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Effective electroweak chiral Lagrangian: The matter sector
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We parametrize in a model-independent way possible departures from the minimal standard model predic-
tions in the matter sector. We only assume the symmetry breaking pattern of the standard model and that new
particles are sufficiently heavy so that the symmetry is nonlinearly realized. Models with dynamical symmetry
breaking are generically of this type. We review in effective theory language to what extent the simplest
models of dynamical breaking are actually constrained and the assumptions going into the comparison with
experiment. Dynamical symmetry breaking models can be approximated at intermediate energies by four-
fermion operators. We present a complete classification of the latter when new particles appear in the usual
representations of the SU(2¥ SU(3). group as well as a partial classification in the general case. We discuss
the accuracy of the four-fermion description by matching to a simple “fundamental” theory. The coefficients
of the effective Lagrangian in the matter sector for dynamical symmetry breaking n{edplessed in terms
of the coefficients of the four-quark operatoese then compared to those of models with elementary scalars
(such as the minimal standard modeTontrary to a somewhat widespread belief, we see that the sign of the
vertex corrections is not fixed in dynamical symmetry breaking models. This work provides the theoretical
tools required to analyze, in a rather general setting, constraints on the matter sector of the standard model.
[S0556-282199)05621-0

PACS numbdis): 12.39.Fe, 14.80.Bn, 14.80.Cp

[. INTRODUCTION in the first place, will reapped2]. A very recent two-loop
calculation[ 3] raises this limit somewhat, to about 130 GeV.
The standard model of electroweak interactions has by A third possibility is the one provided by models of dy-
now been impressively tested to the 1 part in 1000 levehamical symmetry breakinfsuch as technicolofTC) theo-
thanks to the formidable experimental work carried out at theies[4]]. Here there are interactions that become strong, typi-
CERN e'*e™ collider LEP and SLAC Linear collideiSLC). cally at the scaleA,=4mv (v=250 GeV), breaking the
However, when it comes to the symmetry breaking mechaglobal SU2), X SU(2)r symmetry to its diagonal subgroup
nism, clouds remain in this otherwise bright horizon. SU(2), and producing Goldstone bosons which eventually
In the minimal version of the standard model of elec-become the longitudinal degrees of freedom of W& and
troweak interactions the same mechanig¢an one-doublet Z. In order to transmit this symmetry breaking to ordinary
complex scalar fieldgives masses simultaneously to e  matter fields, one usually requires additional interactions,
andZ gauge bosons and to the fermionic matter fidlmtber  characterized by a different scale Generally, it is assumed
than the neutrinp In the simplest minimal standard model that M>4v, to keep possible flavor-changing neutral cur-
there is an upper bound dv dictated by triviality consid- rent (FCNC) under contro[5]. Thus a distinctive character-
erations, which hint at the fact that at a scalé TeV new istic of these models is that the mechanism giving masses to
interactions should appear if the Higgs particle is not foundthe W= andZ bosons and to the matter fields is different.
by then[1]. On the other hand, in the minimal standard Where do we stand at present? Some will go as far as
model it is completely unnatural to have a light Higgs par-saying that an elementary Higgs parti¢&ipersymmetric or
ticle since its mass is not protected by any symmetry. otherwise has been “seen” through radiative corrections
This contradiction is solved by supersymmetric exten-and that its mass is below 200 GeV. Others dispute this fact
sions of the standard model, where essentially the same syrtsee, for instancd6] for a critical review of current claims
metry breaking mechanism is at work, although the scalaof a light Higgs boson
sector becomes much richer in this case. Relatively light sca- The effective Lagrangian approach has proved remark-
lars are preferred. In fact, if supersymmetry is to remain aably useful in setting very stringent bounds on some types of
useful idea in phenomenology, it is crucial that the Higgsnew physics, taking as input basically the LEP] [and
particle be found with a maskl; <125 GeV, or else the SLAC Large DetectofSLD) [8]] experimental results. The
theoretical problems, for which supersymmetry was invokeddea is to consider the most general Lagrangian which de-
scribes the interactions between the gauge sector and the
Goldstone bosons appearing after the (ZJUXSU(2)g

*Email address: bagan@ifae.es —SU(2), breaking takes place. No special mechanism is
"Email address: espriu@ecm.ub.es assumed for this breaking, and thus the procedure is com-
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itly included in the effective Lagrangian are much heavier«independent of the specific mechanism triggering (3iJ
than those appearing in it. The dependence on the specifie SU(2),— SU(2),, breaking.”]

model is contained in the coefficients of higher-dimensional Most Z-physics observables relevant for electroweak
operators. So far only the oblique corrections have been anghysics can be parametrized in terms of vector and axial
lyzed in this way. couplingsgy andg,. These are, in practice, flavor depen-
Our purpose in this work is to extend these techniques tejent since they include vertex corrections which depend on
the matter sector of the standard model. We shall write théhe specific final state. Oblique corrections are, however, the
leading nonuniversal operators, determine how their coeffisame for all final states. The nonunivergaiit generation-

cients affect different physical observables, and then deteindependent contributions togy, and g, coming from the
mine their value in two very general families of mod- effective Lagrangiaril) are
els: those containing elementary scalars and those with dy-

namic'al symmetry breaking. Sinpe the latter .become nonper- Qu=aog' 13+ 2Q;(2¢3,—s3)]+2a,Qg’sy,
turbative at theM, scale, effective Lagrangian techniques

are called for anyway. In short, we would like to provide the +2a5Q9%cy, (4)
theoretical tools required to test—at least in principle—

whether the mechanism giving masses to quarks and fermi- §A=aOI?g’2. (5)

ons is the same as that which makes the intermediate vector

bosons massive or not without having to get involved in theThey do depend on the specific underlying breaking mecha-
specific details of particular models. This is mostly a theo-nism through the values of the . It should be noted that
retical paper, and we shall leave for a later work a morehese coefficients depend logarithmically on some unknown

detailed comparison with the current data. scale. In the minimal standard model the characteristic scale
is the Higgs boson madd, . In other theories the scaM
Il. EFFECTIVE LAGRANGIAN APPROACH will be replaced by some other scale A crucial prediction

. . . of chiral perturbation theory is that the dependence on these
Let us start by briefly recalling the salient features of thegjfferent scales is logarithmic and actually the same. It is
effective Lagrangian analysis of the oblique corrections.  thys possible to eliminate this dependence by building suit-
_ Including (_)nly those operators which are relevant for ob-zple combinations ofy andg, [11,12 determined by the
lique corrections, the effective Lagrangian redslse, e.9., condition of the absence of logarithms. Whether this line

[9,10] for the complete Lagrangian intersects or not the experimentally allowed region is a direct
V2 v2 test of the nature of the symmetry breaking sector, indepen-
Lef=—trD,U D#UT+ayg’ % (trT D,U uh? dently of the precise value of Higgs boson mésghe mini-
4 4 mal standard modgbor of the scale of new interactior(&
2 other scenarigs
+a,gg'truB,, U TWMV—aB%(trTWﬂV)Z, ) One could also try to extract information about the indi-

vidual coefficientsay, a;, andag themselves, and not only
on the combinations canceling the dependence on the un-
known scale. This necessarily implies assuming a specific
value for the scale\, and one should be aware that when
considering these cutoff-dependent quantities there are finite
P T uncertainties of the order of 1/4#6 associated with the sub-
D,U=9,U+ig 5 W,U- ig'u - Bu- (2)  traction procedure—an unavoidable consequence of using an
effective theory, which is often overlooke@And recall that
B,, andW*" are the field-strength tensors corresponding td'SiNg an effective theory is almost mandatory in dynamical
the right and left gauge groups, respectively, symmgtry breaking m.ode)s. Only f|n|te comblnatlor)s of
coefficients have a universal meaning. The subtraction scale
7o 3 uncertainty persists when trying to find estimates of the
Wur=5 Wyps  Buy=75(9,B,—3,B,), (38)  above coefficients via dispersion relations and the [IK&.

In the previous analysis it is assumed that the hypothetical
and T=U73U". Only terms up to orde®(p*) have been NewW physic; (_:ontributio_ns_ from vertex corrections are com-
included. The reason is that dimensional counting argumentletely negligible. But is it so? The way to analyze such
suppress, at presently accessible energies, higheYertex corrections in a model—mdependent way is quite simi-
dimensional terms, under the hypothesis that all undetectd@' to the one outlined for the oblique corrections. We shall
particles are much heavier than those included in the effedltroduce in the next section the most general effective La-
tive Lagrangian. While the first term on the right-hand sidegrangian describing the matter sector. In this sector there is
(RHY of Eq. (1) is universal(in the unitary gauge it is just
the mass term for the&/* andZ bosong, the coefficients,,

a;, andag are nonuniversal. In other words, they depend on INotice that, contrary to a somewhat widespread belief, the limit
the specific mechanism responsible for the symmetry breakvl,—« does not correspond a standard model “without the Higgs
ing. [Throughout this paper the term “universal” means boson.” There are some nontrivial nondecoupling effects.

where U =exp(7: x/v) contains the three Goldstone bosons
generated after the breaking of the global symmetry23U
X SU(2)g— SU(2)y . The covariant derivative is defined by

v

N
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one universal operatdiplaying a role analogous to that of in ETC models or ordinary fermions of the third family in
the first operator on the RHS of E€}) in the purely bosonic TopC models We perform a classificatidrof these opera-
sectof tors. We shall concentrate in the case where technifermions
appear in ordinary representations of (8l)x SU(3). (hy-
Le=—vqLUyigrtH.C,, yi=yl+tysrs. (6)  percharge can be arbitraryThe classification will then be
exhaustive. We shall discuss other representations as well,
It is an operator of dimension 3. In the unitary gaude although we shall consider custodially preserving operators
=1, it is just the mass term for the matter fields. For in-only, and only those operators which are relevant for our

stance, ifg, is the doublet {,b), purposes.
As a matter of principle, we have tried not to make any
M=Vv(Y+Y3)=VY;, My=Vv(y—Y3)=VYyp. (7)  assumptions regarding the actual way different generations

are embedded in the extended interactions. In practice, when
Nonuniversal operators carrying in their coefficients infor-presenting our numerical plots and figures, we are assuming
mation on the mechanism giving masses to leptons anthat the appropriate group-theoretical factors are similar for
quarks will be of dimension 4 and higher. all three generations of physical fermions.

