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The production of spin-% particles by small gravitational inhomogeneities is discussed by using a per-
turbative approach based on the evaluation of the scattering matrix. We compute the production of
massive and massless particles by linear gravitational inhomogeneities in flat spacetime and the produc-
tion of massless particles in an expanding universe described by the spatially flat Friedmann-Robertson-
Walker models with small inhomogeneities. As in the case of scalar particles the total pair-creation
probability is given in terms of geometric invariants of the spacetime.
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I. INTRODUCTION

The present Universe in its large structure seems to be
isotropic and spatially homogeneous [1,2] and therefore it
can be described by the Friedmann-Robertson-Walker
(FRW) models. However, there are reasons to believe
that it has not been so in all its evolution and that aniso-
tropies and inhomogeneities may have played an impor-
tant role in the early Universe. For one, the FRW mod-
els are unstable against gravitational perturbations as we
go back in time and approach the cosmological singulari-
ty [3]. If there is at present a background of gravitational
waves these may have originated through inhomo-
geneities produced by gravitons created near the Planck
era in a FRW model [4] or even earlier at the quantum
gravity era [5], or may be the consequence of purely clas-
sical inhomogeneities at an early time [6—8]. Such inho-
mogeneities involve all scales including wavelengths
larger than the particle horizon. On the other hand
perhaps less severe forms of gravitational inhomo-
geneities have appeared along the Universe evolution, to
seed galaxy formation [9], or as a consequence of the for-
mation and evolution of topological defects as the early
Universe underwent several phase transitions [10,11].

We know that gravitational inhomogeneities are semi-
classically unstable; quantum field theory in curved
spacetime (and order-of-magnitude estimates) predicts
that variations in the gravitational field with frequencies
of order 1020 sec can produce particles of the order of
the electron mass [12,13]. This means that inhomo-
geneities in the early Universe may be the source of rela-
tivistic particles. In fact, Zeldovich speculated [14] that
inhomogeneities and anisotropies in the early Universe
were damped by particle creation and that an initially in-
homogeneous Universe became, as a consequence, iso-
tropically and spatially homogeneous. Quantitative argu-
ments for this, when the spacetime was slightly aniso-
tropic, but spatially homogeneous, were given by Zeldo-
vich and Starobinsky [15], Hu and Parker [16], Hartle
and Hu [17] and Birrell and Davies [18]. This lent some
support to Misner’s chaotic cosmology program [19].
However such a mechanism cannot explain the isotropy
and homogeneity of the Universe, entirely, because the
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size of the present Universe is much larger than the
comoving horizon corresponding to the epoch when par-
ticle creation was significant. Thus it is now generally be-
lieved that the present homogeneity and isotropy can
only be explained by some kind of inflationary scenario.

The purpose of this paper is to discuss the quantum
effects produced by gravitational inhomogeneities, in par-
ticular to compute the total particle creation and its pos-
sible cosmological significance. The most efficient and
standard method to compute particle production by grav-
itational fields is by means of the Bogoliubov coefficients
[4,20,21]). That is, one quantizes the particle field on a
given background spacetime by first finding the complete
set of mode solutions of the Klein-Gordon equation (for a
scalar field) or the Dirac equation (for spin-} fields) on
such background. Then the coefficients of the fields in
terms of the mode solutions are promoted into operators
and the respective commutation or anticommutation re-
lations are imposed among them. Provided that one can
identify two asymptotic regions of the spacetime with
asymptotic timelike Killing fields, one at the far future
and one at the far past, it is possible to write down ex-
pressions for the physical “in” and “out” vacua of the
theory. The Bogoliubov coefficients relate the “in” and
“out” operators and give directly the number of particles
created, i.e., the number of “out” particles contained in
the “in” vacua.

In cosmology, for spatially homogeneous models the
above procedure is well suited even if no exact solutions
to the field equations can be found. The reason is that
the time-dependent part of the modes can be separated
and the field equations for the corresponding function
reduce to an ordinary differential equation with time-
dependent coefficients. The problem is then reduced to
solve that equation and relate the “in” modes with the
“out” modes. Usually there is no natural ‘in” vacuum
due to the cosmological initial singularity; one way to
define one is by artificially matching the Universe to flat
space at some time near the initial singularity [4,15,22].
Exact solutions can only be found for some selected
spacetimes; in other cases one may use an approximation
or numerical techniques to the approximate Bogoliubov
coefficients. Thus, for instance, Zeldovich and Starobin-
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sky [15] and Birrell and Davies [18] give an approxima-
tion scheme to find particle creation in an expanding
universe with small anisotropies.

