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ABSTRACT 

Telomeres are repetitive sequences (TTAGGG) located at the end of chromosomes. Telomeres 

progressively shorten with each cell replication cycle, ultimately leading to chromosomal 

instability and loss of cell viability.  Telomere length anomaly appears to be one of the earliest 

and most prevalent genetic alterations in malignant transformation. Here we aim to estimate 

telomere length from whole-exome sequencing data in colon tumors and normal colonic 

mucosa, and to analyze the potential association of telomere length with clinical factors and 

gene expression in colon cancer. 

Reads containing at least five repetitions of the telomere sequence (TTAGGG) were extracted 

from the raw sequences of 42 adjacent normal-tumor paired samples. The number of reads from 

the tumor sample was normalized to build the Tumor Telomere Length Ratio (TTLR), considered 

an estimation of telomere length change in the tumor compared to the paired normal tissue. 

We evaluated the associations between TTLR and clinical factors, gene expression and copy 

number (CN) aberrations measured in the same tumor samples. 

Colon tumors showed significantly shorter telomeres than their paired normal samples. No 

significant association was observed between TTLR and gender, age, tumor location, prognosis, 

stromal infiltration or molecular subtypes. The functional gene set enrichment analysis showed 

pathways related to immune response significantly associated with TLLR. 

By extracting a relative measure of telomere length from whole-exome sequencing data, we 

have assessed that colon tumor cells predominantly shorten telomeres, and this alteration is 

associated with expression changes in genes related to immune response and inflammation in 

tumor cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

Telomeres are sequences located at the end of the chromosomes composed by large tandem 

repeats of six nucleotides (TTAGGG). Telomeres protect the chromosome ends from nucleolytic 

degradation, end-to-end fusions and irregular recombination, thus being critical for genome 

stability and integrity. Telomere length is variable, typically 10-15-kb in humans [1], and 

decreases with each replication cycle. When telomeres reach a critically short length, the 

affected cells undergo apoptosis, senescence or acquire chromosomal structural abnormalities 

[2]. Telomerase catalyzes the de novo addition of telomere repeat sequences onto chromosome 

ends and it is usually inactive in normal somatic cells [3].  

Telomere abnormal maintenance has been related to cancer [1]. However, telomeres and 

telomerase have a dual function and play important roles in both suppressing and facilitating 

malignant transformation. On the one hand, increased telomere shortening causes genomic 

instability, which may favor tumor development and progression [4]. On the other hand, cancer 

cells may show telomerase activity, which prevents further telomere shortening, thus 

maintaining tumor cell viability [2]. Some tumors that lack telomerase activity are able to 

maintain or elongate their telomeres through a phenomenon known as ALT (alternative 

lengthening of telomeres) [5]. In colorectal cancer (CRC), previous studies have demonstrated 

the presence of shortened telomeres [6-9]. Indeed, most studies have reported this telomere 

shortening as a main point in the process of colorectal carcinogenesis [10, 11].  

Also, telomere length has been proposed as a prognostic indicator in solid tumors like breast, 

prostate, colorectal, hepatocellular, lung, esophagus, head and neck, renal, neuroblastoma, 

glioblastoma or sarcoma, as poor survival is observed in patients with longer telomere length in  

tumor respect to non-tumor tissue [12]. However, this is controversial in CRC, since the meta-

analysis by Wang et al. did not find an association between long  telomere length and overall 

survival or disease free survival [13]. However, the analysis by subgroups did show an association 

between long telomere length and poor overall survival for studies restricted to Europe and for 

patients older than 60 years of age [13]. 

Interestingly, recent data have shown an association between chronic inflammation and 

telomere length. Oxidative stress, caused by inflammation, was associated with accelerated 

telomere shortening [14]. Inflammation is an important component in the initiation and 

progression of some cancers [15]. In particular, molecular pathobiology of CRC implicates pro-

inflammatory conditions to promote the tumor malignant progression, invasion, and metastasis 

[16]. Thus, in the context of CRC, chronic inflammation may contribute to telomere shortening. 



 

Several analytical techniques have been used for telomere length measurement or estimation: 

Southern blot, quantitative PCR, flow cytometry with fluorescence in situ hybridization (FISH), 

single or universal single telomere length analysis (STELA), among others. [17]. Nowadays, next 

generation sequencing approaches have revolutionized cancer genomics research by providing 

fast and accurate information about individual tumors [18]. In this line, telomere length can be 

estimated from whole-genome sequencing data by counting the number of reads of the 

telomere repeat sequence [19, 20].  

 

Here, we estimate the telomere length from whole-exome sequencing data and evaluate a 

potential association of tumor telomere length with the clinical features and the gene 

expression in colon cancer. In an attempt to find a molecular mechanism explaining telomere 

shortening in CRC, we also provide functional information about the genes most correlated with 

telomere length.  

 

METHODS 

 

1. Patients and samples 

A subset of 42 paired adjacent normal and tumor tissues (84 samples), from a previously 

described set of 100 patients with stage II microsatellite stable colon cancer were included in 

the study [21] (hereafter “CLX subset”, http://www.colonomics.org; NCBI BioProject 

PRJNA188510; Table 1). All patients were recruited at the Bellvitge University Hospital 

(Barcelona, Spain). Tumor samples were collected at the anatomopathological department of 

the hospital by expert pathologists an included in the tumor biobank. In addition, samples for 

this study were analyzed by a pathologist (XS) to confirm at least 80% of purity of the tumors 

and no pathology of the paired normal mucosa. Patients were not treated with adjuvant 

chemotherapy and all had a minimum of three years of follow-up after the date of diagnosis. 

