PHYSICAL REVIEW D, VOLUME 62, 105006

Nonrelativistic noncommutative field theory and UV-IR mixing
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We study a non-commutative non-relativistic scalar field theory-rl2dimensions. The theory shows the
UV-IR mixing typical of QFT on non-commutative spaces. The one-loop correction to the two-point function
turns out to be given by & function in momentum space. The one-loop correction to the four-point function
is of logarithmic type. We also evaluate the thermodynamic potential at two-loop order. To avoid an IR
singularity we have to introduce a chemical potential. The suppression of the non-planar contribution with
respect to the planar one turns out to depend crucially on the value of the chemical potential.

PACS numbgs): 11.10.Lm, 11.10.Kk, 11.10.Wx, 12.38.Bx

[. INTRODUCTION the pole-like singularities found for relativistic theorigs.
For the four-point function we find a singularity of a more
Non-commutative field theories have an unconventionafamiliar, logarithmic type.

perturbative behaviof1-21]. New infrared singularities in We study the system at finite temperature and non-zero
the correlation functions appear even for massive theorieshemical potentiak. We compute the thermodynamical po-
[9—21]. This phenomenon is due to an interplay between théential up to two loops. The presence of the chemical poten-
UV and IR induced by the Moyal phase appearing in thetial provides another scale besides the non—commu_tativity
vertices. Recently some of the amplitudes of these nonSca@le and temperature. # w>T, the non-planar contribu-

commutative theories have been derived from string theor§iOn IS Strongly suppressed with respect to the planar one for
[22-28. hermal wavelengths smaller than the non-commutativity

In this paper we analyze at the perturbative level the non_scale. This suggests a reduction of degrees of freedom run-

commutative version of a non-relativistic scalar field theorynlng n _the non-pla_nar graphs at high temperafi#@,21.
. : : . . .~ “The limit of — u<T is more involved. The non-planar graph
in 2+1 dimensions in order to gather more information

about the UV-IR mixing and the structure of degrees of free-does not appear to be strongly suppressed as a function of the

; X L . mperature. | nds crucially on the rati ween th
dom of non-commutative theories. Our motivation for mves-te perature. It depends crucially on the ratio between the

o lativisti ve field theories | chemical potential and the non-commutativity scale.
tigating non-relativistic non-commutative field theories is =~ 11,4 paper is organized as follows. In Sec. II, we study the

twofold. In non-relativistic quantum theory the non- 4. and four-point functions up to one-loop. In Sec. Iil we
commutativity of space arises often in the effective descripsygy the free energy up to two loops. We give some con-
tion of charged particles carrying dipole momentum movinge|ysions in Sec. IV.
in strong magnetic fieldgR29]. It seems natural then to look
for the by-now well-known UV-IR mixing in the context of
non-relativistic quantum field theory. Another more theoret-
ical motivation is that it might be easier to understand the We will start by introducing the model. We will work in
effects of the non-commutativity of space in simpler setup2+1 dimensions, where the non-commutativity affects only
than relativistic quantum field theory. We also would like to the spatial directions. Non-commutati®é is defined by the
emphasize that due to an ordering ambiguity in the interaceommutation relations
tion vertices the particular model we are considering cannot
be obtained as the non-relativistic limit of a relativistic field [X*,x"]=i6"", (2.1
model.

As we will see, also in this non-relativistic example therewith 6#"=0e*”. The algebra of functions on non-
is an interplay between the IR and UV behavior due to thecommutativeR? is defined through the star product
Moyal phases. For the two-point function a singularity of

II. TWO- AND FOUR-POINT FUNCTIONS AT ONE LOOP

delta-function type appears. This should be contrasted with (f*g)(x):=lim e(i/2)0“”ﬁ,§¢9¥f(x)g(y)_ (2.2)
y—X
*Email address: gomis@ecm.ub.es Herex* are taken to be ordinarynumbers. We will study a
"Email address: Karl.Landsteiner@cern.ch self-interacting non-relativistic scalar field model, defined by
*Email address: Esperanza.Lopez@cern.ch the Lagrangian
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The star product has been dropped in the term bilinear in the
fields. This is consistent since we can always delete one star
in monomials of fields in the action. This is equivalent to
neglecting total derivative terms. In ordinary space-time this
model arises as the low energy limit of a real relativistic P
scalar field with¢* self-interaction. It has been studied in
[30] as a model for applying renormalization to quantum
mechanics withs-function potentia[31]. The model is scale ) -
invariant in ordinary space-time since scale transformations —1X(E,p)=Ipianart I nonplanar (2.6
in a non-relativistic theory take the form—\2t, X— AX. and

The scaling oft is due to the fact that in Eq2.3) the mass

has been scaled out by redefiniiig mt. It has been shown g [ dwd?k 1
that the theory acquires a scale anomaly upon quantization planar= f (2m)° 2

~
7

FIG. 1. The tadpole contribution to the self-energy.

