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Synchronization processes are ubiquitous despite the many connectivity patterns that complex systems can
show. Usually, the emergence of synchrony is a macroscopic observable; however, the microscopic details of the
system, as, e.g., the underlying network of interactions, is many times partially or totally unknown. We already
know that different interaction structures can give rise to a common functionality, understood as a common
macroscopic observable. Building upon this fact, here we propose network transformations that keep the collective
behavior of a large system of Kuramoto oscillators invariant. We derive a method based on information theory
principles, that allows us to adjust the weights of the structural interactions to map random homogeneous in-degree
networks into random heterogeneous networks and vice versa, keeping synchronization values invariant. The
results of the proposed transformations reveal an interesting principle; heterogeneous networks can be mapped
to homogeneous ones with local information, but the reverse process needs to exploit higher-order information.
The formalism provides analytical insight to tackle real complex scenarios when dealing with uncertainty in the
measurements of the underlying connectivity structure.
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The study of dynamical processes running on top of com-
plex networks has become a central issue in many research
fields, ranging from the microscopic realm of genes and
neurones to the large realm of technological and social systems
[1–7]. The interplay between topology and dynamics is crucial
here to understand the physics of those complex systems
under analysis. However, many times the information we
can accede to about the actual topology of interactions is
somehow incomplete, because of experimental limitations or
because of lags on the details of the system [8–11]. Moreover,
given that the only reflection of the dynamics on networks is
usually a certain macroscopic observable, it turns out that many
topologies are compatible with the same dynamical output,
raising the problem of multivaluation [12–14] (i.e., different
topologies with the same dynamical response).

Following this perspective, we analyze the relation between
function and structure in a mapping problem. Essentially, given
a certain network structure and a dynamical process on top of
it, we wonder how to transform the network into a different
structural connectivity so that the collective behavior (i.e., the
function) remains invariant. Such transformation must adjust
the weights of the interactions in the new configuration to
achieve the goal of having an equivalent steady-state function-
ality to the original structure. In this Rapid Communication,
we present a formalism, based on the maximum entropy
principle [15,16], to derive analytical transformations for the
resulting weights when only local information (at the nodes’
scale) is available. Furthermore, we show that the mapping of
homogeneous networks into heterogeneous ones is usually less
accurate and requires more—costly—microscopic informa-
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tion than the reverse process, unveiling a symmetry-unbalance
phenomenon that emerges from the partial impossibility of
preserving the local structural constraints.

To derive the network transformations, we focused on a
particular dynamical process, the synchronization of coupled
phase oscillators. This paradigmatic example of emergent
phenomena has been extensively studied [4,17,18], to unveil
fundamental aspects related to the mapping problem, such as
the inference of structure from response dynamics [10,19–21],
the dependency of the collective behavior on the topology
[18,22,23], and the network optimization to maximize the
stability of the fully synchronized attractor [24,25]. The Ku-
ramoto model (KM) [26] consists of a population of N coupled
phase oscillators that evolve in time according to the set of
equations

θ̇i = ωi + K

N∑
j=1

λij sin(θj − θi), ∀i ∈ N, (1)

where θi is phase of the i oscillator, ωi its natural frequency,
drawn from a probability distribution g(ω), λij are the ele-
ments of the coupling matrix � that capture the presence of
a connection and its intensity, and K is a constant coupling
strength that scales all the weights. The collective behavior
of the KM is usually described through the complex order
parameter

rei�(t) = 1

N

N∑
j=1

eiθj , (2)

where the modulus r measures the overall degree of synchrony
and �(t) the average phase of the system. Here, we assume
that the macroscopic order parameter r is the only available
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observable from measurements, and we look for transforma-
tions of � that keep this observable invariant, for any value of
the control parameter K .