Written informed consent was obtained from all patients and the IDIBELL Ethics Committee 

approved the protocol (PR178/11).  

 

In addition, a whole-exome sequenced validation dataset was downloaded from The Cancer 

Genome Atlas repository (TCGA, http://cancergenome.nih.gov/) comprising 29 paired adjacent 

normal CRC tissues, 10 of them were discarded due to heterogeneous sequencing parameters 

as coverage or sequencing quality, so the final validation subset was composed by 19 paired 



samples (hereafter “TCGA subset”; Table 1).  

2. Exome sequencing pipeline and telomere length estimation 

Genomic DNA from the 42 adjacent-normal and tumor paired samples was sequenced at the 

National Center of Genomic Analysis (CNAG, Barcelona, Spain) on an Illumina HiSeq2000 

platform. Exome capture was performed with the Sure Select XT Human All Exon 50MB kit 

(Agilent). Tumors’ exomes were sequenced at 60X coverage and exomes from adjacent normal 

tissues were sequenced at 40X (2x75 bp reads). The sequencing analysis pipeline has been 

previously described in detail [22]. From the raw sequences of each sample (fastq files), reads 

containing at least five repetitions of the telomere sequence (TTAGGG) were extracted. This 

number of repeats was selected to increase specificity, since some genes contain up to three 

repeats of the TTAGGG sequence. With this extraction criterion, none of the reads selected 

contained other sequence pattern than the telomere repeat. To avoid artifacts due to varying 

inter-sample sequencing depths, the number of extracted telomere reads was divided by the 

corresponding total number of reads in each sample. The “normalized number of reads in tumor 

sample” is considered as an estimation of telomere length in tumors [23, 24]. This measure 

divided by the “normalized number of reads in the paired normal sample” was therefore 

denominated as tumor telomere length ratio (TTLR). As Tumor and Normal tissue samples were 

derived from the same patient, TTLRs were consequently adjusted for any putative age and 

gender effects when different groups of samples were compared.  

 

3. Copy Number Analysis 

Data for copy number (CN) alterations for these samples was extracted from the Affymetrix 

Genome-Wide Human SNP Array 6.0, which contains 906,600 SNP probes and 946,000 non-

polymorphic probes across the entire genome. Data on hybridization intensity for each probe 

were used to identify CN regions and to segment the genome. Segmentation calculations were 

analyzed by VEGA’s method [25]. This algorithm splits the set of ordered data into regions of 

adjacent elements with similar values and assigns a unique value representing the average ratio 

of each region respect to the expected in normal diploid tissue DNA. Ratios that exceeded ± 0.3 

were considered gains or losses of CN [26]. Two measures were performed, first a global 

chromosomal aberration index, that included focal and broad CN changes, including aneuploidy. 

This index was calculated as the proportion genome with gains or losses for each sample. 

Second, specific CN alterations at the ends of each chromosome were also calculated, using the 

average of the CN values for the more distal segments of each chromosome arm.  

 

4. Gene expression  



Gene expression data was available for the same samples, both tumor and paired normal 

mucosa (data available on GEO repository as dataset GSE44076). Gene expression had been 

generated with the Affymetrix Human Genome U219 Array, that contains over 36000 probes 

corresponding to more than 20000 genes. However, only 15317 genes were used for analysis 

after applying a filter to remove those with very low variability among samples (sd<0.2).  

 

5. In silico functional analysis 

Gene Set Enrichment Analysis (GSEA) was used on a pre-ranked gene list sorted by the absolute 

value of the partial correlation coefficient between TTLR and expression of each gene [27]. For 

GSEA, the databases KEGG, Biocarta, Reactome, Hallmark, Positional, and Immunologic were 

interrogated.  

 

6. Proportion of stroma estimation, immune cells infiltration and molecular subtyping 

An estimation of the proportion of stroma and the level of infiltrating immune cells in each 

tumor sample were calculated using the ESTIMATE R package [28]. Tumors were classified 

according to the molecular consensus subtyping  [29] into four groups: CMS1, associated to 

microsatellite instability phenotype, comprises tumors with better prognosis, and shows 

activation of immune pathways; CMS2, characterized by a high chromosomal instability (CIN) 

and strong WNT/MYC pathways activation; CMS3, that show low CIN, but are generally KRAS 

mutant and have activated pathways related to energy metabolism; and CMS4, that are more 

mesenchymal and show up-regulation of TGF-β signaling. The CMSclassifier R package was used 

to obtain this classification using a Random Forest approach. 

 

7. Statistics 

Wilcoxon non-parametric test was used to analyze the differences of estimated telomere 

lengths between tumor and normal. Spearman’s rho was calculated to assess the correlation 

between telomere length in normal tissue and patient’s age. The associations between TTLR and 

clinical factors such as gender, tumor location and prognosis were analyzed by Mann-Whitney 

tests. Likewise, molecular CRC subtypes, number of somatic mutations or APC, KRAS, and TP53 

status, extracted from exome sequencing results, were analyzed with non-parametric tests. The 

association between TTLR and the gene expression was assessed with partial correlation, using 

a rank transformation of the ratio of gene expression in the tumor over the normal mucosa. The 

analyses were adjusted for the CN, estimated at the region where the corresponding gene was 

located.  