We shall later derive the values of the coefficients corre- It has been our purpose in this paper to be as general as
sponding to operators in the effective Lagrangian of dimenpossible, not advocating or trying to put forward any particu-
sion 4 within the minimal standard model in the laryk, lar theory. Thus the analysis may, hopefully, remain useful
limit and see how the effective Lagrangian provides a conbeyond the models we have just used to motivate the prob-
venient way of tracing the Higgs boson mass dependence iliem. We hope to convey to the reader our belief that a sys-
physical observables. We shall later argue that nondecodematic approach based on four-fermion operators and the
pling effects should be the same in other theories involvinggffective Lagrangian treatment can be very useful.
elementary scalars, such as, e.g., the two-Higgs-doublet
model, replacingVy by the appropriate mass. IIl. MATTER SECTOR

Large nondecoupling effects appear in theories of dy-
namical symmetry breaking, and thus they are likely to pro- Appelquist, Bowick, Cohler, and Hauser established some
duce large contributions to the dimension-4 coefficients. Ifime ago a list ofd=4 operatord17]. These are the opera-
the scale characteristic of the extended interactires, tors of lowest dimensionality which are nonuniversal. In
those responsible for the fermion mass generatismuch  other words, their coefficients will contain information on
larger than the scale characteristic of the electroweak breakvhatever mechanism nature has chosen to make quarks and
ing, it makes sense to parametrize the former, at least at lo¥@ptons massive. Of course, operators of dimensionality 5, 6,
energies, via effective four-fermion operatéré/e shall as- and so on will be generated at the same time. We shall turn
sume here that this clear separation of scales does take plaigethese later. We have reanalyzed all possible independent
and only in this case are the present techniques really acc@perators ofd=4 (see the discussion in Appendix)Aand
rate. The appearance of pseudo Goldstone bosinsdant we find the following ones:
in models of dynamical breakingnay thus jeopardize our

conclusions, as they bring a relatively light scale into the L3=iq U(bV)Tq,, (8
game(typically even lighter than the Fermi scalén fact,
for the observables we consider that their contribution is not 531: igrUT(DU) R, 9)
too important, unless they are extremely light. For instance, a
pseudo Goldstone boson of 100 GeV can be accommodated 3_— 31ty 113 +
without much trouble, as we shall later see. £2=1q,(BU) TV aL—iq U r(DU) q., (10
The four-fermion operators we have just alluded to can 4 i— 11 30t 3 1t

involve either four ordinary quarks or leptorisut we will L£;=iq Uui(DU)rUlq., 11
see that dimensional counting suggests that their contribution
will be irrelevant at present energies with the exception of L3=igrmUT(DU)gr—igr(DU)TUqR, (12)
those containing the top quarér two new(heavy fermions
and two ordinary ones. This scenario is quite natural in sev- LE=igrrUT(DU) PR, (13
eral extended technicoldETC) or top condensatéTopC)
models[14,15, in which the underlying dynamics is charac- 7_ =11 31t b 3yt
terized by a scal®/. At scalesu<M the dynamics can be £,=1q UrUDg g DUV g, (14
modeled by four-fermion operato(sf either technifermions _ _

L,=iqrm°Dar—iqrD 'r3qR, (15

2While using an effective theory description based on four-
fermion operators alone frees us from having to appeal to any par-3In the case of ordinary fermions and leptons, four-fermion opera-
ticular model, it is obvious that some information is lost. This issuetors have been studied j6]. To our knowledge a complete analy-
turns out to be a rather subtle one and shall be discussed and quasis when additional fields beyond those present in the standard
tified in turn. model are present has not been presented in the literature before.
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where it is understood thabU) '=1y,(D*U)". Each opera- “
tor is accompanied by a coefficieét, 5, ,,,...,0-; thus, up PRI ILL:

to O(p*), our effective Lagrangian s

7 FIG. 1. Mechanism generating quark masses through the ex-
Lo= 08" L)+ 2 5i£i4- (16) change of an ETC particle.
=1
. _ . appearance of the unfamiliar diagraf®. Diagram (d) is
In the aboveD ,U is defined in Eq(2), whereas actually of order 17, which guarantees the gauge indepen-
z dence of the effective Lagrangian coefficients. The diagrams
H re Hp— 1 i 2 i -
D,q.= 0#+|g§-wﬂ+|g YB#)CIL, (17) are obviously proportloznal. ty<, y bem.g.a Yukawa cou
pling, and also to 1/16<, since they originate from a one-

loop calculation. Finally, the screening theorem shows that

— .73 . they may depend on the Higgs boson mass only logarithmi-
D,0r=|4d,tig’'5B,+ig’'YB , 18
#AR ( wT19 5 PuTlg ”“)qR (18 cally: therefore,

whereY=1/6 for quarks and¥=—1/2 for leptons. This list y2 M2

differs from thq one if17] by the presence of the last op- SM~ FIOQM_S (20)

erator(15). It will turn out, however, thatt’ does not con- & z

tribute to any observable. All these operators are invariant

under local S(2), X U(1)y transformations. These dimensional considerations show that the vertex cor-
This list includes both custodially preserving operators rections are only sizable for third generation quarks.

such asC and£2, and custodially breaking ones, suchZis In models of dynamical symmetry breaking, such as TC

and /3:31 to /3:71- In the purely bosonic part of the effective OF ETC, we shall have new contributions to thefrom the

Lagrangian(1), the first(universa) operator and the one ac- new.physms(whlch we shall later parametrize with four_-
companyinga, are custodially preserving, while those going férmion operators We have several new scales at our dis-
with a, and ag are custodially breaking. E.ga, param- posa_l. One isM, the mass-normahzmg_d|menS|or_1-E_3 four-
etrizes the contribution of the new physics to theparam-  fermion operators. The other can be eithey (negligible,
eter. If the underlying physics is custodially preserving only,SinceM is largg, m;, or the dynamically generated mass of

8, and 8, will get nonvanishing contributiorfs. the techniquarksng (typically of orderA+c, the scale asso-

The operatorEZ deserves some comments. By using theciated with the interactions triggering the breaking of the

equations of motion, it can be reduced to the mass t&m electroweak group Thus we can get a contribution of order

ovq U (y73+ys)grtH.C. (19 o 1 mg  mg
O Tom? W22 @D

However, this procedure is, generally speaking, only justified
if the matter fields appear only as external legs. For the tim

being we Sha.‘” keefL, as an mdt_apepdent operator, apq " therefore similar for all flavors, there should be a hierarchy
the next section we shall determine its value in the minima il be di din the followi . "

standard model after integrating out a heavy Higgs boson.. :\AMAShWIh D€ llscuss;e 'ﬂ the following s_ectlonj,é €
We shall see that, after imposing that physical on-shell fielggcA &M Which 1S Te evant for the mass generati@ncode

have unit residueg§, does drop from all physical predictions n the only dimension-3 operator in the effective Lagrang-
: 7 op physical pre " ian), via techniquark condensation and ETC interaction ex-
What is the expected size of th& coefficients in the

minimal standard model? This question is easily answered iihange(Flg. D, is the one normalizing chirality-flipping op-

we take a look at the diagrams that have to be computed t8rat0rs. On the contrary, the scale normalizing dimension-4
integrate out the Higgs fieléFig. 2. Notice that the calcu- perators in the effective theory is the one that normalizes

lation is carried out in the nonlinear variablels hence the chirality-preserving operators. Both scales need not be ex-
actly the same, and one may envisage a situation with rela-

tively light scalars present where the former can be much
lower. However, it is natural to expect thislt should at any
“Although there is only one derivative in E(L6) and thus this is  rate be smallest for the third generation. Consequently, the
a misname, we stick to the same notation here as in the purelgontribution to thes;’s from the third generation should be
bosonic effective Lagrangian. largest.
°Of course, hypercharge breaks custodial symmetry, since only a \We should also discuss dimension-5 -6, etc., operators

subgroup of SUR)r is gauged. Thereforell operators involving  and why we need not include them in our analysis. Let us
right-handed fields break custodial symmetry. However, there igyrite some operators of dimension 5:

still a distinction between those operators whose structure is for-
mally custodially invariantand custodial symmetry is broken only —

?Nhile Mg is, at least naively, expected to beA;c and

through the coupling to the external gauge fiedthd those which G WUgrtH.c., (22
would not be custodially preserving even if the full @k were .
gauged. g UBgrt+H.c., (23
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G o*’D{,D,;Uqr— 0 0*"D,UD j0r+H.c., (24) Af=0, (32)
q.UD?gg+H.c., (25)  where, throughout this section,
QD LUV (DU)dr—GLU U (D U)D dr+ Hee, AP=Tsy=Ter, (33
(26)

and the caret denotes renormalized quantities. This proce-
dure is known as matching. It goes without saying that in
doing so the same renormalization scheme must be used. The
on-shell scheme is particularly well suited to perform the
matching and will be used throughout this paper.

One only needs to worry about SM diagrams that are not

where we use the notationW=igo“'W,,, B

=ig'0*"B,,. These are a few of a long list of about 25
?hpee;fa;o\r/sértizd ,gl]llsthlzgleucgggrgpolilstger:eonheosw(e:?/gnbcur::ngn; present in the effective theory, namely, those containing the
flipping, and thus their contribution to the amplitude must beHIggs boson. The rest of the diagrams give exactly the same

suppressed by one additional power of the fermion masseresult, thus dropping from the matching. In contrast, the dia-
This makes their study unnecessary at the present level ams containing a Higgs propagator are described by local

1 7y i :
precision. Similar considerations apply to operators of dl_erms(such ast, throughL,) in the effective theory: they
mensionality 6 or higher. involve the coefficients, and give rise to the Feynman rules
collected in Appendix B.

Let us first consider the fermion self-energies. There is
only one 1PI diagram with a Higgs propagateee Fig. 2 A

In this section we shall obtain the values of the coeffi-Straightforward calculation gives
cients §; in the minimal standard model. The appropriate

IV. EFFECTIVE THEORY OF THE STANDARD MODEL

2 2
effective coefficients for the oblique correctiomshave been SEo— Yt [[b 111 og M + = -
obtained previously by several authdid,12,18. Their val- M 16m%| "2 & _2_ 4
ues are 2
1 M
13 1 ME{ 5 +my| < z Iog +1 (34
0=Tg,25|z 109,275/ @7 .
A3 can be computed by subtracting E¢B7), (B8) from
L 1/1 |v|2 Eq. (34). _ _ .
a,= ( Iog (28) Next, we have to renormalize the fermion self-energies.
1672 12 "8/ We introduce the following notation:
ag=0, (29 AZ=Zgy—Zet= 6Zgm— et (35
where 1E=1/e— ye+log 4w We use dimensional regular- whereZgy (Z) stands for any renormalization constant of
ization with a spacetime dimension—2e. the SM (effective theory. To computeA3.f, we simply add
We begin by writing the standard model in terms of theto AEf the counterterm diagrait4) with the replacements
nonlinear variables). The matrix 82\, \—AZ{, , and Sm;—Am; . This, of course, amounts to
_ Egs.(D11), (D12), and (D13) with the same replacements.
M=V2(D, D), (300  From Egs(D14), (D15), and(D16) (which also hold forAZ,

_ _ _ _ Am, andAX), one can expressz{,vA andAm;/my in terms
Eonstructed with the Higgs double, and its conjugate, of the bare fermion self-energies and finally obtAl'. The
d=ir?®*, is rewritten in the form result is

M=(v+p)U, U l=UT, (3D ASY, s=0, (36)

wherep describe the “radial” excitations around the vacuum
expectation valu¢VEV) v. Integrating out the fielgh pro-
duces an effective Lagrangian of the fo(i with the values
of the a; given above(as well as some other pieces not ASY —465,— 1 yu yd
shown therg This functional integration also generates the VSTETT 1602 2
vertex correctiong16).

We shall determine thé; by demanding that the renor- We see from Eq(38) that the matching conditionﬁmi{‘,‘S

ASY=0, (37)
2

malized one-particle irreducibldPl) Green functiond” are =0 imply

the same(up to some power in the external momenta and )

mass expansiorin both the minimal standard modésM) 5= 1 yi-vall iy %+ i (39
and the effective Lagrangian. In other words, we require that "1672 8 |e ¢ w? 2|
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1 yi+ya(1 M3
p m - - 2 1
51 54 mz 4 |0972— + 2 (43)
1 ygtya(l M3
. 52+ 56——W 4 7_|Og?—+ Z1k (44)
s L Yovi[l = Mi 5
 16m7 4 & 22
® © @ (45
FIG. 2. The diagrams relevant for the matching of the fermion 1 yi-yil1 MZ 5
self-energies and verticésounterterm diagrams are not inclugled O5=— 6.2 4 (r— Iog—z— + >
Double lines represent the Higgs, dashed lines the Goldstone m M (46)

bosons, and wiggly lines the gauge bosons.