For inhomogeneous spacetimes the time dependence of
the modes cannot be separated and we end up with par-
tial differential equations generally not well suited to an
approximation scheme compatible with the physically
relevant boundary conditions. However, the above pro-
cedure has been used recently in the large momentum ap-
proximation [23]. For small inhomogeneities the simplest
method is to use a perturbative technique, based on the S
matrix, in which the gravitational inhomogeneities are
considered as tensorial external fields that couple to the
quantum fields on a given homogeneous background.
Then the problem becomes very similar to the computa-
tion of electron-positron pair creation by external time-
dependent electric fields [24]. Sexl and Urbantke [12] and
Zeldovich and Starobinsky [25] were the first to compute
pair creation by external linear inhomogeneities on a
Minkowski background. The method was later extended
to conformally flat expanding backgrounds for the case of
quantum scalar fields [26,27]. In this case if the particles
are conformally coupled the background does not create
particles [22]; they are a consequence of the loss of con-
formal invariance due to the inhomogeneities. An impor-
tant feature of this computation is that the total pair-
creation probability is given in terms of geometric invari-
ants of the gravitational field and that these can be writ-
ten, after using Einstein’s equations, in terms of the stress
tensor which produces the gravitational field. This has
led to interesting practical applications which have al-
lowed one to compute the total pair-creation probability
of scalar particles produced by the formation and evolu-
tion of cosmic strings [28] and other topological defects
[29,30] even when the gravitational field of these objects
is not explicitly known.

In this paper we want to extend the above results on
the creation of scalar particles by gravitational inhomo-
geneities to the more realistic case of spin-1 particles.
The use of scalar fields considerably simplifies the compu-
tations and generally one expects that the results can be
extrapolated to higher spin fields but for some numerical
factors which will take into account the degrees of free-
dom of the field (this usually suffices in cosmological ap-
plications when only order-of-magnitude estimates are
relevant).

Here we have to make use of the usual techniques for
dealing with spinor fields in curved spacetime [13,31-33];
as we shall see these are needed in order to separate the
interaction part of the action even when the background
is flat. When the background is an expanding universe
we will take it to be conformally flat, and will assume
that the field is conformally coupled (massless), since oth-
erwise the background itself may create particles [33-35]
and the effect due to the inhomogeneities would be negli-
gible. As we may expect the final result for the total pair
creation probability can be expressed in terms of
geometric invariants of the gravitational field, similarly as
electron-positron pair creation by time-dependent electric
fields is given in terms of invariants of the electromagnet-
ic field [24].
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The plan of the paper and a summary of the main re-
sults are the following. In Sec. II we start with a short
review of the formalism for treating spin-1 fields in a
curved background and describe the perturbative ap-
proach to be used in the paper.

In Sec. III we apply the above techniques to compute
pair creation of spin-1 particles in flat spacetime by linear
gravitational inhomogeneities. We first deal, in Sec.
IIT A, with the production of massless particles; the re-
sults differ from the case of massless scalar particles by a
factor of 6 and agree with Refs. [12,25]. The case of mas-
sive particles is treated separately, in Sec. III B; the final
result differs from the case of scalar particles by a global
factor and other numerical factors involving the mass
terms.

Finally in Sec. IV we deal with small inhomogeneities
on an expanding universe described by the spatially flat
FRW model. In this case the computation is only
relevant for massless particles, since those are conformal-
ly coupled and are not created by the background. The
final result may be compared to the case of massless par-
ticles on a flat background. The case of neutrinos, mass-
less particles with left polarization, is treated apart. The
case of massive particles is also briefly discussed. Finally
we conclude with a discussion of some cosmological ap-
plications.

II. FORMALISM

A. Spin-% particles in curved spacetime

We first briefly review the formalism for dealing with
spin-1 fields in a curved spacetime [1,13,20,31-33]. The
most natural way to introduce spinors in general relativi-
ty is by means of the tetrad formalism, i.e., by using lo-
cally inertial coordinates. At each spacetime point x*,
we introduce a tetrad e,*(x), such that

Nap =8 uv(X)eg (x)e,"(x), 2.1

where g, (x) is the spacetime metric and
N =diag(+1,—1,—1,—1) is the Minkowski metric.
We may also define the inverse tetrad e“,(x) by

e (x)e,H(x)=8f, e,M(x)e? (x)=8 ; (2.2)
then we can also write

gm(x)=”r]abe“#(x)ebv(x) . (2.3
The inverse metric in terms of the tetrad is

g"¥(x)=n%e,*(x)e,*(x). The tetrad may be seen as the
Jacobian matrix corresponding to the transformation of
inertial local coordinates at each spacetime point into
global spacetime coordinates. Thus the tetrad (and the
inverse tetrad) transform tensors with Lorentz indices
into tensors with spacetime indices at each spacetime
point. Note that the latin (Lorentz) indices are lowered
and raised with the local Minkowski metric 71,, whereas
the greek (spacetime) indices are raised and lowered with
the metric g,,. Note also from (2.3) that the tetrad is
defined only up to an arbitrary Lorentz transformation at
each spacetime point.
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In flat spacetime we know how a spinor field ¥ changes

under an infinitesimal Lorentz transformation
E°—> A% EP ~£94-€%, £Y, where €, = —¢,, are the six pa-
rameters of the transformation, i.e.,

Y-S (A)Yp=¢+1e, S, 2.4)

where S are the generators of the infinitesimal Lorentz
transformation on the spinor, which satisfy the SO(3,1)
algebra

[Sas>Sca 1= MacSeay+ Mo aSac)- 2.5)