RESULTS 



 

Telomere length in normal and tumor samples and association with clinical and molecular 

characteristics 

Colon tumors had shorter telomeres than paired normal samples as shown in Figure 1A, with a 

median estimated telomere length of 6.9 and 10.9, respectively (difference 3.6; 95%CI 2.59 – 

4.57; P-value ≤ 0.01). All except two samples exhibited shorter estimated telomere length in 

tumor than their paired normal tissue (Suppl. Table 1). Neither of these two samples presented 

microsatellite instability or were POLE-mutated, which might have suggested specific tumor 

characteristics. When the TCGA paired subset data were analyzed, a similar pattern was 

observed. The median of telomere length estimation in tumor was also lower than in normal 

samples, with medians of 0.87 and 1.94, respectively, (difference 0.63, 95%CI 0.16 – 1.15, P-

value =0.032) (Suppl. Table 1). Figure 1B shows the differences between tumor and normal 

samples in the TCGA paired subset, with a profile comparable to CLX samples. Regarding tumor 

telomere length ratio (TTLR), the mean in CLX data was 0.71 (95%CI 0.13 – 1.29), whereas in the 

TCGA subset, the mean TTLR was 0.70 (95%CI -0.19 – 1.61). 

No significant association was observed between TTLR and gender, age, tumor location or 

prognosis (Table 2). Global CN aberrations, including aneuploidy, were related to TTLR, but the 

association was restricted to gains in CN, which correlated with lower TTLR (r=-0.48; P-

value=0.0014). We explored if CN aberrations at the ends of the chromosomes could be a 

confounding factor for other analysis, but no correlation was found between the sum of CN 

alterations estimated at the ends of chromosomes and telomere length estimation in tumors 

(r=0.019; P-value=0.90). 

 

No association between TTLR and the mutation status of APC, KRAS or TP53 was observed (Table 

2).  However, a negative correlation between TTLR and the total number of somatic mutations 

was identified (r=-0.42; P-value=0.005), implying that tumors with higher number of somatic 

mutations also have shorter telomeres. 

 

Stromal infiltration in tumors was first considered as a potential confounding factor, but no 

significant correlation with TTLR was identified. However, the level of infiltrating immune cells 

in tumors was slightly correlated with TTLR (r=0.26, P-value=0.095). Regarding molecular 

subtypes, 5% (n=2) of CLX tumors were classified as CMS1, 36% (n=15) as CMS2, 24% (n=10) as 

CMS3, 24% (n=10) as CMS4, and 15% (n=5) with no clear classification. No differences in TTLR 

were observed among CMS subgroups (Table 2, ANOVA P-value=0.84). 

 



Though the analysis of telomere length changes In tumor respect to normal mucosa is probably 

the best measure because it intrinsically adjust for patient characteristics like age, sex, genetic 

susceptibility and others, we also performed the same analyses based on the telomere length 

estimated in tumors only. The same results were obtained as can be seen in Table 2. 

 

Telomere length and differences in gene expression between tumor and normal samples  

Gene expression changes between tumor and normal tissue were calculated as the logarithm of 

the ratio of the gene expressions between tissues: “log(T/N)”. Table 3 shows the most significant 

genes whose expression change was associated with TTLR after multiple comparison correction 

(FDR Q-value <0.01). These associations were evaluated with a partial Spearman correlation test 

adjusted by CN variation, because in an initial unadjusted analysis most identified genes were 

located in chromosome ends, where gains or deletions were most frequently detected. More 

precisely, the CN of genes located at the beginning of chromosome 1 showed significant positive 

correlation with TTLR, and the CN of genes located at chromosome 8q22.1 and 8q22.2 showed 

significant negative correlation with TTLR. These associations might bias the correlation 

between TTLR and gene expression if not considered as a covariate in partial correlations. 

 

After applying the analysis described above, six genes remained significant with FDR <0.05 (Table 

3). Of those, five genes (TCTN3, RNF7, ATP6V0E1, SNX3 and UBAP1) showed a positive 

correlation between T/N expression change and TTLR, i.e., higher differences in T/N expression 

were associated with higher TTLR. TCTN3 showed the highest positive correlation with TTLR 

(r=0.62). Only DDX54 gene showed a negative correlation (r=-0.56), thus indicating that higher 

DDX54 expression in tumors was associated with lower TTLR (Table 3).  

 

Of note, the T/N expression change of most genes responsible for telomere maintenance, TERT, 

RAP1, DKC1, TERF1, TERF2, POT1, TERF2IP and TPP1, did not show a statistically significant 

correlation with TTLR. Neither the analysis of telomere length assessed only in tumor showed 

an association with the expression of these genes. The only exception was the shelterin 

component TINF2 (TERF1-interacting nuclear factor 2) that showed significant positive 

correlation (r=0.50; P-value=0.0003), although when corrected for multiple comparisons, this 

correlation was no longer significant (adjusted P-value=0.15).  