To determine completely thé; coefficients we need to
The other matchings are satisfied automatically and do nefonsider the vertexidW. The relevant diagrams are analo-

give any information. _ gous to those of Fig. 2. A straightforward calculation gives
Let us consider the verteffZ. The relevant diagrams are
shown in Fig. Zdiagramgb)—(e)]. We shall only collect the ~ ie yuoYa [ 1 M2
contributions proportional tg/,, and The result is AT W= Y i Q—H 5| +268,—26
brop u ANCY,Ys: T avasy L1677 273
. 2 2
Y 1 My 1 ya+yii[1 MZ 5
ffz_ _ 7T - o+, = u d H
F# 1672 2 ’}//.L{Vf P IOg MZ +2 X(l+’y5)— Wz = g7+§
1 M3,
—3as7s g—|097+g (40) +28,+268,|(1—ys) . 47

By subtracting the diagram®2) and (B3) from F”Z one  The matching cond|t|0|AF“dW 0 amounts to the following
getsAI‘”Z Renormalization requires that we add the coun-set of equations:
terterm dlagranﬁDS) where, againgZ— AZ. One can check

z z Zy_ A2y ; 1 1 M2
that bothAZ{—AZ5 and AZ7”—AZ5” are proportional to P y“yd(——log L2 49)
AS.(0), which turns out to be zero. Hence the only rel- 2% 1677 2 u? 2
evant renormalization constants ak&!, and AZ%. These , )
renormalization constants have already been determined. 55+ YutYd 1 %Jr_ 49
One obtains for\T"[* the result 17T T 162 T4 | 92T o)
ie Combining these equations with Eq#.3),(44), we finally
fddz_
AT = = S [ Z(8y— 84— 8y— 86) + 83+ 55 get
1 y2+yi[1 45
1 yi(1  ME 5 == ey Y ogt 2| (50)
— e 22| Z—log—nt + = 1672 4 2
51672 2 | & w? 2
2
1 1 (Yutye)? H 5
+ 5 (01— 84+ 5o+ 56)+53—55“, (41) %=~ 162 8 r—l zt5, D
. 04=0, (52
Afwzo _ 1(5 — 8, 8y— 85) — 83— 6
w - ZSWCWy" 21017 047 027 0 37 05 1 (Yu—Yd)2 1 ME'
o=~ g2 [ Zlog—p +5|. (53
s~ s = | z—log—p + =
75 1677 2 g w2 This, along with Eqs(45), (46) and Eq.(39), is our final

answer. These results coincide, where the comparison is pos-

- 3(51_ Sut ot 8g) + 85— 55H ' (420  sible, with those obtained ii9] by functional methods. Itis
interesting to note that it has not been necessary to consider
the matching of the vertekf y.

where use has been made of E89). The matching condi- We shall show explicitly tha®; drops from theS-matrix
tion AT']/*=0 implies element corresponding t8— ff. It is well known that the
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renormalized u-fermion self-energy has residue+1,s, G M3

where 8,5 In given in Eq.(D17) of Appendix D. Therefore, 0=—r z (55

in order to evaluaté&Smatrix elements involving external 242

lines at one loop, one has to multiply the corresponding am- .

putated Green functions by a factorhd,.42, wheren is || We define

the number on external lines (in the case under consider- = 4( f)z (56)

ation n=2). One can check that when this factor is taken Pi 9)

into account, they; appearing in the renormalizesimatrix |3 f

vertex are canceled. So= _f( 1— g\r’) , (57)
We notice thats; and 8, indeed correspond to custodially 2Q¢ Ia

preserving operators, whilg; to 5 do not. All these coef-
ficients (just asay, a;, andag) are ultraviolet divergent.
This is so because the Higgs particle is an essential ingredi- 3 =2\ 2pf f

e = - +R,].
ent to guarantee the renormalizability of the standard model. T'r=nclopil4(17=2QiSw) Ry + Ral (58)

Once this is removed, the usual renormalization procesgnar quantities which are often used ake;, defined

we can write

(e.g., the on-shell schemds not enough to render all through

“renormalized” Green functions finite. This is why the bare

coefficients of the effective Lagrangidwhich contribute to 1

the renormalized Green functions either directly or via coun- pPt= 1-Ap,’ (59

terterm$ have to be proportional to 4/to cancel the new
divergences. The coefficients of the effective Lagrangian arghe forward-backward asymmetaf
manifestly gauge invariant.
What is the value of these coefficients in other theories ; .
with elementary scalars and a Higgs-like mechanism? This AFB:ZAeA , (60)
issue has been discussed in some detd2@j in the context
of the two-Higgs-doublet model, but it can actually be ex-andR,,
tended to supersymmetric theorigeovided of course sca-
lars other than theCP-even Higgs can be made heavy ry
enough; see, e.g.21]). It was argued there that nondecou- Rb:F_h’ (61)
pling effects are exactly the same as in the minimal standard
model, including the constant nonlogarithmic piece. Sincenhere
the &; coefficients contain all the nondecoupling effects as-

sociated with the Higgs particle at the first nontrivial order in - 29{/92
the momentum or mass expansion, the low-energy effective = (gAf )2+(gi )2’

theory will be exactly the same.

andI'y, T'y are theb partial width and total hadronic width,
respectively(each of them, in turn, can be expressed in terms
of the appropriate effective coupling#\s we see, nearly all

The decay width o —ff is described by of Z physics can be described in termigif and g{,. The

box contributions to the process e” — ff are not included

in the analysis because they are negligible and they cannot
be incorporated as contributions to effective electroweak
neutral current couplings anyway.

whereg!, andgl, are the effective electroweak couplings as  We shall generically denote these effective couplings by
defined in[22] andn, is the number of colors of fermioh  gf. If we express the value they take in the standard model
The radiation factorR{, and RL describe the final state QED by g"®™, we can write a perturbative expansion for them in
and QCD interactionf23]. For a charged lepton we have the following way:

V. OBSERVABLES

I'=0(Z—ff)=4nTo[(90)?R,+(gh)?RA],  (59)

)4) g'M=g" O+ g"@+g" @M +g'(s5), (62

whereg’(® are the tree-level expressions for these form fac-
tors andg’(® are the one-loop contributions which do not
4 contain any Higgs particle as internal line in the Feynman
) ) graphs. In effective Lagrangian language they are generated
by the quantum corrections computed by operators such as
(6) or the first operator on the RHS of Ed.). On the other
whereq is the electromagnetic coupling constant at the scaléand, the Feynman diagrams containing the Higgs particle
M, andm, is the final state lepton mass. contribute tog'S™ in a twofold way. One is via thé)(p?)
The tree-level width' is given by andO(p*) Longhitano effective operatofd) which depend
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on thea; coefficients, which are Higgs-boson-mass depen- ' ' ' '
dent, and thus give a Higgs-boson-dependent oblique correc- -0.030 -
tion to g"S™, which is denoted byg'. The other one is via g
genuine vertex corrections which depend on the This V 0032
contribution is denoted bg'. i

The tree-level value for the form factors are 0034 L

gl0=1?-25Q,, gi=1?. (63 ouss |

In a theory X, different from the minimal standard model,

the effective form factors will take valuag ™, where -0038 |
g'V=g"?+g"@+g'(a*) +§"(5), (64) 0,040 e
-0.5020 -0.5015 -0.5010 —0.5005

and thea® and 8* are effective coefficients corresponding to geA
theory X.

Within one-loop accuracy in the symmetry-breaking sec- FIG. 3. The 1le experimental region in thgz-gy, plane. The
tor (but with arbitrary precision elsewhérejf and gf are standard model predictions as a function of, (170.6sm,

linear functions of their arguments and thus we have <180.6 GeV) andM (70<=M;=<1000 GeV) are showr(the
middle line corresponds to the central valug=175.6 GeV. The

g =gfCM1gfaX—aM +gf(6X—s5M).  (65)  predictions of a QCD-like technicolor theory witiycnp=8 and
degenerate technifermion masses are shown as straight(dinkys
The expression fog' in terms ofa; was already given in  oblique corrections are includedOne moves along the straight
Egs. (4) and (5). On the other hand, from Appendix B we lines by changing the scal&. The three lines correspond to the
learn that extreme and central values for,. Recall that the precise location
anywhere on the straight linéshich definitely do intersect the &-
Oy(d1,...,06)= I?(al— 84— 0y— 8g) — 53— 65, (66) region) depends on the renormalization procedure and thus is not
predictable within the nonrenormalizable effective theory. In addi-
GL(81,...,06) = 13(81— 84+ 6o+ Og) — 53+ 05.  (67) tion, the technicolor prediction should be considered accurate only
at the 15% level due to the theoretical uncertainties discussed in the

In the minimal standard model all the Higgs dependencéeXt(thiS error is at any rate smaller than the one associated with the

at the one-loop levewhich is the level of accuracy assumed uncertainty inA). Notice that the oblique corrections, in the case of
hera is logarithmic and is contained in the and 5. coeffi- degenerate masses, are independent of the value of the technifer-
I

. . - . __mion mass. Assuming universality of the ver i
cients. Therefore one can easily construct linear combin on mass. Assuming universality of the vertex corrections reduces

tions of observable where the leading Higgs dependence C:E}%isgﬁis?gftﬁg ;bg;tignfactor diand leaves technicolor predic-

cels. These combinations allow for a test of the minimal
standard model independent of the actual value of the Higgs
boson mass. is enormous, this is a flagrant case of double counting, but it

Let us now review the comparison with current elec-is easy to understand why this mistake is made: removing
troweak data for theories with dynamical symmetry break-the Higgs boson makes the standard model nonrenormaliz-
ing. Some confusion seems to exist on this point, so let us trpable, and the observable of the standard model without the
to analyze this issue critically. Higgs boson depend on some arbitrary subtraction scale.

A first difficulty arises from the fact that at thd, scale In fact, the two sources of arbitrary subtraction scélks
perturbation theory is not valid in theories with dynamical one originating from the removal of the Higgs boson and the
breaking and the contribution from the symmetry breakingone from the effective action treatmgare one and the same
sector must be estimated in the framework of the effectiveand the problem can be dealt with the help of the coefficients
theory, which is nonlinear and nonrenormalizable. Observof higher-dimensional operators in the effective the@ry.,
able will depend on some subtraction scélestimates based thea; and ;). The dependence on the unknown subtraction
on dispersion relations and resonance saturation amount, #tale is absorbed in the coefficients of higher-dimensional
practice, to the same, provided that due attention is paid toperators and traded by the scale of the “new physics.”
the scale dependence introduced by the subtraction in th@ombinations of observable can be built where this scale
dispersion relation. (and the associated renormalization ambigujitiesops.

