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Propagation in a thermal graviton background
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It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion
relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced
radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibil-
ity, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a
thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and
which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly,
however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found
that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
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I. INTRODUCTION

In recent years modified dispersion relations which bre
Lorentz invariance have appeared in different contexts
gravitational physics.

On the one hand, they appeared in several works wh
address the so-calledtrans-Planckian problem@1–3#. In
black hole physics the modes responsible for Hawking ra
tion reach arbitrarily high energies near the black hole h
zon when measured by a free-falling observer. This obse
tion has lead some authors to study the robustness
Hawking radiation when modifying~from the outset! the dis-
persion relation beyond the Planck scale@4–7#. A similar
problem appears in inflationary cosmology: the modes
sponsible for the large-scale structure had length scales m
smaller than the Planck length in the early stages of inflat
Therefore it is of interest to determine to what extent
properties of the fluctuation spectrum are sensitive to mo
fications of the dispersion relation at the Planck scale@8–11#.
In these works, the introduction of a nontrivial dispersi
relation has been originally suggested by formal analog
with condensed matter@4,12–15#. However, the main physi
cal motivation is that unknown effects of quantum grav
~such as radiative corrections! might introduce nontrivial dis-
persion relations in these contexts. Following ’t Hooft’s@16#
observation that strong gravitational interactions in the ne
horizon region might alter the semiclassical description
black hole evaporation, a first dynamical realization of t
line of thought has been pursued in Refs.@17,18#.

On the other hand, there have been hints from hi
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energy astroparticle physics that we could already see
effects of a violation of the Lorentz symmetry. In particul
modified dispersion relations have been used in order to
vide an explanation for observations of ultrahigh-energe
cosmic rays~with energies higher than 1020 eV) beyond the
Greisen-Zatsepin-Kuzmin~GZK! cutoff @19–22#. As in the
trans-Planckian problem, several dispersion relations h
been exploited, inspired by various approaches to quan
gravity @23,24#, string theory @25#, noncommutative field
theory @26#, variation of couplings@27#, and multiverses
@28#. Modified dispersion relations often break the ener
degeneracy for a given three-momentum: the particle ene
can become helicity dependent@23,24# and light can become
birefringent@29,30#. A popular form for these modified dis
persion relations below the Planck scale is, in the cosmolo
cal rest frame,

E25m21upu21 (
n>3

hn

upun

MPl
n22

, ~1!

whereMPl is Planck’s mass andhn are coefficients of order
1 if the Planck mass is the relevant scale. Jacobsonet al.
have studied the constraints on the possible values of
parametershn based on current astrophysical observatio
data@31–34#. It is important to notice that both the real an
imaginary partsh3 are already observationally constrained
be much smaller than 1. This shows that the ‘‘natural’’ a
sumption that thehn should be of order 1 is perhaps to
naive. The possibility of quadratic modifications of the d
persion relation is also strongly constrained@29,30#.

As we learned from particle physics, Lorentz invariance
a key element in renormalized quantum field theory@35,36#.
Nevertheless, it might be broken by quantum gravity a
fundamental level, or, alternatively, it may be broken in
effective way in nontrivial backgrounds only. Indeed
©2004 The American Physical Society19-1
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backgrounds which possess a preferred reference frame
diative corrections to self-energies might contain ter
which effectively break the~local! Lorentz invariance—i.e.,
the Lorentz invariance in the tangent plane. Let us empha
that this second possibility does not imply any kind of fu
damental breaking of the Lorentz symmetry or any n
physics. Rather by ‘‘effective breaking of the Lorentz inva
ance’’ we mean that radiative corrections to the dispers
relation may contain terms which depend on vector or ten
fields characterizing the background.

In this paper we explore a model in the framework of th
second alternative. We consider the propagation of a sc
particle immersed in a thermal bath of gravitons. Our aim
to determine how the inertia of the thermal bath affects
propagation of the scalar particle through radiative corr
tions. To this end, we shall compute the thermal correcti
to its self-energy. The real part of the self-energy gives
thermal mass shift and might introduce as well a nontriv
dispersion relation@37#. The imaginary part instead gives th
rate of approach to thermal equilibrium@38#.

In fact it is well known that quantum effects evaluated
nontrivial backgrounds induce non-Lorentz-invariant ter
in the dispersion relation. For instance, the self-energy o
charged fermion immersed in a thermal bath of photons
been computed in Refs.@37,39–41#, and the effects of the
thermal bath on the speed of light have been studied in R
@42–44#. Let us mention also that electromagnetic intera
tion in curved spacetimes also leads to modifications of
dispersion relations. The effect of QED vacuum polarizat
on the speed of light in nontrivial spacetimes has been s
ied in Refs.@45–49#. However, most calculations done so f
do not concern gravitational interactions. Gravity-induc
corrections should be dominant at energies approaching
Planck scale, hence relevant for the situations concer
with the trans-Planckian problem. Additionally notice th
gravitational interactions are universal and not limited
charged particles.

Two important points concerning our approach should
mentioned. On the one hand, since gravitational interact
are nonrenormalizable, the system of the scalar field cou
to gravity should be conceived as an effective field the
@36,50#. Although the full theory is nonrenormalizable, low
energy predictions which do not depend on the Planck s
behavior of gravity can be extracted@51–53#. On the other
hand, since thermal corrections do not affect the ultravio
properties of the theory, thermal field theory fits well wi
the effective theory approach. At a technical level, we sh
incorporate the thermal effects through the real-time desc
tion of thermal field theory@54–56#, which can be seen as
particular application of the closed-time path~CTP! method
in field theory@57–59#.

We should also emphasize that we shall compute only
lowest-order corrections. Hence, we deal with free gravito
i.e., we neglect the backreaction of the scalar field on
metric perturbations. The modifications to the metric pro
gator can be computed both in the framework of stocha
gravity @60–69# or in the large-N limit of quantum gravity
@70# ~both approaches can be seen to be equivalent@71,72#!.
A computation along these lines~but in the semiclassica
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approximation! has been carried out by Borgman and Fo
@73#. They study the fluctuations in the focusing of a bund
of geodesics, propagating in a spacetime with metric per
bations induced by a thermal scalar field. To our knowled
the higher-order corrections to the self-energy have not
been computed in the quantum field theoretical framewo

Gravity-mediated modifications of the dispersion relati
have been also considered by Burgesset al. @74#. Working in
the context of brane-world scenarios, these authors com
the change to the dispersion relation of photons and ferm
generated by interaction with four-dimensional effecti
gravitons. In that case the primary source of violation of t
Lorentz symmetry is the modification of the dispersion re
tion of effective four-dimensional gravitons induced by ce
tain extra-dimensional configurations. Similarly to our ca
this modification is communicated to brane-bound partic
through gravitational interactions.

