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Nonrelativistic noncommutative field theory and UV-IR mixing
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We study a non-commutative non-relativistic scalar field theory in 211 dimensions. The theory shows the
UV-IR mixing typical of QFT on non-commutative spaces. The one-loop correction to the two-point function
turns out to be given by ad function in momentum space. The one-loop correction to the four-point function
is of logarithmic type. We also evaluate the thermodynamic potential at two-loop order. To avoid an IR
singularity we have to introduce a chemical potential. The suppression of the non-planar contribution with
respect to the planar one turns out to depend crucially on the value of the chemical potential.

PACS number~s!: 11.10.Lm, 11.10.Kk, 11.10.Wx, 12.38.Bx
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I. INTRODUCTION

Non-commutative field theories have an unconventio
perturbative behavior@1–21#. New infrared singularities in
the correlation functions appear even for massive theo
@9–21#. This phenomenon is due to an interplay between
UV and IR induced by the Moyal phase appearing in
vertices. Recently some of the amplitudes of these n
commutative theories have been derived from string the
@22–28#.

In this paper we analyze at the perturbative level the n
commutative version of a non-relativistic scalar field theo
in 211 dimensions in order to gather more informati
about the UV-IR mixing and the structure of degrees of fr
dom of non-commutative theories. Our motivation for inve
tigating non-relativistic non-commutative field theories
twofold. In non-relativistic quantum theory the non
commutativity of space arises often in the effective desc
tion of charged particles carrying dipole momentum mov
in strong magnetic fields@29#. It seems natural then to loo
for the by-now well-known UV-IR mixing in the context o
non-relativistic quantum field theory. Another more theor
ical motivation is that it might be easier to understand
effects of the non-commutativity of space in simpler setu
than relativistic quantum field theory. We also would like
emphasize that due to an ordering ambiguity in the inter
tion vertices the particular model we are considering can
be obtained as the non-relativistic limit of a relativistic fie
model.

As we will see, also in this non-relativistic example the
is an interplay between the IR and UV behavior due to
Moyal phases. For the two-point function a singularity
delta-function type appears. This should be contrasted w
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the pole-like singularities found for relativistic theories@9#.
For the four-point function we find a singularity of a mo
familiar, logarithmic type.

We study the system at finite temperature and non-z
chemical potentialm. We compute the thermodynamical po
tential up to two loops. The presence of the chemical pot
tial provides another scale besides the non-commutati
scale and temperature. If2m@T, the non-planar contribu-
tion is strongly suppressed with respect to the planar one
thermal wavelengths smaller than the non-commutativ
scale. This suggests a reduction of degrees of freedom
ning in the non-planar graphs at high temperature@20,21#.
The limit of 2m!T is more involved. The non-planar grap
does not appear to be strongly suppressed as a function o
temperature. It depends crucially on the ratio between
chemical potential and the non-commutativity scale.

The paper is organized as follows. In Sec. II, we study
two- and four-point functions up to one-loop. In Sec. III w
study the free energy up to two loops. We give some c
clusions in Sec. IV.

II. TWO- AND FOUR-POINT FUNCTIONS AT ONE LOOP

We will start by introducing the model. We will work in
211 dimensions, where the non-commutativity affects on
the spatial directions. Non-commutativeR2 is defined by the
commutation relations

@xm,xn#5 iumn, ~2.1!

with umn5uemn. The algebra of functions on non
commutativeR2 is defined through the star product

~ f * g!~x!ª lim
y→x

e( i /2)umn]m
x ]n

y
f ~x!g~y!. ~2.2!

Herexm are taken to be ordinaryc numbers. We will study a
self-interacting non-relativistic scalar field model, defined
the Lagrangian
©2000 The American Physical Society06-1
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L5f†S i ] t1
¹W 2

2
Df2

g

4
f†* f†* f* f. ~2.3!