A somewhat related problem is that, when making use offhese combinations allow for a test of the “new physics”
the variablesS, TandU [13], or €;, €,, ande; [24], one  independently of the actual value of its characteristic scale.
often sees in the literature bounds on possible “new physin fact, they are the same combinations of observable where
ics” in the symmetry breaking sector without actually re- the Higgs dependence drops in the minimal standard model.
moving the contribution from the standard model higgs bo- A third difficulty in making a fair comparison of models
son that the “new physics” is supposed to repldtis is  of dynamical symmetry breaking with experiment lies in the
not the case, e.g., i3] where this issue is discussed with vertex corrections. If we analyze the lepton effective cou-
some carg Unless the contribution from the “new physics” plingsg'A andg'v, the minimal standard model predicts very
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—0.030 —— —0.030 —_—
202} 1 4 -003:2
r ] FIG. 4. The effect of isospin breaking in the
0034 - —_— 41 0034 oblique corrections in QCD-like technicolor theo-
el ries. The le region for thega-gy, couplings and
-0.036 - 1 0036 the SM prediction(for m;=175.6 GeV and 70
r <My=<1000 GeV are shown. The different
—0.038 |- 1 0038 straight lines correspond to setting the technifer-
r ] mion masses in each doublem{,m,) to the

" 1 N 1 N N 1 N 1 N
s 052 oso1 —oso1 Qs —os;z  —oso1 —oso1 value m,=250, 300, 350, 400, and 450 GeV
(larger masses are the ones deviating more from

the SM predictions and m;=1.05m, (plot 1),

0030 —————T1——T1— 0030 ——T— — m;=1.1m, (plot 2), m;=1.2m, (plot 3), and
e I ] L . m;=1.3m, (plot 4). The results are invariant un-

v 3 oos 4 i der the exchange af; andm, . As in Fig. 3, the
—0.035 / - I / | prediction of the effective theory is the whole
/ / straight line and not any particular point on it, as
I 1 0040 | / 7 we move along the line by varying the unknown
—0.040 | - / . scale A. Clearly, isospin breakings larger than
) —0.045 |- _ 20% give very poor agreement with the data,
/ even for low values of the dynamically generated

mass.
0045 ——L— L L -0.050 ———L— L
=0.504 -0.503 -0.502 -0.501 -0.500 -0508 -0.506 -0.504 -0.502 -0.500

g4

small vertex corrections arising from the symmetry-breakingceptably low values of the new scale to actually penetrate the
sector anyway and it is consistent to ignore them and cont-o region, something which looks unpleasant at first sight
centrate in the oblique corrections. However, this is not thgwe have plotted the part of the line for 18
situation in dynamical symmetry-breaking models. We will <1500 Ge\}, as one expectd ~A,. In fact, this is not
see in the next sections that for the second and third genergecessarily so. There is no real prediction of the effective
tion vertex corrections can be sizable. Thus, if we want toheory along the straight lines, because only combinations

compare experiment to oblique corrections in models of dyyyhich areA-independent are predictable. As for the location
namical breaking, we have to concentrate on electron coysnt along the line, butof the line itself, it is in principle

plings only.
In Fig. 3 we see the prediction of the minimal standard
model for 170.6cm;<180.6GeV and 7&M_ <1000

calculable in the effective theory, but of course subject to the
uncertainties of the model one relies upon, since we are deal-
. . . . . ing with a strongly coupled theoryWe shall use chiral

GeV, including the leading two-loop correctiofs3], falling quark model estimates in this paper as we believe that they

nicely within the experimental &= region for the electron : : . T : .
effective couplings. In this and in subsequent plots Wegre?oavu)lte reliable for QCD-like theories: see the discussion
i )

present the data from the combined four LEP experimen
only. What is the actual prediction for a theory with dynami-
cal symmetry breaking? The straight solid lines correspon
to the prediction of a QCD-like technicolor model witly
=2 andnp=4 (a one-generation modeh the case where

If we allow for a splitting in the technifermion masses, the
&omparison with experiment improves very slightly. The val-
ues of the effective Lagrangian coefficients relevant for the
oblique corrections in the case of unequal masses are also
given in Appendix E. Since; is independent of the techni-

all technifermion masses are assumed to be eguafollow fermion d icall ted the d
[9]: see[25] for related worl, allowing the same variation ermion dynamically generaled masses anyway, the depen-
ence is fully contained in, (the parametef of Peskin and

for the top quark mass as in the standard model. We do nr%l . g .
take into account here the contribution of potentially present 2k€uchi[13]) andag (the parametet)). This is shown in
. 4. We assume that the splitting is the same for all dou-

pseudo Goldstone bosons, assuming that they can be maglg A _
lets, which is not necessarily trée.

heavy enough. The corresponding values for gheoeffi- i
cients in such a model are given in Appendix E and are I other rep:jreshentagllpns of the .&JLESU(?’)C bgaug((ej_f_ g
derived using chiral quark model techniques and chiral per_groulo are used, the oblique corrections have to be modifie
turbation theory. They are scale dependent in such a way the form prescribed n Sec. VIII. L_arger group—theqrenc_al
to make observables finite and unambiguous, but of cours ctors lead to larger oblique corrections and, from this point
observables depend in general on the scale of “new phys-
ics” A.

We move along the straight lines by changing the sdale  ®in fact, it can be argued that QCD corrections may, in some cases
It would appear at first sight that one needs to go to unacf30], enhance techniquark masses.
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of view, the restriction to weak doublets and color singlets omwhere ¢ is built out of Clebsch-Gordan factors a a
triplets is natural. gauge-coupling constant, assumed perturbativ@(dj at the
Let us close this section by justifying the use of chiralscaleM. The g, being essentially group-theoretical fac-
guark model techniques, trying to assess the errors involvedors, are probably of similar size for all three generations,
and at the same time emphasizing the importance of havinglthough not necessarily identical as this would assume a
the scale dependence under control. A parameterdik@r  particular style of embedding the different generations into
Sin the notation of Peskin and TakeudHi3]) contains in- the large ETC(for instance group. Notice that for four-
formation about the long-distance properties of a stronglyffermion operators of the for@h- J*, whereJ is some fermion
coupled theory. In facta; is nothing but the familialL,;  bilinear, £cg has a well-defined sign, but this is not so for
parameter of the strong chiral Lagrangian of Gasser andther operators(b) It turns out that only a relatively small
Leutwyler [26] translated to the electroweak sector. Thisnumber of combinations of these coefficients do actually ap-
strong interaction parameter can be measured, and it is fourgkar in physical observables at low energies.
to beL;o=(—5.6+0.3)x10 3 (at theu=M , scale, which Matching to the fundamental physical theory @at=M
is just the conventional reference value and plays no specifiixes the value of the coupling constants accompanying the
role in the standard modelThis is almost twice the value four-fermion operators to the valié9). In addition, contact
predicted by the chiral quark mode[27,28 (L, terms, i.e., nonzero values for the effective coupling con-
= —1/327?), which is the estimate plotted in Fig. 3. Does stantss,, are generally speaking required in order for the
this mean that the chiral quark model grossly underestimatefsindamental and four-fermion theories to match. These will
this observable? Not at all. Chiral perturbation theory predater evolve under the renormalization group due to the pres-
dicts the running oL 1. It is given by ence of the four-fermion interactions. Because we expect that
1 5 M> A, the &; will be typically logarithmically enhanced.
_ K Notice that there is no guarantee that this is the case for the
Lio(p) =L s M)+ 12872 IogM—i. €8 third generation, as we will later discuss. In this case the TC
and ETC dynamics would be tangled @which for most
According to our current understandirgee, e.9.[29]), the  models is strongly disfavored by the constraints on oblique
chiral quark model gives the value of the chiral CoeffiCientScorrection$_ For the first and second generations, however,
at the chiral symmetry breaking scderf, in QCD, A in  the logarithmic enhancement of & is a potentially large
the electroweak theojy Then the coefficient ;o (or a; for  correction and it actually makes the treatment of a funda-
that mattey predicted within the chiral quark model agrees mental theory via four-fermion operators largely independent
with QCD at the 10% level. of the particular details of specific models, as we will see.
Let us now turn to the issue of vertex corrections in theo- et us now get back to four-fermion operators and pro-
ries with dynamical symmetry breaking and the determinaceed to a general classification. A first observation is that,
tion of the coefficientsy; , which are, after all, the focal point while in the bosonic sector custodial symmetry is just broken

of this work. by the small W1), gauge interactions, which is relatively
small, in the matter sector the breaking is not that small. We
VI. NEW PHYSICS AND FOUR-FERMION OPERATORS thus have to assume that whatever underlying new physics is

present at scalM it gives rise both to custodially preserving

In order to have a picture in our mind, let us assume thaénd custodially nonpreserving four-fermion operators with
at sufficiently high energies the symmetry-breaking sectogoefficients of similar strength. Obvious requirements are
can be described by some renormalizable theory, perhapsHermiticity, Lorentz invariance, and $B).XSU(2).
non-Abelian gauge theory. By some unspecified mechanisit U(1)y symmetry. NeitheC nor P invariance are imposed,
some of the carriers of the new interaction acquire a masdut invariance unde€P is assumed.
Let us generically denote this masslidy One type of model We are interested il=6 four-fermion operators con-
that comes immediately to mind is the extended technicolostructed with two ordinary fermiongeither leptons or
scenarioM would then be the mass of the ETC bosons. Letquarkg, denoted byq,, gg, and two fermionsQf, Q’Q.
us try, however, not to adhere to any specific mechanism ofypically, A will be the technicolor index and th@, , Qr
model. will therefore be techniquarks and technileptons, but we may

Below the scaleM we shall describe our underlying be as well interested in the case whereGhemay be ordinary
theory by four-fermion operators. This is a convenient wayfermions. In this case the indeXx drops(in our subsequent
of parametrizing the new physics beldw without needing  formulas this will correspond to takingrc=1). We shall
to commit oneself to a particular model. Of course, the numnot write the indeXA hereafter for simplicity, but this degree
ber of all possible four-fermion operators is enormous andf freedom is explicitly taken into account in our results.
one may think that any predictive power is lost. This is not As we already mentioned, we shall discuss in detail the
so because of two reasorig) The size of the coefficients of case where the additional fermions fall into ordinary repre-
the four-fermion operators is not arbitrary. They are con-sentations of S(2), X SU(3), and will discuss other repre-

strained by the fact that at scdlé they are given by sentations later. The field®, will therefore transform as
5 SU(2), doublets, and we shall group the right-handed fields
y i (69) Qg into doublets as well, but then include suitable insertions
Cem2e of 7° to consider custodially breaking operators. In order to
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TABLE |. Four-fermion operators which do not change the fermion chirality. The (Sestond column
contains the custodially preservirigreaking operators.

L2=(QLy,Qu) (GLy"aL)

R*= (GR‘Y/LQR) (drY"dR)

RsR= (6R7,L Qr) (ArY"0R)

RRs :_(6R 7,.Qr) (QrY* 0r)
R§= (QR'VMT?’QR) (Ary*“7%0R)

RL:(gR‘Y”QR) (acy*ay)
LR:@L?’MQL)(HRVHC]R)
rl=(Qr¥,AQR) (GLy*Xa)
Ir =(QLY,AQL) - (GrY*X0R)

RSL:(gRVMTSQR)(aLVMqL)
L RBi(QL YuQ3) (ArY*7°0R)
sl =(Qry, A 7°Qr) - (GL¥*NaL)
Irg= (QLY,J:TsQL) : (aRVMXquR)

(Quy,.a) (@ r*QL) B B

(Qr7,9r)(QrY"QR) (QR'Y;LquR)(aR'yMQR)+(QR'yuqR)(aR'yM7'3QR)
(6R7,u,7'3qR)(aR'yMQR)

(QUy.QD) (@l y*al)

(glR 7#QJI?) (ﬁ_’R V’LCI_IR)

(Quv,.al) (@ y*Qu) _ .

