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Effective electroweak chiral Lagrangian: The matter sector
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We parametrize in a model-independent way possible departures from the minimal standard model predic-
tions in the matter sector. We only assume the symmetry breaking pattern of the standard model and that new
particles are sufficiently heavy so that the symmetry is nonlinearly realized. Models with dynamical symmetry
breaking are generically of this type. We review in effective theory language to what extent the simplest
models of dynamical breaking are actually constrained and the assumptions going into the comparison with
experiment. Dynamical symmetry breaking models can be approximated at intermediate energies by four-
fermion operators. We present a complete classification of the latter when new particles appear in the usual
representations of the SU(2)L3SU(3)c group as well as a partial classification in the general case. We discuss
the accuracy of the four-fermion description by matching to a simple ‘‘fundamental’’ theory. The coefficients
of the effective Lagrangian in the matter sector for dynamical symmetry breaking models~expressed in terms
of the coefficients of the four-quark operators! are then compared to those of models with elementary scalars
~such as the minimal standard model!. Contrary to a somewhat widespread belief, we see that the sign of the
vertex corrections is not fixed in dynamical symmetry breaking models. This work provides the theoretical
tools required to analyze, in a rather general setting, constraints on the matter sector of the standard model.
@S0556-2821~99!05621-0#

PACS number~s!: 12.39.Fe, 14.80.Bn, 14.80.Cp
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I. INTRODUCTION

The standard model of electroweak interactions has
now been impressively tested to the 1 part in 1000 le
thanks to the formidable experimental work carried out at
CERN e1e2 collider LEP and SLAC Linear collider~SLC!.
However, when it comes to the symmetry breaking mec
nism, clouds remain in this otherwise bright horizon.

In the minimal version of the standard model of ele
troweak interactions the same mechanism~a one-doublet
complex scalar field! gives masses simultaneously to theW
andZ gauge bosons and to the fermionic matter fields~other
than the neutrino!. In the simplest minimal standard mod
there is an upper bound onMH dictated by triviality consid-
erations, which hint at the fact that at a scale;1 TeV new
interactions should appear if the Higgs particle is not fou
by then @1#. On the other hand, in the minimal standa
model it is completely unnatural to have a light Higgs p
ticle since its mass is not protected by any symmetry.

This contradiction is solved by supersymmetric exte
sions of the standard model, where essentially the same s
metry breaking mechanism is at work, although the sca
sector becomes much richer in this case. Relatively light s
lars are preferred. In fact, if supersymmetry is to remai
useful idea in phenomenology, it is crucial that the Hig
particle be found with a massMH<125 GeV, or else the
theoretical problems, for which supersymmetry was invok

*Email address: bagan@ifae.es
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in the first place, will reappear@2#. A very recent two-loop
calculation@3# raises this limit somewhat, to about 130 Ge

A third possibility is the one provided by models of dy
namical symmetry breaking@such as technicolor~TC! theo-
ries@4##. Here there are interactions that become strong, ty
cally at the scaleLx.4pv (v5250 GeV), breaking the
global SU~2!L3SU~2!R symmetry to its diagonal subgrou
SU(2)V and producing Goldstone bosons which eventua
become the longitudinal degrees of freedom of theW6 and
Z. In order to transmit this symmetry breaking to ordina
matter fields, one usually requires additional interactio
characterized by a different scaleM. Generally, it is assumed
that M@4pv, to keep possible flavor-changing neutral cu
rent ~FCNC! under control@5#. Thus a distinctive character
istic of these models is that the mechanism giving masse
the W6 andZ bosons and to the matter fields is different.

Where do we stand at present? Some will go as far
saying that an elementary Higgs particle~supersymmetric or
otherwise! has been ‘‘seen’’ through radiative correction
and that its mass is below 200 GeV. Others dispute this
~see, for instance,@6# for a critical review of current claims
of a light Higgs boson!.