It is now a simple matter to incorporate spinors into
curved spacetime. The transformation (2.4) depends now
on the point €,(x) and this means that d,¢ will not
transform under a Lorentz transformation as in flat
spacetime. As is well known to keep the flat space form
of the transformation of such derivative we must define a
new covariant derivative operator by introducing a con-
nection field T',(x). If this field transforms under a
Lorentz transformation as

I“‘L—»SI““S_I—(B,IS)S'1 , (2.6)
and the derivative operator is defined as

D,=e,'V,=e,(x)(3,+T),), (2.7
then D, transforms as required, namely,

D, p— AL (x)S(A(x))D, ¢ . (2.8)

The covariant derivative of tensors with spacetime in-
dices is made through the usual Christoffel symbols

rl\f)»=%g‘ua(ga}»,v+gvo,k_gvk,o ) ’ 2.9)

which guarantee that the metric tensor vanishes under
the spacetime covariant derivative g,,,, =0. In addition,
in the tetrad formalism we must define, in order to in-
clude covariant derivative over local or Lorentz indices,
the spin connection one-form

(2.10)

b — b — u Lo Plpb
WDg = ea#;ve n= (avea +vaea Je uo

which, as a consequence of its definition, is antisymmetric
®(a5)»=0. Note that this may be seen as a transformation
similar to (2.6) of the spacetime connection by the tetrad
which transforms spacetime indices into local Lorentz in-
dices. Since we have two types of indices and, in addi-
tion, we can deal with spinor fields, we may generalize
the covariant derivative on such objects as follows. Let
Y be a spinor field, we define [32]
V WO =0 WoH+TH W99+ o8 Wori D wor - (2.11)
Under this definition and using (2.9) and (2.10) it is
easy to show that the metric tensor and the tetrad have
vanishing covariant derivatives:

V.8, =0, V.’ =0. (2.12)

Now to determine the connection I',(x) for a spinor
field we can either impose that the covariant derivative of
the bispinor Dirac matrices ¥ ({y%,7°] =21) vanishes,
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V,y¢=0, (2.13)

or alternatively impose that I, transforms as (2.6) under
an infinitesimal Lorentz transformation. It is easy to
check [1] that this last condition is satisfied by the matrix

T,=1le, e, ,S% . (2.14)

For spin-1 fields the generator of infinitesimal Lorentz

transformation is given by the commutator of Dirac ma-
trices [36]:

Se=1[y%y%]. (2.15)

One can now prove (2.13) by taking into account that, if
A’ is a bispinor,

D A’=e,M(3,A’+ 0’ A+ L[S A ]w,,) (2.16)

where we have used that, as usual, Y= dlfyo and
YD, =y(9,—T,)e," since 7/01“;27/0‘—‘ =T,
Finally, the Dirac action in flat space,

i — > —
s=[a% 5¢r“a.,¢—mw¢] ,
where y“ are global inertial coordinates, can be easily ex-
pressed in curved spacetime, by using the covariant
derivative D, =e, “V#, as

S=[d*e 2.17)

i -— > —
;W“Daw—mw] :
172 If we now introduce
in curved spacetime
{r*,y*}=2g", and

where e =det(e?,)=(—detg,,)
the so-called Dirac matrices

yH(x)=vy%,*(x), which satisfy
neglect a surface term we may write

S= [d* e[igy*(x)(3,+ T )b—mPy] . (2.18)
By varying the action with respect to the field ¥ we ob-
tain the Dirac equation in curved spacetime:

[iyH(x)3, +iy*(x)T ,(x)—m](x)=0 . (2.19)

Note that a coupling of the spinor fields with the curva-
ture such as Ry cannot be introduced unless we have
extra matter; since the above quantity has dimensions of
L~ we need an extra field & with dimensions of L, to
form a density term: ERy1. An action with such term
leads to a nonrenormalizable theory; however, at the tree
level one may consider such type of coupling (as in Fermi
theory).

B. Perturbative approach

Let us now describe the perturbative approach, which
is based in the interaction picture and the S matrix. S-
matrix methods on curved backgrounds have been inten-
sively used in recent years in connection with the analysis
of self-interacting and mutually interacting fields in
inflationary cosmology [37-40].

As a first step we must write down the interaction La-
grangian that describes the interaction of the inhomo-
geneous gravitational field with the quantum spinorial



field. Let us separate the spacetime metric g, into an in-
homogeneous background part §,,,, and a small inhomo-
geneous field, Sg#v, as

8uv=8u 188, » (2.20)
then the Dirac action (2.18) can be separated into a
“free”” action and an “interaction” part:

s=§+os5=§+ [a*x | 25 | sg,, .

0

8 v
Note that since the stress tensor of the spinor field can be
deduced from the action as

2 88
Vg 8,

THY =

we may write the interaction term as
V_ o
_Eg; Tmeg,,

i.e., the external inhomogeneous field couples linearly
with the stress tensor of the spinor field, as one might ex-
pect. The Lagrangian density defined as S = [d*x.L

may be written as
L=Lo+L;+0(8g%) ,

where L, is considered as the free Lagrangian density
and £, as the interaction Lagrangian density. The in-
teraction is linear in the inhomogeneities (unquantized
external field) and quadratic in the spinor field. We can
now compute particle production in perturbation theory
provided that the interaction vanishes in the “in” and
“out” regions. This may be imposed by assuming that
the inhomogeneities vanish at least adiabatically in these
regions (symbolically, 7— o ):

lim 8g,,=0. (2.21)

n—tw

In the interaction picture the states are described by the
free modes, i.e., modes that are solutions of the field
equation corresponding to the Lagrangian density L.

