B1)
1. Correlation functions
) d%k K, In thermal field theory the initial state for the fields is
l.(p =Msf : —, assumed to be a thermal state at temperafurd/B, which
w dr2. m2_ k)2 '
(2m)" [k m—ie][(p—k)"~i€] 82 is characterized by a density matrix
e AH
d P=——n (CY
| V(p)=usf Tk uks . Tr(e A1)
. (2m)9 [k2+m2—ie][(p—k)2—ie€]

(B3)  whereH is the Hamiltonian operator of the systefor the
purposes of this appendix we shall consider a scalar &¢ld
The result in arbitrarg dimensions after series expansion in The generating functional[j] is defined as

e=4—dis
Zdil=Tr pT, exp(ifdtf d3x€¢>(x)j(x)) , (C2
i 1 2 p? c
= > 7+2——2|n 1+—2—i6)
(4m)*|e P m where g (x) is the field operator in the Heisenberg pictute,
02+ m? is a certain path in the complexplane, T, means ordering
—In —ie| |+0(e), (B4) along this path, ang(x) is a classical external source. By
u? functional differentiation of the generating functional with
respect tog, path-ordered correlation functions can be ob-
. 5 4 2 tained. The generating functional may be computed in a
ip m p ; .
(p)= E 1242 — 4+ —Inl 1+ ——je path-integral representation as
# 2(4m)?%| e p? p* m?
o2m 24i1- | Do exp(i | | exterooor+iocosoor .
—In ;,——le| [+0(e), (B5) ¢
M (C3

044019-10



PROPAGATION IN A THERMAL GRAVITON BACKGROUND PHYSICAL REVIEW D70, 044019 (2004

Imt GaaX,X') =((X) (X)), (Ceéb)
G Goy(x,X')=(b(x") $(x)), (C60)
. > s
. t ~~
b " Ret Gaax X ) = (TH(x) B(x)), (C6d
Ca Cs
—ol- < where (T)T is the (anti)time-ordering operator, and where
c the average means --)=Tr(p---). Lowercase roman in-
4 dices are raised and lowered with the “metriag,,
-B}- =diag(1;-1). From the above expressions it can be readily

seen that not all correlation functions are independent. The
FIG. 4. Integration contour in the complex-time plane used infollowing relations in Fourier space are a consequence of
the real-time approach to thermal field theory. The cheice0™" Egs.(C6):
makes the formalism analogous to the CTP approach to field theory.
G11(P)=G3Ap), G1AP)=GCGo(—p), (C7a
where L is the Lagrangian density and the contduis now
restricted to begin at some initial real tinheand to end at G11(P) +GoAp)=G1Ap)+Go(p), (C7b
t;—iB. The boundary conditions for the path integral are
o(t;,X)= ¢(t;—iB,x). Different elections folC lead to dif- where correlation functions in Fourier space are
ferent approaches to thermal field theory: a straight line from
t; to t;—iB leads to the imaginary-time formalism, and the
contour shown in Fig. 4 leads to the real-time formalism. By
choosingo=0" our formalism will coincide with the CTP
approach to nonequilibrium field theofp7-59. In fact  where we have introduced the new variables x—x’ and
many of the properties listed below are not limited to theX=(x+x’)/2.2 Additionally, in the case of an initial thermal
thermal case but are valid in a more general nonequilibriunstate the following relation, a consequence of the Kubo-
situation. We shall try to specify in each case which properMartin-Schwinger (KMS) formula (equivalent to the
ties are general and which ones are particular to the therm#uctuation-dissipation theorem, in another conteig also

Gab(p)=f d*xe P AG, (X +ARRX—A/2),

case. verified:
If we are interested in real-time correlation functions, the . .
path alongC; andC, can be usually neglected once we prop- G1i(p)+Godp)=€ PP Giyp)+€°P Gyy(p). (CY)

erly take into account the boundary conditions of the path

integral. If we define ¢, o(t,x)=¢(t,x) and j,At,Xx) Thus, in thermal field theory knowledge of just one correla-
=j(t,x) for teC;, and taket;— — andt; —<, the gener- tion function determines all of them.