The effective Lagrangian approach has proved rema
ably useful in setting very stringent bounds on some type
new physics, taking as input basically the LEP@7# @and
SLAC Large Detector~SLD! @8## experimental results. The
idea is to consider the most general Lagrangian which
scribes the interactions between the gauge sector and
Goldstone bosons appearing after the SU~2!L3SU~2!R
→SU~2!V breaking takes place. No special mechanism
assumed for this breaking, and thus the procedure is c
pletely general, assuming of course that particles not exp
©1999 The American Physical Society35-1
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itly included in the effective Lagrangian are much heav
than those appearing in it. The dependence on the spe
model is contained in the coefficients of higher-dimensio
operators. So far only the oblique corrections have been
lyzed in this way.

Our purpose in this work is to extend these technique
the matter sector of the standard model. We shall write
leading nonuniversal operators, determine how their coe
cients affect different physical observables, and then de
mine their value in two very general families of mo
els: those containing elementary scalars and those with
namical symmetry breaking. Since the latter become non
turbative at theMZ scale, effective Lagrangian techniqu
are called for anyway. In short, we would like to provide t
theoretical tools required to test—at least in principle
whether the mechanism giving masses to quarks and fe
ons is the same as that which makes the intermediate ve
bosons massive or not without having to get involved in
specific details of particular models. This is mostly a the
retical paper, and we shall leave for a later work a m
detailed comparison with the current data.

II. EFFECTIVE LAGRANGIAN APPROACH

Let us start by briefly recalling the salient features of t
effective Lagrangian analysis of the oblique corrections.

Including only those operators which are relevant for o
lique corrections, the effective Lagrangian reads~see, e.g.,
@9,10# for the complete Lagrangian!

Leff5
v2

4
trDmUDmU†1a0g82

v2

4
~ trTDmUU†!2

1a1gg8trUBmnU†Wmn2a8

g2

4
~ trTWmn!2, ~1!

whereU5exp(itW•xW /v) contains the three Goldstone boso
generated after the breaking of the global symmetry SU~2!L
3SU~2!R→SU~2!V . The covariant derivative is defined by

DmU5]mU1 ig
tW

2
•WW mU2 ig8U

t3

2
Bm . ~2!

Bmn andWmn are the field-strength tensors corresponding
the right and left gauge groups, respectively,

Wmn5
tW

2
•WW mn , Bmn5

t3

2
~]mBn2]nBm!, ~3!

and T5Ut3U†. Only terms up to orderO(p4) have been
included. The reason is that dimensional counting argum
suppress, at presently accessible energies, hig
dimensional terms, under the hypothesis that all undete
particles are much heavier than those included in the ef
tive Lagrangian. While the first term on the right-hand si
~RHS! of Eq. ~1! is universal~in the unitary gauge it is jus
the mass term for theW6 andZ bosons!, the coefficientsa0 ,
a1 , anda8 are nonuniversal. In other words, they depend
the specific mechanism responsible for the symmetry bre
ing. @Throughout this paper the term ‘‘universal’’ mean
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‘‘independent of the specific mechanism triggering SU~2!L
3SU~2!R→SU~2!V breaking.’’#

Most Z-physics observables relevant for electrowe
physics can be parametrized in terms of vector and a
couplingsgV and gA . These are, in practice, flavor depe
dent since they include vertex corrections which depend
the specific final state. Oblique corrections are, however,
same for all final states. The nonuniversal~but generation-
independent! contributions togV and gA coming from the
effective Lagrangian~1! are

ḡV5a0g82@ I f
312Qf~2cW

2 2sW
2 !#12a1Qfg

2sW
2

12a8Qfg
2cW

2 , ~4!

ḡA5a0I f
3g82. ~5!