(QrY,.9k) (GkY*QR) (QrY,.9R) (ARY“[Qr1")

determine the low-energy remnants of all these four-fermiorportant for our purposes will be whether they flip or not the
operatorgi.e., the coefficients), it is enough to know their chirality. We use Fierz rearrangements in order to write the
couplings to SWR2), and no further assumptions about their four-fermion operators as the product of either two color
electric chargeqor hyperchargesare needed. Of course, singlet or two color octet currents. A complete list is pre-
since theQ, , Qg couple to the electroweak gauge bosons,sented in Tables | and Il for the chirality-preserving and
they must not lead to new anomalies. The simplest possibilehirality-flipping operators, respectively.
ity is to assume that they reproduce the quantum numbers of Note that the two upper blocks of Table | contain opera-
one family of quarks and leptonghat is, a total of four tors of the formJ-j, where Q) j stands for gheavy fermion
doubletsnp=4), but other possibilities exidifor instance, current with well-defined color and flavor numbers, namely,
np=1 is also possibl¢31], although this model presents a belonging to an irreducible representation of (S}J and
global SU2), anomaly. SU(2), . In contrast, those in the two lower blocks are not of
We shall first be concerned with th@, , Qg fields be- this form. In order to make their physical content more trans-
longing to the representatio® of SU(3). and, afterwards, parent, we can perform a Fierz transformation and replace
focus in the simpler case where g , Qg are color singlet the last nine operatof$wo lower blocks in Table | by those
(technileptons ColoredQ, , Qg fermions can couple to or- in Table Ill. These two bases are related by
dinary quarks and leptons either via the exchange of a color
singlet or of a color octet. In addition, the exchanged particle
can be either an S@), triplet or a singlet, thus leading to a
large number of possible four-fermion operators. More im-

- RS U IR SO
(QLyau(aLy QL)_ZI +€L +Z| +€L , (70

— , . . 1 1.
] i\ (At Jy— —1 24 212
TABLE II. Chirality-changing four-fermion operators. To each (QLv.QUI(aqLy"a) 2 Lo+ 2 L% (7D
entry, the corresponding Hermitian conjugate operator should be
added. The left(right) column contains custodially preserving _ ) ) ) 1 1
(breaking operators. (Qly.a) (@ y*Q)= > 12+ 3 L?, (72)
(6L’y#qL)(aR7/LQR) (5L7“qL)(WR7MT3QR)
—t iv(AkA! —ir 34 1y AKkA! 0. oA 12121~21*2
(Q!_qR)(QLQR)GikejI (q!_[f dr)) (QLQR) €ikej (QrY4AR) (ARY QR):Zr +€R +Zr +6R , (73
(a{_QJR)(atqu)fikfﬂ (ﬁ[Qk)(@E[T?’qR]')eike”
Y - N Y A Y N - 3 — _ — _
(Quy"ra1)- (97,7 Qr) {Quy"2q0) - (Gry,A ™ Qr) (QrY,0R) (GrY*7°Qr) + (QrY,.°dR) (GrY*Qr)
(q!_)\q{?)'(QL)\QR)GikEjI (q!_)\[T_ drl)) - (QLAQR) €ikejy 1 1 1 1
(GLNQR) - (QiNTR) €ikey (GLNQR) - (QUN[~*dr]) eicey = Stra+ SRR+ 1o+ SRR, (74)
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TABLE lll. New four-fermion operators of the forrd-j obtained after Fierzing. The leftight) column
contains custodially preservin@preaking operators. In addition, those written in the two upper blocks of
Table | should also be considered. Together with the above they form a complete set of chirality-preserving
operators.

1= (Quy,AQu) - (@Ly*Xay) B
ré= (QRVﬂXQR) -(GrY*N0R) Iar= (gRyl-L):TSQR) -(GrY*N0R)
rr 3:LQR7/.L):QR) -(GRrY*X 7°0R)

_ rg:(QR'y,u):TsQR)'(ER'}’MXTSqR)

L?=(Quy,7Qu)- (@y"7ay)

R?=(Qr7,,7Qr) - (Gr7"70R)

I2=(Quy, A 7Qu)- (@uy*N7a)

r=(QrY, A 7QR) " (GrY*N 70r)

_ 5 o 5 1, 1, L, 1., are the only independent ones from the last seven rows.
(QrY,™Ar) (ARY*T°QR) = 2" TR 27 gR These two basis are related by
L2yl (7, a0)(@ 7*Q) = 5 L7+ 31 (79)
+§r3+ §R s (75) LY uML L L 2 2 )
1o, 1 Q Ty Qp) = 5 R+ SR 80

for technileptons.
_ . ) It should be borne in mind that Fierz transformations, as
(QkY,.9r) (ARY*QR) = §r2+ §R2, (77 presented in the above discussion, are strictly valid only in

four dimensions. In 4 2e dimensions, for the identities to

1 1 hold we need “evanescent” operatdi32], which vanish in
=i i\ =t 3A iy _ four dimensions. However, the replacement of some four-
(QrY,AR) (ARY*[1Qr]) = 23t 3Rk (78) fermion operators in terms of othersvia the Fierz identities is
actually made inside a loop of technifermions and therefore a
for colored techniquarks_ Notice the appearance of some mflnlte contribution is generated. Thus the two basis will even-
nus signs due to the Fierzing and that operators sudt?as tually be equivalent up to terms of order

(for instance get contributions from four-fermion operators

2
which do have a well-defined sign as well as from others 16 m2 (81)
which do not. 1672 M2 '@

The use of this basis simplifies the calculations consider- . _ o ) _
ably as the Dirac structure is simpler. Another obvious adWheremq, is the mass of the technifermidthis estimate will
vantage of this basis, which will become apparent only laterb® obvious only after the discussion in the next sectioims
is that it will make it easier to consider the long-distanceParticular, no logarithms can appear in Eg1).
contributions to thes;, from the region of momenta Let us now discuss how the appearance of other represen-
<A,. tations might enlarge the above classification. We shall not

The classification of the chirality-preserving operator in-P€ completely general here, but consider only those operators
volving technileptons is of course simpler. Again, we usethat may actually contribute to the observables we have been

Fierz rearrangements to write the operatord 4s However, ~ discussingsuch agyy andg,). Furthermore, for reasons that
in this case only a color singlet (and, thus, also a color Shall be obvious in a moment, we shall restrict ourselves to
singletj) can occur. Hence the complete list can be obtaine@Perators which are S@), X SU2)g invariant.

by crossing out from Table Ill and from the first eight rows ~ The construction of the chirality-conserving operators for
of Table I the operators involvinﬁ. Namely, those desig- fermions in higher-dimensional representations of&fol-

nated by lower case letters. We are then left with the twdowS essent!ally the same pattern presented in Appendix C
-y 2o . i . for doublet fields, except for the fact that operators such as
operatord <, R from Table Il and with the first six rows of

Table I:L?, R?, RgR, RR;, R3, RL, RsL, LR, andLR;. If S — I~ N 82
we choose to work instead with the original basis of (Quvua) @y, (QuvQuldLy*a). (83

chirality-preserving operators in Table I, we have to suppleand their right-handed versions, which appear on the right-
ment these nine operators in the first six rows of the tablgyand side of Table I, are now obviously not acceptable since
with (QLv,0a.)(a.¥*Q.) and Qr7,9r)(Ar¥*Qr), Which  Q_ andq, are in different representations. Those operators,
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restricting ourselves to color singlet bilinedtke only ones
giving a nonzero contribution to our observablesan be
replaced in the fundamental representation by

(Quy, QU@ a0, (QLy,7QU)(ALy*7qL), (83)

when we move to thel-j basis. Now it is clear how to

modify the above when using higher representations for the
Q fields. The first one is already included in our set of cus- ) o )
todially preserving operators, while the second one has to b&US, their contribution to thé; will be of order

modified to , - ,
.= _ g—G (E) Iogﬂ. (86)
L=(QLy,TQU(aLy*7qy), (84) (167%)2\ M2 m2,

FIG. 5. The matching at the scale=M.

whereT are the S2) generators in the relevant representa-Using the same reference values as above, a pseudo Gold-
tion. In addition, we have the right-handed counterpart, ofstone boson of 100 GeV can be neglected.

course. We could in principle now proceed to construct cus- If the operators contained in Table Il are not relevant for
todially violating operators by introducing suitatié and7>  the W™ andZ couplings, what are they important for? After
matrices. Unfortunately, it is not possible to present a closeglectroweak breakingdue to the strong technicolor forces or
set of operators of this type, as the number of independeniny other mechanisma condensatéQQ) emerges. The
operators does obviously depend on the dimensionality ofhirality-flipping operators are then responsible for generat-
the representation. For this reason we shall only considehg a mass term for ordinary quarks and leptons. Their low-
custodially preserving operators when moving to higher repenergy effects are contained in the omly=3 operator ap-
resentations, namely,?, R?, RL, LR L2, andR?. pearing in the matter sector, discussed in Sec. Il. We thus see

If we examine Tables I, I, and Il we will notice that both that the four-fermion approach allows for a nice separation
chirality-violating and chirality-preserving operators appear.between the operators responsible for mass generation and
It is clear that at the leading order in an expansion in externaihose that may eventually lead to observable consequences in
fermion masses only the chirality-preserving operatordhe W= andZ couplings. One may even entertain the possi-
(Tables | and I} are important; those operators containing bility that the relevant scale is, for some reason, different for
both aq, and agp field will be further suppressed by addi- both sets of operatoréor, at least, for some of themit
tional powers of the masses of the fermions and thus subsould, at least in principle, be the case that scalar exchange
leading. Furthermore, if we limit our analysis to the study ofenhances the effect of chirality-flipping operators, allowing
the effectiveW= andZ couplings, such ag, andg,, as we for large masses for the third generation, without giving un-
do here, chirality-flipping operators can contribute onlyacceptably large contributions to tt# effective coupling.
through a two-loop effect. Thus the contribution from the Whether one is able to find a satisfactory fundamental theory
chirality-flipping operators contained in Table Il is sup- where this is the case is another matter, but the four-fermion
pressed both by an additional 1/%loop factor and by a approach allows one, at least, to pose the problem.
m3/M? chirality factor. If for the sake of the argument we ~ We shall now proceed to determine the constafitap-
take mg, to be 400 GeV, the correction will be below or at pearing in the effective Lagrangian after integration of the
the 10% level for values oM as low as 100 GeV. This heavy degrees of freedom. For the sake of the discussion we
automatically eliminates from the game operators generateshall assume hereafter that technifermions are degenerate in
through the exchange of a heavy scalar particle, but of cours@ass and set their masses equatitg. The general case is
the presence of light scalars, below the mentioned limit, rendiscussed in Appendix E.
ders their neglection unjustified. It is not clear where simple
ETC models violate this Iimi(see, 99[33]) We jUSt as- VII. MATCHING TO A FUNDAMENTAL THEORY
sume that all scalar particles can be made heavy enough.

Additional light scalars may also appear as pseudo Gold- Atthe scalew=M we integrate out the heavier degrees of
stone bosons at the moment the electroweak symmetdjeedom by matching the renormalized Green functions com-
breaking occurs due 6(3 condensation. We had to assume _puted in the un_derlying fundamental theory to a four-fermion
somehow that their contribution to the oblique correctioninteraction. This matching leads to the valu@s) for the
was small(e.g., by avoiding their proliferation and making Coefficients of the four-fermion operators as well as to a
them sufficiently heavy They also contribute to vertex cor- Purely short-distance contribution for tt#&, which shall be
rections(and thus to thes;), but here their contribution is denoted bys;. The matching procedure is indicated in Fig.
naturally suppressed. The coupling of a pseudo Goldston®. It is perhaps useful to think of th& as the value that the

bosonw to ordinary fermions is of the form coefficients of the effective Lagrangian take at the matching
) scale, as they contain the information on modes of frequen-
1 mg ciesu>M. The?ﬁi will be, in general, divergent; i.e., they
1= 2 @dL0R; (85) - : -
47 M will have a pole in 1¢. Let us see how to obtain these coef-
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ficients 3, in a particular case.
As discussed in the previous section, we understand tha
at very high energies our theory is described by a gaug +
theory. Therefore we have to add to the standard model La
grangian(already extended with technifermioribie follow-
ing pieces:

1 1 B FIG. 6. Matching at the scale=A .
—— m— —MZ2E EF+ *E,q+H.c.

7 BB g WEES GQyEatHe. (87 The quantityAs,(x/M) can be computed in perturbation
theory down to the scald, where the residual interactions
labeled by the indeXA become strong and confine the tech-
nifermions. The leading contribution is given by a loop of
technifermions.

To determine such contribution it is necessary to demand
that the renormalized Green functions match when computed
using explicitly the degrees of freedo®, , Qg and when
their effect is described via the effective Lagrangian coeffi-

TheE, vector bosor(of massM) acts in a large flavor group
space which mixes ordinary fermions with heavy or@se
notation in Eq.(87) is somewhat symbolic as we are not
implying that the theory is vector like; in fact, we do not
assume anything at all about]it.