It is well known that particular unweighted instances drawn
from the same degree distribution will produce the desired
invariant collective behavior [3–5]. We wonder if the former
invariance can be achieved for weighted networks drawn from
different degree distributions, preserving the number of nodes
N . We consider a target network A with a given coupling
matrix A, which might be nonsymmetric and directed with
fixed entries λA

ij , and a candidate network B, with different
coupling matrix B and λB

ij . We impose transformations of B
in the form B′ = W ◦ B, with entries wijλ

B
ij , where wij are

the parameters to find. Note that we can absorb the weights of
B into W, keeping only the binary values bij of the structure
of B. After this simplification, the entries of the transformed
network can be written as (B′)ij = wijbij . Furthermore, we
assume that the N units are distinguishable and preserve their
intrinsic properties in the transformation (ωA

i = ωB ′
i ∀ i ∈ N ),

which ensures that we are dealing with particular instances of
networks and not with averaged ensembles. Then, the condition
for functional synchronization invariance can be written as

〈r2( �ω,K,A)〉 = 〈r2( �ω,K,B′)〉, ∀ K > 0, (3)

where the measurements are in the steady state, the average
refers to different initial conditions, accounting for fluctuations
of order 1/

√
N , and the parameters of the dynamical process

( �ω,K) are fixed in both networks.
Inspired by the derivation of statistical mechanics from

information theory as a particular case of statistical inference
(see [16]), we tackle the functional mapping defined above as
an optimization problem for the unknown weights subject to
structural constraints on the networks that capture our prior
knowledge on the system. The key assumption here is that
Eq. (3) can be achieved by imposing a local detailed balance for
the main structural properties of the nodes: the overall coupling
intensities received from neighbors (or input strengths [5]).
For each node, we define the zero-order input strength as
s

(0)
i = ∑

j λij , the first-order as s
(1)
i = ∑

j λij (
∑

k λjk), and so
on. For a fixed order M , the detailed balance is given by a set
of N (M + 1) equations for the s

(m)
i . If we let q be the N vector

of ones q = (1,1, . . . ,1)
, we can write

Am+1q = B′Amq, ∀ 0 � m � M, (4)

where (Am+1q)i = s
(m)
i are the node structural bounds in the

optimization of the weights in B′. The local constraint (m = 0)
can be written explicitly as

N∑
j=1

λA
ij =

N∑
j=1

wijbij , ∀ i ∈ N, (5)

which ensures to preserve the overall coupling in the transfor-
mation (

∑
i

∑
j λA

ij = ∑
i

∑
j wij bij ). The ansatz of Eq. (5)

relies on the weighted annealed approximation [27,28], that
assumes statistical similarity among nodes with the same s

(0)
i .

This description is known to be valid in the linear regimes of
the diffusion of random walkers [28] and the master stability
function (MSF) [24,25]. Here, if the coupling strength K is
sufficiently large, Eq. (1) can be linearized, and using statistical

and mean-field arguments [25], the system can be uncoupled,
with each unit being driven only by its input strength. The
underlying assumption is that higher-order constraints (m > 0)
might be required when the nonlinearity of Eq. (1) plays a
crucial role or the connectivity patterns of the units are highly
nontrivial (large heterogeneity, correlations, clustering, etc.).

We take advantage of information theory [15], to define
an appropriate objective function to optimize the unknown
weights. In an uncertainty scenario, the best we can do is to
rely on the maximum entropy principle [16]. It states that,
subject to the available data [i.e., the constraints in Eq. (4)],
the probability distribution which best captures our lack of
information is the one that maximizes the entropy. Here, we
can interpret the weights distribution in probabilistic terms,
where the input strength s

(0)
i is the normalization condition,

and we can define the entropy [15] of a node Si as a sum over
the accessible states defined as those where bij = 1,

Si = −
N∑

j=1

wij log wij , ∀ i ∈ N, (6)

where the normalization constant has been neglected for
simplicity and it is assumed that wij � 0. We can use the
method of Lagrange multipliers [16] to solve this optimization
problem. The Lagragian function reads as

L =
N∑

i=1

(
Si −

M∑
m=0

β
(m)
i [(Am+1q)i − (B′Amq)i]