When there is no particle creation by the background
the “in” and “out” vacuum can be identified. This is the
case for instance when the background is flat §,,=7,,,
or when it is conformally flat and we consider conformal-
ly coupled particles, i.e., massless fermions. Such are the
cases we shall consider in this paper, but the technique
can also be implemented when the background does
create particles (see Refs. [26,27]); then one must distin-
guish the “in” vacuum |0,in) from the “out” vacuum
|0, 0ut ).

Let us now consider a physical state |¥); in the in-
teraction picture it evolves in time according to the
Schrodinger equation

HII\I/)=i———a|(,:;> ,

where H; is the interaction Hamiltonian constructed
from the interaction Hamiltonian density H; = [ d’°x %#,.

(2.22)
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This equation can be formally solved by means of the uni-
tary S-matrix operator connecting the “in” and “out”
states:
S=Texp[—ifd4x7f1] , (2.23)
where T stands for the time-ordering operator. If we
start with |0,in), i.e., no “in” particles, the final evolu-
tion of this state as a consequence of the interaction is

|0,0ut)=S|0,in) . (2.24)

Now we can expand S perturbatively; up to first order
in 8g,,, it becomes S~1 -—ind“’x ¥£,;. For a nonderiva-
tive coupling we have

Hy=—L, . (2.25)

In our case, however, the interaction Lagrangian con-
tains derivative terms and we must be careful. However,
it is not hard to see using path-integral methods [41] that
since there is no ordering problem at the quantum level
in the Hamiltonian operator (because there is no mixing
of canonical conjugate variables in the classical action)
the substitution (2.25) still holds. Thus, we may write

S=1+iT [d*x L;=1+5" . (2.26)

Since L, is quadratic in the field and its derivatives, to
first order the particles are produced in pairs. The proba-
bility amplitude for pair creation is given by the S-matrix
element

S =(aplSV0)=iT [d*x(aplL,l0),  (27)
where a and B are the necessary quantum numbers to de-
scribe the particles. Note that the state |afB) indicates
two-particle states in the same Fock space as [0). When
the background creates particles these states do not cor-
respond to physical states in the “out” region and one
needs the Bogoliubov transformation to relate the two
types of states [27]. When the background does not
create particles then |af3) correspond to physical particle
states and the total pair-creation probability is

W(1)= EB )S;IB)IZ ,
a

(2.28)

which is quadratic in the inhomogeneities. Our next task
will be to compute this probability for Dirac particles.

III. FLAT SPACE WITH
GRAVITATIONAL INHOMOGENEITIES

In flat space there is a timelike Killing vector over all
spacetime; there is no ambiguity in the definition of the
positive-frequency modes; the vacuum is unique and
Poincaré invariant. We start with the Dirac action (2.18)
and assume that the spacetime is described by

8uv(X)=mn,,th,(x), (3.1

where h,, is a symmetric tensor which represents the
gravitational inhomogeneities. To define the interaction
Lagrangian we first introduce the tetrad. According to
(2.3) the tetrad is not unique since it is given up to an ar-
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bitrary Lorentz transformation at each spacetime point.
A convenient tetrad is

e™M(x)=n"—1h*x)+0(h?), 3.2)
and its inverse is ea”(x)=nau+2hau(x)+0(h ). The
connection (2.14) is now

L=,y v 10, (3.3)
and the Dirac matrices are

YHx)=(n*—1h* )y, +0(h?) . (3.4)

A. Massless particles

We will first compute the case of massless particles.
There is no problem in doing the massive case and then
taking the mass equal to zero in the final result. Howev-
er, we treat this case separately, and with some detail, be-
cause a few partial results of this section will be later used
when dealing with an expanding background in Sec. IV.

Substituting the above expressions in the Dirac action
and taking m =0 we can separate the Lagrangian into a
“free” term and an “interaction’ term, respectively,

Lo=iyn ™"y, 8,9, (3.5)

Ly =22y LYY= Fh oy B+ Ry 3,0)
(3.6)

where h =h* =h""y,, and we have expanded the con-

nection to first order in the inhomogeneities
— M0 4 D 2

r,=r,’+r,’+0(h")as
r)'=0, T)V=1h,Uyp7.]. (3.7

The equation of motion of the field 1(x) is simply the
Dirac equation in flat space,

in*y 8, ¥=id(x)=0 (3.8)

which has well-known solutions ([24,36]) in terms of
creation and annihilation operator such as

W(Ol)zz ‘Sizl[)nz
a,B

=3/

=

2m)} 2p°f 277)32 o

dq b i’ mn
———h *(q)h ™"~
@me 7 f

f —ESq —p'—p)Tr(p' N,,p10,,,)
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vx=3 f [a,(Muy(A)e P>