The plan of the paper is the following: In Sec. II w
introduce the action for the system considered—namel
scalar field coupled to gravity. In Sec. III we compute pe
turbatively the leading correction to the self-energy of t
scalar field at zero temperature. In Sec. IV we assume
the scalar field and gravitons are in thermal equilibrium a
given temperature and compute the corrections to the
tarded self-energy. Finally, in Sec. V we analyze the res
and discuss the physical significance of the terms wh
break Lorenz invariance. The Appendixes contain refere
material as well as some technical details of the calculat
In Appendix A we present the Feynman rules for the sca
field coupled to linearized gravity. In Appendix B we giv
the results of the calculation of some integrals in dimensio
regularization. In Appendix C we give a brief account of t
real-time approach to thermal field theory. Appendix D
mostly technical and is devoted to the calculation of cert
integrals that appear in the calculation of the thermal con
bution to the self-energy.

Throughout this paper we shall use a system of un
with \5c5kB51. The signature of the metric will be
(2,1,1,1).

II. SYSTEM

We consider a minimally coupled real scalar fieldf of
massm propagating in a spacetime characterized by a me
gmn . The action for the field is

Sf,g52E d4xA2gS 1

2
gmn]mf]nf1

1

2
m2f2D , ~2a!

and the action for the metric is

Sg5
2

k2E d4xA2gR, ~2b!

whereR is the Ricci scalar,g is the determinant of the met
ric, andk5A32pG5A32pLPl is the gravitational coupling
constant, withG being Newton’s constant andLPl being
Planck’s length. Assuming that the metric is a small pert
bation of Minkowski spacetime,gmn5hmn1khmn , the com-
9-2
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PROPAGATION IN A THERMAL GRAVITON BACKGROUND PHYSICAL REVIEW D70, 044019 ~2004!
plete actionS5Sf,g1Sg can be decomposed into the fre
scalar field, graviton, and interaction actions asS5Sf1Sh
1Sint . These actions, expanded in powers ofk, are

Sf5E d4xS 2
1

2
]mf]mf2

1

2
m2f2D , ~3a!

Sh5E d4xS 2
1

2
]ahmn]ahmn1]nhmn]ahma

2]mh]nhmn1
1

2
]mh]mhD1O~k!, ~3b!

Sint5E d4xS k

2
Tmnhmn1

k2

4
UmnabhmnhabD

1O~k3!, ~3c!

whereh5h m
m , Tmn is the stress tensor of the scalar field,

Tmn5]mf]nf2
1

2
hmn]af]af2

1

2
hmnm2f2, ~4!

and

Umnab522hna]mf]bf1hmn]af]bf

1S 1

2
hmahnb2

1

4
hmnhabD ~]sf]sf1m2f2!.

~5!

Indices are raised and lowered with the background me
hmn . We have kept only the free terms in the action for t
gravitonsSh because we shall only compute the lowest-or
corrections of the self-energy of thef field.

To compute these corrections we need to introduce co
terterms in order to cancel divergences. Since our syste
nonrenormalizable, it has to be understood as an effec
field theory, a low-energy approximation of a more fund
mental theory at the Planck scale@36,51–53#. In order to
compute to a given precisionEnkn, whereE is the energy of
the process, one has to introduce all possible counterte
compatible with the symmetry whose coefficients are of
der kn at most. In our case the most general action for
counterterms for the scalar field action up to orderk2 which
is compatible with the Poincare´ symmetry is

Scount52E d4xF1

2
~m0

22m2!f21
1

2
~Z21!~]mf]mf

1m2f2!1
1

4
k2C0~]m]mf!2G1O~k4!, ~6!

wherem05m1O(k2) is the bare mass,Z511O(k2) is the
field renormalization parameter, andC05C1O(1) is a bare
four-derivative coefficient. The finite coefficientC is a priori
unknown and constitutes an external input of the theory. T
value of C should be determined by experiments or
knowledge of the underlying more fundamental theory.
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the other hand, we do not introduce counterterms to the
teraction action because we shall not compute vertex cor
tions.

Additionally the graviton action~3b! must be supple-
mented with a gauge-fixing term. We will work with th
harmonic gauge]nhmn2(1/2)]mh50, whose appropriate
gauge-fixing action is@75,76#

Sgf52E d4xS ]nhmn2
1

2
]mhD S ]lhml2

1

2
]mhD . ~7!

No Faddeev-Popov ghost fields are needed since we will
consider graviton self-interactions.

III. ZERO TEMPERATURE

The aim in this section is to compute the leading con
bution to the vacuum self-energy of the scalar particle.
zero temperature the self-energyS (T50)(p2) is related to the
Feynman propagatorGF

(T50)(p) through

GF
(T50)~p!5

2 i

p21m21S (T50)~p2!
. ~8!

We recall that the self-energy can be computed as the su
all one-particle irreducible diagrams with amputated exter
legs@35,36,77#. In order to regulate divergences appearing
the calculation we will use dimensional regularizatio
@78,79#.

The two diagrams which may contribute to orderk2 are
shown in Fig. 1. One must also take into account the con
bution of the counterterms:

S (T50)~p2!5~m0
22m2!1~Z21!~p21m2!1k2C0p4

1S (1)
(T50)~p2!1S (2)

(T50)~p2!1O~k4!. ~9!

We first concentrate on the first diagramS (1)
(T50)(p2). Apply-

ing the Feynman rules described in Appendix A we find, ind
spacetime dimensions,

2 iS (1)
(T50)~p2!5m«E ddk

~2p!d
tmn~p,k!tab~k,p!

3
2 iP mnab

~p2k!22 i e

2 i

k21m22 i e
, ~10!

FIG. 1. The two Feynman diagrams needed for the calcula
of the self-energy, respectively,S (1)(p) andS (2)(p).
9-3
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where«542d, Pmnab andtmn(p,k) are given in Appendix
A, andm is an arbitrary mass scale. Developing the produ
in the numerator we find

2 iS (1)
(T50)~p2!5

k2

2
p2hmnI mn~p!2k2m2pmI m~p!

2k2m4~11«/4!I ~p!1O~«!, ~11!

where the momentum integralsI (p), I m(p), andI mn(p) are
defined and computed in Appendix B. The result f
S (1)

(T50)(p2) is

S (1)
(T50)~p2!5

k2

~4p!2 Fm4

«̂
12m41

m2p2

«̂
12m2p2

2S m6

2p2
1

m4

2 D lnS 11
p2

m2
2 i e D

2~m41m2p2!lnS p21m2

m
2 i e D G1O~«!,

~12!

where 1/«̂52/«2g1 ln 4p. The second diagramS (2)
(T50)(p2)

is a massless tadpole, and these are identically zero in dim
sional regularization@78#.

Once we include the counterterms and take the limi«
→0 the renormalized self-energy is found to be

S (T50)~p2!52
k2

~4p!2 S m6

2p2
1

m4

2 D lnS 11
p2

m2
2 i e D

2
k2

~4p!2
~m41m2p2!lnS p21m2

m2
2 i e D

1Ck2~p21m2!21O~k4!, ~13!

where we have absorbed divergences in the following w

m0
25m22Ck2m41O~k4!, ~14a!