, (2.7)

quite analogous to what happens in relativistic quantum field

s . ) , — =i
theory. Of course, in the case considered here scale invari- wT e
ance is already broken at the tree level by the non-
commutativity scale/d. g [ dwd?k exp(lp K)
In going from ordinary space-time to the non- non-planar™ J = ;
. . . . : (2m)3 ke .
commutative one an ordering ambiguity for the interaction w— —+ie

term arises. We fix that ambiguity in E@®.3) by putting the 2

¢ fields to the left. The other possible ordering would have

been to choose,=(—g'/4)¢'* ¢x pT* . A relativistic wherep”= 6*"p, . In order to do thew integration we recall
complex scalar field model with both interaction vertices haghat (x+ie€) ~*=P(1/x) —iwd(x). This leaves us with thk
been considered ifil5]. There the authors showed that the integrations

theory was renormalizable at one-loop level only when

=g’ org=0. We will later on show that no such restriction - gf Kdk= _'9 2.9
arises in the non-relativistic modé2.3). planar= '
Notice that the free theory is unchanged with respect to
the ordinary case, since the star product has no effect on the —ig
quadratic terms in the action. Therefore all the effects of I non-planar= zf f elPkcos@y gk
non-commutative space appear through the interaction verti- 16m
ces. The solutions to the free field equations can be written
as Fourier transforms — —gAJl(pA),
- 2 = > 2
¢(X,t)=f sa(k)e =i, where we introduced a UV cutoff and J;(x) denotes a
(2m) Bessel function. The quadratic divergence from the planar
) 2.4 part can be removed by adding a corresponding counterterm
d)T()'(’,t):f T(K)el (@t =K%, to the action,L.=ud'¢. Trle non-planar part reproduces
(2m)? the quadratic divergence fqy—0 since limy_, o[ J1(X)/X]

) =3. In the limit A—o0, using[3J,(X)dx=1, it is straight-
wherew,=k?/2. The propagator of the theory is given by forward to show that the result from the non-planar diagram
represents a delta function in polar coordinates ispace.
d’kdo e~ (@K We find, then
(Te(x)pl(y))= J e @9 - then,
w— —*tle N N
2 S(EB)= ;0. 29
We want to compute now the one-loop correction to the
two-point function. This is given by the tadpole diagram of Thus the situation is rather analogous to what happened in
Fig. 1. In ordinary space-time we can employ a normal or+elativistic field theories. The limits oA —o andp—0 do
dering prescription setting the tadpole to zero. In the nonnot commute.
commutative theory we expect a dependence of the tadpole It is interesting to see that we can recover the delta-type
on the external momentum due to the contribution of thesingularity of the non-planar diagram as a limit of the rela-
non-planar diagrams. The planar and non-planar contributivistic case. The relativistic theory is given by the Lagrange
tions are given by density
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L —1 2 ! 2 b2 A * h* D, *
reI_E(aﬁbr) _Em ¢r_m¢r ¢r ¢’r d’r-
(2.10
(a) (b)

The non-relativistic limit can be obtained as anléxpan- o . .
sion. We take off the fast oscillation due to the large mass FIG. 2. The one-loop contribution to the four-point function.
and introduce dimensionless non-relativistic fields by defin-The diagrams with momentum flow as indicatedli vanish iden-

ing tically in non-relativistic field theory.
1 _ _ . 9 =
b= (e Mg+ emigph). (2.11) lim I, =—i 55 (p). (2.19
2m m— o

To extract the non-relativistic limit we have to expand theThus we reproduce precisely the non-relativistic re€ulg).

vertex in Eq.(2.10 and compare with the vertex in EQ.3). If we formally sum all the tadpole diagrams contributing
From the relativistic vertex we obtain to the two-point function, we obtain the following modified
dispersion relation:
N 1
Lig=———| ¢" ¢ s pxp+ 5 pT px ™ . -,
41'm 2 A
(2.12 w—;-i-ﬁé‘(p). (2.16