 

In silico functional analysis 

Interestingly, a gene set enrichment analysis (GSEA) revealed functions and pathways related to 

the immune response as highly correlated with telomere length (Bonferroni corrected P-



value<0.05). Some of these were: “antigen processing and presentation” and “intestinal immune 

network for IGA production” (KEGG database); “interferon gamma signaling”, “cytokine 

signaling in immune system” and “adaptive immune system” (Reactome); or “IL10 pathway” 

(Biocarta), among others (Table 4). In addition, “interferon gamma response and inflammatory 

response” emerged as significant when the Hallmarks database was interrogated. As an 

example, Figure 2 shows the enrichment plots for five of the most significant pathways. Most of 

the significant functions (88%) and all immune-related functions and pathways presented a 

positive enrichment score, meaning that as TTLR increases, also increases expression differences 

(T/N).  

Based on this result, an enrichment analysis was performed considering gene sets from the 

Immunological database. In all, 381 out of 4874 interrogated pathways resulted statistically 

significant (98% of them showed a positive enrichment score), thus reinforcing the finding that 

telomere length is related to the immune response in colorectal cancer. 

 

Although CN dosage had been taken into account in the analysis, several positional gene sets 

were also associated with telomere length. The most significant one was the chromosomal 

region 6p22 (P-value = 0.001). Interestingly, most genes located in this chromosomal region 

codify for histones suggesting a relation between regulation of expression of such histones and 

telomere length. 

 

DISCUSSION 

By using whole-exome sequencing data for telomere length estimation, we observed telomere 

shortening in colon tumor samples compared to their corresponding adjacent normal tissues, 

suggesting that colon tumor cells lose telomere repeats in the replicative process. This finding is 

in agreement with previous reports [30, 31] and shows that exome-captured short read 

sequencing data can be used to estimate overall telomere length, as had already been shown 

for whole-genome sequencing [19, 20]. 

 

Telomere shortening has been considered a relevant mechanism in the colorectal carcinogenic 

process [32-34]. Specifically, telomere dysfunction may be considered a major driving force in 

generating chromosomal instability [10, 35, 36], a common feature in our samples. Indeed, we 

observed that CN aberrations, specifically genomic gains, were associated with shortened 

telomeres. In agreement with that, in a previous analysis of the CN of these colon tumors, we 

observed that focal CN gains were frequently tumor-exclusive and associated with a higher 

number of mutations whereas CN loses were recurrent in some chromosomal locations [26]. 



These results point to a more chromosomal instable phenotype in tumors losing telomeres that 

mainly generates CN gains. A similar result has been reported for rectal cancer, in which shorter 

telomeres were observed in chromosomally instable tumors [37]. Moreover, in our analysis, 

tumors with higher number of somatic mutations also have shorter telomeres, reinforcing the 

theory that shorter telomeres go along with both chromosomal and mutation instability, as it 

has been reported in some cancers like myeloid leukemia, breast or esophageal cancer [38, 39].  

 

No clear associations were identified between telomere length and clinical parameters probably 

due to the small sample size of our study. Previous studies have reported the potential utility of 

telomere length as a prognostic biomarker in colon cancer when different stages were included, 

showing shorter telomeres among early-stage tumors. This might indicate that telomere 

shortening is an early carcinogenic event [30, 31]. The inclusion of only stage II colon tumors in 

our study prevented us from identifying similar differences. Also, the expected association 

between age and telomere length measured in normal tissue was not significant in our data. 

This has also been observed by Valls-Bautista et al., who found no correlation between telomere 

length and age in their study that included CRC patients with ages between 48 and 82 years old 

[33].  However, age-related telomere length was reported in a study including patients with a 

wider range of ages (29-97 years) [40]. Thus, probably the association between telomere length 

and age is not observed in our data because most of the patients were diagnosed within a 

relatively short age range (60-80 years) and this association can only be observed when the age 

range is large.  

 

Since our study measures telomere length in DNA extracted from bulk tumors, one potential 

bias for this analysis is that normal stromal cells with longer telomeres infiltrating the tumor 

could alter the TTLR measurement. Telomere length was independent of the proportion of 

stroma in tumors, but we observed a non-significant positive correlation with an estimation of 

the level of immune cells infiltration in tumors. Telomere shortening in peripheral blood T-cells 

has previously been reported to be associated with lung, colon and breast cancer [41, 42]. Thus, 

we cannot discard that a fraction of the observed correlation may be explained by shared 

telomere shortening in tumor and T-cells of the microenvironment. In relation to this, CRC has 

been recently classified according to four different molecular subtypes characterized by distinct 

biological and clinical features [43]. Although CMS4 subtype is enriched in stromal infiltration 

[44], no differences in telomere length were identified among molecular subtypes.  

 

The most interesting and novel finding of our study is the association in CRC of telomere length 



with the differential expression of several genes related with inflammation and immune 

response, and with autoimmune pathologies, such as thyroid autoimmune disease, systemic 

lupus erythematosus, asthma or type I diabetes; among others (Table 4). Other studies also have 

associated the telomere complex with autoimmune or inflammatory pathways by different 

mechanisms [45, 46]. In cancer epidemiology, it has been reported that prolonged stress on the 

immune system may shorten telomere length and result in increased risk of cancer [47, 48]. 