Z5112Ck2m22
k2m2

~4p!2 S 1

«̂
12D 1O~k4!,

~14b!

C05C1O~k4!. ~14c!

In order to relate the bare and the renormalized parame
we have imposed the on-shell renormalization condition

S (T50)~2m2!50, ~15!

which fixes the position of the pole to bem2. The complete
specification of the on-shell renormalization scheme also
volves fixing the residue of the pole, which implies an ad
04401
ts

r

n-

:
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-

tional condition on the derivative of the self-energy@35,36#.
However this second condition is found to be singular due
the divergence of the logarithms when evaluated on sh
This kind of singularity is generic for theories with interac
ing massless particles because of the absence of well-de
asymptotic regions in the presence of long-range forces.
a discussion of this point in the case of QED see Ref.@35#.
Anyway in the paper we are just interested position of
pole, which is always well defined.

Note that the only divergence arises from the field ren
malization. In particular, the four-derivative coefficientC
does not get renormalized: there are no logarithmic corr
tions to thep4 term in the self-energy~13!, andC coincides
with its classical valueC0. Therefore it would have been
consistent not to include the four-derivative counterterm a
simply takeC50 from the beginning.

The self-energy develops a negative imaginary part
2p2.m2,

Im S (T50)~p2!5u~2p22m2!
k2

16p S m6

2p2
1

3m4

2
1m2p2D ,

~16!

which, according to the optical theorem@77#, accounts for
the probability of a scalar particle with momentump to de-
cay into an on-shell scalar and an on-shell graviton. Not
that on shell (p252m2) the imaginary part of the self
energy vanishes, because there is no phase space ava
for the spontaneous emission of a graviton.

IV. FINITE TEMPERATURE

In this section we compute the thermal contribution to t
self-energy working within the real-time approach to therm
field theory. In this approach, which is briefly explained
Appendix C, the number of degrees of freedom is doubl
and one has to consider four propagators organized i
232 matrixGab(p). The self-energy also becomes a mat
Sab(p). We will concentrate on the retarded propaga
GR(p)5G11(p)2G12(p) for the following reasons: First, it
is the one that exhibits simple analytical properties at fin
temperature~analyticity in the upperp0 plane!; second, as
shown in Appendix C, it is directly connected with the r
tarded self-energySR5S11(p)1S12(p) through

GR~p!5
2 i

p21m21SR~p!
; ~17!

and, finally, the position of its poles have well-defined inte
pretations in terms of energies and thermalization rates.
thermore, the retarded propagator is the one that is natu
obtained from analytic continuation from the Euclide
propagator in the imaginary-time formalism. For more d
tails we refer to Appendix C and to Refs.@54–56#. A quan-
tum mechanical model where this point will be studied
detail will be presented elsewhere@80#.
9-4
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A. Self-energy: Real part

Let us proceed to the calculation of the real part
SR(p). Since ReSR(p)5ReS11(p) @see Eq.~C19!#, we
shall compute the real part ofS11(p) instead. We have to
consider both diagrams sketched in Fig. 1, where now in
nal propagators are taken to be thermal and of type 11:

S11~p!5~m0
22m2!1~Z21!~p21m2!1k2C0p41S (1)

11 ~p!

1S (2)
11 ~p!1O~k4!. ~18!

The first diagramS (1)
11 (p) is given by

S (1)
11 ~p!5

ik2

2
m«E ddk

~2p!d F 1

~p2k!22 i e

12p in~ up02k0u!d„~p2k!2
…GF 1

k21m22 i e

12p in~ uk0u!d~k22m2!Gg1~p2,k2,p•k!, ~19!

where

g1~p2,k2,p•k!52
2

k2
tmn~p,k!tab~k,p!P mnab

5k2p222~k•p!m222~11«/4!m4,
~20!

the functionn(E) is the Bose-Einstein distribution,

n~E!5
1

12eE/T
, ~21!

and we recall that«542d and thattmn(p,k) andP mnab are
given in Appendix A. On the other hand, at finite temperat
the tadpole diagramS (2)

11 (p) no longer vanishes since it
temperature-dependent part gives a finite contribution,

S (2)
11 ~p!52

k2

2
g3~p2!E d4k

~2p!4
2pd~k2!n~ uk0u!, ~22!

where

g3~p2!52
2i

k2
Vmnab~p,p!P mnab510m214p2, ~23!

with Vmnab(p,k) given in Appendix A.
To orderk2 one has
04401
f

r-

e

ReS11~p!5ReS (T50)~p2!2
k2

2
@A~p!1B~p!1C~p2!#

1O~k4!, ~24!

whereS (T50)(p2) is theT50 self-energy@see Eqs.~9! and
~13!# and where the integralsA(p), B(p), and C(p2) are
defined through

A~p!5E d4k

~2p!3
n~ up02k0u!d„~p2k!2

…

3g1~p2,k2,p•k!P
1

k21m2
, ~25a!

B~p!5E d4k

~2p!3
n~ uk0u!d~k21m2!

3g1~p2,k2,p•k!P
1

~p2k!2
, ~25b!

C~p2!5g3~p2!E d4k

~2p!3
n~ uk0u!d~k2!, ~25c!

with ‘‘P’’ meaning principal value. We have setd54 be-
cause thermal contributions are ultraviolet finite. Note th
the same renormalization process which makes theT50
self-energy finite also renormalizes theT.0 self-energy;
there is no need to introduce additional temperatu
dependent counterterms. Hereafter we will concentrate in
on-shell resultsp05Ep5Am21upu2, since these are the one
we will need afterwards for the calculation of the therm
mass and the modified dispersion relation.

The integralsA(p) andC(p2) take into account the effec
of the thermal gravitons on the scalar particle. In the on-sh
case it is possible to give an explicit expression for the
integrals valid at any temperature~the details of the calcula
tion can be found in Appendix D!:

A~Ep ,p!52
1

6
m2T2, ~26!

C~2m2!5
1

2
m2T2. ~27!

Notice that A(Ep ,p) does not depend on the thre
momentump. This is a surprise since Eq.~25a! is not mani-
festly Lorentz invariant. This simplification, which is als
9-5
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found in electrodynamics@37#, will have important conse-
quences when computing the modified dispersion relatio

The integralB(p) takes into account the effect of th
thermal scalars in the heat bath. For temperatures well be
the massm there are almost no scalar particles in the ba
and this indeed shows up in an exponential suppressio
B(Ep ,p) at low temperaturesT!m:

B~Ep ,p!'Am5T3

2p3 S m212upu2

3m214upu2D e2m/T, T!m.

~28!

For temperatures of the order of the massm, there are ther-
mal scalar particles in the bath and they give a signific
to

et

04401
w
,
of

t

contribution to the self-energy. At high temperaturesT@m,
the leading contribution to the integral is given by

B~Ep ,p!'
m2T2Am21upu2

24upu
lnS 2Am21upu22upu

2Am21upu21upu
D

1
1

8
m2T2, T@m. ~29!