At energiesu<M we can describe the contribution from
this sector to the effective Lagrangian coefficients either us

ing the degrees of freedom present in Ef7) or via the cients §;. The matching procedure is illustrated in Fig. 6.

coriespondmg four-quark operator and a nonzero value fof'he scaley of the matching must be such that<M, but

the &, coefficients. Dema}nding that bqth descriptions repro-ch thatu> A, where perturbation theory in the techni-
duce the same renormaliz&lV vertex fixes the value of the g|or coupling constant starts being questionable.

i . The result of the calculation in the case of degenerate
Let us see this explicitly in the case where the intermediimasses is

ate vector bosork, is a SU3). X SU(2), singlet. For the

sake of simplicity, we take the third term in E to be —
pHery @7 AS(uIM)=—3

u?
1-¢ Iogw) , (93

GQUY*E,0L - (88)
. _ where we have kept the logarithmically enhanced contribu-
At energies below, the relevant four-quark operator is then only and have neglected any other possible constant

2 pieces.d; is the singular part o8, . The finite parts 0B, are
— W(QLy“qL)(HLyMQL). (89 c[early very model dependefitf., for instance, the previpus
discussion on evanescent operata@sd we cannot possibly
diake them into account in a general analysis. Accordingly,
we ignore all other terms in Eq93) as well as those finite
ieces generated through the Fierzing procedsee discus-
ion in the previous sectignKeeping the logarithmically
enhanced terms therefore sets the level of accuracy of our
calculation. We will call Eq.(92) the short-distance contri-
AT=Te—T (90) bution to the coefficien®; . General formulas for the case
E-14Q- . . A
where the two technifermions are not degenerate in masses
Namely, AT is the difference between the vertex computedcan be found in Appendix E.
using Eq.(87) and the same quantity computed using the Notice that the final short-distance contribution to #e

four-quark operators as well as nonzéy@oefficientrecall  is ultraviolet finite, as it should be. The divergencesijrare
that the caret in Eq.32) denotes renormalized quantifled  exactly matched by those i 5;. The pole ind; combined
calculation analogous to that of Sec. Iviow the leading with singularity inA 8, provides a finite contribution.
terms in 1M? are retaineylleads to There is another potential source of corrections to he
stemming from the renormalization of the four-fermion cou-
pling constaniG?/M? (similar to the renormalization of the
Fermi constant in the electroweak theory due to gluon ex-
change. This effect is, however, subleading here. The reason
VIIl. INTEGRATING OUT HEAVY FERMIONS is that we are considering techniglluon exchang.elonly for
four-fermion operators of the forrd-j, where, againj (J)
As we move down in energies, we can integrate lower andtands for gheavy fermion curren{which gives the leading
lower frequencies with the help of the four-fermion operatorscontribution, as discussgdThe fields carrying technicolor
(which do accurately describe physics beld). This modi-  have the same handedness, and thus there is no multiplica-

In the limit of degenerate techniquark masses, it is quite cle

that only’s; can be different from zero. Thus one does not
need to worry about matching quark self-energies. ConcerrE
ing the vertex(Fig. 5), we have to impose Ed32), where
now

~ G2 mj 1
z (91

TV

fies the value of the; : tive renormalization and the effect is absent.
_ Of course, in addition to the short-distance contribution
Si(m)=6+A85 (M), u<M. (92 there is a long-distance contribution from the region of inte-
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gration of momenta. <A , . Perturbation theory in the tech-
nicolor coupling constant is questionable, and we have to
resort to other methods to determine the value ofghet the

PHYSICAL REVIEW D 60 114035

1 G, mg M2
53: E aRSLW Vet nTCan |ngz'
X

Z mass. 1 yﬁ—yﬁ 1 A2
There are two possible ways of doing so. One is simply to + 6.2 2 <7— Iog—z) , (101
mimic the constituent chiral quark model of QCD. There one & € K
loop of chiral quarks with momentum running between the
scale of chiral symmetry breaking and the scale of the con- 8,=0, (102
stituent mass of the quark, which acts as infrared cutoff,
provides the bulk of the contributidr28,29 to f ., which is ) 2 5
the equivalent ofv. Making the necessary translations, we Se= Ea i VZH Neen ﬂbgM_
can write, for QCD-like theories, 5T 2RV 2 TCP472 T AZ
1 Yi-Ya ( 1 Az)
2 2 - —— | =—log—|, (103
m A 2 2
VZ:nTan_sz)g_;( (94 16m” 4 ¢ H
47 mg
| . . . 1 G, my M2
Alternatively, we can use chiral Lagrangian techniques 56:§aR§W v +nTCan IogP
[34] to write a low-energy bosonized version of the techni- X
fermion bilinearsQ, I'Q, and QrI'Qg using the chiral cur- 1 (y,—vye?/1 A?
rentsJ, andJg. The translation is 1672 4 76_'09? ) (104
5 while in the case of higher representations, where only cus-
6L7,LQL_>V_trUTiD U (95) todially preserving operators have been considered, énly
2 re and 8, get nonzero valueghrougha2 andagz). The long-

distance contribution is, obviously, univers@ee Sec. )|

2

while we have to modify the short-distance contribution by

— i \ i replacing the Casimir of the fundamental representation of

Quyir QLH?UUTTID“U’ (96) SU(2) for the appropriate ongl/2—c(R)], the number of
doublets by the multiplicity of the given representation, and
n. by the appropriate dimensionality of the &)L represen-

_ vZ o R tation to which theQ fields belong.

QrY"Qr— 7 tUID U7, 97 These expressions require several comments. First of all,
they contain the sam@iniversa) divergences as their coun-
terparts in the minimal standard mod&8SM). The scaleA

_ . v2 . should, in principle, correspond to the matching scalg,
Qrv*7Qr— ?tru r'iDMUT. (98) where the low-energy nonlinear effective theory takes over.

However, we write an arbitrary scale just to remind us that

the finite part accompanying the logarithm is regulator de-
Other currents do not contribute to the effective coefficientspendent and cannot be determined within the effective
Both methods agree. theory. Recall that the leading(ncnp) term is finite and
Finally, we collect all contributions to the coefficienfs  ynambiguous, and that the ambiguity lies in the formally
of fche effective Lagrangian. For fields in the usual represensypleading termwhich, however, due to the logarithm is
tations of the gauge group, numerically quite importaint Furthermore, only logarithmi-
cally enhanced terms are included in the above expressions.

5 Finally, one should bear in mind that the chiral quark model

m M ) techniques that we have used are accurate only in the large
nc expansion(actually ntcnp here. The same comments

apply, of course, to the oblique coefficieras presented in

The quantitiesa2, agz, arz, and aR,L and ar,r are the

coefficients of the four-fermion operators indicated by the

5 5 subindex(a combination of Clebsch-Gordan and Fierzing
m M factorg. They depend on the specific model. As discussed in
previous sections, these coefficients can be of either sign.

This observation is important because it shows that the con-

tribution to the effective coefficients has no definite Jigh]

51=a[zM—z v2+nTCnD4—;Q2IogA—)2(
_#Yﬁzyg %_ Iog%z), (99 Appendix E.
0= a§2+EaR2 E; V2+nTanﬁQ|09_2
2 "3/M A AY
B 161772 (yugyd)2 %—| 92_2)’ (100
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dence between the effective Lagrangian coefficigatsof  tice, we retain only terms which are logarithmically en-

them measurable, at least in principénd four-fermion co-  hanced when running frorM to mqg, including the long-

efficients. distance part, belowA,. The effective Lagrangian
Apart from these four-fermion coefficients, tigdepend  coefficientss; are all finite at the scald, , the lower limit

on a number of quantitie&/, mg, A, G, andM). Let us  of applicability of perturbation theory. Below that scale they

first discuss those related to the electroweak symmetryun following the renormalization group equations of the

breaking(mg andA ) and postpone the considerationsMdn  nonlinear theory and new divergences have to be subtracted.

to the next sectiofiG will be assumed to be aP(1)]. vis  These coefficients contain finally the contribution from

of course the Fermi scale and hence not an unknown at aficalesM > u>mq, the dynamically generated mass of the

(v=250GeV). The value ofng can be estimated from Eq. technifermion[expected to be 0O(Arc).] In view of the

(94) sincev? is known andA,, for QCD-like technicolor theoretical uncertainties, to restrict oneself to logarithmically

theories, is~4mv. Solving for mg, one finds that ifng enhanced terms is a very reasonable approximation which

=4, mg=v, while if np=1, my=2.5v. Notice thatmg and  should capture the bulk of the contribution.

v depend differently omyc, so it is not correct to simply Let us now proceed to a more detailed discussion of the

assumeng=V. In theories where the technicolgrfunction  implications of our analysis. Let us begin by discussing the

is small (and it is pretty small ifnp=4 andn;c=2), the value that we should take fddl, the mass scale normalizing

characteristic scale of the breaking is pushed upwards, so weur-fermion operators. Fermion condensation gives a mass

expectA,>4mrv. This bringsmg somewhat downwards, but to ordinary fermions via chirality-flipping operators of order

the decrease is only logarithmic. We shall therefore take

to be in the range 250-450 GeV. We shall allow for a mass G2 _

splitting within the doublets too. The splitting within each mﬁw(QQ% (105

doublet cannot be too large, as Fig. 4 shows. For simplicity,

we shall assume an equal splitting of masses for all doubletghrough the operators listed in Table II. A chiral quark model

calculation shows that

IX. RESULTS AND DISCUSSION

Let us first summarize our results so far. The values of the <QQ>2V2mQ- (106
effective Lagrangian coefficients encode the information = ) ] ) )
about the symmetry breaking sector thatgad will be in the Thus, while{QQ) is unlversall, there is an inverse relation
near future experi tall ible. T betweenM? andm; . In QCD-like theories this leads to the

perimentally accessible. Th# are therefore ) : c
the counterpart of the oblique corrections coefficieats  following rough estimates for the masé [the subindex re-
and they have to be taken together in precision analysis ders to the fermion which has been used in the left-hand side
the standard model, even if they are numerically less signifitlHS) of Eq. (105]
cant.

These effective coefficients apply Zophysics at LEP, top M~105 TeV, M,~10 TeV, M,~3 TeV. (107
qguark production at the Next Linear Collider, measurements
of the top decay at the Collider Detector at Fermi(@DF), If taken at face value, the scale fbt, is too low: even the
or indeed any other process involving the third generatiorone for M, may already conflict with current bounds on
(where their effect is largestprovided the energy involved FCNC, unless they are suppressed by some other mechanism
is below 4sv, the limit of applicability of chiral techniques. in a natural way. Worse, the top quark mass cannot be rea-
(Of course, chiral effective Lagrangian techniques fail wellsonably reproduced by this mechanism. This well-known
below 4mv if a resonance is present in a given channel: se@roblem can be partly alleviated in theories where techni-
also[36].) color walks or invoking top quark color or a similar mecha-

In the standard model th& are useful to keep track of the Nism[38]. ThenM can be made larger amdy, as discussed,
|Og MH dependence in all processes invo]ving either neutraﬁomeWhat smaller. For theories which are not vector "ke, the
or charged currents. They also provide an economical deabove estimates become a lot less reliable.
scription of the symmetry-breaking sector, in the sense that However, one should not forget that none of the four-
they contain the relevant information in the low-energy re-fermion operators playing a role in the vertex effective cou-
gime, the only one testable at present. Beyond the standafdings participates at all in the fermion mass determination.
model the new physics contributions is parametrized by fourln principle, we can then entertain the possibility that the
fermion Operators_ By Choosing the number of doubie@1 relevant mass scale for the !atter should be IOWhapS
M, andA , suitably, we are in fact describing in a single shotPecause they get a contribution through scalar exchange, as
a variety of theories: extended technicoloommuting and
noncommuting walking technicolor [37] or top-quark-
aSSiSted teChniCO|OI’, pI’OVided that a” remaining ScalarS and7'|'he divergent contribution Coming from the standard moﬂ@
pseudo Goldstone bosons are sufficiently heavy. has to be removed, though, as discussed in Sec. V, so the difference