Note that the non-relativistic limit produces both possible

orderings in the interaction. Therefore in the non-In the resummation one encounters arbitrary high powers of
commutative case our mode2.3) is not the non-relativistic the o functions. We just showed that the dispersion relation
limit of a real relativistic scalar field. It turns out however (2.16 arises also as the limit of the relativistic one. There-
that only the first vertex in Eq2.12) contributes to the non- fore we expect it to be correct on physical grounds. Alterna-
planar tadpole diagram. We should be able then to obtain thévely we could keep the cutoff and arrive at £g.16 with
result (2.9) from the relativistic case. Comparing E2.3 @ suitable smeared function, for example keeping the mass
with Eq. (2.12 we see thah =6mg.! The non-planar con- at a large but finite value and using Eg.14. The meaning
tribution to the tadpole diagram in the relativistic theory is Of Eq.(2.16) is that the energy of the zero momentum states

given by is shifted by an infinite amount. However, it is important to
note that the delta function in the dispersion relation is inte-
N QP K grable. Thus wave packets containing zero momentum com-
l o= f d3k . (2.13 ponents still will have finite energy.
6(2m)° k?—m? We would like now to evaluate the four-point function at

one loop(see Fig. 2 In a non-relativistic theory only the
In order to evaluate the integral we switch to Euclidean mo-channel contributes, since thandu channels contain inter-
mentum and use Schwinger parametrization. We obtain  nal lines flowing both forward and backwards in time and
this evaluates to zero in a non-relativistic theory. As shown

—ing2 (oda -, , —iNe Pm in [15] the contributions fromu and t channels make the
Ire|=—3f —:€ " faazam’= relativistic complex scalar field non-renormalizable if one
6(2m)° Jo a 24mp does not also include the second possible ordering for the

(2.14  vertex. Itis thus the vanishing ofandt channels that allows
us to ignore the second possible ordering in the vertex. The
There arises also a factor efwhich can be seen by noting non-relativistic one-loop four-point function [80]
that the integral ., defines the relativistic self-ener@, .

The relativistic dispersion relation i9g§—m)(po+ m)—ﬁ2

. ' L )\2 A2
—3,61=0. Settingpyg=m-+E wherekE is the non-relativistic Ty(w;,pi,A)=—— log +im (2.17)
energy we can go to the non-relativistic limit by scalimg alwi P, 8w 2 ’
—ow andE—0, keeping the produdEm= w fixed. This is E- 4

the non-relativistic energy of dimension 2. In this way the
relativistic dispersion relation becomes twice the non- R,
relativistic one if we identify lim, ... 3,0/=23nonrel. Sub-  Where E=w;+w,=w;+ 0, and P=p;+p,=q;+q, are
stituting for \ it is then easy to show that the center of mass energy and momentum, angh; and
] ,5{ the energy and momentum of the incoming and out-
coming particles respectivelyk is an UV cutoff.
!Recall that in Eq(2.3) we have rescalet—mt and L—m in The one-loop four-point function for the non-
order to factor out the mass dependence. commutative case is given by
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lIl. FINITE TEMPERATURE BEHAVIOR

In this section we analyze the thermodynamics of our
model. The physical reason to consider this system in a heat

P.K bath is to check if there is a reduction of degrees of freedom
kdo co§7 for the non-planar sector of the theory. In the case of rela-
xj _ — tivistic theories this was shown to happen for thermal wave-
(2m)° k> (k—P)% lengths smaller than the non-commutative length scale
w—?-i—le E—w— 2 +le [20,211
Before we embark on doing the calculation we remind the
(2.18 reader of the following formula:
Using cog(x/2)= (1+ cosx)/2 and writing cox in terms of
exponentials, we can separate the planar and non-planar con- E 1 _ E_ B 3.1)
tributions. After doing thew integration and shiftindc— k n i, —X 2 ePr_q’ '

+ P/2 we get, for the non-planar part,

where w,=27n/B. The first term on the right-hand side
(RHS) represents the zero temperature contributions. The re-
sulting zero temperature divergences can be canceled by the
introduction of appropriate couterterms.