The details of the calculation for both the low- and hig
temperature limits are given in Appendix D.

Summarizing, according to Eqs.~24! and ~26!–~29! the
real part of the on-shell self-energy in the low- and hig
temperature regimes is given by
ctly zero.
ReSR~Ep ,p!'5 2
1

6
k2m2T22Am5T3

8p3
k2e2m/TS m212upu2

3m214upu2
D , T!m,

1

48
k2m2T2F2111

Am21upu2

upu
lnS 2Am21upu21upu

2Am21upu22upu
D G , T@m.

~30!

Notice that from the high-temperature result we can deduce that for massless particles the on-shell self-energy is exa
y

the

r-
B. Self-energy: Imaginary part

Now we want to compute ImSR(p). Similarly to the pre-
vious subsection we could computeS11(p) and then make
use of Eq.~C19!; however, it is somewhat easier for us
computeS12(p) andS21(p) and make use of relation~C18!
instead. The self-energyS12(p) is given by

S12~p!5 i
k2

2 E d4k

~2p!2
n~k0!sgn~k0!n~p02k0!

3sgn~p02k0!d„~p2k!2
…d~k21m2!

3g1~p2,k2,p•k!, ~31!

where we used the property u(2p0)1n(up0u)
5sgn(p0)n(p0). In a similar way we find, forS21,

S21~p!5 i
k2

2 E d4k

~2p!2
@11n~k0!#sgn~k0!

3@11n~p02k0!#sgn~p02k0!d„~p2k!2
…

3d~k21m2!g1~p2,k2,p•k!, ~32!

where now we usedu(p0)1n(up0u)5sgn(p0)@11n(p0)#.
Thus from Eq.~C18! and the two previous equations we g

Im SR~p!52
k2

4
D~p!, ~33!
whereD(p) is defined by

D~p!5E d4k

~2p!2
F~p0,k0!g1~p2,k2,p•k!

3d„~p2k!2
…d~k21m2!, ~34!

with

F~p0,k0!5sgn~k0!sgn~p02k0!@11n~k0!1n~p02k0!#,
~35!

which can be developed to give

F~p0,k0!5
1

2
sinhS p0

2TD cschS up02k0u
2T D cschS uk0u

2T D .

~36!

After manipulating the integralD(p) ~the details can be
found in Appendix D! the imaginary part of the self-energ
can be expressed as the following phase-space integral:

Im SR~p!5
k2m2~m212p2!

32pupu U E
Q1

Q2
dQF~p0,Q!U. ~37!

Let us now evaluate the integral in Eq.~37! for an arbi-
trary temperature. For simplicity, we restrict ourselves to
case p0.upu, but including both (p0)2.m21upu2 and
(p0)2,m21upu2. In this situation the integral can be pe
formed analytically to give
9-6



Im SR~p!5
k2Tm2~m212p2!

32pupu
ln

sinhS ~p01upu!21m2

4T~p01upu!
D sinhS ~p0!22upu22m2

4T~p02upu!
D

0 2 2 0 2 2 2
. ~38!
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F
sinhS ~p 2upu! 1m

4T~p02upu!
D sinhS ~p ! 2upu 2m

4T~p01upu!
D G
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Making use of the property

ln~sinhx!'uxu2 ln 22 ipu~2x!2e22uxu, uxu@1,

we easily obtain the low-temperature approximation

Im SR~p!5u~2p22m2!
k2

16p S m6

2p2
1

3m4

2
1m2p2D

1O~e2m/T!, ~39!

which is in agreement with the zero-temperature result of
~16!. At zero temperature the imaginary part of the se
energy gives a net decay rate, but at finite temperature
related to the rateG at which a particle approaches therm
equilibrium @38#:

G5Gd2Gc52
1

p0
Im SR. ~40!

In this expressionGd and Gc are, respectively, the annihila
tion and creation rates of particles with energyp0, which
take into account stimulated absorbtion and emission by
thermal bath. An arbitrary ensemble of particles with dis
bution function f (E,t) approaches thermal equilibrium
through

f ~E,t !5
1

eE/T21
1c~E!e2G(E)t, ~41!

where c(E) depends on the initial conditions. Hence t
imaginary part of the self-energy corresponds to an obs
able quantity.

To orderk2 a real particle can neither emit nor absorb
real graviton, because these processes are kinematically
bidden. Hence, at this order, the imaginary part of the s
energy must vanish on shell. However in the on-shell lim
p0→Ep5Aupu21m2, we obtain, from Eq.~38!,

Im SR~p! ——→
p0→Ep

2
k2m4T

32pupu
lnS Am21upu21upu

Am21upu22upu
D ,

~42!

which is nonzero ifTÞ0.
This nonzero result for the on-shell self-energy is an a

fact of not having introduced an infrared regularization; s
Refs. @41,81#. To illustrate this point one can take the o
shell limit directly in Eq.~37!: in this limit Q1 ,Q2→0, so
that the phase space of the integral vanishes while the t
04401
q.
-
is
l

e
-

v-

or-
f-
t

i-
e

er-

mal functionF(p0,0) diverges. Hence the nonvanishing r
sult we obtained is a direct consequence of the infrared
vergence of the Bose-Einstein distribution. When regulat
the infrared behavior—for instance, by giving a tiny mass
the graviton—no imaginary part is found atp252m2. Ad-
ditionally, had we worked in an arbitrary gauge we cou
have verified that the result of Eq.~42! is not even gauge
invariant @41,81#.1

V. DISCUSSION OF THE RESULTS

At zero temperature, the position of the pole of the prop
gator gives the energy of the state and hence defines
dispersion relation, according to the Ka¨llen-Lehmann specra
representation@35,36,77#. The position of the pole is found
to be

~p0!25m21upu21S (T50)~2m2!5m21upu2, ~43!

where the second equality is a consequence of the renor
ization condition~15!. The dispersion relation is clearly Lor
entz invariant, as expected.

Similarly, at finite temperature it can be shown@37# that
the ‘‘effective’’ dispersion relation of the particle, given b
the location of the poles of the retarded propagator, de
mines the inertial properties of the particle. The location
the poles is given by

~p0!22upu25m21ReSR~p0,p!. ~44!

The thermal mass is obtained by settingp50:

mT
25m21ReSR~mT ,0!. ~45!

In a Lorentz-invariant situation one would simply hav
(p0)25mT

21upu2, but in general there can be additional d
pendence on the three-momentump on the right-hand side:

~p0!25mT
21upu21F~k,T,mT ,p!. ~46!

The Lorentz-breaking additional term in the dispersion re
tion leads to modifications of the group velocity of the pa
ticles v5dp0/dp:

v5
p

p0
1

1

2p0

]F
]p

. ~47!