)
, (7)

where β
(m)
i is the m-order Lagrange multiplier of i node. By

optimizing Eq. (7) with respect to the unknown weights and
finding the values of the multipliers, we can derive analytical
expressions for the entries of B′. For the zero-order case (M =
0), we obtain

w
(0)
ij =

∑N
k=1 λA

ik∑N
k=1 bik

, ∀ i,j ∈ N, (8)

that can be written as w
(0)
ij = s

(0)
i /kB

i , where kB
i is the degree

of node i in B. This solution is very intuitive, since it
homogeneously allocates the input strength of a node into
the available links. The weights are therefore equal for all the
incoming links of a node (wij is independent of the node j ),
implying usually a nonsymmetric coupling.

The solution in Eq. (8) is precisely the scheme used
in [24,25] to transform a network topology into a purely
homogeneous one to optimize the stability of the synchronized
state in the scope of the MSF. That means that the solution
is valid in the linear regime, close to the synchronization
attractor. However, this solution is yet to be validated in
the fully nonlinear regime. We simulate the dynamics of
N = 2000 oscillators following Eq. (1) with fixed g(ω) ∈
(−π,π ), measuring 〈r2〉 in a quasistatic process controlled
by the control parameter K ∈ [0,0.5/N ]. We propose to map
pairs of uncorrelated networks drawn from different degree
distributions, that range from homogeneous in-degree, Erdös-
Rényi networks, to power-law in-degree networks, which are
initially unweighted and symmetric. We use the model in [29]
to interpolate between both degree distributions using a single
parameter α. For α = 0 we have pure power-law distributions
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FIG. 1. Synchronization diagram. We plot r2 as a function of the
coupling strength K of the Kuramoto model, with 	(K/N ) = 0.01
simulated with a fourth-order Runge-Kutta method with 	t = 0.01,
for one instance of A1 (Erdös-Rényi) and A0 (power-law) networks
and their respective transformations using Eq. (8), averaged over 50
realizations with θ0 ∈ [−π,π ] (standard deviations are smaller than
the size of the symbols).

p(k) ∼ k−γ with exponent γ = 3, while for α = 1 we obtain
homogeneous random networks, keeping the average degree
fixed; in our case, 〈k〉 = 10. The mapping transformation is
then as follows: we fix the topologies of a network A drawn
from the model for a certain value α, i.e., the target network
Aα , and the candidate network Bα′ drawn for another value
α′. Then, we compute the weights, using Eq. (8), to map the
candidate network into the target one and obtain the resulting
T0(Bα′ |Aα), where the subindex of T refers to the fact that the
method exploits only zero-order information.

In Fig. 1 we present the results of the transformation
for the extreme cases T0(B0|A1) and T0(B1|A0). The results
evidence that the functional invariance is attained in the linear
regime (K � Kc) for both transformations. However, there is
a clear discrepancy in the transformation T0(B1|A0), i.e., from
a homogeneous in-degree network toward a heterogeneous,
power-law network. This discrepancy shows that, when Eq. (8)
is applied, homogeneous networks are not able to capture the
role of heterogeneous connectivity patterns.

To improve the accuracy of the T0 method in the mapping,
we need to include higher-order constraints. We extend the
detailed balance to a further order (M = 1) by imposing that,
for each node, the transformation must also preserve the first-
order input strengths s

(1)
i , i.e.,

N∑
j=1

λA
ij s

(0)
j =

N∑
j=1

wijbij s
(0)
j , ∀ i ∈ N. (9)

Note that s(0)
j is the same at both ends of Eq. (9) because we still

retain the constraint presented in Eq. (5). We aim to maximize
Eq. (6) subject to Eq. (5) and Eq. (9). The Lagrangian in Eq. (7)
can be written explicitly as