ating functional can be reexpressedzgj|=234Z[j1,j2], An important correlation function is the retarded propaga-
whereZs, represents the constant contribution from the segtor, which is defined as

mentsC; andC, andZ[jq,j,] is

GrOX,X) =00~ x"){[$(x),6(x)]),  (CY
Z[jl’jZ]:f D¢1D¢2exp< if d*x{ L $1(x)] and is related to the other correlation functions through

exp( _i f XL ()] Gr(P)=G1i(P)~ ol ). (10

+j1(X) P1(X)}

The retarded propagator has the remarkable property that has

+12(X)¢2(X)}). (c4)  well-defined analyticity properties at finite temperature, as
opposite to most other propagators: it is analytic in the upper

. . i ) . _half of the complexp® plane. Furthermore, the retarded

Correlation functions are defined by second functional differona5ator is the one that one naturally obtains from an ana-

entiation with respect to the external souj¢e): lytic continuation of the Euclidian propagator in the

imaginary-time formalisnj84].

1 8Z[j1j,]

Z[0,0] sj2(x)8j°(x)

Gap(x,X") = , (CH

1112=0 2In order to avoid cumbersome notation the same symbol is used
. . for correlators in configuration space and in Fourier space. Notice
wherea,b=1,2. In operator language correlation functions ¢ Fourier-transformed propagators depencdfthe initial state

can be written as is nonhomogeneous. Since our primary concern here is thermal

. . states, which are homogeneous, we do not indicate explicitlyxhis
G, X" )=(Th(x)p(x")), (C68  dependence.

044019-11



ARTEAGA, PARENTANI, AND VERDAGUER PHYSICAL REVIEW D70, 044019 (2004

2. Perturbation theory Ell(p) +222(p)= _212(p)_221(p), (C14b

Perturbation theory can be organized in a similar way as _ . .

in the zero-temperature case, but taking into account that ?i{Yh'.Ch can bg opta!ned fro;p qufGC;Z) .a',‘P'ECB)- '_Fhehfol- "

finite temperature there are two kind of verti¢ésand 2and ~ 1°Wing equation is just verified if the initial state is thermal:

four kind of propagator¢ll, 12, 21, and 22which link the 1 22\ - BpOs 12 8p05 2
two vertices. Vertices type 2 carry an additional minus sign SH(p)+2(p)=—e X H(p) e 3 p). c1

with respect to vertices type 1. When computing Feynman (C19

diagrams one has to sum over all possible internal verticesrhus all the components of the self-energy can be deter-
For a real scalar field of mass, free propagators are given ined from knowledge of just one of them. Combining re-

by lations (C14) we obtain
i 2 2\ 0 i
rmiie | CTowEmlee) Im3*(p)=[32p)+3%p)].  (C16
GW(p)= .
278(p2+m?) 6(p°) : This last equation can be directly obtained from the cutting

p2+ m2+ie rules at finite temperature.
A particularly useful combination is the retarded self-

1 energy, defined a&g(p)=>(p)+=14p). It is related to
2, 2 0 , R
+2m5(p*+m)n(|p |)( 1 1)' (C1Y the retarded propagator through
wheren(E) is the Bose-Einstein distribution function: =i
GrP)=Z < (C17
p+m°+3g(p)
n(E)= 1—eBE’ (€12 The above relation, which justifies the name of retarded self-

energy forXg(p), can be demonstrated by expanding the
Thermal contributions to Feynman diagrams are always fimatrix equation(C13 and using the relation¢C7) and
nite in the ultraviolet regime because the Bose-Einstein functC14). Similar relations hold for the advanced propagator
tion acts as a soft cutoff for momenta larger than the temG,(p)=Gk(p) and the advanced self-energy a(p)
peratureT. The counterterms which renormalize the theory at= — 3% (p). Notice that a diagonal relation such as Eqg.
zero temperature also renormalize the theory at finite tem¢C17) can be found only for the retarde@r advancej
perature. Note also that the thermal part of the propagatopropagator.
which breaks the Lorentz symmetry through an explicit de-  According to Eq(C16), the imaginary part of the retarded

pendence om?, is always on shell. self-energy can be also expressed as
Instead of working with the four propagato®,,(p) in

the thermal case one can reorganize perturbation theory in a i ) -

way such that just retarded and advanced propagators are ImER(p)=§[2 p)—2*(p)]. (C19
involved[85]. In this case one has to consider how Feynman

rules are transformed when working with the retarded andror a thermal stat& (p) is related to>'}(p) through

advanced basis. .