1We are grateful to A. Weldon for drawing our attention to th
point.
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Let us find the explicit form of the thermal mass a
Lorentz-breaking terms in both the low- and hig
temperature regimes. Equation~44! can be solved perturba
tively:

~p0!25m21upu21ReSR~Ep ,p!1O~k4!, ~48!

where we recall thatEp5Am21upu2. At low temperatures
the modified dispersion relation, according to Eqs.~30! and
~48!, is approximately given by

~p0!2'mT
21upu22k2Am5T3

2p3
e2m/TS upu2

3m214upu2
D ,

~49!

where the leading contribution to the thermal mass is

mT
2'm22

1

6
k2m2T2. ~50!

In the high-three-momentum limit the term which modifi
the dispersion relation becomes a constant and can be
sorbed in the thermal mass. The group velocity is modifi
according to Eq.~47!:

v'
p

p0 S 12
k2m9/2T3/2e2m/T

A2p3~3m214upu2!2D . ~51!

Notice that at low temperatures the Lorentz-breaking te
carries a Boltzmann factore2m/T. This is due to the men
tioned fact that the nontrivial momentum dependence co
from the thermal scalar particles whose abundance is e
nentially suppressed at low temperatures. Analogously
what happens in electrodynamics@37#, the effect of the
graviton bath only shows up in the thermal mass.

At high temperatureT@m, the modified dispersion rela
tion is found to be

~p0!2'mT
21upu21

k2m2T2

48 F Ep

upu
lnS 2Ep1upu

2Ep2upu D21G ,
~52!

and the thermal mass is

mT
2'm22

11

48
k2m2T2. ~53!

At high three-momentum the modification of the dispers
relation can be also reabsorbed in the thermal mass.
group velocity is given by

v'
p

p0 F11
1

96

k2T2m4

~4m213upu2!upu2

2
1

96

k2T2m4

upu3Ep

lnS 2Ep1upu
2Ep2upu D G . ~54!

At high temperature the terms which break the Lorentz sy
metry are no longer exponentially suppressed. Notice a
04401
ab-
d

es
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to
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that Eq.~52! shows that there is no modification to the di
persion relation for massless scalars.

The Lorentz-breaking term is negative in the low
temperature case, which implies that the speed of propa
tion is lowered with respect to the standard relativistic ca
In contrast, the Lorentz-breaking corrections have a posi
sign at high temperatures, so that the speed of propagatio
increased. However, it is always lower than the speed
light, as can be seen by expanding Eq.~54! in the ultrarela-
tivistic limit:

v'
p

upu S 12
m2@481k2T2~ ln 321!#

96upu2
1••• D . ~55!

We should emphasize that the above breaking of the L
entz symmetry is only effective: if one applies a Loren
transformation simultaneously to the particle and bath
results are Lorentz invariant. This can be seen can by in
ducing the unit vectorl m which gives the four-velocity of the
thermal bath. Then the energy and three-momentum of
particle with respect to the bath are

p052 l mpm, upu5A~ l mpm!21pmpm. ~56!

In this article for obvious reasons of simplicity we worked
the bath rest frame wherel m5(1,0,0,0).

For low values of the momentum the effective dispers
relation can be expanded in powers ofp. For instance, in the
low-temperature case, for momenta satisfyingupu,m, the
effective dispersion relation~49! can be expanded as

~p0!2'mT
21upu22

k2m5/2T3/2e2m/T

A2p3

upu2

3m2

1
k2m5/2T3/2e2m/T

A2p3

2upu4

27m4
1•••. ~57!

It is worth mentioning the difference between this expans
and that of Eq.~1!. In a fundamental approach to the Loren
symmetry breaking one expects each additional power
momentum to be suppressed by increasing powers of
Planck mass, whereas in the effective breaking approach
have pursued there are several energy scales. Hence th
more freedom in the possible values of the suppression
tor. For instance, in the low-temperature regime—i.e., in E
~57!—the upu4 term is suppressed by (T/m)3/2e2m/T!1 in
Planck units. The fact that in the latter approach there
more energy scales also explains why modifications to
upu2 term are present in Eq.~57! while they are not included
in Eq. ~1!. Notice also that the corrections that we found on
contain even powers of the momentum and thus are in ag
ment with the results of Ref.@82#.

In the present universe the effects we discussed are c
pletely negligible when applied to electrons or protons, b
because they are proportional to the Planck length square
because they are exponentially suppressed. To obtain
evant effects, one should consider Planckian temperatu
However, in this case perturbation theory around a fl
9-8



re
th
nd
e

n
io
an
m
y
a

ow
r
th

a
.
ec
e
er

n

th
ow
th
a-
e

ad
a

n
al
io
re

s
it
o
in
-

ls
u

X.
ir
ring
zig
ich
up-
his
ct
T-

eld

nic

is

ig.

u
re
a
a
t

a

ted
e-
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spacetime approximation probably fails. Therefore the
sults obtained here should be considered an indication
effective violations of Lorentz invariance indeed occur a
that gravitational interactions cannot be neglected when
ploring highly energetic regions of dispersion relations.

Whereas the real part of the self-energy gives the cha
in energy of the particle and hence the dispersion relat
the imaginary part accounts for the dissipative effects
gives the thermalization rate. As we have already co
mented, at the orderk2 the imaginary part of the self-energ
is zero. We do not see the thermalization effect since
processes which could contribute to it, such as the one sh
in Fig. 2 ~on the left!, are kinematically forbidden. In orde
to account for thermalization effects we should compute
imaginary part of the self-energy to orderk4. At this order,
the particle can exchange momentum with the thermal b
through processes such as the one to the right of Fig
which would correspond to the Compton scattering in el
trodynamics. Notice here a significant difference with resp
to the vacuum case: while at zero temperature the self-en
is purely real to all orders of perturbation theory~because the
particle is stable!, at finite temperature it will acquire a
imaginary contribution to orderk4.

Let us end with a short summary of the main points of
paper. We have illustrated with a particular example h
local Lorentz symmetry is effectively violated because of
interactions with a nontrivial ensemble of metric fluctu
tions, even if Lorentz symmetry holds at a fundamental lev
We have also shown how this effective violation can be
dressed at low energies within standard physics. The m
quantitative result of the paper are Eqs.~49! and~52!, which
explicitly show the modifications of the dispersion relatio
As in the electromagnetic case, this effect is exponenti
suppressed at low temperatures. Moreover, the modificat
of the dispersion relation are suppressed when the th
momentum of the massive particle~defined in the heat bath
rest frame! is much larger than the temperature and ma
This last result is somewhat unexpected since the grav
tional coupling grows with the energy, unlike the electr
magnetic case. Therefore, in spite of the derivative coupl
no violation of Lorenz invariance is found in the high
momentum limit, at least at one loop. Finally we have a
shown that gravitational interactions do not generate a fo
derivative term in the scalar field action.