The star product has been dropped in the term bilinear in
fields. This is consistent since we can always delete one
in monomials of fields in the action. This is equivalent
neglecting total derivative terms. In ordinary space-time t
model arises as the low energy limit of a real relativis
scalar field withf4 self-interaction. It has been studied
@30# as a model for applying renormalization to quantu
mechanics withd-function potential@31#. The model is scale
invariant in ordinary space-time since scale transformati
in a non-relativistic theory take the formt→l2t, xW→lxW .
The scaling oft is due to the fact that in Eq.~2.3! the mass
has been scaled out by redefiningt→mt. It has been shown
that the theory acquires a scale anomaly upon quantiza
quite analogous to what happens in relativistic quantum fi
theory. Of course, in the case considered here scale in
ance is already broken at the tree level by the n
commutativity scaleAu.

In going from ordinary space-time to the no
commutative one an ordering ambiguity for the interact
term arises. We fix that ambiguity in Eq.~2.3! by putting the
f† fields to the left. The other possible ordering would ha
been to chooseLint5(2g8/4)f†* f* f†* f. A relativistic
complex scalar field model with both interaction vertices h
been considered in@15#. There the authors showed that th
theory was renormalizable at one-loop level only wheng
5g8 or g50. We will later on show that no such restrictio
arises in the non-relativistic model~2.3!.

Notice that the free theory is unchanged with respec
the ordinary case, since the star product has no effect on
quadratic terms in the action. Therefore all the effects
non-commutative space appear through the interaction v
ces. The solutions to the free field equations can be wri
as Fourier transforms

f~xW ,t !5E d2k

~2p!2
a~kW !e2 i (vkt2kW•xW ),

~2.4!

f†~xW ,t !5E d2k

~2p!2
a†~kW !ei (vkt2kW•xW ),

wherevk5kW2/2. The propagator of the theory is given by

^Tf~x!f†~y!&5E d2kdv

~2p!3

ie2 i (vt2kW•xW )

v2
kW2

2
1 i e

. ~2.5!

We want to compute now the one-loop correction to
two-point function. This is given by the tadpole diagram
Fig. 1. In ordinary space-time we can employ a normal
dering prescription setting the tadpole to zero. In the n
commutative theory we expect a dependence of the tad
on the external momentum due to the contribution of
non-planar diagrams. The planar and non-planar contr
tions are given by
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2 iS~E,pW !5I planar1I non-planar ~2.6!

and

I planar5
g

2E dvd2k

~2p!3

1

v2
kW2

2
1 i e

, ~2.7!

I non-planar5
g

2E dvd2k

~2p!3

exp~ i p̃W •kW !

v2
kW2

2
1 i e

,

wherep̃m5umnpn . In order to do thev integration we recall
that (x1 i e)215P(1/x)2 ipd(x). This leaves us with thekW
integrations

I planar5
2 ig

8p E
0

L

kdk5
2 ig

16p
L2, ~2.8!

I non-planar5
2 ig

16p2E dwE
0

L

eip̃k cos(w)kdk

5
2 ig

8p p̃
LJ1~ p̃L!,

where we introduced a UV cutoffL and J1(x) denotes a
Bessel function. The quadratic divergence from the pla
part can be removed by adding a corresponding countert
to the action,Lc5dmf†f. The non-planar part reproduce
the quadratic divergence forp̃→0 since limx→0@J1(x)/x#
5 1

2 . In the limit L→`, using*0
`J1(x)dx51, it is straight-

forward to show that the result from the non-planar diagr
represents a delta function in polar coordinates inp̃ space.
We find, then,

S~E,pW !5
g

4u2
d2~pW !. ~2.9!

Thus the situation is rather analogous to what happene
relativistic field theories. The limits ofL→` and p→0 do
not commute.

It is interesting to see that we can recover the delta-t
singularity of the non-planar diagram as a limit of the re
tivistic case. The relativistic theory is given by the Lagran
density

FIG. 1. The tadpole contribution to the self-energy.
6-2
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Lrel5
1

2
~]f r !

22
1

2
m2f r

22
l

4!
f r* f r* f r* f r .

