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ABSTRACT 

Screen-printed electrodes based on graphite, carbon nanotubes, carbon nanofibers, and 

graphene were tested as amperometric detectors for the determination of polyphenols by 

high performance liquid chromatography (HPLC). The chromatographic performance as 

well as the obtained sensitivity, detection and quantification limits suggest that carbon 
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nanofibers modified screen-printed electrode (SPCE-CNF) is the amperometric sensor 

that provides the best analytical performance. Upon this confirmation, chromatographic 

data obtained using SPCE-CNF were exploited by means of linear discriminant analysis 

to successfully characterize and classify 96 Spanish paprika (Capsicum annuum L.) 

samples with protected designation of origin: from La Vera (including sweet, bittersweet 

and spicy types) and from Murcia (including sweet and spicy types). 

 

Keywords: liquid chromatography, electrochemical detection, carbon-based screen-

printed electrodes, polyphenols, paprika (Capsicum annuum L.) 

 

1. INTRODUCTION 

Paprika is a red powder condiment with a characteristic flavour that comes from drying 

and grinding certain varieties of red peppers of the genus Capsicum annum L. Paprika is 

one of the most commonly used species due to its double use: in the preparation of 

cooking dishes for its characteristic aroma and flavour, and in the preparation of sausages 

due to both its different flavour and its antioxidant power. The two best-known varieties 

in Spain and the only ones recognized as Protected Designation of Origin (PDO) by the 

European Commission on Agriculture and Rural Development, come from the region of 

La Vera in Cáceres (Extremadura) and the region of Murcia [1]. 

La Vera Paprika is obtained by grinding the totally red fruits of the varieties from the 

Ocales group (Jaranda, Jariza and Jeromín), and the Bola variety [2]. It is characterized 

by its smoky aroma and taste achieved during the process of drying the peppers using 

smoke produced with oak and/or holm oak wood. Depending on the paprika taste, they 

can be classified into three different groups: i) the sweet paprika (Bola and Jaranda 
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varieties); ii) the bittersweet paprika (Jaranda and Jariza varieties); and iii) the spicy 

paprika (Jeromín, Jariza and Jaranda varieties) [2]. 

Murcia paprika is obtained by grinding fully red pepper of the Bola variety. The first 

seeds that probably came from America produced elongated and pungent fruits. However, 

the environmental conditions of this area of Southeast Spain cause that the fruit became 

more rounded and mostly sweet [3]. As before, those can also be classified depending on 

its taste. 

Paprika is considered as an excellent source of bioactive compounds with beneficial 

effects on health, such as carotenoids, ascorbic acid and phenolic compounds. Among 

those, polyphenols are one of the most interesting ones due to their beneficial properties 

as antioxidant, antidiabetic, antitumor, antimutagenic, and anti-inflammatory [4-6]. In 

foods, polyphenols contribute to their bitterness, colour, taste, smell and oxidative 

stability. In the last decade epidemiological studies have shown that diets rich in 

polyphenols confer a certain protection against the development of cancers, 

cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases [7]. 

However, these bioactive compounds levels are very variable and can be affected by the 

red peppers maturity, genotyping and cultivation practices [4,5,8,9]. In this regards, 

taking into account that polyphenols content seems to be related among others to plant 

varieties and pre- and post harvests treatments, their distribution in Spanish paprika may 

be attributed to the different varieties of red pepper [4,5]. 

A number of analytical methods have been developed for the determination of 

polyphenols and the characterization of a great variety of plants and fruit-based products, 

being the use of liquid chromatography (LC) with ultra-violet (UV) detection or coupled 

to mass spectrometry (LC-MS) the most common one [10-18]. However, electrochemical 

detection (EC) appears as a very convenient alternative to the former detection modes 
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taking advantage of its good sensitivity, low cost and the electroactive character of 

polyphenols [19,20].  