Telomeres are particularly susceptible to shortening in response to DNA damage, which might 

be caused by persistent inflammation. Even low-grade but prolonged inflammation is sufficient 

to induce telomere erosion [49, 50]. TERT can regulate  pathways including Wnt/b-catenin (a 

central one in CRC) and can regulate inflammatory signaling through binding to NF-kB promoter 

that leads to transcription of genes such as IL-6 or TNF-a [51]. NF-kB is the major driver of 

inflammatory signaling and it has been reported that this pathway modulate in turns the activity 

of the telomerase [52]. Moreover, telomeric repeats (TTAGGG) can inhibit CpG binding to TLR9 

to impair innate immune activation [53]. In our study, we also found interleukin (IL) signaling 

pathways associated with telomere length. In agreement, the expression of a number of 

immunological cytokines has been previously reported to be correlated with the telomere 

length in renal cell carcinoma, including IL-7, IL-8 and IL-10, which upregulate the activity of 

telomerase, suggesting that the accumulation of these cytokines in the tumor 

microenvironment may have effects on the telomeres of tumor cells [54]. Indeed, the IL-10 

pathway is one of the most strongly associated with telomere-length in our data. IL-10 is 

expressed by several immune cells including Tregs, inducing immune suppression by inhibiting 

cytotoxic T lymphocyte activation [55]. In the same immune context, interferon pathways had 

been found to be associated with telomere length in our data. In agreement, it has been 

reported that DNA damage induces interferon production leading to the inhibition of stem cell 

function in response to telomere shortening [56]. 

 

On the other hand, additional functional studies are required to help us understand the 

identified strong correlation of telomere length with the expression of TCTN3, RNF7, ATP6V0E1, 

SNX3, UBAP1 and DDX54; genes a priori not related to telomere maintenance or function or to 

immune response or inflammation. In this regard, a mechanism named TPE-OLD (for “telomere 

position effect over long distances”) has been described in which telomere length regulates gene 

expression [57]. One might hypothesize that this chromatin conformation mechanism or a 

related one could drive gene expression changes in these genes that are not related with 

telomere length or telomere maintenance.  

 



Despite the interesting results obtained in our study, it may have some limitations. The method 

used to estimated telomere length from whole-exome sequencing data, was originally 

developed for whole-genome sequencing data [24]. The telomere sequence is not specifically 

captured by the Sure Select XT Human All Exon kit, and the telomere reads identified are the 

result of unspecific DNA fragments captured due to the abundance of the telomere sequence. 

It was expected that a random representation of the telomere sequences was present in the 

final library sequenced, and there is not a priori reason to believe that the number of reads 

sequenced may be biased by any third factor other than sampling variation. We assume that the 

total number of telomere reads is proportional to the average telomere length of the analyzed 

cells. The method, however, does not allow the estimation of telomere length of individual 

chromosomes. We had no means to validate telomere length estimation in our samples with a 

laboratory-based measurement, but we have found good correlation (r=0.26, P-value=0.016) of 

our measure with other published computational methods that have performed such validation 

[19]. 

 

Observational studies are prone to confounding. We have considered here two important ones: 

the proportion of stroma in the tumor and CN aberrations affecting the ends of chromosomes. 

We have discarded the association of telomere length with these factors. Though we found a 

moderate association with global CN gains, indicating that telomeres are related to 

chromosomal instability, there was no association with gains or losses in the ends of 

chromosomes, which might be correlated with telomere length. Finally, our validation dataset 

is limited in size. In order to avoid variation related to technical issues, only TCGA samples 

sequenced in an Illumina platform were used for validation purposes. The individual matching 

of tumors with their corresponding paired normal samples was the main resource to avoid 

putative biases, which was also complemented by the normalization by the total number of 

reads. An attempt was made to analyze a larger size of TCGA of tumor samples and compare 

them to a common pool of normal mucosae in an unpaired analysis, but the results were not 

satisfactory, because the variation among tumors was very high. The reduced analysis of paired 

samples, however, showed very consistent results. 

 

CONCLUSION 

Our study has shown, using a relative measure of telomere length extracted from whole-exome 

sequencing data, that telomere shortening occurs in colorectal tumors, and that this alteration 

is associated with expression changes in genes related to immune response and inflammation, 

deserving further study.  
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Table 1) Clinical factors for CLX and TCGA subsets.  
   

  CLX subset patients (n=42) TCGA subset patients (n=19) 

Gender     
Male 31 (73.8 %) 12 (63 %) 

Female 11 (26.2 %) 7 (37 %) 
  

Median age (range, years) 70 (43 ; 84) 73 (51 ; 90) 
    

Site     
Right 12 (28.6 %) 10 (53 %) 
Left 30 (71.4 %) 9 (47 %) 

  
Recurrence-free median time 

(range, months) 60.7 (6.75 – 127.4)  
   

Stage     
I   2 (10.5 %) 
II 42 (100 %) 7 (36.8 %) 
III   7 (36.8 %) 
IV   3 (15.7 %) 

  
Microsatellite instability     

MSS 42 (100%) 17 (89.5%) 

MSI 0 2 (10.5 %) 
 
 

 

  



 

Table 2) Associations between TTLR and clinical and mutational factors in CLX subset    