~2.10!

The non-relativistic limit can be obtained as a 1/m expan-
sion. We take off the fast oscillation due to the large m
and introduce dimensionless non-relativistic fields by de
ing

f r5
1

A2m
~e2 imtf1eimtf†!. ~2.11!

To extract the non-relativistic limit we have to expand t
vertex in Eq.~2.10! and compare with the vertex in Eq.~2.3!.
From the relativistic vertex we obtain

Lrel52
l

4!m2 S f†* f†* f* f1
1

2
f†* f* f†* f D .

~2.12!

Note that the non-relativistic limit produces both possib
orderings in the interaction. Therefore in the no
commutative case our model~2.3! is not the non-relativistic
limit of a real relativistic scalar field. It turns out howeve
that only the first vertex in Eq.~2.12! contributes to the non
planar tadpole diagram. We should be able then to obtain
result ~2.9! from the relativistic case. Comparing Eq.~2.3!
with Eq. ~2.12! we see thatl56mg.1 The non-planar con-
tribution to the tadpole diagram in the relativistic theory
given by

I rel5
l

6~2p!3E d3k
eip̃mkm

k22m2
. ~2.13!

In order to evaluate the integral we switch to Euclidean m
mentum and use Schwinger parametrization. We obtain

I rel5
2 ilp3/2

6~2p!3 E0

` da

a3/2
e2 p̃2/4a2am2

5
2 ile2 p̃m

24p p̃
.

~2.14!

There arises also a factor of1
2 which can be seen by notin

that the integralI rel defines the relativistic self-energyS rel .
The relativistic dispersion relation is (p02m)(p01m)2pW 2

2S rel50. Settingp05m1E whereE is the non-relativistic
energy we can go to the non-relativistic limit by scalingm
→` and E→0, keeping the productEm5v fixed. This is
the non-relativistic energy of dimension 2. In this way t
relativistic dispersion relation becomes twice the no
relativistic one if we identify limm→` S rel52Snon-rel . Sub-
stituting for l it is then easy to show that

1Recall that in Eq.~2.3! we have rescaledt→mt andL→mL in
order to factor out the mass dependence.
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m→`

I rel52 i
g

2
d2~ p̃W !. ~2.15!

Thus we reproduce precisely the non-relativistic result~2.9!.
If we formally sum all the tadpole diagrams contributin

to the two-point function, we obtain the following modifie
dispersion relation:

v5
pW 2

2
1

g

4u2
d2~pW !. ~2.16!

In the resummation one encounters arbitrary high power
the d functions. We just showed that the dispersion relat
~2.16! arises also as the limit of the relativistic one. Ther
fore we expect it to be correct on physical grounds. Altern
tively we could keep the cutoff and arrive at Eq.~2.16! with
a suitable smearedd function, for example keeping the mas
at a large but finite value and using Eq.~2.14!. The meaning
of Eq. ~2.16! is that the energy of the zero momentum sta
is shifted by an infinite amount. However, it is important
note that the delta function in the dispersion relation is in
grable. Thus wave packets containing zero momentum c
ponents still will have finite energy.

We would like now to evaluate the four-point function
one loop~see Fig. 2!. In a non-relativistic theory only thes
channel contributes, since thet andu channels contain inter
nal lines flowing both forward and backwards in time a
this evaluates to zero in a non-relativistic theory. As sho
in @15# the contributions fromu and t channels make the
relativistic complex scalar field non-renormalizable if o
does not also include the second possible ordering for
vertex. It is thus the vanishing ofu andt channels that allows
us to ignore the second possible ordering in the vertex.
non-relativistic one-loop four-point function is@30#

G4~v i ,pW i ,L!52
l2

8p S log
L2

E2
PW 2

4

1 ipD , ~2.17!

where E5v11v25v181v28 and PW 5pW 11pW 25qW 11qW 2 are

the center of mass energy and momentum, andv i ,pW i and
v i8 ,pW i8 the energy and momentum of the incoming and o
coming particles respectively;L is an UV cutoff.