In the last years screen-printing microfabrication technology has undergone a great 

progress allowing the mass production of numerous highly-reproducible single-use 

screen-printed electrodes (SPEs) with an accessible and low-cost character. SPEs usually 

include a three electrode configuration (working, counter and reference electrodes) 

printed on the same strip. SPEs are well-known for their design versatility, low-cost and 

commercial availability, as well as the possibility of using a great diversity of 

compositions of printing inks.  In addition, SPEs present the advantage that they do not 

need to be polished as the typical glassy carbon electrodes (GCEs) [21-23]. 

Thus, the coupling of LC to EC with disposable SPEs represents an attractive option for 

the determination of polyphenols. Furthermore, the use of SPEs where the working 

electrode surface has been modified with nanomaterials such as carbon nanotubes 

(CNTs), carbon nanofibers (CNFs) or graphene (GPH) provides a larger electrodic 

surface and enhanced electron transfer, with the subsequent improvement in the analytical 

performance [22]. 

In the present work, the use of different carbon-based modified SPEs such as carbon 

(SPCE), multi-walled carbon nanotubes (SPCE-CNT), carbon nanofibers (SPCE-CNF), 

and graphene (SPCE-GPH) were evaluated for its application as a simple, more sensitive, 

and less expensive high performance liquid chromatography method with 

electrochemical detection (HPLC-EC) in the determination of polyphenols. On the other 

hand, SPCE-CNF as the optimal SPE was applied as amperometric detector for the 

characterization and classification of 96 Spanish paprika (Capsicum annuum L.) samples 

with PDO by HPLC-EC. 
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2. EXPERIMENTAL 

2.1 Chemicals and samples 

All reagents were of analytical grade. For the preparation of the mobile phase methanol 

(MeOH; Ultra-HPLC Supergradient; PanReac AppliChem, Barcelona, Spain), Milli-Q 

water (Millipore, Milford, MA, USA), and formic acid (98% PanReac AppliChem, 

Barcelona, Spain) were employed. Polyphenols, including 4-hydroxybenzoic, 

homogentisic, gallic, chlorogenic, caffeic, p-coumaric, vanillic, syringic, and ferulic 

acids, and tyrosol, arbutin, syringaldehyde, (-)-epicatechin, ethylgallate, umbelliferone, 

polydatin, and resveratrol, were supplied by Sigma-Aldrich (St. Louis, MO, USA). Stock 

standard solutions of each polyphenol were prepared at a concentration of 1000 mg L-1 in 

MeOH. Intermediate working solutions were prepared by appropriate dilution with Milli-

Q water. 

 

2.2 Instrumentation 

HPLC analyses were performed on an Agilent 1200 series chromatographic system, with 

a quaternary pump, a vacuum degasser, an autoinjector module, and a personal computer 

with the Agilent ChemStation software to process the data, all from Agilent Technologies 

(Palo Alto, CA, USA). The separation was done in a Kinetex C18 (100 × 4.6 mm id, 

particle size 2.6 μm) furnished with a SecurityGuard C18 cartridge, both from 

Phenomenex (Torrance, CA, USA). A mobile phase consisting of 0.1 % formic acid in 

water (v/v) (solvent A) and MeOH (solvent B) was used to establish the gradient elution. 

The injected volume was 20 μL and the flow rate was 1 mL min-1.  

Used SPEs were obtained from DropSens (Oviedo, Spain), comprising a three-electrode 

configuration printed on the same strip, with a carbon-ink auxiliary and a silver pseudo-

reference electrodes. The working electrode was a carbon-based disk of 4 mm diameter 
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made of carbon (ref. 110, DS SPCE), graphene (ref. 110GPH, DS SPCE), multi-walled 

carbon nanotubes (ref. 110CNT, DS SPCE) or carbon nanofibers (ref. 110CNF, DS 

SPCE). Taking into account that all the considered SPEs can be used for a large set of 

measurements without noticeable signal deterioration, a single and new SPE unit was 

used for every working session (up to 1 day). 

A HPLC electrochemical cell for SPEs supplied by Dropsens (ref. DRP-HPLCELL) was 

considered for using the above-mentioned SPEs in the detection process at the optimized 

potential for each working electrode. The electrochemical flow cell was connected to a 

μAutolab Type III (EcoChemie, The Netherlands) coupled to a personal computer with 

GPES version 4.9 data acquisition software (EcoChemie).  