  TTLR Tumor TL 

  N (%) Mean (sd) Mean dif. (95%CI) P-value Mean (sd) Mean dif. (95%CI) P-value 

Gender          

Male 31 (73.8 %) 0.65 (0.26)   11.33 (4.91)   

Female 11 (26.2 %) 0.82 (0.38) 0.18 (-0.08 ; 0.44) 0.12 15.1 (6.05) 3.77 (-0.58; 8.06) 0.04 

     

Tumor site          

Right 12 (28.6 %) 0.64 (0.20)   11.43 (3.9)   

Left 30 (71.4 %) 0.71 (0.34) 0.07(-0.10 ; 0.64) 0.40 12.6 (5.94) 1.23 (-1.96 ; 4.42) 0.69 

     

Prognosis          

No Relapse 21 (50%) 0.69 (0.30)   12.24 (5.45)   

Relapse 21 (50%) 0.70 (0.31) 0.01(-0.18 ; 0.20) 0.94 12.38 (5.51) 0.15 (-3.26 ; 3.27) 0.88 

     

APC          

WT 12 (28,6%) 0.74 (0.22)   12.98 (4.74)   

Mut 30 (71,4%) 0.67 (0.33) -0.07(-0.25; 0.11) 0.43 12.04 (5.72) -0.94 (-2.62 ; 4.48) 0.44 

     

KRAS           

WT 28 (66,7%) 0.73 (0.29)   12.8 (4.79)   

Mut 14 (33,3%) 0.61 (0.32) -0.12(-0.33 ; 0.09) 0.26  11.3 (6.58) 1.47 (-2.65 ; 5.59) 0.10 

     

TP53          

WT 24 (57.1%) 0.68 (0.21)     12.49 (3.99)   

Mut 18 (42.9%) 0.71 (0.40) 0.03(-0.18 ; 0.25) 0.73 12.18 (7.01) -0.31 (-4.1 ; 3.48) 0.55 

     

Molecular 
subtype       0.84 

  0.77 

CMS1 2 (5%) 0.55 (0.25)     10.39 (3.84)   

CMS2 15 (36%) 0.73 (0.32)     13.53 (7.25)   

CMS3 10 (24%) 0.74 (0.39)     13.15 (5.03)   

CMS4 5 (15%) 0.66 (0.23)     11.5 (3.69)   

     

  Spearman rho 
(95%CI) 

P-value  Spearman rho 
(95%CI) 

P-value 

Age     
-0.049 (-0.36 ; 

0.26) 0.75 
 0.116 (-0.19 ; 0.43) 0.46 

             

Global CN 
gains*     -0.31 (-0.62 ; 0.00) 0.048  -0.42 (-0.73 ; -0.11) 0.05 

             

Global CN 
loses* 

    0.09  (-0.40 ; 0.22) 0.54  -0.098 (-0.05 ; 
0.21) 

0.53 



             

Stromal 
infiltration 

    0.09 (-0.40 ; 0.22) 0.55  -0.08 (-0.39 ; 0.23) 0.59 

             

Immune 
cells 

infiltration  
    0.26 (-0.16 ; 0.43)   0.095 

 0.14 (-0.17 ; 0.45) 0.38 

             

Number of 
somatic 

mutations 
    -0.42 (-0.73 ; -0.10) 0.005 

 -0.41 (-0.72 ; -0.1) 0.005 

*Estimated as the proportion of altered genome 

 

  



 

Table 3) Correlations between TTLR and gene expression change (T/N) in CLX subset 
      

Gene r* P-value FDR** Description Function 

TCTN3 0.62 7.1E-07 0.0099 Tectonic family member 3 

May be involved in apoptosis 
regulation. Necessary for 

signal transduction through 
the sonic hedgehog (Shh) 

signaling pathway 

RNF7 0.61 1.3E-06 0.0099 RING-box protein 2 

Mediates the ubiquitination 
and subsequent proteasomal 
degradation of target proteins 

involved in cell cycle 
progression, signal 

transduction and transcription 

ATP6V0E1 0.59 3.9E-06 0.020 
ATPase, H+ transporting. 

lysosomal 9kDa, V0 
subunit e1 

Responsible for acidifying a 
variety of intracellular 

compartments in eukaryotic 
cells 

SNX3 0.57 1.8E-05 0.046 Sorting nexin 3 
Plays a role in protein 

transport between cellular 
compartments 

DDX54 -0.57 1.7E-05 0.046 
DEAD (Asp-Glu-Ala-Asp) 

box polypeptide 54 
Represses the transcriptional 
activity of nuclear receptors 

UBAP1 0.57 1.2E-05 0.046 
Ubiquitin associated 

protein 1 
Regulator of vesicular 

trafficking process 

PHF11 0.55 3.2E-05 0.062 PHD finger protein 11 Positive regulator of Th1-type 
cytokine gene expression 

LOC284889 -0.56 2.9E-05 0.062   

ELMO2 0.54 4.3E-05 0.074 
Engulfment and cell 

motility 2 

Involved in cytoskeletal 
rearrangements required for 

phagocytosis of apoptotic cells 
and cell motility 

CHD8 -0.54 5.2E-05 0.080 
Chromodomain helicase 
DNA binding protein 8 

DNA helicase that acts as a 
chromatin remodeling factor 
and regulates transcription. Is 

a negative regulator of Wnt 
signaling pathway by 

regulating beta-catenin 
(CTNNB1) activity 

PHAX 0.54 6.6E-05 0.089 
Phosphorylated adaptor 

for RNA export 
snRNA export from the 

nucleus 

OR2T2 -0.53 7.0E-05 0.089 
Olfactory receptor, family 
2. subfamily T. member 2 

G-protein coupled receptor 
activity 

 *Partial Spearman correlation coefficient, adjusted for CN  

** Only significant correlations with FDR< 0.1 are shown 

  



 

 

Table 4) Significant enriched gene sets with high telomere length correlated genes.   
        