+b;(x>up<me'ﬁ*], 3.9
where ¥, indicates sum over polarizations A, and the
Lorentz-invariant 1ntegral sums over all momenta. The
operators a,(A) and bl p(A) are annihilator of particles
and creator of antlpartlc]es, respectively, which satisfy
the anticommutation rules

T ’ — T ’
{a,(M),al (AN} =(b,(A),b] ()]}

=(2m)32p%(p—p")8, , (3.10

and the polarization vectors satisfy the completeness rela-
tions

ZUP(MUP()»)-——E up(}»)it“ (A)=p. (3.11)
Py A

The probability amplitude of pair creation (2.27) can be
written, after use of Wick’s theorem for fermionic fields,

as
sW=i [d*(a,B|TL,|0)
=ifd4x(p,k;p’,)»’]T.£1|0)

il “*(p'+p)
8

Ty (AP +p)ValVp 7]
vp(A),
(3.12)

_4pcnab7/c +4pb}’a ]

where we have defined the Fourier transform of the inho-
mogeneities as

Rop)= [d*x e hb(x),

(3.13)
h(x)= iR b(p)
Making use of the definitions
Moo =gV [V6,V 1= 4MapB T4V abs >
(3.14)

— 40,8 T4V Py »

the total pair-creation probability for massless particles
Wl is given by

t "
ﬁmn EYOH;nnYOZq [‘Vr"}/n ]Ym

\(p, ,p,k’\tfd”’x TL,; IO)

(3.15)

where we have introduced a Dirac delta function for the total momentum and used the completeness relations (3.11).
Computing the traces we can write the above expression in terms of well-known phase-space integrals (see the Appen-

dix),



d4 7 a j, mn
Wﬁ,”=fm%h %(q)h ™(—q)
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X {64[Ia/mbn +Im/abn ]_—32[qa(lm/bn +Ib/mn )+qm(In/ab +Ia/nb )+q2nam1bn ]
1609 Loy 10 /5) F Nt Lpn + L 1)+ 90l T gy + Lo /)

+q2qm(7’anIb _nabln )+q2qa(nbm1n

_nnmIb )]

— 8% Mas Ly +1 1)+ 074 M Ty 1 1) = 424005 Mmm — Galm Mon T Imn a1 1}

and after a long but straightforward computation we can write the total probability as

4
W =L [ DL 1(g) D(g)i ™(— g)g* (4P oy Pyn —PosPrun = PanPrs)

159 (47)8

where we have defined the projector P, =1,, —q,9, /9>
Now the Fourier transform of the Riemann tensor com-
ponents at this linear order can be written [26,27], in
terms of the above projector, as

|IR(q)*=R(q)R(—q)=q*Py,P,,,h ““(9h ™(—q) ,
- - ~ (3.16)
lR abcd(q)|ZER ade(q)Rabcd( _q)

=q4PanPbmﬁab(Q)E mn( ‘_Q) ’

and the above integral simplifies to

1y — 1 dq 0oy 12
W 96%[ (2#)49@ )6(g?)

X[3|R ®4(q)]2>—|R(g)|*]. (3.17)

We can now use the following geometric relations.
The definition of the Weyl tensor C,, ., in terms of the
Riemann tensor implies that, in four dimensions,

CupeaC"*=RypegR™™*—2R,,R®+1R?* . (3.19)

The integral of (3.18),

fd4x ‘/'Iacabcdcabcd ,

is invariant under conformal transformations. Further-
more the four-dimensional analogue of the Gauss-Bonnet
invariant in two dimensions,

K= [d*VTgl(Rypey R4~ 4R ,R®+R?), (3.19)

is a topological invariant, independent of the geometry.

In considering the metric g,,=,,+h,, due to the
boundary conditions (2.21) imposed on 4,,,, one finds that
K =0. This translates into the following relation between
the Fourier components of the Riemann tensor,

|R %4(q)|>—4|R *(q)|?+|R(g)|*=0, (3.20)

which, together with the corresponding relation (3.18),
leads to the following alternative expression of (3.17),
which is manifestly conformally invariant:

wm—_1 . d%q o o 2)| 7 abedy 1|2
Wo 1607rf(2ﬂ_)49(‘1 18(g?)|C 4> . (3.21)

f

This result is in agreement with that of Ref. [25] and it
differs by a factor of 6 with that for scalar particles.

B. Massive particles

In this section we will study the case of massive parti-
cles on a flat spacetime with inhomogeneities. Following
the preceding subsection if we introduce the massive term
the free Lagrangian and the dynamical equation for the
free field ¢ are

Lo=ifn 3, —mPy , (3.22)

(i8—m)p=0, (3.23)

and the completeness relations for the polarization vec-
tors are

S upMmM=(p+m),

(3.24)
2 UMD (A)=(f—m) .
A
The new interaction Lagrangian
I o a —
L= 5 Py T = Fhovy 3,
+hym*ty 3,4 +imh ) (3.25)

gives, after a short computation, the probability ampli-
tude for pair creation,

'i;ab( 4 )_ , , .
S =L, (' +p )Y o [1h 7]

—4pNe Y. T4PLY .

—4mmng, ju, (), (3.26)

and the total pair-creation probability (2.28), for massive

spin-1 particles W'l is
pin-; p m
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d*q - -~
(1) ) mn(_ )
" f(4m6 9
f (q —p'—p)
><Tr[ ¢ +m)Il,,—4mn,)
X(g—m)1l,, —4mn,,,)] .