 

2.3 Samples and Sample treatment 

A total of 96 samples of paprika were considered in this study, and purchased from 

different Spanish commercial markets or directly from the paprika production company 

with the aim to have a representative set of samples according to its origin and type. The 

paprika samples considered were from Murcia and La Vera (Extremadura) regions, and 

from three different types: sweet, bittersweet and spicy. 72 samples from the geographical 

region of La Vera (including 26 sweet, 23 bittersweet, and 23 spicy samples) and 24 

samples from the geographical region of Murcia (including 12 sweet, and 12 spicy 

samples) were analysed. La Vera and Murcia regions were selected because they are the 

main producers of Spanish paprika.   

Sample treatment was then carried out as follows: 0.3 g of paprika sample were weighed 

and dissolved in 3 mL of a water:acetonitrile (20:80 v/v) solution by agitation in vortex 

for 1 min. Then, the sample was sonicated for 15 min and centrifuged for 30 min at 4500 
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rpm, the supernatant extracts were filtered through 0.45 μm nylon filters and stored at -

4ºC until analyzed.   

 

2.4 Chemometric analysis  

Linear discriminant analysis (LDA) was used to attempt the classification of paprika 

samples by using specific routines written by the authors in Matlab 7.1 (MathWorks, 

Natick, MA, USA). Prior to this, a compression step using the windowed slicing integral 

method [24] was required in order to decrease the dimensionality of the registered 

chromatograms.  

 

3. RESULTS AND DISCUSSION 

3.1 HPLC-EC optimization 

Four different carbon-based screen-printed electrodes (SPCE, SPCE-CNT, SPCE-CNF 

and SPCE-GPH) were considered to evaluate the effect of different substrate electrodes 

in the determination of polyphenols in paprika samples with EC. For this purpose, firstly, 

17 polyphenols were selected based on majority polyphenolic compounds already 

identified in paprika: 4-hydroxybenzoic, homogentisic, gallic, chlorogenic, caffeic, p-

coumaric, vanillic, syringic, and ferulic acids, and tyrosol, arbutin, syringaldehyde, (-)-

epicatechin, ethylgallate, umbelliferone, polydatin, and resveratrol [4, 25].  

Afterwards, the chromatographic conditions were optimized to achieve the separation of 

the considered polyphenols. The best separation was obtained with the following gradient 

elution between the two solvents: 0 to 2 min, 95% H2O; 2 to 4 min, 95%  75% H2O; 4 

to 12 min, 75% H2O; 12 to 14 min, 75%  55% H2O; 14 to 16 min, 55% H2O; 16 to 18 
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min 55%  5% H2O; 18 to 20 min, 5% H2O; 20 to 21 min, 5%  95%; and 21 to 30 min 

95% H2O.  

Finally, the optimal working potential to carry out the amperometric measurements of the 

polyphenols at each of the considered SPEs was studied in the range from 0.6 to 1.5 V. 

For each SPE the selection of the optimal working electrode potential was based on the 

hydrodynamic voltammograms obtained from chromatograms measured at fix potential 

values (results not shown), taking into account the potential that gave the highest response 

combined with the best baseline for most of the considered polyphenols. Optimum 

working potential were 1.3 V, 1.2 V, 1.1 V and 1.0 V vs. Ag/AgCl pseudoreference 

electrode for the SPCE, SPCE-CNT, SPCE-CNF and SPCE-GPH, respectively. Figure 

1A shows a representative chromatogram obtained using a SPCE-CNF after injection of 

20 μL of a solution containing 10 mg L-1 of each polyphenol. 

 

3.2 Sensitivity, limit of detection (LOD), limit of quantification (LOQ), repeatability 

and reproducibility 

Once the optimal HPLC-EC conditions were established, the response of the four 

considered carbon-based SPEs (SPCE, SPCE-CNT, SPCE-CNF and SPCE-GPH) was 

characterized. Figure 1B shows a comparison of the chromatograms obtained by EC 

detection using the considered SPEs at the previously optimized working electrode 

potential after injection of 20 μL of a solution containing 10 mg L-1 of each polyphenol. 