L =
N∑

i=1

⎡
⎣−

N∑
j=1

wij log wij − β
(0)
i

⎛
⎝s

(0)
i −

N∑
j=1

wijbij

⎞
⎠

−β
(1)
i

⎛
⎝ N∑

j=1

λA
ij s

(0)
j −

N∑
j=1

wijbij s
(0)
j

⎞
⎠

⎤
⎦. (10)

By imposing dL/dwij = 0 and isolating the unknown weight
wij , we obtain the implicit expression

w
(1)
ij (βi) = s

(0)
i e−βis

(0)
j∑N

k=1 bike
−βis

(0)
k

, ∀ i,j ∈ N. (11)

The values of the multipliers βi are found by substituting
Eq. (11) back into Eq. (9) and numerically solving the resulting
system. However, the existence of real and non-negative
solutions cannot be ensured apriori. Indeed, the structural
bounds are easily estimated by considering the worst-case
scenarios, i.e.,

s
(0)
i × min

∀j∈N

(
bij s

(0)
j

)
� s

(1)
i � s

(0)
i × max

∀j∈N

(
bij s

(0)
j

)
, ∀ i ∈ N.

(12)

The inequality in Eq. (12) turns out to be unfeasible for most
nodes if the reference network is very heterogeneous in local
input strength. Let us illustrate this by considering, on one
hand, that A follows a power-law distribution with p(s) =
cs−γ . Then, if network B is sufficiently well connected (kB

i �
1 ∀ i ∈ N ) and assuming N large, we can approximate the
constraints by

s
(0)
i  kB

i

∫ ∞

0
e−βisp(s)ds = ckB

i

β
1−γ

i

∫ ∞

0
e−xx−γ dx, (13)

s
(1)
i  kB

i

∫ ∞

0
se−βisp(s)ds = ckB

i

β
2−γ

i

∫ ∞

0
e−xx−γ+1dx. (14)

The first integral can be written as the gamma function∫
e−xx−γ dx = �(1 − γ ). Using the well-known property

�(z + 1) = z�(z) and dividing both equations, we obtain

βi  s
(0)
i

s
(1)
i

(1 − γ ), ∀ i ∈ N, (15)

which is negative for γ = 3, thus unveiling the structural
restrictions that emerge when mapping any arbitrary network
into a highly heterogeneous one. On the other hand, Eq. (8)
is recovered from Eq. (11) only when s

(0)
i  〈s(0)〉, ∀ i ∈ N ,

i.e.,when A is very homogeneous in local input strength,
regardless of the topology of B.

The previous reasoning unfolds the symmetry unbalance
observed in Fig. 1 and suggests that the mapping can indeed
be enhanced, although it is strongly limited by the structural
bounds. To provide an analytical transformation that improves
the performance of Eq. (8) while still preserving wij � 0, we
expand Eq. (11) to first order around its average value, i.e.,

w
(1)
ij (βi)  s

(0)
i [1 − βi(sj − 〈s〉)]∑N

k=1 bik[1 − βi(sk − 〈s〉)] , ∀i,j ∈ N, (16)

where 〈s〉 = (1/kB
i )

∑
j bij s

(0)
j . We insert Eq. (16) into Eq. (9)

to obtain an approximate value β∗
i  βi as

β∗
i = 1

s
(0)
i

(
s

(0)
i 〈s〉 − s

(1)
i

〈s2〉 − 〈s〉2

)
, ∀ i ∈ N. (17)

The solution is finally obtained by direct substitution of
Eq. (17) into Eq. (11), and we denote this transformation
T1(Bα′ |Aα). Note that T1 does not provide uniform weighting,
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but depends explicitly on the balance between input strengths
and heterogeneity in each node.