The accuracy of the calculation is limited by a number ofis finite and would be fully predictable had we good theoretical
approximations we have been forced to make and whicleontrol on the subleading corrections. At present only the
have been discussed at length in previous sections. In pra®(nc,np) contribution is under reasonable control.
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e L 0030 T FIG. 7. Oblique and vertex corrections for the
g° —0032 I ] electron effective couplings. The ellipses indicate
v e the 1o experimental region. Three values of the
-0.034 1 ool ] effective massn, are considered: 250 Geld),
T 350 GeV (b), and 450 GeV(c) and two split-
-0.036 - | tings: 10% (right) and 20%(left). The dotted
-0.038 - | lines correspond to including oblique corrections
—0038 - ] only. The coefficients of the four-fermion opera-
L i tors vary in the rangé—2, 2], and this spans the
oo L— —-0.040 P N B region between the two solid lines. The standard
=0.504 -0503 -0.502 -0.501 -0.500 0503 -0502 -03501 -0.500 model prediction(thick solid ling is shown for
g; m;=175.6 GeV and 7& M;=<1500 GeV.

some of them can be generated this yw&wven in this case it a better agreement with the central value.

seems just natural thafl,, (the scale-normalizing chirality- The modifications are more dramatic in the case of the
preserving operators for the third generation, thaisdow  second generation, for the muon, for instance. Now, we ex-
and not too different fromA, . Thus the logarithmic en- pect changes in th&’s and, eventually, in the effective cou-
hancement is pretty much absent in this case and some of tiings of O(10%). These modifications are just at the limit
approximations made become quite questionable in this casef being observable. They could even modify the relation
(Although even for théb couplings there is still a relatively betweenM,y andG,, (i.e., Ar).

large contribution to th&;'s coming from long-distance con- Figure 8 shows a similar plot for the bottom effective
tributions)  Put in other words, unless an additional mecha-couplingsg®, g . It is obvious that taking generic values for
nism is invoked, it is not really possible to make definitethe four-fermion operatorgof O(1)] leads to enormous
estimates for thév effective couplings without getting into  modifications in the effective couplings, unacceptably large
the details of the underlying theory. The flavor dynamics andn fact. The corrections become more manageable if we al-
electroweak breaking are completely entangled in this caséow for a smaller variation of the four-fermion operator co-
If one only retains the long-distance panthich is what we efficients (in the range[—0.1,0.T). This suggests that the
have done in practige we can, at best, make order-of- natural order of magnitude for the mas, is ~ 10 TeV, at
magnitude estimates. However, what is remarkable in a wajeast for chirality preserving operators. As we have dis-
is that this does not happen for the first and second genergussed, the corrections can be of either sign.

tion vertex corrections. The effect of flavor dynamics can One could, at least in the case of degenerate masses,
then be encoded in a small number of coefficients. translate the experimental constraints on therecall that

We shall now discuss in some detail the numerical contheir experimental determination requires a combination of
sequences of our assumptions. We shall assume the above

values for the mass scaM; in other words, we shall place -0.330
ourselves in the most disfavorable situation. We shall only g'g,
present results for QCD-like theories amgl=4 exclusively. ~0335
For other theories the appropriate results can be very easily
obtained from our formulas. For the coefficiert, AR,

ag,L . etc., we shall use the range of variation2,2] [since
they are expected to be ¢¥(1)]. Of course, larger values of

-0.340

the scaleM would simply translate into smaller values for -0.345
those coefficients, so the results can be easily scaled down.
Figure 7 shows the,, gy electron effective couplings ~0.350 . . .
when vertex corrections are included and allowed to vary 0510 -0.505 -0.500 -0.495 -0.490
within the stated limits. To avoid clutter, the top quark mass gb

is taken to the central value 175.6 GeV. The standard model

T . . FIG. 8. Bottom effective couplings compared to the SM predic-
prediction is shown as a function of the Higgs boson mass, o m=175.6 as a function of the Higgs boson maissthe

The dotted lines in Fig. 7 correspond to considering oblique nge[70,1500 GeV). The ellipses indicate 1-, 2-, anddexperi-

. . I
corrections only. Vertex corrections change these results an;ﬁemal regions. The dynamically generated masses are 250 GeV

dfapending on the _values of the four-fermipn operat_or _co.effi-(a)’ 350 GeV/(b), and 400 GeM(c), and we show a 20% splitting
cients, the prediction can take any value in the strip limitet,enyeen the masses in the heavy doublet. The degenerate case does
by the two solid linedas usual, we have no specific predic- hot present quantitative differences if we consider the experimental
tion in the direction along the strip due to the dependence 0Byrors, The central lines correspond to including only the oblique

A, inherited from the non renormalizable character of thegorrections. When we include the vertex correctiéaispending on
effective theory. A generic modification of the electron cou- the size of the four-fermion coefficientswe predict the regions

plings is of O(10™°), small, but much larger than in the between lines indicated by the arrows. The four-fermion coeffi-
standard model and, depending on its sign, may help to bringients in this case take values in the rafig®.1,0.1.
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charged and neutral processes, since there are six of them 1"y, wherey=q, ,qg andI’ contains a covariant derivative
the coefﬂqents of .the four-fermlpn operators. Doing soDM and an arbitrary number @ matrices. These operators
would provide us with a four-fermion effective theory that st pe gauge invariant so not any form Iofis possible.

would exactly reproduce all the available data. It is obviousy;oreover. we can drop total derivatives and, siktés uni-
however, that the result would not be very satlsfactorytary, we have the following relation:

While the outcome would, most likely, be coefficients of
O(1) for the electron couplings, they would have to be of
O(10™1), perhaps smaller for the bottom. Worse, the same D,U=-U(D,U)"U. (A1)
masses we have used lead to unacceptably low values for the

top quark masg105. Allowing for a different scale in the Apart from the obvious structuf® ,U which transform as)
chirality-flipping operators would permit a large top quark does, we immediately realize that the particular fornGef
mass without affecting the effective couplings. Taking this agmplies the following simple transformations for the combi-
a tentative possibility, we can pose the following problem:nationsU U™ and (DMU)7'3UT:

measure the effective couplings for all three generations
and determine the values of the four-fermion operator coef-
ficients and the characteristic mass scale that fits the data
best. In the degenerate mass limit we have a total of 8 un-
knowns[5 of them coefficients, expected to be®@¢1)] and (D,U)7UT—G, (D, ,U)RUTG!. (A3)

18 experimental valueghree sets of the,). A similar exer- K’ K -

cise could be attempted in the chirality-flipping sector. If thekeeping all these relations in mind, we simply write down
solution to this exercise turned out to be mathematically CoON|l the possibilities forgT ¢ and find the list of operators

sistent (within the experimental erroysit would be ex- (8)—(15). It is worth mentioning that there appears to be

treme!y Interesting. A.negauve resu!t would certainly ru.leanother family of four operators in which thématrices also
out this approach. Notice that dynamical symmetry breaking

predicts the patters,~m , while in the standard mode occur within a traceyI"trI"’. One can check, however,

uruTUt—=G UAUTG/, (A2)

—m2 that these are not independent. More precisely,
f .
We should end with some words of self-criticism. It may
seem that the previous discussion is not too conclusive and iq_Ly“thr(DﬂU)r3UT=£ﬁ, (A4)

that we have managed only to rephrase some of the long-

standing problems in the symmetry breaking sector. How-

ever, theraison d’dre of the present paper is not really to

propose a solution to these problems, but rather to establish a

theoretical framework to treat them systematically. Experi- iq_Ry“thr(DMU)r:gUT: £Z, (A6)

ence from the past shows that often the effects of new phys-

ics are magnified and thus models are ruled out on this basis,

only to find out that a careful and rigorous analysis leaves iRy Tgrtr(D ,U) U = L3+ £5. (A7)

some room for them. We believe that this may be the case in

dynamical symmetry-breaking models, and we believe too Note thatZ] (as well asCj discussed aboyecan be re-

that only through a detailed and careful comparison with theluced by equations of motion to operators of lower dimen-

experimental data will progress take place. sion which do not contribute to the physical processes we are
The effective Lagrangian provides the tools to look for aninterested in. We have checked that its contribution indeed

“existence proof” (or otherwisg¢ of a phenomenologically drops from the relevars-matrix elements.

viable, mathematically consistent dynamical symmetry-

ig y*UrUTq tr(D ,U) U T= — L3+ 23, (A5)

breaking model. We hope that there will be any time soon APPENDIX B: FEYNMAN RULES
sufficient experimental data to attempt to determine the four- _ _ _
fermion coefficients, at least approximately. We write the effectived =4 Lagrangian as
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AEN950590-0695 and CIRIT contract GRQ93-1047. more convenient to work with the physical fiedé®, Z, and

vin the former case, whereas the use of the Lagrangian fields

WL, W2, W3, andB is clearly more straightforward for the
The procedure we have followed to obtain E(®—(15)  latter. Thus we give the Feynman rules in terms of both the

is very simple. We have to look for operators of the form physical and unphysical basis:

APPENDIX A:  d=4 OPERATORS
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ZV'
d d i 1
_.g‘ - —‘5—7u{5(—51+62+54+66)—53—65

QSWCW
2 1
- (1 - gs%,v> 57 + §s€V 5’}

1
oo rs {5 (B8 = 84+ 80) + = s

ie

2swew
+ (1 - %s%) 67 + %5%4/ 5’} (B2)
Zy
U U ie 1
a AU CRLELEL B
4 2
- (1 - ES%V) 57 + 'gs%/y 6/}
ie
+ 23ch7”75 { ( 51 - 52 + (54 - 56) + 53 - 65
4, 2,
+ (1 - §sW) o7 + 35w 6’} (B3)
Ay
d d 1 1 .1 !
= —1e§7u (57 + 55') + 1657#75 (57 - §5l> (B4)
Ay
U U .2 1 .2 1
= —165’)’” (67 + §6l> + 16'3'7}1-75 (67 - 56,) (BS)
wr
d {7 1
= e, (81 4 65 — 02 + &)
. 1
lem%ﬁ% (61 + 64 + 62 — b6) (B6)

The operatorsC} and £} contribute to the two-point function. The relevant Feynman rules are

u U
= (674 16" +i(=67 + £8)ps (B7)

d d
= (=07 — 38)p+ (67 - $8)Ps (B8)

Rather than giving the actual Feynman rules in the unand £, can be determined from the matching of the two-
physical basis, we collect the various tensor structures thqjomt funcuons The corresponding contributions of these
can result from the calculation of the relevant diagrams instructures tod;,...,8 are also given in Table IV. Oncé,
Table IV. We include only those that can be matched tohas been replaced by its value, obtained in the matching of
insertions of the operators}, ... £4 (the contributions tc£4 the two-point functions, only the listed structures can show
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TABLE IV. Various structures appearing in the matching of the

Al ] ’
vertex and the corresponding contributionssig- -+, 5. oy byl [ReL], (CH
Tensor structure 51 6, O3 04 Os O YLyH i ¢R7M YR, (C6)
Hr— I\A/L 2\A2
!q_ngT Wt Weg L ! where the prime is not necessary in the second equation
ig.*[oW—g'Bla, 1 -1 becauseR and L suffice to remind us that the twgy
iq [gW*—g'Bla, -1 and  may carry different[Su?2), technicolor...] in-
iqral W+ PW 0k -1 1 dices. There appear to be four other independent scalar
igrT[gWe—g'Blag -1 -1 operators: g y* ¢ iy, [ReL] diyryrip, and
igrlgWe—g'Blar -1 o Yripro ¢ . However, Fierz symmetry implies that
the first three are not independent, and the fourth one van-
ishes, as can be also seen using the identity*2y°
up in the matching of the vertex: otherwise, the(3JXU(1) = E#VPAUP)\, For each of the two operators in E@4), two
symmetry would not be preserved. independent scalars can be constructed. Our choice is

APPENDIX C: FOUR-FERMION OPERATORS - 7
IR Yr  [ReL, (C7)