In all cases, an acceptable separation with reasonably well-defined peaks was obtained 

employing the selected gradient. However, EC peaks obtained using SPCE-CNF were the 

ones that mainly exhibited the highest signals with a better definition combined with the 

best baseline. 
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The analytical performance of the proposed HPLC-EC method using SPCE, SPCE-CNT, 

SPCE-CNF or SPCE-GPH was also evaluated for the 17 considered polyphenols.  Table 

1 summarizes the sensitivities calculated from the slope of the calibration lines of each 

polyphenol at the four considered SPEs and the correlation coefficients, as well as the 

limits of detection (LOD) considered as 3 times the standard deviation of the intercept 

over the slope of the calibration curve of the target compounds, and the limits of 

quantification (LOQ) calculated as 10 times the previous ratio for all 17 polyphenols. 

Very good linear responses of the peak area versus concentration were achieved for most 

of the studied polyphenols at the four tested SPEs, being SPCE-CNF the only SPE that 

allows the determination of all the considered polyphenols. Concerning sensitivities, it 

can be seen how the best sensitivities for most of the analysed polyphenols was achieved 

on SPCE-CNF. The LODs of the 17 polyphenols in the four used SPEs ranged from 0.1 

to 14.6 mg L-1 depending on both the considered polyphenol and the used SPE (Table 1), 

and the LOQ varied from 0.4 to 48.8 mg L-1 depending again on both the polyphenol and 

the used SPE (Table 1). In general terms, the LOD and LOQ values provided by SPEs 

modified with carbon nanomaterials (CNT, CNF and GPH) are lower than those achieved 

by the conventional unmodified SPCE, which could be associated with the much larger 

effective surface area that present these modified carbon- based SPEs in comparison to 

unmodified SPCE [22]. In particular, the SPCE-CNF and the SPCE-GPH are among the 

tested SPCE those that present the lower LODs and LOQs.  

In comparison with previous works, the LODs and LOQs achieved in this study for the 

determination of polyphenols by HPLC-EC using SPEs are similar or slightly better than 

those reported by HPLC-UV [26-28], depending again on both the considered polyphenol 

and the used SPE. However, these LOD and LOQ values are slightly higher compared to 

those reported by LC-MS techniques [15-16]. It should be pointed out that, to the best of 
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our knowledge, for HPLC-EC using carbon-based modified SPEs, no previous LOD and 

LOQ data for polyphenols are available in the literature. 

Thus, based on the observed chromatographic performance and the above-discussed 

calibration data, SPCE-CNF was chosen as the best amperometric sensor to carry out 

further analyses.  

In order to test the repeatability and reproducibility of the selected SPCE-CNF, a solution 

containing 15 mg L-1 of each polyphenol was measured. Repeatability (intra-day) was 

calculated using the same SPCE-CNF unit for five repetitive measurements whereas 

reproducibility (inter-day) was estimated on three different days from three different 

SPCE-CNF units within a series of five repetitive measurements. In the case of 

repeatability, RSD % values ranging from 1.3 to 8.1 %, depending on the considered 

polyphenol, were obtained. Good values of reproducibility were also achieved, with RSD 

% values ranging from 4.0 to 12.8 %, depending again on the considered polyphenol. 

Repeatability and reproducibility values provided for SPCE-CNF by HPLC-EC at the 

optimized conditions are of the same order of those reported for voltammetric sensors 

based on SPCE-CNF [22, 29]. 

In addition, it has to be taken into account that SPCE-CNF is also an interesting 

alternative to other traditional GCEs not only for its good chromatographic and analytical 

performance, but also for the additional advantages associated to the use of SPE, i.e. its 

low-cost, miniaturized size, the possibility of connection with portable instrumentation, 

and its ease of use (the SPEs include a three-electrode configuration printed on the same 

strip that does require the use of any external electrode or any polishing before being 

used). 