FIG. 2. Diagrams such as the one depicted on the left wo
contribute to orderk2 to the thermalization rate at finite temperatu
and hence to the imaginary part of the self-energy. However,
those one-vertex diagrams are identically zero because of kinem
cal reasons. The first nonvanishing contribution would be due
Compton-like diagrams such as the one depicted on the right,
hence it would be ak4 contribution.
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APPENDIX A: FEYNMAN RULES

At zero temperature the free propagator for the scalar fi
is

GF
(0,T50)~p!5

2 i

p21m22 i e
, ~A1!

and the free propagator for the gravitons in the harmo
gauge is@51,52,76#

~DF!mnab
(T50)~p!5

2 iP mnab

p22 i e
, ~A2!

where

Pmnab5
1

2 S hmahnb1hmbhna2
2

d22
hmnhabD ~A3!

in d spacetime dimensions. In four dimensions,Pmnab
5(hmahnb1hmbhna2hmnhab)/2.

The two-scalar–one-graviton vertex, shown in Fig. 3,
given by @52#

tmn~p,k!5
ik

2
@pmkn1pnkm2~p•k!hmn2m2hmn#,

~A4!

and the two-scalar–two-graviton vertex, also shown in F
3, is given by@52#

ld

ll
ti-
o
nd

FIG. 3. On the left, the two-scalar–one-graviton vertex, deno
by tmn(p). On the right, the two-scalar–two-graviton vertex, d
noted byVmnab(p).
9-9
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Vmnab~p,k!52 ik2F I mnrlI sab
l ~prks1pskr!

1
1

2
~hmnI abrs1habI mnrs!prks

2
1

2 S I mnab2
1

2
hmnhabD ~p•k1m2!G ,

~A5!

where

I mnab5
1

2
~hmahnb1hmbhna!.

At finite temperature the free propagators for the sca
field are given by Eq.~C11! and the free propagators for th
gravitons are (Dab)mnab(p)5P mnabGab

(0)(p)um50. Vertices
type 1 are described bytmn and Vmnab and vertices type 2
are described by2tmn and2Vmnab .

APPENDIX B: INTEGRALS IN DIMENSIONAL
REGULARIZATION

In Eq. ~11! we need the integrals

I ~p!5m«E ddk

~2p!d

1

@k21m22 i e#@~p2k!22 i e#
,

~B1!

I m~p!5m«E ddk

~2p!d

km

@k21m22 i e#@~p2k!22 i e#
,

~B2!

I mn~p!5m«E ddk

~2p!d

kmkn

@k21m22 i e#@~p2k!22 i e#
.

~B3!

The result in arbitraryd dimensions after series expansion
«542d is

I 5
i

~4p!2 F1

«̂
122

m2

p2
lnS 11

p2

m2
2 i e D

2 lnS p21m2

m2
2 i e D G1O~«!, ~B4!

I m~p!5
ipm

2~4p!2 F1

«̂
122

m2

p2
1

m4

p4
lnS 11

p2

m2
2 i e D

2 lnS p21m2

m2
2 i e D G1O~«!, ~B5!
04401
r

I mn~p!52
hmn

2~4p!2 Fm2

2«̂
1

p2

6«̂
1

m4

6p2
1

7m2

6
1

4p2

9

2S m6

6p4
1

m4

2p2D lnS 11
p2

m2
2 i e D 2S m2

2
1

p2

6 D
3 lnS p21m2

m2
2 i e D G1

pmpn

~4p!2 F 1

3«̂
2

m6

3p6

3 lnS 11
p2

m2
2 i e D 2

1

3
lnS p21m2

m2
2 i e D

31
m4

3p4
2

m2

6p2
1

13

18G1O~«!, ~B6!

where

1

«̂
5

2

«
2g1 ln 4p.

APPENDIX C: REAL-TIME THERMAL FIELD THEORY

For the benefit of those readers who might be unfami
with the subject we give in this appendix a brief account
those aspects of real-time thermal field theory which
needed in the paper. For a complete introduction to the t
mal field theory we address the reader to Refs.@54–56#; see
also Ref.@83# for an approach similar to ours.

1. Correlation functions

In thermal field theory the initial state for the fields
assumed to be a thermal state at temperatureT51/b, which
is characterized by a density matrix

r̂5
e2bĤ

Tr~e2bĤ!
, ~C1!

whereĤ is the Hamiltonian operator of the system~for the
purposes of this appendix we shall consider a scalar fieldf).
The generating functionalZC@ j # is defined as

ZC@ j #5TrF r̂TC expS i E
C
dtE d3xf̂~x! j ~x! D G , ~C2!

wheref̂(x) is the field operator in the Heisenberg picture,C
is a certain path in the complext plane,TC means ordering
along this path, andj (x) is a classical external source. B
functional differentiation of the generating functional wi
respect tof, path-ordered correlation functions can be o
tained. The generating functional may be computed in
path-integral representation as

ZC@ j #5E Df expS i E
C
dtE d3x$L@f~x!#1 j ~x!f~x!% D ,

~C3!
9-10
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PROPAGATION IN A THERMAL GRAVITON BACKGROUND PHYSICAL REVIEW D70, 044019 ~2004!
whereL is the Lagrangian density and the contourC is now
restricted to begin at some initial real timet i and to end at
t i2 ib. The boundary conditions for the path integral a
f(t i ,x)5f(t i2 ib,x). Different elections forC lead to dif-
ferent approaches to thermal field theory: a straight line fr
t i to t i2 ib leads to the imaginary-time formalism, and th
contour shown in Fig. 4 leads to the real-time formalism.
choosings501 our formalism will coincide with the CTP
approach to nonequilibrium field theory@57–59#. In fact
many of the properties listed below are not limited to t
thermal case but are valid in a more general nonequilibr
situation. We shall try to specify in each case which prop
ties are general and which ones are particular to the the
case.

If we are interested in real-time correlation functions, t
path alongC3 andC4 can be usually neglected once we pro
erly take into account the boundary conditions of the p
integral. If we define f1,2(t,x)5f(t,x) and j 1,2(t,x)
5 j (t,x) for tPC1,2 and taket i→2` and t f →`, the gener-
ating functional can be reexpressed asZC@ j #5Z34Z@ j 1 , j 2#,
whereZ34 represents the constant contribution from the s
mentsC3 andC4 andZ@ j 1 , j 2# is

Z@ j 1 , j 2#5E Df1Df2expS i E d4x$L@f1~x!#

1 j 1~x!f1~x!% DexpS 2 i E d4x$L@f2~x!#

1 j 2~x!f2~x!% D . ~C4!

Correlation functions are defined by second functional diff
entiation with respect to the external sourcej (x):

Gab~x,x8!5
1

Z@0,0#

d2Z@ j 1 , j 2#

d j a~x!d j b~x!
U

j 15 j 250

, ~C5!

wherea,b51,2. In operator language correlation functio
can be written as

G11~x,x8!5^Tf̂~x!f̂~x8!&, ~C6a!