N2 Pi-pr G1-0s
nonplanar_ _
I, 2 cosTcosT

d2k eif?.lZ We will compute the thermodynamic potential up to two
X f 5 = (2.19 loop. In order to cure infrared divergences we will introduce
(2m) R2_E+ P——2i a chemical potential termu¢’¢ in our Lagrangian(2.3).
4 € The introduction of a chemical potential seems natural taking

o _ /into account the renormalization properties of the theory at
This integral can be analyzed by changing to polar coordizero temperature. Notice that now three scales are present.

nates in momentum space. For angles suchRh&t>0, we  Correspondingly we have two regimes of high temperature.
can evaluate Eq2.19 by using a contour encircling the first BY high temperature we mean a thermal wavelehgthich

quadrant of thelk| complex plane. For angles such that Smaller than the scale of non-commutativity or, equivalently,
To>1. The physics is then still dependent on the chemical

potential® In the regime— u>T we expect a classical par-
'ticle picture to be valid. We will also investigate the regime
T> — u, where classical field theory is a good approxima-
tion to quantum statistical mechanics.

The one-loop contribution to the thermodynamic potential

P. k<0, it is convenient to use a contour in the plane
encircling the fourth quadrant. Adding both contributions
we obtain the following result:

pl'f)z Q1'a2

A
nonplanar__ _ g S
s 16°05 2 955 F=—T logZis given by
x| =Y (TD E P? +iJo| P\/E ﬁz” d?k (k22— )y — T2 T
—Yo - THo — —TJ log(1—e Ak72=my=T2j,(1—e¥T),
4 4 (2m)? o( 2( )
(2.20 (3.2

whereJy andY denote Bessel functions of first and secondwhere Li, denotes the dilogarithm. The the two loop contri-
kinds, respectively. In order to better understand this expressution is given by
sion, it is convenient to expand the Bessel functions for small

P. Up to a real constant an@d(P) terms, the result is I g_l_22 J d?p  d%
, e e - . 2 R @en? e’
! A P1-P2_ G1-02 ips
non-planar_ __ ~AG ~AC <
F4 167TVOJ 2 COS 2 In F_52+|’7T pk
E_Z COSZT
X _ _ .
.21 7 % 59
iw|—?+,u, o, ?—I-,u

The non-commutative phases regulate the otherwise diver-
gent contribution coming from high momentum. The result-
ing dependence of the non-planar diagram on the external
momentum is smoother than for the two-point function. The 2The thermal wavelength of a non-relativistic system is given by
external momentur® acts as an UV cutoff very much in the Ar=2m/T (m=1).

same way as in previously analyzed examples of relativistic In non-relativistic theory the chemical potential takes values in
theories[9,12,16,19. (—,0).
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As in the zero temperature case we substitute?(g( — ulT this approximation is valid up to modes of momen-
=(1+cosx)/2 separating the planar and non-planar parts. tum k?><T. On the other hand the non-commutative phases
Using formula(3.1) we obtain three contributions to the suppress modes of momenth>1/6 as can be explicitly

planar part. The T=0,T=0) is a temperature independent seen from the Bessel function appearing3m6). Therefore
divergence. The=0,T) contributions are divergent. They when#T>1 and— u/T<<1 we expect that the classical field
can be canceled by adding counterterm of the form of thepproximation will describe the leading behavior of the non-
chemical potentiabu¢'¢. The (T,T) contribution can be planar sectof21].* The integrak3.6) can be evaluated in this
easily integrated: limit with the result

g g
|ptanar=g 5 T°[In(1—e*M)]. (3.4 Ilmplana,=8 T2G((—p0)?), (3.9
e

71_2

The non-planar contribution to the free energy containsvhere  G(z)=G3xz|300) = (1/27i) [T (1+5)°T' (—s)z°%ds
again three pieces. The first one is temperature independedénotes a MeijeiG function. The suppression of the non-

and finite. The T=0,T) contribution is planar sector with respect to the planar one appears in this
L case to be only logarithmic with the temperature. However,
gr d’p d%k gip-k contrary to the previous case, the ratio between planar and
II;fp,anar:—f = non-planar contributions depends also 6. For — 6
2 2 2 (B(K2—p) _ . . . e
(2m)= (2m)° e 1 large the functionG tends to zero, implying an additional
suppression for the non-planar sector. For 6 small G di-
9 1 3 verges. This divergence is associated with the infrared prob-
_877202 e WT_1’ (35 lems of the theory at small chemical potential.
This can be interpreted as a one-loop contribution due to the IV. DISCUSSION AND CONCLUSIONS
shift in the dispersion relatiof2.16). The (T, T) contribution