>R(p)=Rex(p) +tan|‘(p—) Im=%(p). (C19

3. Self-energy 2T

In a thermal or, more generally, in a nonequilibrium situ-
ation, the self-energy has a matricial structure and is implic- APPENDIX D: COMPUTATION OF A(p), B(p), C(p?),
itly defined through the equation AND D(p)

Gan(P)=G9(p)+GO(p)[ i p)IGqu(p), In this appendix we shall compute the integrélép),
bt P 2P actP PIIZalP (C13 B(p), C(p?), andD(p) which appear in the calculation of

the self-energy at finite temperature; see E@$3—(250

whereG{))(p) are the free propagators of the theory. Be  and(34).
component of the self-energy can be computed, similarly to Let us start by computing the integralp), defined in
the vacuum case, as the sum of all one-particle irreducibl&g. (25a. The Dirac delta can be expanded as
diagrams with amputated external legs that begin and end
with type a and typeb vertices, respectively. S((p—K)2) = 5(q%) = 1

In general the self-energy components verify the nonper- 2|q|
turbative relations

[8(—q°+|al)+ 8(q°+]a))],

where we have introduced the new varialje p—k and
SHp)=—-(2*(p), 2Hp)=3%(—-p), wherep=(p° p) andq=(q°q). Introducing now spherical
(C14a  coordinates ¢,6) in the three spatial dimensions, with
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being the angle betweem and g, and integrating with re- whereQ=|q|, P=|p|, x=cos¥,
spect tog® with the aid of the delta function we get

2 N2
A ):J‘oo n(Q)QdQ 92(p*,0%,p-q)
M=o 2(2m)? =0:(P% (P~ a)%,p- (P~ Q)
xfl o (020 p°Q+PQXY = —2m*—2m?p*+p?+2m*(p- )
1T (p0)2+ PP+ 2p°Q— 2P Qe —2p*(p-a)+p°q?, (D1)
g2(p?,0p°Q+PQx)

and we have performed the trivial angular integration over
¢. We now integrate with respect toto get

—(p%2+P2-2p°Q—2PQx+m?

fm n(Q)dQ SPQ[_mg_(p0)2+P2]+m2{m2+2[(p0)2_P2]}

A =
(P) 0o 167°P

(D2)

XIn([m2—<|o°—P+2Q)<|o°+F>>][m2—<|o°— P)(p°+P—2Q)]H
[m2—(p°—P—2Q)(p°+P)][m?— (p°—P)(p°+P+2Q)]/ |

The result of this integral cannot be given in closed analytidicular expressions valid at low and high temperatures. As in
form, in general. However in this paper we are mainly inter-the case of previous integral, we will restrict to the on-shell
ested in its on-shell valup°=Ep=\/m2+ P?, and in this results.
limit the integral can be computed exactly at any temperature At low temperature, only those momerkavhose corre-
since the logarithmic term in ED2) vanishes. In this case sponding energies are at most of the order of the tempera-
the value of the integral is given by ture,E,<T, contribute significatively to the integral because
of the presence of the thermal factofE, ), which acts as a
m2 (= 1 soft cutoff. Hence, low temperature also implies low energy
A(Ep,p)=— —zf dQn(Q)Q=— gszz, (D3)  and low momentum. Therefore, in the low-temperature ap-
7o proximation we may retain only the leading term inKa

where we used that expansion.

dKn(E,)[K2+0O(K3)].