 

3.2 Qualitative analysis 



11 
 

After characterizing the chromatographic profile of the different phenolic compounds and 

carrying out the full electrochemical characterization, the next step was to attempt the 

classification of paprika samples employing the same chromatographic conditions. To 

this aim, the 96 paprika samples extracts were injected at the optimized conditions using 

a SPCE-CNF and the amperometric responses were registered. Figure 2A shows, as an 

example, some arbitrary chromatograms obtained for paprika sample extracts from La 

Vera (including sweet, bittersweet and spicy types) and from Murcia (including sweet 

and spicy types). 

The first consideration to be highlighted is that, as could be expected, a more complex 

chromatogram, with a higher number of peaks, can be now observed in comparison to the 

ones obtained for the polyphenol stocks mixtures (Figure 1A vs. Figure 2A). The second 

thing to be said is that, although we would still be able to identify and quantify separately 

most of them, this was not the aim of the present work, as what we wanted to evaluate is 

whether or not we could observe a different profile (fingerprint) between the different 

paprika samples. Thus, from this point on, we focused on the chromatographic 

fingerprints rather than the individual peaks in order to generate a richer data set to be 

used for the classification of the paprika samples. 

To this aim, the baseline of the registered chromatograms was first corrected and then 

compressed employing the windowed slicing integral method [24]. This method was 

chosen as it allows a quicker and more automated way to somehow evaluate the areas of 

the different peaks, with the advantage that the coefficients vector extracted would be 

always consistent. In this way, the 1600 data points were compressed down to 184 

coefficients. Even though this also meant a larger number of variables for the modelling, 

this was compensated with the use of a stepwise inclusion method which allowed the 

removal of the variables that had a lower contribution to the prediction success [30]. From 
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those, only 41 variables were finally considered by the model to achieve the classification 

task, which correspond with the vertical grey lines included in Figure 2A. A closer look 

of these selected sections of the chromatograms (Figures 2B and 2C) confirms that 

significant differences between the chromatographic profiles obtained from the different 

paprika sample extracts can be observed. For example, paprika samples from La Vera 

(including sweet, bittersweet and spicy types) are much more richer in extracted bioactive 

compounds than those paprika sample from Murcia; whereas spicy paprika samples from 

both La Vera and Murcia show two characteristic signals at retention times close to 19.5 

minutes that could be attributed to some capsaicinoids (confirmed through spike analysis, 

data not shown), which are the responsible of the characteristic hot taste (pungency) of 

vegetables [5]. 

LDA was the chosen pattern recognition method to attempt the classification of paprika 

samples as it is a supervised method that will specifically seek differences among the 

different classes, and actually build a qualitative model that later on can be used to classify 

other samples. The generated 2D and 3D score plots are shown in Figure 3. As can be 

seen, in Figure 3A, patterns in the figure evidence grouping of the samples that almost 

separate all the considered classes. Despite the apparent overlapping of some clusters, if 

we have a look at the 3D plot (Figure 3B), we can see how the overlapping disappears 

and distinguished clusters were obtained for all the classes. 

Analysing more deeply the plot in Figure 3A, we can see how on one side, a clear 

discrimination between the two regions can be observed; that is, samples belonging to La 

Vera appearing on the left side of the plot (clusters I-II-III) and samples from Murcia 

appearing on the right side (clusters IV-V). On the other side, we can see how we were 

also able to distinguish the different types of paprika; with the spicy ones (clusters I and 
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IV) appearing on the top side of the plot. Thus, it seems like discriminant function 1 (DF1) 

mainly relates to samples’ origin, whereas DF2 seems to be more related to its type. 

Performance of the built model was also numerically assessed in terms of classification 

rate, sensitivity (the percentage of objects of each class correctly identified) and 

specificity (the percentage of objects from different classes correctly rejected) [31]. To 

this aim, the set of samples was divided into two different subsets (train/test) in the ratio 

75:25, and the confusion matrix was built (Table 2). As expected from the plot, almost 

all the samples were correctly classified, with a classification rate of 95.8%. Sensitivity 

and specificity values, averaged for the considered classes, were 96.7% and 99.0%, 

respectively. 

 

4. Conclusions 

In this work, analytical features of SPCE, SPCE-CNT, SPCE-CNF and SPCE-GPH were 

compared to each other as amperometric detectors in HPLC-EC. Firstly, the HPLC-EC 

conditions were optimized for the determination of a mixture of 17 selected polyphenols. 