The one-loop four-point function for the non
commutative case is given by

FIG. 2. The one-loop contribution to the four-point functio
The diagrams with momentum flow as indicated in~b! vanish iden-
tically in non-relativistic field theory.
6-3
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G45
il2

2
cos

p̃W 1•pW 2

2
cos

q̃W 1•qW 2

2

3E d2kdv

~2p!3

cos2
P̃W •kW

2

S v2
kW2

2
1 i e D S E2v2

~kW2PW !2

2
1 i e D .

~2.18!

Using cos2(x/2)5(11cosx)/2 and writing cosx in terms of
exponentials, we can separate the planar and non-planar
tributions. After doing thev integration and shiftingk→k
1P/2 we get, for the non-planar part,

G4
non-planar52

l2

4
cos

p̃W 1•pW 2

2
cos

q̃W 1•qW 2

2

3E d2k

~2p!2

eiP̃W •kW

kW22E1
PW 2

4
22i e

. ~2.19!

This integral can be analyzed by changing to polar coo

nates in momentum space. For angles such thatP̃W •kW.0, we
can evaluate Eq.~2.19! by using a contour encircling the firs
quadrant of theuku complex plane. For angles such th

P̃W •kW,0, it is convenient to use a contour in theuku plane
encircling the fourth quadrant. Adding both contribution
we obtain the following result:

G4
non-planar52

l2

16
cos

p̃W 1•pW 2

2
cos

q̃W 1•qW 2

2

3F2Y0S P̃AE2
PW 2

4
D 1 iJ0S P̃AE2

PW 2

4
D G ,

~2.20!

whereJ0 andY0 denote Bessel functions of first and seco
kinds, respectively. In order to better understand this exp
sion, it is convenient to expand the Bessel functions for sm
P̃. Up to a real constant andO( P̃) terms, the result is

G4
non-planar52

l2

16p
cos

p̃W 1•pW 2

2
cos

q̃W 1•qW 2

2 S ln
1/P̃W 2

E2
PW 2

4

1 ipD .

~2.21!

The non-commutative phases regulate the otherwise di
gent contribution coming from high momentum. The resu
ing dependence of the non-planar diagram on the exte
momentum is smoother than for the two-point function. T
external momentumP̃ acts as an UV cutoff very much in th
same way as in previously analyzed examples of relativi
theories@9,12,16,19#.
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III. FINITE TEMPERATURE BEHAVIOR

In this section we analyze the thermodynamics of o
model. The physical reason to consider this system in a h
bath is to check if there is a reduction of degrees of freed
for the non-planar sector of the theory. In the case of re
tivistic theories this was shown to happen for thermal wa
lengths smaller than the non-commutative length sc
@20,21#.

Before we embark on doing the calculation we remind
reader of the following formula:

(
n

1

ivn2x
52

b

2
2

b

ebx21
, ~3.1!

where vn52pn/b. The first term on the right-hand sid
~RHS! represents the zero temperature contributions. The
sulting zero temperature divergences can be canceled by
introduction of appropriate couterterms.

We will compute the thermodynamic potential up to tw
loop. In order to cure infrared divergences we will introdu
a chemical potential termmf†f in our Lagrangian~2.3!.
The introduction of a chemical potential seems natural tak
into account the renormalization properties of the theory
zero temperature. Notice that now three scales are pre
Correspondingly we have two regimes of high temperatu
By high temperature we mean a thermal wavelength2 much
smaller than the scale of non-commutativity or, equivalen
Tu@1. The physics is then still dependent on the chemi
potential.3 In the regime2m@T we expect a classical par
ticle picture to be valid. We will also investigate the regim
T@2m, where classical field theory is a good approxim
tion to quantum statistical mechanics.