We have seen that the phenomena of UV-IR mixing is not
only a characteristic of relativistic theories but also occurs in
g 3o(PK) non-relativistic_theorieg. The model We.have .considered is a
|Im Ianar:_f pdpkdk 5 0 5 ] non-commutative version of a (21)-dimensional model
P 8?2 (ePK2mm) — 1) (ehPKT2m 1) — 1) that describes many particle quantum mechanics with a delta
(3.6)  function interaction. For the two-point function we have seen
) o the appearance of an IR singularity of delta function type
SinceJo=<1, we see that the non-planar contribution is sUpyyhich changes the dispersion relation. For the four-point
pressed with respect to the planar one. The strength of thgnction we found a logarithmic singularity. Thus the non-
suppression will depend on the value of the two dimension;e|ativistic model has an UV-IR mixing similar to the rela-
less quaptltlesﬂ anql —ulT. . o tivistic field theories studied so far. Since our model cannot
We will analyze first the regime-u/T>1. In this limit e embedded in a natural way in a string theory, one might
we can substitute the Bose-Einstein distribution by thenterpret this as evidence that the IR singularities are not
Maxwell-Boltzmann distribution. This corresponds to con-connected to closed string states that do not decouple from

sidering low densities for the thermal gas. This is the particlgne field theory in agreement with the results of Refs.
approximation to the quantum field theory. In this limit we [22,25.

IS

can evaluate the integral explicitly: The renormalizability of non-commutative field theories
5 to all loop order is still an open problefi,8]. The non-
T g T 2 relativistic scalar field model might prove to be a simple and
=  e2uT 3.7 gntp p
I non—planar € ' ( .

interesting toy model for such a study. The fact that some
diagrams vanish identicalligsuch ag- andu-channel contri-

For T<1 planar and non-planar graphs give the same conbutions to the four-point functioncould simplify a system-
tribution. ForT> 1 there is a very strong suppression of theatic study of renormalizability. That in resumming the self-
non-planar sector. THE? dependence of Eq3.4) is substi-  energy insertions in the propagator one has to deal with
tuted by 19%. WhenT is larger than 14 the thermal wave- powers of delta functions should natpriori be considered
length\ 1~ 1/y/T becomes smaller than the radius of a Moyal@s an insurmountable obstacle. As we argued such a formal
cell. Equation(3.7) seems to indicate that the effective wave-resummation is physically well motivated. Indeed the delta
length of the modes that circulate in the non-planar loop can

not be smaller than the radius of the Moyal cell.

We analyze now the regime of smallu/T<1. The clas-  4Notice that in our case the two spatial directions are non-
sical thermal field theory approximation consists in dimen-commutative. Therefore we expect the suppression of high mo-
sionally reducing the system along the Euclidean time direCmenta by# to be more effective than in the cases studiefi2if,
tion or, equivalently, considering only the zero mode in thewhere the classical approximation was applied to a system with odd
sum over Matsubara frequencies. In the limit of smallspatial dimensions.

872 1+(0T)2
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function appears also in the non-relativistic limit of the re-two regimes behave so differently it should be an interesting
summed propagator of relativistig* theory. direction of further research to study the effects of a chemi-
We have also studied the two loop correction to the freecal potential also in relativistic, non-commutative field theo-
energy and we have seen that the non-planar part of thees.
theory is very sensitive to the value of the chemical potential.
At large negative values it turns out that the non-planar part
is strongly suppressed compared to the planar part. In this
regime the behavior is similar to what has been found in We would like to thank Luis Alvarez-Gaumederbert
relativistic theories iM21]. The thermal wavelength of the Balasin, Jos®arbm, Cesar Ganez, Harald Grosse, Cristina
degrees of freedom in non-planar diagrams cannot becomdanuel, Antonio Pineda, Toni Rebhan and Miguel Angel
smaller that the non-commutativity scale. Therefore thes&azquez-Mozo for helpful discussions. The work of J.G. is
degrees of freedom are suppressed at high temperature. partially supported by grant AEN 98-0431, GC 1998SGR
This interpretation is less clear at high temperature andCIRIT). K.L. and E.L. would like to thank the Erwin Schro
small chemical potential. It turned out that the non-planardinger Institut for Mathematical Physics, Vienna for its hos-
part is at most logarithmically suppressed. Given that thespitality.
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