At the optimized conditions, all the SPEs gave rise to an acceptable separation being the 

SPCE-CNF the amperometric sensor that provided the highest and most well-defined 

signals combined with the best baseline. The LODs and LOQs achieved for the 

determination of polyphenols ranged from 0.1 to 14.6 mg L-1 and 0.4 to 48.8 mg L-1, 

respectively, depending on both the polyphenol and the used SPE. The best results were 

obtained with the SPCE-CNF, not only in terms of detection limits, but also in terms of 

sensitivity. Moreover, SPCE-CNF provided very good values of repeatability and 

reproducibility, and was successfully used for large sets of measurements without signs 

of degradation or loss of sensitivity, with the additional advantage that SPEs do not need 

to be polished nor require any external electrode. 
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SPCE-CNF was successfully applied as amperometric sensor for the characterization and 

classification of Spanish paprikas PDOs by HPLC-EC. The discrimination of the different 

paprika samples has been achieved thanks to the combination of chemometric tools such 

as linear discriminant analysis with chromatographic techniques coupled to EC detection. 

This combination allowed proceeding even though no specific compounds (or 

concentration levels) can be associated to each of the classes, focusing in this way in the 

overall profile rather than specific compounds. More specifically, in the work presented 

herein we were able to correctly classify the samples based on its origin and type.  

Overall, these features revealed the valuable contribution of the easy, versatile and low-

cost HPLC-EC method coupled to disposable nanomaterials modified SPEs not only for 

the determination of polyphenols but also for characterization, classification and 

authentication of natural food products. 
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Figure captions 

 

Figure 1. (A) Representative HPLC-EC chromatogram of a 10 mg L-1 standard solution 

of the 17 targeted polyphenols under optimal gradient elution conditions. Peak 

identification as in Table 1; and (B) HPLC-EC chromatogram obtained using SPCE at 

1.3 V (a), SPCE-CNT at 1.2 V (b), SPCE-CNF at 1.1 V (c) and SPCE-GPH at 1.0 V (d). 

 

Figure 2. (A) Representative raw chromatograms obtained for certain arbitrary paprika 

samples extracts: (blue) La Vera spicy, (black) La Vera sweet, (green) La Vera 

bittersweet, (cyan) Murcia spicy and (red) Murcia sweet. Vertical grey lines correspond 

to the selected sections of the chromatogram that are included in the final LDA model. 

(B) and (C) are the enlargements of (A) between 4 to 11min and 15 to 20min, respectively. 

 

Figure 3. (A) 2D and (B) 3D score plots obtained after LDA analysis of the paprika 

samples chromatograms: (blue ■) La Vera spicy, (white ▼) La Vera sweet, (green ♦) La 

Vera bittersweet, (cyan ●) Murcia spicy and (red +) Murcia sweet. Additionally, the 

centroid for each of the classes is also plotted (★). Filled symbols correspond to the 

samples of the training subset, empty ones to the testing subset. 

 



Table 1. Calibration data of considered mixture of polyphenols on SPCE, SPCE-CNT, SPCE-CNF and SPCE-GPH by using the proposed 

method. The standard deviations are denoted by parenthesis. 

 

 

a Peak identification: 1) arbutin; 2) gallic acid; 3) homogentisic acid; 4) tyrosol; 5) 4-hydroxybenzoic acid; 6) chlorogenic acid; 7) vanillic acid; 

8) caffeic acid; 9) (-)-epicatechin; 10) syringic acid; 11-12) ethylgallate / syringaldehyde; 13) umbelliferone; 14) p-coumaric acid; 15) ferulic 

acid; 16) polydatin; and 17) resveratrol. 