Following the steps of the preceding subsection this
probability can be expressed in terms of geometric quan-
tities as

1 d'q am? |
W(l): 0 0 2__ 2 _
" 1607rf(217')4 (a)0g = am |1 q°
2
% 1+§m—2 |C abed(g)|2
3¢
10 m2 5 2
+ o 5 |R(g)] (3.27)
9 ¢

Note that we can now write the Fourier transform of the
Weyl components in terms of the Ricci components and
the Ricci scalar by using (3.18) and (3.20), and then we
can use the Einstein equations R, =87G(T,,~38,,T)
to write the total probability of pair production in terms
of the energy-momentum tensor of the gravitational

source as
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W(l):.wf d4q 9(q0)0(q2-4m2) 1__477‘12
" 80 (2m)* q°
8 7 ab 2
X | [1+= |T “®(q)|
3¢
2
I Lk (3.28)
g

When comparing with the corresponding expression
for scalar particles [27] there is not only a global factor of
6 but also the mass-dependent terms acquire different
coeflicients so that we could not have guessed the above
result by extrapolating the scalar expression with simple
arguments.

IV. COSMOLOGICAL MODELS
WITH INHOMOGENEITIES

A. Massless particles

In this section we will consider a massless spin-+
matter field described by the Dirac action

S= [d*x eihy*(x)(3,+T,)¥ 4.1)
on a spacetime with a conformally flat FRW metric
gn(x)=a*(m)n,, th,(x)], 4.2)

where the conformal factor a(7) depends only on the
conformal time 7.

Now we choose the expressions for the tetrads,
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’T]bv+%h bv) ,
(4.3)

e _a~1(,r,)(,qav__%hax/)’

and the connection can be written at the zero and the first
orders (the latter being linear in the inhomogeneities), re-
spectively, as

0 — %2

___b?»a
K 4a "

WVas Vsl (4.4)

A e

1
8
4.5)

Then using the Dirac action (4.1) we can separate the
“free” and the “interaction” Lagrangians as

Lo=ia*(gm ™y 3, +dn*y, T VY) ,
(1), __ T a T a
F,;I Y—yhy 3,y +hyn*ty 0,4

4.7)

(4.6)
ia’ -
lzzT(Mn‘”‘h

—Ph %y T2+ himy T V) .

The first gives the following dynamical equation for the
spinorial free field:

98 34, v

a7 2 a (4.8)

l/} 5

where a; =y,y;. It is easy to see that the solution of this
equation can be written as

-3 7

277' 2p a

n)
p(A)e~ip~x

+bl (A, (R)e? ],

X{ap(A)u
(4.9)

where the creation and annihilation operators satisfy the
standard anticommutation rules (3.10) and the polariza-
tion vectors the completeness relations (3.11). Since the
background is conformally flat and the field massless, this
operator differs from the operator in flat space by the fac-
tor a3/%(n) only. Then the probability amplitude com-
puted from the interaction Lagrangian (4.7),

_ih%p'+p) _ .,

=g Hy(A)
X{p +p)YolVes7.]

vp(A),

(1)
Sap

—4p N7 ¢

+4py7, ) (4.10)

coincides with that for the flat background (3.12); i.e., the
dependence on the conformal factor has disappeared.
Thus the total pair-creation probability follows the steps
of the computation in Sec. III, with the result
[ —imq )0(g%)|C g,

wilh=— (4.11)

16077'
where here C,,,(q) is the Fourier transform of the Weyl
tensor for the cosmological metric (4.2). We have used
that the above expression is conformally invariant, as fol-



lows from the discussion at the end of Sec. III A; of
course, the result (4.11) is the same as that for the metric
(3.1). Therefore the total pair-creation probability for
massless conformally coupled particles due to small grav-
itational inhomogeneities follows from the total pair-
creation probability in flat space for massless (conformal-
ly coupled) spinors in the presence of small inhomo-
geneities.

B. Neutrinos

We have just seen that the probability of the produc-
tion of spin-1 particles in a FRW universe is given by the
equation (4.11). We will show in this section that, as one
should expect, this probability must be divided by 2 in
the case of polarized spin-] massless particles (neutrinos).
This condition can be expressed, mathematically, requir-

w=[ ——j;‘iﬁ R ot g ™ f

= f o )6 “”(q)h'""(—q)f f

where we have used (3.15). It is not difficult to see that
the last trace is identically zero; thus,

(1)

14 1 o .
m_T0 _ q9 0 2| & abed( )2
W= " a0r prlCRUC RIS Ul

(4.15)

C. Massive particles

The creation of massive particles in a cosmological
background with small inhomogeneities constitutes a
different situation. Now the background does create par-
ticles and the contribution of the inhomogeneities is
physically less relevant. However, for completeness we
shall consider how one can handle that case. In principle
the method for dealing with the inhomogeneities is simi-
lar to the previous case, i.e., a perturbative approach, but
with the difference that now the “in” and “out” vacua
differ. That is, the “free” modes define different “in” and
“out” particles.