The one-loop contribution to the thermodynamic poten
F52T log Z is given by

2TE d2k

~2p!2
log~12e2b(kW2/22m)!5T2Li 2~12em/T!,

~3.2!

where Li2 denotes the dilogarithm. The the two loop cont
bution is given by

I 5
g

2
T2(

l ,n
E d2p

~2p!3

d2k

~2p!3

3

cos2
p̃W •kW

2

S iv l2
pW 2

2
1m D S ivn2

kW2

2
1m D . ~3.3!

2The thermal wavelength of a non-relativistic system is given
lT52p/AT (m51).

3In non-relativistic theory the chemical potential takes values
(2`,0).
6-4
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As in the zero temperature case we substitute cos2(x/2)
5(11cosx)/2 separating the planar and non-planar parts

Using formula~3.1! we obtain three contributions to th
planar part. The (T50,T50) is a temperature independe
divergence. The (T50,T) contributions are divergent. The
can be canceled by adding counterterm of the form of
chemical potentialdmf†f. The (T,T) contribution can be
easily integrated:

I planar5
g

8p2
T2@ ln~12em/T!#2. ~3.4!

The non-planar contribution to the free energy conta
again three pieces. The first one is temperature indepen
and finite. The (T50,T) contribution is

I non-planar
T50 5

g

2
E d2p

~2p!2

d2k

~2p!2

eip̃W •kW

eb(kW2/22m)21

5
g

8p2u2

1

e2m/T21
. ~3.5!

This can be interpreted as a one-loop contribution due to
shift in the dispersion relation~2.16!. The (T,T) contribution
is

I non-planar
T 5

g

8p2E pdpkdk
J0~ p̃k!

~eb(k2/22m)21)~eb(k2/22m)21!
.

~3.6!

SinceJ0<1, we see that the non-planar contribution is su
pressed with respect to the planar one. The strength of
suppression will depend on the value of the two dimensi
less quantitiesuT and2m/T.

We will analyze first the regime2m/T@1. In this limit
we can substitute the Bose-Einstein distribution by
Maxwell-Boltzmann distribution. This corresponds to co
sidering low densities for the thermal gas. This is the part
approximation to the quantum field theory. In this limit w
can evaluate the integral explicitly:

I non2planar
T 5

g

8p2

T2

11~uT!2
e2m/T. ~3.7!

For uT!1 planar and non-planar graphs give the same c
tribution. ForuT@1 there is a very strong suppression of t
non-planar sector. TheT2 dependence of Eq.~3.4! is substi-
tuted by 1/u2. WhenT is larger than 1/u the thermal wave-
lengthlT;1/AT becomes smaller than the radius of a Moy
cell. Equation~3.7! seems to indicate that the effective wav
length of the modes that circulate in the non-planar loop
not be smaller than the radius of the Moyal cell.

We analyze now the regime of small2m/T!1. The clas-
sical thermal field theory approximation consists in dime
sionally reducing the system along the Euclidean time dir
tion or, equivalently, considering only the zero mode in t
sum over Matsubara frequencies. In the limit of sm
10500
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2m/T this approximation is valid up to modes of mome
tum k2,T. On the other hand the non-commutative pha
suppress modes of momentumk2.1/u as can be explicitly
seen from the Bessel function appearing in~3.6!. Therefore
whenuT@1 and2m/T!1 we expect that the classical fiel
approximation will describe the leading behavior of the no
planar sector@21#.4 The integral~3.6! can be evaluated in this
limit with the result

I non-planar
T 5

g

8p2
T2G~~2mu!2!, ~3.8!

where G(z)5G13
31(zu000

0 )5(1/2p i )*G(11s)3G(2s)zsds
denotes a MeijerG function. The suppression of the non
planar sector with respect to the planar one appears in
case to be only logarithmic with the temperature. Howev
contrary to the previous case, the ratio between planar
non-planar contributions depends also on2mu. For 2mu
large the functionG tends to zero, implying an additiona
suppression for the non-planar sector. For2mu small G di-
verges. This divergence is associated with the infrared pr
lems of the theory at small chemical potential.