They do depend on the specific underlying breaking mec
nism through the values of theai . It should be noted tha
these coefficients depend logarithmically on some unkno
scale. In the minimal standard model the characteristic s
is the Higgs boson massMH . In other theories the scaleMH
will be replaced by some other scaleL. A crucial prediction
of chiral perturbation theory is that the dependence on th
different scales is logarithmic and actually the same. It
thus possible to eliminate this dependence by building s
able combinations ofgV and gA @11,12# determined by the
condition of the absence of logarithms. Whether this li
intersects or not the experimentally allowed region is a dir
test of the nature of the symmetry breaking sector, indep
dently of the precise value of Higgs boson mass~in the mini-
mal standard model! or of the scale of new interactions~in
other scenarios!.1

One could also try to extract information about the ind
vidual coefficientsa0 , a1 , anda8 themselves, and not only
on the combinations canceling the dependence on the
known scale. This necessarily implies assuming a spec
value for the scaleL, and one should be aware that whe
considering these cutoff-dependent quantities there are fi
uncertainties of the order of 1/16p2 associated with the sub
traction procedure—an unavoidable consequence of usin
effective theory, which is often overlooked.~And recall that
using an effective theory is almost mandatory in dynami
symmetry breaking models.! Only finite combinations of
coefficients have a universal meaning. The subtraction s
uncertainty persists when trying to find estimates of
above coefficients via dispersion relations and the like@13#.

In the previous analysis it is assumed that the hypothet
new physics contributions from vertex corrections are co
pletely negligible. But is it so? The way to analyze su
vertex corrections in a model-independent way is quite si
lar to the one outlined for the oblique corrections. We sh
introduce in the next section the most general effective
grangian describing the matter sector. In this sector ther

1Notice that, contrary to a somewhat widespread belief, the li
MH→` does not correspond a standard model ‘‘without the Hig
boson.’’ There are some nontrivial nondecoupling effects.
5-2
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EFFECTIVE ELECTROWEAK CHIRAL LAGRANGIAN: . . . PHYSICAL REVIEW D 60 114035
one universal operator@playing a role analogous to that o
the first operator on the RHS of Eq.~1! in the purely bosonic
sector#

Leff52vq̄LUyfqR1H.c., yf5y11y3t3 . ~6!

It is an operator of dimension 3. In the unitary gaugeU
51, it is just the mass term for the matter fields. For
stance, ifq̄L is the doublet (t̄ ,b̄),

mt5v~y1y3!5vyt , mb5v~y2y3!5vyb . ~7!

Nonuniversal operators carrying in their coefficients info
mation on the mechanism giving masses to leptons
quarks will be of dimension 4 and higher.

We shall later derive the values of the coefficients cor
sponding to operators in the effective Lagrangian of dim
sion 4 within the minimal standard model in the largeMH
limit and see how the effective Lagrangian provides a c
venient way of tracing the Higgs boson mass dependenc
physical observables. We shall later argue that nondec
pling effects should be the same in other theories involv
elementary scalars, such as, e.g., the two-Higgs-dou
model, replacingMH by the appropriate mass.

Large nondecoupling effects appear in theories of
namical symmetry breaking, and thus they are likely to p
duce large contributions to the dimension-4 coefficients
the scale characteristic of the extended interactions~i.e.,
those responsible for the fermion mass generation! is much
larger than the scale characteristic of the electroweak br
ing, it makes sense to parametrize the former, at least at
energies, via effective four-fermion operators.2 We shall as-
sume here that this clear separation of scales does take
and only in this case are the present techniques really a
rate. The appearance of pseudo Goldstone bosons~abundant
in models of dynamical breaking! may thus jeopardize ou
conclusions, as they bring a relatively light scale into t
game~typically even lighter than the Fermi scale!. In fact,
for the observables we consider that their contribution is
too important, unless they are extremely light. For instanc
pseudo Goldstone boson of 100 GeV can be accommod
without much trouble, as we shall later see.

The four-fermion operators we have just alluded to c
involve either four ordinary quarks or leptons~but we will
see that dimensional counting suggests that their contribu
will be irrelevant at present energies with the exception
those containing the top quark! or two new~heavy! fermions
and two ordinary ones. This scenario is quite natural in s
eral extended technicolor~ETC! or top condensate~TopC!
models@14,15#, in which the underlying dynamics is chara
terized by a scaleM. At scalesm,M the dynamics can be
modeled by four-fermion operators~of either technifermions

2While using an effective theory description based on fo
fermion operators alone frees us from having to appeal to any
ticular model, it is obvious that some information is lost. This iss
turns out to be a rather subtle one and shall be discussed and
tified in turn.
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in ETC models or ordinary fermions of the third family i
TopC models!. We perform a classification3 of these opera-
tors. We shall concentrate in the case where techniferm
appear in ordinary representations of SU~2!L3SU~3!c ~hy-
percharge can be arbitrary!. The classification will then be
exhaustive. We shall discuss other representations as
although we shall consider custodially preserving opera
only, and only those operators which are relevant for o
purposes.