Let us assume that {u;(x),v;(x)} are a complete set of
mode solutions of the Dirac equation (2.19) with the nor-

malization
=i fjﬂ“«/}z V —gzn,dZ .

( ‘/]1’ 1/12 )
Here ¢, and ), are solutions of (2.19), the integral is over
a spacelike Cauchy hypersurface 2, and n, is the vector
orthogonal to it (we assume that the spacetime is globally
hyperbolic). The field operator can be written in terms of
these modes as
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ing that the matter field satisfy the equation
(1—y5)y=0, (4.12)

as well as the Dirac equation (4.8). Now the fields have
polarization vectors with completeness relations and nor-
malization conditions given by

1._
%up(x)ap(k)wpap:p Tys ,
(4.13)
1—y
S 0p(MT,(M=0,7,=F |~ | ,
A
ty —pty =
Uplt, =V o0, =2p (4.14)

The total probability for neutrino pair production,
W'D, is then given by

p'nabpﬁmn l

8<q —p'—p)Trlys#' I, P11,

W)= [a;u;(x)+bv;(x)],

where 3, is shorthand notation to indicate an integral
over momenta and sum over polarizations; see (3.9). The
a; and b; are the annihilation operators of particles and
antiparticles, respectively, and satisfy (3.10).

Let us assume that we have two sets of such complete
solutions, {u;"(x),v;"(x)} and {u"(x),v?*(x)}, which
may define physical particles in the “in” and “out” re-
gions, respectively. Since each are a complete set of
modes we may write one set in terms of the other:

u(x) =3 [a;u(x)+B v (x)],

J

v,—"’(x)—zh’,, uf(x)+m,;07(x)] .
j

The coefficients «a,B,y,7 are called Bogoliubov
coefficients and verify 4 4 T=1 where A is the matrix

a B

Y m

The “in” and “out” creation operators of particles and
antiparticles are related by

ajg)ut= 2( ;! +7,meT)

i

outt i int (4.16)
b = (Bya/"+m;b™) .

The expectation value of the number of “out” particles of



4436

type j in the “in” vacuum (i.e., particles created) is given
by N}P’=(O,in[aJF’“‘Tal9“‘|0,in)=2,-|y,-j|2, where we
have used the above expressions and that
a™|0,in) =5,"|0,in) =0 for all i. Similarly, the number
of ‘“out” anti?articles in the “in” vacuum is
N #=(0,in|by*"6/""(0,in} =3,|B; />~ Thus the total
number of particles created is N =3, ;(|y;1*+8;1%).
Now let us compute the perturbative effect due to an
interaction Lagrangian. In the interaction picture a

J

lim |¥)=5/0,in)= |[0,in)+ S —|n,in)(n,inlSP|0,in) | ,

n— +

!
n NG
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physical state |¥) evolves in time according to the
Schrodinger equation (2.22). Let us assume as before that
we have no initial particles, i.e.,

lim |¥)=]0,in) ;

N——

as a consequence of the interaction the state will evolve
to a final state:

(4.17)

where W is a normalization factor such that (W|W)=1. If the interaction is quadratic in the quantum field, the first-
order contribution will come from the transition amplitude to two-particle states: {r,s;in|S‘"|0,in). On the other
hand, it is easy to see that /=14 O (h?) where h indicates the order of the interaction term.

We may now compute the number of “out” particles in the mode j in the final state by using the relations (4.16) and

(4.17):

— 1 tt  out tty out
Ny= tim (Wlap e b bw)

:Z(lyij|2+ 1B, 1))+ 3 Re[ (a7} +B;n} ) {rs;in|S"[0,in) ] .

This equation generalizes Eq. (3.16) of Ref. [27] valid
for scalar particles to the case of spinorial particles. Note
that whereas the first term contains the background con-
tribution only, the second is due to the combined effect of
the interaction and the background. The second term is
linear in the S-matrix elements; note that when particles
are not created by the background the Bogoliubov
coefficients  and y are zero and the above expression
vanishes. In that case particle production will be propor-
tional to the next order of approximation, which is of the
order of the square of the S-matrix elements, as seen in
(3.15) for instance.

In practice given an arbitrary background the compu-
tation of (4.18) will be difficult if we do not know the ex-
act modes of the free Lagrangian, because the exact
modes are required to compute the scattering matrix. As
explained in Ref. [27] given an expansion background
factor a(7) in (4.2) one may look for another expansion
background a,(7) in which the modes can be solved ex-
actly (for instance a step expansion [27] or an expansion
law of a radiation-filled universe [34]) and such that
lim, ., .a,=a, and lim,_, , .4, =a, (for a bounded ex-
pansion). If the deviation from the true background
(a%’/a})—1 is small one can write this term in the in-
teraction Lagrangian and the scattering matrix SV will
contain contributions due to the small inhomogeneities
and due to the deviation from a,(7n). Then the computa-
tion can be carried out explicitly.