The complete list of four-fermion operators relevant for
the present discussion is in Tables | and Il in Sec. VI. It is — .,
also explained in Sec. VI the convenience of Fierzing the iriyr [RoL].
operators in the last seven rows of Table | in order to writ
them in the formJ-j. Here we just give the list that comes . , =
out naturally from our analysis, Tables | and II, without fur- YL ¥R TR [R=L], do dripo,,dr [RoL
ther physical interpretation. The list is given for fermions Which, nevertheless, can be shown not to be independent but
belonging to the representatidof SU3), (techniquarks  related to Eqs(C7) and (C8) by Fierz symmetry. To sum-
By using Fierz transformations one can easily find out rela/Marize, the independent scalar structures are @&, (C6),
tions among some of these operators when the fermions af€?), and(C8). , )
color singlet(technileptony which is telling us that some of  Next, we combine the color and the Dirac structures. We
these operators are not independent in this case. A list gfo this for the different case€5)—(C8) separately. For op-
independent operators for technileptons is also given in Se&rators of the forn{C5), we have the two obvious possibili-

(C8)

eAgain, there appear to be four other scalar operators:

VI ties (hereafter, color and Dirac indices will be implicit
Let us outline the procedure we have followed to obtain
this basis in themore involved case of colored fermions. Gy ) Wy ) [ReL, (C9)
There are only two color singlet structures one can build
out of four fermions, namely, o o
(" v WLy [ReL (C10
() (4’ ‘V)E‘ﬂa‘ﬂa‘p/ﬁ% (€D \where fields in parentheses have their color indices con-

tricted as in_Eqs(Cl) and (C2). Note that the operator
(K- B XU)= TN g T N),a05, (€2 (P*Nn)-(BLy, Xy, or s R version, is not indepen-
dent [recall that §),z-(N),5=28,505,—2/358,55,5]. For
wherey stands for any field belonging to the representatioroperators of the forniC6), we take
3 of SU(3). (¢ will be eitherq or Q), a8, ..., arecolor

indices, and the prime$) remind us thaty and carry same

additional indicegDirac, SU?2), ... ]. WLy ) (Ury,utm), (C1y
Next, we clasify the Dirac structures. Singeas eithery,
[it belongs to the representatidk0) of the Lorentz group (P Y N - (Yry N UR). (C12
or ¢ [representatior{0,3)], we have five sets of fields to a
analyze, namely, Finally, for operators of the forniC7) and(C8), our choice
is

{ZL!(//L!EII_I#I,_} [RHL]! {EL!lr/lLvER!lrllR}! (C3) _ _ . .
(LR (P Yr) [RoL] (dihyr)- (Y NgR)  [ReL],

o (€13
{4 ¥r ¥ ¥r) [ReL] (CH

There is only an independent scalar we can build with eachy, %) (4] yr) [R=L], (U NgR) - (U{Nyr) [ReL].

of the three sets in EQCJ3). Our choice is (C19
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All them are independent unless further symmetfies., =t el 301 (O 3q 7
SU(2), X SU(2)g] are introduced. (GrY* 17 QrIN(Qr7,l 7°R])
To introduce the S(2), X SU(2)g symmetry, one just as- = (ERV'MQR)(aRY,uqR)+(ER7MTSQR)(6R7’M73C]R)
signs SW2) indices(i, j, k, . . .) to each of the fields in Egs. . S
(C9—(C14. We can drop the primes hereafter since there is —(ArY*QR)(QRY,.AR) (C22

no other symmetry left but technicolor, which for the present
analysis is trivial(recall that we are only interested in four-

fermion operators of the forr@@qﬁ thus, technicolor indi- (5'&7“[73%]1)(@?7 [Qg])

ces must necessarily be matched in the obvious way: o o
Q"Q"qq). For each of the operators in E4E9) and(C10), =(Gr7"dR)(QrY,QR) + (ArY*7°dR)(QrY,™°QR)
there are two independent ways of constructing(ZU . = i

X SU(2)g invariants. Only two of the four resulting operators ~(ArY"AR)(QrY,QR) (C23

turn out to be independertactually, the other two are ex-
actly equal to the first ongsThe independent operators are

chosen to be (Gr¥*L 7°dr])(QkY,.QR) + (ARY*ak) (QkY.[ QR
= (ER')’MQR)(GR'YM Qg + (GR)’MTE'QR)(aR?’MQR) .

DLy g (L) =Py o) (L i) [RH(LC]:,l ; 24

— T i Our final choice of custodially breaking operators is the
(WLy"v Ly [ReL] (€18  one in the right columns of Tables I and II.

For each of the operators in Eq&C11)—(C14), the same

straightforward group analysis shows that there is only oneaAPPENDIX D: RENORMALIZATION OF THE MATTER
way to construct an S@), X SU(2)g invariant. Discarding SECTOR

the redundant operators and imposing hermiticity &@fel o ) o
invariance, one finally has, in addition to the operat@s5) ' 'Although' most of the material in th!s section is stand.ard,
and (C16), those listed beloifrom now on, we understand it is convenient to collect some of the important expressions,

that fields in parenthesis have their Dirac, color, and als®S the renormalization of the fermion fields is somewhat in-
flavor indices contracted as in E€C15)]: volved and also to set up the notation. Let us introduce three

wave-function renormalization constants for the fermion

_ _ fields:
(lﬂL’YMlﬂL)(lﬂR’}’#‘ﬂR)- (C17
— e — - u 12 Y
(m"AwL)~(me>\¢R), (C19 (d)L_’ZL (d)L'
(PLUR) (W R) €icein + (WD) (Wi €iceyr , (CL9)
ur— (Zp) YR, (D1)
(PINUR) - (WEN PR €iceji + (WRAYL) - (WRN UL € -
(€20 de— (ZR) Ydg,

We are now in a position to obtain very easily the custo-
dially preserving operators of Tables | and Il. We simply whereu(d) stands for the field of the up-typ@lown-type
replacey by g andQ (a pair of each: a field and its conju- fermion. We write
gate in all possible independent ways.

To break the custodial symmetry we simply insettma-
trices in theR sector of the custodially preserving operators Zi=1+0Z;. (D2)
we have just obtainedeft columns of Tables | and )l How-

ever, not all the operators obtai_ned this. way are independefe also renormalize the fermion masses according to
since one can prove the following relations:

(AR Y“QR)(Qky, [ ar]") mg— M+ dmy (D3)

= (Gr?*°Qr)(QrY,0r) + (GrY*Qr)(QrY,7°0r)  wheref=u,d. These substitutions generate the counterterms
— 3 v/ i needed to cancel the UV divergences. The corresponding
—(GrY*[ ™ Qr]")(QRY,IR) (C2)  Feynman rules are
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q__ﬁ&___ T _ 1624 p —i8Z]pvs —i (én%f +6Z{,) (D4)
Zu
1 7 : Z Z
= = levu(vf —asy5)(627 - 6Z5)
- ie7, Qs (8628 - 5277)
. 574, 624
ley,(vf 6Zi +ay 8Zy)
+ ieyurs(vy 625 + a5 62Y) (DS)
Ay
q q
= - 7. Qs(62] - 623 + 82} - 6Z} %)
w — devilve —ae v 8227 — 522N (D6)
al W[}'
d U e
= — i (1= s5) (62V - 62ZY +6Z
12\/§SWW( 7s) (827 2 L) (D7)
|
Here we have introduced the notation My 4 - -
= =3 mE )~ 3EUmE ), (D14)
67, =624+ 6229, 6z%9= 5799525 (D8) ud
and 8Zy=3y(mj) +2mi[3Y (M) +3§'(m§)], (D15
17—2Qssy 17
= 2swCw af:25\/\/Cw' (D9) 6Z3"= _EX'd(mﬁ,d)' (D16)

Note that the Feynman rules for the vertices contain addiwhereE’(mz)=[a2(p2)/ap2]pz:mz. Equation(D14) guar-
tional renormalization constants which should be familiarantees thatm,, my are the physical fermion masses. The
from the oblique corrections. other two equations come from requiring that the residue of
The fermion self-energies can be decomposed as the down-type fermion be unity. One cannot simultaneously
‘ <2 , ‘2 . impose this condition to both up- and down-type fermions.
ZH(P)=p'Zy(P) TP ys2a(P) +MIg(p9). (D10)  Actually, one can easily work out the residue of the up-type

: : .__fermions, which turn H 8,65 With
By adding the conterterms one obtains the renormalized oo WHIC turns out to be-f dyes wit

self-energies, which admit the same decomposition. One has cu St U2
R 5res:2V(mu) + 2mu[zv (mu)+zs (mu)]' (D17)
SU(p?A)=324(p?) - 62)), (D11)

2 APPENDIX E: EFFECTIVE LAGRANGIAN
Zh(P)=ZA(p2)+ 5Z5, (B12) COEFFICIENTS

af, o (. oMy ; In this appendix we shall provide the general expressions
25(p)=25(p) + ™ +0Zy, (D13 for the coefficients, and 8, in theories of the type we have
been considering. The results are for the usual representa-
where the caret denotes renormalized quantities. The onions of SU2)XSU(3).. Extension to other representations
shell renormalization conditions amount to is possible using the prescriptions listed in Sec. VIII:
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Nrchp [ M3+mi  m2ms3In (m3/m3)

a =
0" 64w2M2s3,

2_ 2
2 m5—mj

1 3(1 | A? E1
Tlezglz 92/ o
a__nTan nTC(nQ_3nL)nm_§
7 96m? 3xX96m* ' 'mj
+—1 '] I A E2
67212\ 092" (E2
_ Nye(net1) 1
8 96m°  (m5—mj3)
| 2mi— 2 S
3 1 3 21112 3 2
2 2 2
ms+m;  mj
+(m‘21—4m§m§+ m‘ll) mln E] , (E3)

wheren+¢ is the number of technicoloigaken equal to 2 in
all numerical discussionsandnp is the number of techni-
doublets. It is interesting to note that all effective Lagrangian
coefficients(except fora;) depend omy and are indepen-
dent of the actual hypercharder charge assignmentng

PHYSICAL REVIEW D 60 114035

andn_ are the actual number of techniquarks and technilepwhere

tons. In the one-generation mode}=3, n_ =1, and, conse-
qguently,np=4. Furthermore, in this model; is mass inde-
pendent. For simplicity, we have writtem; for the
dynamically generated mass of theype technifermion and

m, for the one of thal-type, and assumed that they are the
same for all doublets. This is of course quite questionable as
a large splitting between the technielectron and tech-
nineutrino seems more likely and they should not necessarily
coincide with techniquark masses, but the appropriate ex-
pressions can be easily inferred from the above formulas

anyway:

2 2 2 2 2
B NpnNrcG*  [mi+m; m? m3
O T VLA R B i

2 2
2 ma

m; —mj

NpntcG? )
6= W{(aLRB_aR%)Af +agzA, tag,B.},
(E9
NpntcG?
d3= W{(aLZ_ ar)A-tagy ALl (E6)
NpncG?  [mi+m; 2 m3
4= Ten2MZ &) 5 Tyl 2" m2 |09M2
2 2
m; m;
+m§ 1—W) |ngl, (E7)
NpNtcG?
5= W{(am_ ar,)A-+arrA+l, (E8)
5, oG A_+ageA, +ag B
G—W{(aLRB_aRRS) - TarIAL T ag, -4
(E9
8,=0, (E10
2 2
m m
A.=Fm? IogM—lz— m3 IogM—Zz, (E12)

2
B.=+2mm,—m? 1+ Erznl_mzz Iogmlz
- mi—mj; M

2m,m m2
_m2l 12 _2
mz(l_mé—mi)logMz' (E12

log—> We have not bothered to write the chiral divergence counter-
M terms in the above expressions. They are identical to those of
m Sec. VIII. Although we have written the full expressions ob-
14 ——2_|log—2 E4 tained using chiral quark model methods, one should be well
+ 092 (E9) e .
M aware of the approximations made in the text.
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