  

Gene set* 

Gene 
set Enrichment Nominal FDR  FWER  

Correlat
ion +/- Database Size Score P-value Q-value P-value 

REACTO
ME 

INTERFERON GAMMA SIGNALING 52 0.58 <0.0001 <0.0001 <0.0001 positive 

INTERFERON SIGNALING 133 0.49 <0.0001 <0.0001 <0.0001 positive 

TCR SIGNALING 48 0.57 <0.0001 0.0015 0.004 positive 

DOWNSTREAM TCR SIGNALING 32 0.62 <0.0001 0.0014 0.005 positive 

INTERFERON ALPHA BETA SIGNALING 49 0.54 <0.0001 0.0015 0.007 positive 

CYTOKINE SIGNALING IN IMMUNE SYSTEM 233 0.44 <0.0001 0.0019 0.01 positive 

ADAPTIVE IMMUNE SYSTEM 477 0.41 <0.0001 0.0019 0.012 positive 

REGULATION OF BETA CELL DEVELOPMENT 21 -0.64 <0.0001 0.0099 0.012 
negativ

e 

MHC CLASS II ANTIGEN PRESENTATION 81 0.49 <0.0001 0.0022 0.016 positive 

RNA POL I PROMOTER OPENING 45 0.55 <0.0001 0.0023 0.019 positive 
ANTIGEN PRESENTATION FOLDING 

ASSEMBLY AND PEPTIDE LOADING OF CLASS 
I MHC 20 0.66 <0.0001 0.0035 0.032 positive 

BIOCART
A 

EDG1 PATHWAY 25 0.62 <0.0001 0.024 0.016 positive 

IL10 PATHWAY 16 0.69 <0.0001 0.013 0.018 positive 

SPPA PATHWAY 20 0.65 <0.0001 0.0092 0.019 positive 

EIF4 PATHWAY 24 0.62 <0.0001 0.0096 0.026 positive 

KEGG 

LEISHMANIA INFECTION 64 0.61 <0.0001 <0.0001 <0.0001 positive 

ANTIGEN PROCESSING AND PRESENTATION 56 0.60 <0.0001 <0.0001 <0.0001 positive 

SYSTEMIC LUPUS ERYTHEMATOSUS 100 0.51 <0.0001 0.0011 0.003 positive 

ASTHMA 18 0.74 <0.0001 0.0088 0.003 positive 

AUTOIMMUNE THYROID DISEASE 29 0.64 <0.0001 0.0063 0.003 positive 

VIRAL MYOCARDITIS 61 0.55 <0.0001 0.0052 0.003 positive 

ALLOGRAFT REJECTION 29 0.63 <0.0001 0.045 0.003 positive 

GRAFT VERSUS HOST DISEASE 32 0.60 0.0015 0.0052 0.004 positive 

LYSOSOME 113 0.46 <0.0001 0.0057 0.005 positive 
LEUKOCYTE TRANSENDOTHELIAL 

MIGRATION 101 0.47 <0.0001 0.0052 0.005 positive 

TYPE I DIABETES MELLITUS 34 0.56 <0.0001 0.0015 0.016 positive 
INTESTINAL IMMUNE NETWORK FOR IGA 

PRODUCTION 38 0.55 <0.0001 0.0014 0.016 positive 

HEMATOPOIETIC CELL LINEAGE 70 0.48 <0.0001 0.0013 0.017 positive 

RETINOL METABOLISM 48 -0.45 <0.0001 0.016 0.017 
negativ

e 

MATURITY ONSET DIABETES OF THE YOUNG 15 -0.63 0.0026 0.014 0.032 
negativ

e 

CELL ADHESION MOLECULES CAMS 117 0.43 <0.0001 0.0031 0.041 positive 

HALLMA
RK 

INTERFERON GAMMA RESPONSE 193 0.58 <0.0001 <0.0001 <0.0001 positive 

INTERFERON ALPHA RESPONSE 93 0.60 <0.0001 <0.0001 <0.0001 positive 



INFLAMMATORY RESPONSE 186 0.45 <0.0001 <0.0001 <0.0001 positive 

ALLOGRAFT REJECTION 181 0.44 <0.0001 <0.0001 <0.0001 positive 

COMPLEMENT 182 0.43 <0.0001 <0.0001 <0.0001 positive 

PROTEIN SECRETION 95 0.46 <0.0001 0.050 0.003 positive 

IL6 JAK STAT3 SIGNALING 81 0.47 <0.0001 0.057 0.004 positive 

MYC TARGETS V2 57 -0.39 <0.0001 0.0082 0.009 
negativ

e 

*Gene Set Enrichment Analysis (GSEA) summary results with the most significant gene sets 
classified by their origin: Pathway databases (REACTOME, Biocarta, KEGG) and Hallmarks of 
cancer. A gene set is a group of genes involved in a certain biological process or molecular 
function that has been annotated in those databases. 
 