FIG. 4. Integration contour in the complex-time plane used
the real-time approach to thermal field theory. The choices501

makes the formalism analogous to the CTP approach to field the
04401
r-
al

-
h
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-

G12~x,x8!5^f̂~x!f̂~x8!&, ~C6b!

G21~x,x8!5^f̂~x8!f̂~x!&, ~C6c!

G22~x,x8!5^T̃f̂~x!f̂~x8!&, ~C6d!

where (T̃)T is the ~anti-!time-ordering operator, and wher
the average meanŝ•••&5Tr( r̂•••). Lowercase roman in-
dices are raised and lowered with the ‘‘metric’’cab
5diag(1,21). From the above expressions it can be read
seen that not all correlation functions are independent.
following relations in Fourier space are a consequence
Eqs.~C6!:

G11~p!5G22* ~p!, G12~p!5G21~2p!, ~C7a!

G11~p!1G22~p!5G12~p!1G21~p!, ~C7b!

where correlation functions in Fourier space are

Gab~p!5E d4xe2 ip•DGab~X1D/2,X2D/2!,

where we have introduced the new variablesD5x2x8 and
X5(x1x8)/2.2 Additionally, in the case of an initial therma
state the following relation, a consequence of the Kub
Martin-Schwinger ~KMS! formula ~equivalent to the
fluctuation-dissipation theorem, in another context!, is also
verified:

G11~p!1G22~p!5e2bp0
G12~p!1ebp0

G21~p!. ~C8!

Thus, in thermal field theory knowledge of just one corre
tion function determines all of them.

An important correlation function is the retarded propag
tor, which is defined as

GR~x,x8!5u~x02x80!^@f̂~x!,f̂~x8!#&, ~C9!

and is related to the other correlation functions through

GR~p!5G11~p!2G12~p!. ~C10!

The retarded propagator has the remarkable property tha
well-defined analyticity properties at finite temperature,
opposite to most other propagators: it is analytic in the up
half of the complexp0 plane. Furthermore, the retarde
propagator is the one that one naturally obtains from an a
lytic continuation of the Euclidian propagator in th
imaginary-time formalism@84#.

2In order to avoid cumbersome notation the same symbol is u
for correlators in configuration space and in Fourier space. No
that Fourier-transformed propagators depend onX if the initial state
is nonhomogeneous. Since our primary concern here is the
states, which are homogeneous, we do not indicate explicitly thX
dependence.

ry.
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2. Perturbation theory

Perturbation theory can be organized in a similar way
in the zero-temperature case, but taking into account tha
finite temperature there are two kind of vertices~1 and 2! and
four kind of propagators~11, 12, 21, and 22! which link the
two vertices. Vertices type 2 carry an additional minus s
with respect to vertices type 1. When computing Feynm
diagrams one has to sum over all possible internal verti
For a real scalar field of massm, free propagators are give
by

Gab
(0)~p!5S 2 i

p21m22 i e
2pd~p21m2!u~2p0!

2pd~p21m2!u~p0!
i

p21m21 i e

D
12pd~p21m2!n~ up0u!S 1 1

1 1D , ~C11!

wheren(E) is the Bose-Einstein distribution function:

n~E!5
1

12ebE
. ~C12!

Thermal contributions to Feynman diagrams are always
nite in the ultraviolet regime because the Bose-Einstein fu
tion acts as a soft cutoff for momenta larger than the te
peratureT. The counterterms which renormalize the theory
zero temperature also renormalize the theory at finite t
perature. Note also that the thermal part of the propaga
which breaks the Lorentz symmetry through an explicit d
pendence onp0, is always on shell.

Instead of working with the four propagatorsGab(p) in
the thermal case one can reorganize perturbation theory
way such that just retarded and advanced propagators
involved @85#. In this case one has to consider how Feynm
rules are transformed when working with the retarded a
advanced basis.

3. Self-energy

In a thermal or, more generally, in a nonequilibrium sit
ation, the self-energy has a matricial structure and is imp
itly defined through the equation

Gab~p!5Gab
(0)~p!1Gac

(0)~p!@2 iScd~p!#Gdb~p!,
~C13!

whereGab
(0)(p) are the free propagators of the theory. Theab

component of the self-energy can be computed, similarly
the vacuum case, as the sum of all one-particle irreduc
diagrams with amputated external legs that begin and
with type a and typeb vertices, respectively.

In general the self-energy components verify the nonp
turbative relations

S11~p!52~S22!* ~p!, S12~p!5S21~2p!,
~C14a!
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S11~p!1S22~p!52S12~p!2S21~p!, ~C14b!

which can be obtained from Eqs.~C7! and ~C13!. The fol-
lowing equation is just verified if the initial state is therma

S11~p!1S22~p!52e2bp0
S12~p!2ebp0

S21~p!.
~C15!

Thus, all the components of the self-energy can be de
mined from knowledge of just one of them. Combining r
lations ~C14! we obtain

Im S11~p!5
i

2
@S12~p!1S21~p!#. ~C16!

This last equation can be directly obtained from the cutt
rules at finite temperature.

A particularly useful combination is the retarded se
energy, defined asSR(p)5S11(p)1S12(p). It is related to
the retarded propagator through

GR~p!5
2 i

p21m21SR~p!
. ~C17!

The above relation, which justifies the name of retarded s
energy forSR(p), can be demonstrated by expanding t
matrix equation~C13! and using the relations~C7! and
~C14!. Similar relations hold for the advanced propaga
GA(p)5GR* (p) and the advanced self-energySA(p)
52SR* (p). Notice that a diagonal relation such as E
~C17! can be found only for the retarded~or advanced!
propagator.

According to Eq.~C16!, the imaginary part of the retarde
self-energy can be also expressed as

Im SR~p!5
i

2
@S21~p!2S12~p!#. ~C18!

For a thermal stateSR(p) is related toS11(p) through

SR~p!5ReS11~p!1tanhS p0

2TD Im S11~p!. ~C19!

APPENDIX D: COMPUTATION OF A„p…, B„p…, C„p2
…,

AND D„p…

In this appendix we shall compute the integralsA(p),
B(p), C(p2), andD(p) which appear in the calculation o
the self-energy at finite temperature; see Eqs.~25a!–~25c!
and ~34!.

Let us start by computing the integralA(p), defined in
Eq. ~25a!. The Dirac delta can be expanded as

d„~p2k!2
…5d~q2!5

1

2uqu @d~2q01uqu!1d~q01uqu!#,

where we have introduced the new variableq5p2k and
wherep5(p0,p) andq5(q0,q). Introducing now spherica
coordinates (f,u) in the three spatial dimensions, withu
9-12
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being the angle betweenp and q, and integrating with re-
spect toq0 with the aid of the delta function we get

A~p!5E
0

` n~Q!QdQ

2~2p!2

3E
21

1

dxFP
g2~p2,0,2p0Q1PQx!

2~p0!21P212p0Q22PQx1m2

1P
g2~p2,0,p0Q1PQx!