Now we can compare the performance of transformations
T0 and T1 in the mapping. We define, for each transformation,
the dynamical error

σd = N−1
∫ K∞

0
[〈r2( �ω,K,A)〉 − 〈r2( �ω,K,B′)〉]2dK, (18)

as a measure of the total difference in the synchronization
diagrams between the target and transformed networks, and
we define the structural error

σs = N−1
N∑
i

⎡
⎣ N∑

j

(
λA

ij s
(0)
j − wijbij s

(0)
j

)⎤⎦
2

, (19)

as a measure of the total difference in the first-order local struc-
ture. In Fig. 2(a) we present the synchronization diagram for the
extreme cases T1(B0|A1) and T1(B1|A0) in the same setup as
before (N = 2000). We can observe a significant improvement
in the transformation T1(B1|A0) with respect to the zero-order
method in Fig. 1, although there still are nonvanishing errors
around the critical point due to the unfeasible structural bounds
of Eq. (12). In Fig. 2(b), we plot the dynamical σd and structural
σs errors for different values of the parameter α in T (Bα|A1−α).
Note how the accuracy of the transformations is enhanced by
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FIG. 2. (a) Synchronization diagram. We plot r2 as a function
of K , for one instance of A1 and A0 networks and transformations
T1(B0|A1) and T1(B1|A0) using Eqs. (11) and (17), averaged over
50 realizations with θ0 ∈ [−π,π ]. (b) Dynamical (left) error curves
for T0(Bα|A1−α) and T1(Bα|A1−α), averaged over 100 independent
network instances for each α (standard deviations fall in the shaded
region). In (b) right, associated structural error curves (standard
deviations are of the size of the symbols and the values of σs are
properly normalized).

T1 for any value of α, and it is associated to a decrease in the
structural error, thus validating the main assumptions of our
approach.

Furthermore, the approximate solution of Eqs. (11) and
(17) can still be improved by (i) considering higher-order
constraints (M > 1), but then the system would become cou-
pled and it should be solved simultaneously for all nodes, (ii)
extending the expansion of Eq. (11) with additional terms, (iii)
allowing the presence of negative interactions or indistinguish-
able units (without labeling the nodes in the transformation),
and also (iv) imposing global constraints instead of local
ones (requiring costly numerical methods and global objective
functions [30]).

Summarizing, we have presented an analytical method-
ology that successfully produces synchronization invariant
networks for the KM, by transforming the weights of the
interactions, while preserving the underlying topologies, and
exploiting only local structural information. We have shown
that different microscopic configurations can produce the same
macroscopic dynamical observables if the weights are adjusted
in a way that the main local properties of the nodes are
preserved. Furthermore, we have unveiled that the mapping
of homogeneous networks into heterogeneous ones requires
one to exploit additional (up to first order) information and it
is more complicated than the reverse process, due to intrinsic
structural limitations of the networks.

The presented formalism can be applied in a wide spectra
of problems beyond the mapping scenario. Our framework
provides a more comprehensive understanding of the collective
behavior of oscillators on weighted and directed networks
from a local perspective and can be used to make analytical
predictions on them (when transformed to unweighted struc-
tures) [18,23]. Also, the transformations can induce specific
features of heterogeneous networks in homogeneous ones
and vice versa, without changing the underlying structure.
Straightforward examples include the possibility to induce
explosive transitions in homogeneous networks (by correlating
the intrinsic frequencies with the input strengths [31]) and to
control the critical point of a macroscopic phase transition
[3,18] only by a local readjustment of weights. From a
theoretical point of view, our results are sheltered by previous
works that explore information-theoretic tools to study the
structure of complex networks [32–34] and to tackle recon-
struction problems [35–37]. Nevertheless, here we introduce
a novel connection between purely structural constraints and
collective dynamical behavior. This connection can help in
refining state-of-the-art inference methods with driving signals
[10,11] (by inferring appropriate network candidates from the
available structural and dynamical information), it deepens our
understanding on findings that relate weighted, directed, and
inhibitory interactions to optimal synchronization performance
[38–40], and provides another approach for evolving networks
models [3,5,18], in which a network of biological units might
evolve, due to an evolutionary pressure, toward heterogeneous
structures that maximize the number of accessible transforma-
tions and, consequently, their potential dynamical range [41].
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