From the cosmological viewpoint, however, the physi-
cally relevant contribution is the first term in (4.18) since
the perturbative term is just a small addition to that of
the background. An expression such as (4.18) is more in-
teresting when it is used to compute the effect of self-

(4.18)

[

interaction or mutually interacting fields [37-40] since
then there are interaction processes which are not in-
duced by the background expansion

V. CONCLUSIONS

We have seen that the total pair-creation probability
by inhomogeneities depends essentially on the Fourier
transform of the stress tensor which is the source of the
inhomogeneities; see (3.28). From this it is clear that
static sources do not create particles at this perturbative
order. It is also clear that gravitational waves, i.e., linear
perturbations of the gravitational field which are solu-
tions of Einstein’s equation in vacuum, do not create par-
ticles. This means that such type of inhomogeneities (stat-
ic and gravitational waves) will not be damped by particle
creation in its cosmological evolution. Note also that ex-
act gravitational plane waves do not create particles
[42,43]; however, the nonlinear superpositions of exact
plane waves, as represented by exact colliding plane-wave
spacetimes, for instance, may be the source of particles
[44,45].

As we know, the cosmological importance of the parti-
cles created will be greater if these are produced earlier in
the Universe. In this sense it is tempting to extrapolate
the results (4.11) or (4.15) all the way back to Planck
time. Multiplying the total pair-creation probability by
the frequency of a particle and integrating over frequen-
cies we get the total energy of the particles produced.
The energy density of the particles created, p, is then
given by pa*=(27)7? [dw oW'". According to the for-
mulas of the preceding section, in order of magnitude the
energy density of particles created is given by



P(x)~ Cppoa(x)C%x). It is plausible that at the Planck
time we have inhomogeneities which may have been ori-
ginated from quantum metric fluctuations at the Planck
era. These may translate into inhomogeneities with a
typical Weyl tensor scale of C~tp 2, where tp is the
Planck time (the only time scale available). That would
produce an energy density of the order of the Planck
values, i.e., 10°> g/cm?, which corresponds to a tempera-
ture of T~ 10°? K, assuming thermalization of the parti-
cles. Assuming entropy conservation in a comoving
volume this temperature would redshift to a present tem-
perature of a few degrees Kelvin (the present background
temperature) [4]. Note that particles created by a similar
mechanism after the Planck time have negligible
influence as compared to the ones created at the Planck
time; the reason is that the energy density of the latter
evolves with time as p(z)~3/327Gt? whereas at this
same time the energy density of the particles created goes
as p,(t)~1/t* the ratio of the two is p(t)/p,(t)~t3 /12,
which will be increasingly smaller. Note also that parti-
cle and entropy production by gravitational inhomo-
geneities differs from that of a homogeneous expansion in
that here all kinds of particles, conformally coupled or
not, are created. Thus, in principle, gravitational inho-
mogeneities could be the source of matter and entropy in
the Universe.

If we move now to safer ground, away from the Planck
time where back-reaction effects may be less important,
the earliest effects that we reasonably understand and

3 3.0
_ d E d E I ’ ’
L si i) = f 200 2p° 8(g —p plp;, =P Pi .,

_ I(q) [n/2] (4m2_q2)j

2" Eo (2j + 1)

X [2(—1)Aq,~l—?ia —@ia e '@ia ‘ -9; -g;
T 1 2

where
dzg d3E' T 4m? 12
I(g)= ~8(q —p'—p)=— [1—
q 2p° 2p° q9—p—p 2 qz
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may compute are at the grand unification time, i.e., at
1073 sec, when the Universe had a temperature of
T~10'® GeV. At this time quantum fields underwent
phase transitions which may have resulted in topological
defects [10,11]. When a topological defect forms, a sud-
den change in the gravitational field takes place, resulting
in gravitational inhomogeneities which may create high-
energy particles. The procedure explained in this paper
is quite appropriate for the computation of such effects
since gravitational fields involved are very well described
by the linear approximation [28-30]; in fact, for dimen-
sional reasons their gravitational effects in the spacetime
metric will be of order GT2~ 10", which is much small-
er than one.
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APPENDIX

Here we write the phase-space integrals that are need-
ed in order to compute the final results for pair creation
in the main text. It is not difficult to prove by induction,
and taking into account that the integration must be a
linear combination of the flat metric and polynomial ten-
sors constructed with the total momentum g¢,, that

n

'Pia i )
2j—1 %25

6(g%)8(g*—4am?) .

Here the caret in §, means that the four-momentum g, is absent; 3 - means the sum over the number of ways (order in-
dependent) of choosing n —2j vectors from the set of n vectors ¢; 3 » means the sum over the permutations of 2j indices
which give different tensorial terms; and A is the number of i, indices between i,, ,; and i,. Every element of the series
has (2j —1)!C” ~% terms if j > 1 and only one if j =0. A few examples of the integrals which we need are

I(qg)
Ia:I/az_—zg_qa’
I1(q) 4m?—gq?
Iab=—4q qaqb+——31—Pab )
4m?—gqg?
I,,= 4 qa?b_'—3_q_Pab ’

m2_q2

I(q)
I = g 9.9p9. T

4
3 (anbc_quac_qcPab) ’
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_I(g) 4m’—g’®
Ia/bcd———Tg_ qaqchqd+ 3 1
(4m2_ 2)2
- ——1—5-‘1—(11,,,};,, +P, Pyy+PyPy.)
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