Sensitivity LOD LOQ Sensitivity LOD LOQ Sensitivity LOD LOQ Sensitivity LOD LOQ

(μA min mg
-1

 L) (mg L
-1

) (mg L
-1

) (μA min mg
-1

 L) (mg L
-1

) (mg L
-1

) (μA min mg
-1

 L) (mg L
-1

) (mg L
-1

) (μA min mg
-1

 L) (mg L
-1

) (mg L
-1

)

1 - - - - - - - - 1.9 (0.3) 0.952 4.5 14.9 2.7 (0.4) 0.958 2.5 8.4

2 9.2 (0.2) 0.999 0.8 2.5 10 (2) 0.923 5.7 19.1 16 (1) 0.993 1.7 5.7 12.2 (0.8) 0.995 1.3 4.4

3 3.0 (0.8) 0.937 8.4 28.1 2.7 (0.2) 0.991 1.9 6.4 3.8 (0.2) 0.994 1.6 5.2 3.1 (0.4) 0.984 2.5 8.3

4 6.1 (0.5) 0.987 2.3 7.7 9.6 (0.4) 0.995 1.0 3.5 7.6 (0.4) 0.993 1.2 4.0 7 (1) 0.947 2.1 6.9

5 6.0 (0.4) 0.992 1.8 6.1 8.2 (0.4) 0.991 1.4 4.6 6.8 (0.3) 0.994 1.1 3.8 5.7 (0.4) 0.988 1.0 3.2

6 0.8 (0.2) 0.929 5.5 18.3 1.1 (0.1) 0.970 3.5 11.6 2.0 (0.5) 0.819 6.8 22.7 0.6 (0.1) 0.970 3.4 11.3

7 2.2 (0.1) 0.995 1.4 4.7 2.8 (0.2) 0.990 2.0 6.7 3.3 (0.2) 0.989 1.5 5.0 2.9 (0.3) 0.971 2.0 6.8

8 2.3 (0.7) 0.845 8.5 28.4 2.6 (0.9) 0.807 9.7 32.4 4.1 (0.6) 0.963 3.9 12.9 2.5 (0.3) 0.989 2.0 6.7

9 3.6 (0.2) 0.992 1.8 6.0 3.4 (0.6) 0.938 5.1 17.1 6.9 (0.4) 0.993 1.7 5.8 9 (1) 0.976 3.1 10.2

10 3.3 (0.2) 0.991 1.9 6.4 2.6 (0.4) 0.944 4.8 16.1 4.6 (0.3) 0.991 1.4 4.7 - - - -

11-12 7.1 (0.3) 0.996 1.3 4.3 8.0 (0.7) 0.986 2.3 7.8 9.7 (0.4) 0.995 1.0 3.4 7.3 (0.6) 0.986 1.4 4.8

13 5.9 (0.8) 0.969 3.6 11.9 8 (2) 0.919 5.9 19.7 12 (1) 0.981 1.7 5.5 3.3 (0.1) 0.998 0.5 1.5

14 7.0 (0.1) 0.999 0.5 1.8 9.0 (0.8) 0.984 2.6 8.6 9.6 (0.2) 0.999 0.4 1.5 0.7 (0.2) 0.869 4.6 15.4

15 1.4 (0.6) 0.832 14.5 48.5 2.1 (0.5) 0.939 8.3 27.5 3.7 (0.6) 0.926 4.1 13.6 5.37 (0.04) 1.000 0.1 0.4

16 2 (1) 0.830 14.6 48.8 - - - - 3.5 (0.3) 0.990 3.2 10.6 2.7 (0.4) 0.979 2.9 9.6

17 4.1 (0.2) 0.993 1.7 5.6 5.5 (0.3) 0.992 1.7 5.8 8.8 (1.4) 0.952 4.5 14.9 0.92 (0.03) 0.997 0.6 1.9

SPCE SPCE-CNT SPCE-CNF SPCE-GPH

Peak
a

R
2

R
2

R
2

R
2



Table 2. Confusion matrix built according to the classes assigned by the LDA model to 

the samples of the testing subset. 

 

 V Sp b V Sw b V Bs b M Sp b M Sw b 

V Sp a 5 1 0 0 0 

V Sw a 0 4 0 0 0 

V Bs a 0 0 6 0 0 

M Sp a 0 0 0 4 0 

M Sw a 0 0 0 0 4 

a Expected; b Found. M: Murcia; V: La Vera; Sw: sweet; Bs: bittersweet; Sp: spicy. 
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