IV. DISCUSSION AND CONCLUSIONS

We have seen that the phenomena of UV-IR mixing is
only a characteristic of relativistic theories but also occurs
non-relativistic theories. The model we have considered
non-commutative version of a (211)-dimensional model
that describes many particle quantum mechanics with a d
function interaction. For the two-point function we have se
the appearance of an IR singularity of delta function ty
which changes the dispersion relation. For the four-po
function we found a logarithmic singularity. Thus the no
relativistic model has an UV-IR mixing similar to the rela
tivistic field theories studied so far. Since our model can
be embedded in a natural way in a string theory, one mi
interpret this as evidence that the IR singularities are
connected to closed string states that do not decouple f
the field theory in agreement with the results of Re
@22,25#.

The renormalizability of non-commutative field theorie
to all loop order is still an open problem@6,8#. The non-
relativistic scalar field model might prove to be a simple a
interesting toy model for such a study. The fact that so
diagrams vanish identically~such ast- andu-channel contri-
butions to the four-point function! could simplify a system-
atic study of renormalizability. That in resumming the se
energy insertions in the propagator one has to deal w
powers of delta functions should nota priori be considered
as an insurmountable obstacle. As we argued such a fo
resummation is physically well motivated. Indeed the de

4Notice that in our case the two spatial directions are n
commutative. Therefore we expect the suppression of high
menta byu to be more effective than in the cases studied in@21#,
where the classical approximation was applied to a system with
spatial dimensions.
6-5
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function appears also in the non-relativistic limit of the r
summed propagator of relativisticf4 theory.

We have also studied the two loop correction to the f
energy and we have seen that the non-planar part of
theory is very sensitive to the value of the chemical potent
At large negative values it turns out that the non-planar p
is strongly suppressed compared to the planar part. In
regime the behavior is similar to what has been found
relativistic theories in@21#. The thermal wavelength of th
degrees of freedom in non-planar diagrams cannot bec
smaller that the non-commutativity scale. Therefore th
degrees of freedom are suppressed at high temperature

This interpretation is less clear at high temperature
small chemical potential. It turned out that the non-plan
part is at most logarithmically suppressed. Given that th
ys

r-
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two regimes behave so differently it should be an interest
direction of further research to study the effects of a che
cal potential also in relativistic, non-commutative field the
ries.
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Manuel, Antonio Pineda, Toni Rebhan and Miguel Ang
Vazquez-Mozo for helpful discussions. The work of J.G.
partially supported by grant AEN 98-0431, GC 1998SG
~CIRIT!. K.L. and E.L. would like to thank the Erwin Schro¨-
dinger Institut for Mathematical Physics, Vienna for its ho
pitality.
n-
,’’

-

ou-

S.

n-
.

en-
g

o,
@1# T. Filk, Phys. Lett. B376, 53 ~1996!.
@2# J.C. Varilly and J.M. Gracia-Bondia, Int. J. Mod. Phys. A14,

1305 ~1999!.
@3# M. Chaichian, A. Demichev, and P. Presnajder, Nucl. Ph

B567, 360 ~2000!; J. Math. Phys.41, 1647~2000!.
@4# C.P. Martin and D. Sanchez-Ruiz, Phys. Rev. Lett.83, 476

~1999!.
@5# M. Sheikh-Jabbari, J. High Energy Phys.06, 015 ~1999!;

‘‘Noncommutative Super Yang-Mills Theories with 8 Supe
charges and Brane Configurations,’’ hep-th/0001089.

@6# T. Krajewski and R. Wulkenhaar, Int. J. Mod. Phys. A15,
1011 ~2000!.

@7# S. Cho, R. Hinterding, J. Madore, and H. Steinacker, Int
Mod. Phys. D9, 161 ~2000!.

@8# I. Chepelev and R. Roiban, J. High Energy Phys.05, 037
~2000!.

@9# S. Minwalla, M.V. Raamsdonk, and N. Seiberg, ‘‘Noncomm
tative Perturbative Dynamics,’’ hep-th/9912072.
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