FDR: False Discovery Rate; FWER: Family-Wise Error Rate (multiple comparison adjusted P-
value)  

 

  



Figure legends 

 

Figure 1)  

Differences between Normal and Tumor tissues in CLX and TCGA subset 

 

Boxplot representing the normalized number of telomere reads in Normal (green) and Tumor (red) paired samples. A) 

Samples from CLX subset B) Samples from TCGA subset. 

 

 

Figure 2)  

Enrichment statistically significant gene sets related with immune system 

 

GSEA enrichment plots showing five of the most statistically significant gene sets, A) Kegg antigen processing and 

presentation, B) Autoimmune thyroid disease, C) Intestinal immune network for IGA production, D) Cytokine signaling 

in immune system and E) Adaptive immune system. In all plots, each black vertical line represents a gene in the specific 

gene set, the left-to-right position of each line indicates the relative position of the gene within the rank of the overall 

genes. The expression of genes near the middle are not correlated with the TTRL. The green line indicates the 

enrichment score. The section below the genes shows the rank in ordered list. 

  



 

Figure 1) Differences between Normal and Tumor tissues in CLX and TCGA subset 

 
Boxplot representing the normalized number of telomere reads in Normal (green) and Tumor (red) paired samples. A) 

Samples from CLX subset B) Samples from TCGA subset. 

 

  



 

Figure 2) Enrichment statistically significant gene sets related with immune system 

 
 

GSEA enrichment plots showing five of the most statistically significant gene sets, A) Kegg antigen processing and 

presentation, B) Autoimmune thyroid disease, C) Intestinal immune network for IGA production, D) Cytokine signaling 

in immune system and E) Adaptive immune system. In all plots, each black vertical line represents a gene in the specific 

gene set, the left-to-right position of each line indicates the relative position of the gene within the rank of the overall 

genes. The expression of genes near the middle are not correlated with the TTRL. The green line indicates the 

enrichment score. The section below the genes shows the rank in ordered list. 

 

 
 



SUPPLEMENTAL MATERIAL 

Suppl. Table 1) Number of telomeric and total reads in CLX and TCGA subsets. 

      

  
ID 

sample 

N. telomeric 
reads in Tumor 

exome 
sequencing 

Total N. reads 
in Tumor 

exome 
sequencing 

N. telomeric 
reads in 
Normal 

mucosae 
exome 

sequencing 

Total N. 
reads in 
Normal 

mucosae 
exome 

sequencing 

CLX subset 

1 432 64865000 796 43974000 

2 544 60644000 790 37618000 

3 475 61879000 1130 55826000 

4 1142 78868000 812 48313000 

5 821 64138000 617 40431000 

6 872 73334000 807 66566000 

7 832 59345000 609 44503000 

8 546 62008000 924 49030000 

9 502 57125000 547 47193000 

10 806 61459000 944 52515000 

11 1316 72766000 446 42756000 

12 595 54676000 584 41076000 

13 526 68842000 618 41073000 

14 897 71813000 728 50882000 

15 674 63031000 1515 44031000 

16 610 61752000 850 53146000 

17 584 52368000 552 34862000 

18 858 64672000 1188 53173000 

19 605 66758000 829 44618000 

20 916 62945000 808 36207000 

21 452 55740000 1841 71279000 

22 364 57771000 650 54280000 

23 986 76952000 1010 48815000 

24 651 81601000 754 48453000 

25 487 48831000 806 38520000 

26 381 54252000 860 41434000 

27 349 44804000 1035 52542000 

28 586 52342000 738 53154000 

29 358 53056000 591 33856000 

30 780 54991000 1827 109111000 

31 1179 75846000 1289 47626000 

32 1205 61263000 1308 44792000 

33 528 66201000 764 44651000 

34 1085 59911000 1739 94974000 

35 899 67916000 695 37824000 

36 1490 53509000 706 25279000 



37 1122 55471000 788 38387000 

38 581 61296000 627 34756000 

39 804 65894000 514 36532000 

40 549 74281000 621 50392000 

41 763 46147000 840 41626000 

42 1820 56891000 797 39894000 

  

TCGA subset 

1 2216 1109757040 2209 943135464 

2 1945 1121695152 2512 848429704 

3 1223 1105067448 2659 944964432 

4 849 973951640 5368 848429704 

5 2462 427531904 1365 359608600 

6 768 468376016 652 578663776 

7 1315 495137080 1133 373331672 

8 253 680319304 468 676085792 

9 1454 786691416 3080 910365632 

10 734 495137080 1837 501449272 

11 2384 353787936 2129 609203536 

12 342 747771064 388 353103072 

13 612 734277248 1145 646813376 

14 608 852112696 752 386150832 

15 558 811937072 234 293332536 

16 456 616992336 308 321714976 

17 428 630676664 362 341277224 

18 326 853395112 704 872850280 

19 298 737625176 1042 945557576 

 

 