2~p0!21P222p0Q22PQx1m2G ,
ti
er

tu

te

ry
pr
at
ar

04401
whereQ5uqu, P5upu, x5cosu,

g2~p2,q2,p•q!

5g1„p
2,~p2q!2,p•~p2q!…

522m422m2p21p412m2~p•q!

22p2~p•q!1p2q2, ~D1!

and we have performed the trivial angular integration o
f. We now integrate with respect tox to get
A~p!5E
0

` n~Q!dQ

16p2P
F8PQ@2m22~p0!21P2#1m2$m212@~p0!22P2#%

3 lnS @m22~p02P12Q!~p01P!#@m22~p02P!~p01P22Q!#

@m22~p02P22Q!~p01P!#@m22~p02P!~p01P12Q!#
D G . ~D2!
in
ell

era-
se
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w-
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of
The result of this integral cannot be given in closed analy
form, in general. However in this paper we are mainly int
ested in its on-shell valuep05Ep5Am21P2, and in this
limit the integral can be computed exactly at any tempera
since the logarithmic term in Eq.~D2! vanishes. In this case
the value of the integral is given by

A~Ep ,p!52
m2

p2E0

`

dQn~Q!Q52
1

6
m2T2, ~D3!

where we used that

E
0

`

dQn~Q!Q5
p2T2

6
.

We now proceed with the computation ofB(p), defined
in Eq. ~25b!. Repeating similar steps as in the previous in
gral we get

B~p!5E
0

` n~Ek!K2dK

2~2p!2Ek

3E
21

1

dxFP
g1~p2,0,2p0Ek1PKx!

2~p0!21P212p0Ek22PKx

1P
g1~p2,0,p0Ek1PKx!

2~p0!21P222p0Ek22PKx
G ,

where we recall thatEk5Am21K2. The integral with re-
spect tox can be analytically performed; the result is a ve
large and cumbersome expression, which we shall not re
duce here. The resulting expression cannot be integr
again in a closed analytic form. However, we may find p
c
-

re

-

o-
ed
-

ticular expressions valid at low and high temperatures. As
the case of previous integral, we will restrict to the on-sh
results.

At low temperature, only those momentak whose corre-
sponding energies are at most of the order of the temp
ture,Ek&T, contribute significatively to the integral becau
of the presence of the thermal factorn(Ek), which acts as a
soft cutoff. Hence, low temperature also implies low ener
and low momentum. Therefore, in the low-temperature
proximation we may retain only the leading term in aK
expansion:

B~Ep ,p!5
m212P2

p2~3m214P2!
E

0

`

dKn~Ek!@K21O~K3!#.

Taking into account that for low temperatures

n~Ek!'e2m/Te2K2/(2mT)

and that

E
0

`

dKe2K2/(2mT)K25Ap

2
~mT!3/2,

we find the following expression forB(p) at low tempera-
ture:

B~Ep ,p!'Am5T3

2p3 S m212P2

3m214P2D e2m/T. ~D4!

We have not made precise the exact meaning of the ‘‘lo
temperature’’ approximation employed above. In princip
this approximation would require the temperatureT to be
much smaller than any relevant quantity with dimensions
9-13
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energy that could be formed by a combination ofm and P.
However, a detailed analysis of the expressions shows
the conditionm@T is sufficient to guarantee the validity o
the result.

Let us now proceed to the calculation ofB(p) in the
high-temperature regime. SinceB(p) would be divergent if
no thermal cutoff were present, at high temperatures
leading contribution to the integral is given by those m
menta close to the temperatureT. Thus as a first approxima
tion we can retain only the leading term in a 1/K expansion:

B~Ep ,p!5Fm2Am21P2

4p2P
lnS 2Am21P22P

2Am21P21P
D 1

3

4p2
m2G

3E
0

`

dKn~Ek!@K1O~1/K0!#. ~D5!

Since the leading contribution to the integral is given in t
ultrarelativistic regime, we can approximate the energy
the momentum in the Bose-Einstein function,n(Ek)
'n(K). With this approximation we find

B~Ep ,p!5
m2T2Ep

24P
lnS 2Ep2P

2EP1PD1
1

8
m2T2. ~D6!

Analogously to the low-temperature case, the hig
temperature approximation woulda priori require the tem-
peratureT to be much higher thanm, P, and any relevant
energy scale formed by combination of these two. Again,
can show that the conditionT@m is sufficient to guarantee
the validity of Eq.~D6!.

We now move to the integralC(p2), defined in Eq.~25c!.
Its evaluation is straightforward:

C~p2!5g3~p2!E
0

` KdK

2p2
n~K !5

T2

12
~10m214p2!.

~D7!

We only need its on-shell valueC(2m2)5T2m2/6.
Let us now consider the integralD(p), defined in Eq.

~34!. We start by introducing the variableq5p2k:

D~p!5E dq0d3q

~2p!2
F~p0,q0!g2„2~p0!21upu2,2~q0!21q2,

2p0q01p•q…d„2~q0!21q2
…d„2~p02q0!2

1~p2q!21m2
…,
v.
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-
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-
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wherep5(p0,p) and q5(q0,q). Next we expand the firs
delta function and integrate overq0:

D~p!5E d3q

~2p!3

2p

2uqu
F~p0,uqu!g2„upu22~p0!2,0,p"q

2p0uqu…d„2~p02uqu!21~p2q!21m2
…

1E d3q

~2p!3

2p

2uqu
F~p0,2uqu!g2„upu22~p0!2,0,p"q

1p0uqu…d„2~p01uqu!21~p2q!21m2
…. ~D8!

We now introduce spherical coordinates overq and expand
the second delta function:

D~p!5
1

8pPE21

1

dxE
0

`

dQF~p0,Q!g2„P
22~p0!2,0,QPx

2Qp0
…d„x2~p212p0Q1m2!/~2PQ!…

1
1

8pPE21

1

dxE
0

`

dQF~p0,2Q!

3g2„P
22~p0!2,0,QPx1Qp0

…

3d„x2~p222p0Q1m2!/~2PQ!…,

whereQ5uqu, P5upu, andx5cosu. We have already per
formed the trivial angular integration overf. Integrating
with respect tox with the aid of the delta function we get

D~p!5
g2„p

2,0,~p21m2!/2…

8pP U E
Q1

Q2
dQF~p0,Q!U, ~D9!

with

Q25
~p0!22P22m2

2~p02P!
, Q15

~p0!22P22m2

2~p01P!
,

which can be finally arranged as

D~p!5
2m2~m212p2!

8pP U E
Q1

Q2
dQF~p0,Q!U. ~D10!

Recall thatp252(p0)21P2.
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@27# V.A. Kostelecký, R. Lehnert, and M.J. Perry, Phys. Rev. D68,

123511~2003!.
@28# J.D. Bjorken, Phys. Rev. D67, 043508~2003!.
@29# S.M. Carroll, G.B. Field, and R. Jackiw, Phys. Rev. D41, 1231

~1990!.
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