. 2272 _ mP+2pP? (=
fo aQNQ)Q=—5— B(Ep'p)_w2(3m2+4pz)fo

We now proceed with the computation B{p), defined Taking into account that for low temperatures

in Eqg. (25b). Repeating similar steps as in the previous inte- n(Eg)~e ™Te- K2/(2mT)

gral we get
. Jw n(E,)K2dK and that
p = oo 2 <]
0 2(2m)°E, j dKe—K¥@mDK2_ \/g(m'l')glz,
Xfl o] . 91(P%0— P°E+ PKX) °
1 X! —(p%)2+ P2+ 2p°E,— 2PKx we find the following expression foB(p) at low tempera-
ture:

91(p?,0,p°Ey+ PKX)

) 513 2 2
_(p0)2+ PZ_ZpOEk_ZPKX B(E ,p)% m°T / m<+2P
PPN 248 3m2+4p2

where we recall thaE,=\m?+K?. The integral with re-

spect tox can be analytically performed; the result is a veryWe have not made precise the exact meaning of the “low-
large and cumbersome expression, which we shall not repraemperature” approximation employed above. In principle
duce here. The resulting expression cannot be integratetiis approximation would require the temperatreo be
again in a closed analytic form. However, we may find par-much smaller than any relevant quantity with dimensions of

e mT, (D4)
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energy that could be formed by a combinationnefandP.  wherep=(p° p) andq=(q°q). Next we expand the first
However, a detailed analysis of the expressions shows thalkelta function and integrate ovef:
the conditionm>T is sufficient to guarantee the validity of
the result. B 2m

Let us now proceed to the calculation B{p) in the D(p)=f —3mF(pO,|Q|)gz(|P|2—(pO)Z,O,p‘q
high-temperature regime. Sin&{p) would be divergent if (2m)* <l9

no thermal cutoff were present, at high temperatures the —p% gl 8(— (p°— |a) 2+ (p—q)2+m?)
leading contribution to the integral is given by those mo-
menta close to the temperatureThus as a first approxima- dq 2=
tion we can retain only the leading term in &1éxpansion: f (2m)? 2|q| (p%—lalga(|pl?—(p®)2,0p-q

2 2 2 2

_|mVme+PE [2Vm PP 8 +p%a))o(— (p°+|a))?+ (p—@)2+m?). (DY)
am?p | 2ymErPErP) | 4n?
We now introduce spherical coordinates ogeand expand
XJ dKn(E)[K+O(1/K%)]. (D5) the second delta function:

0
Since the leading contribution to the integral is given in the D(p)= ﬁ dxf dQF(p°,Q)g,(P2—(p°)%,0QPx
ultrarelativistic regime, we can approximate the energy by
the momentum in the Bose-Einstein functiom(E,) —QpY)S(x—(p?+2p°Q+m?)/(2PQ))

~n(K). With this approximation we find

2T2Ep
B(Ep.p)= P In

1 1 ®
2E.-P| 1 +—f de dQF(p°,—Q)
p =272 8P J_1 " Jo
JEiP +8mT. (D6)

XQZ(PZ_(pO)Z!O!QPX+Qp0)
Analogously to the low-temperature case, the high-
temperature approximation would priori require the tem- X 8(x—(p?—2p°Q+m?)/(2PQ)),
peratureT to be much higher tham, P, and any relevant
energy scale formed by combination of these two. Again, onavhereQ=|q|, P=|p|, andx=cos6. We have already per-
can show that the condition>m is sufficient to guarantee formed the trivial angular integration ovep. Integrating

the validity of Eq.(D6). with respect tox with the aid of the delta function we get
We now move to the integra(p?), defined in Eq(250).
Its evaluation is straightforward: 9,(p2,0,p?+m?)/2)| (<2 0
D(p)= 8P dQF(p~,Q)|, (D9)
2 17 Q1
C(p?)=g3(p?) f = 13(10m*+4p?). .
with
(D7)
0N\2_p2_m2 0\2_p2_
We only need its on-shell valug(—m?) = T2m%/6. Q2=(p )*—P"—m - (p)°—P
Let us now consider the integr@(p), defined in Eq. 2(p°-P) ' 2(p°+P) ’
(34). We start by introducing the variabtg=p—k:
which can be finally arranged as
dac’a 5 o 024 1012 (02t 2
D(p)= > F(P%.0%)g2(=(p?)*+[pl* = (a")*+ 07, M+ 20| (2
(277) m°(m*+2p°) 2 0
D)= 55|, WQF(P*Q). (010
—p%°+p-a)8(—(q°)*+0%)8(— (p°—q°)? !
+(p—q)%+m?), Recall thatp?= — (p°)2+ P2,
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