As a matter of principle, we have tried not to make a
assumptions regarding the actual way different generat
are embedded in the extended interactions. In practice, w
presenting our numerical plots and figures, we are assum
that the appropriate group-theoretical factors are similar
all three generations of physical fermions.

It has been our purpose in this paper to be as genera
possible, not advocating or trying to put forward any partic
lar theory. Thus the analysis may, hopefully, remain use
beyond the models we have just used to motivate the p
lem. We hope to convey to the reader our belief that a s
tematic approach based on four-fermion operators and
effective Lagrangian treatment can be very useful.

III. MATTER SECTOR

Appelquist, Bowick, Cohler, and Hauser established so
time ago a list ofd54 operators@17#. These are the opera
tors of lowest dimensionality which are nonuniversal.
other words, their coefficients will contain information o
whatever mechanism nature has chosen to make quarks
leptons massive. Of course, operators of dimensionality 5
and so on will be generated at the same time. We shall
to these later. We have reanalyzed all possible indepen
operators ofd54 ~see the discussion in Appendix A!, and
we find the following ones:

L4
15 i q̄LU~D” U !†qL , ~8!

L4
25 i q̄RU†~D” U !qR , ~9!

L4
35 i q̄L~D” U !t3U†qL2 i q̄LUt3~D” U !†qL , ~10!

L4
45 i q̄LUt3U†~D” U !t3U†qL , ~11!

L4
55 i q̄Rt3U†~D” U !qR2 i q̄R~D” U !†Ut3qR , ~12!

L4
65 i q̄Rt3U†~D” U !t3qR , ~13!

L4
75 i q̄LUt3U†D” qL2 i q̄LD” †Ut3U†qL , ~14!

L485 i q̄Rt3D” qR2 i q̄RD” †t3qR , ~15!

-
r-

e
an-

3In the case of ordinary fermions and leptons, four-fermion ope
tors have been studied in@16#. To our knowledge a complete analy
sis when additional fields beyond those present in the stan
model are present has not been presented in the literature bef
5-3
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where it is understood that (D” U)†[gm(DmU)†. Each opera-
tor is accompanied by a coefficientd8,d1 ,d2 ,...,d7 ; thus, up
to O(p4), our effective Lagrangian is4

Leff5d8L481(
i 51

7

d iL4
i . ~16!

In the above,DmU is defined in Eq.~2!, whereas

DmqL5S ]m1 ig
tW

2
•WW m1 ig8YBmDqL , ~17!

DmqR5S ]m1 ig8
t3

2
Bm1 ig8YBmDqR , ~18!

whereY5I /6 for quarks andY52I /2 for leptons. This list
differs from the one in@17# by the presence of the last op
erator~15!. It will turn out, however, thatd8 does not con-
tribute to any observable. All these operators are invar
under local SU~2!L3U~1!Y transformations.

This list includes both custodially preserving operato
such asL4

1 andL4
2, and custodially breaking ones, such asL48

and L4
3 to L4

7. In the purely bosonic part of the effectiv
Lagrangian~1!, the first~universal! operator and the one ac
companyinga1 are custodially preserving, while those goin
with a0 and a8 are custodially breaking. E.g.,a0 param-
etrizes the contribution of the new physics to theDr param-
eter. If the underlying physics is custodially preserving on
d1 andd2 will get nonvanishing contributions.5

The operatorL4
7 deserves some comments. By using t

equations of motion, it can be reduced to the mass term~6!

d7vq̄LU~yt31y3!qR1H.c. ~19!

However, this procedure is, generally speaking, only justifi
if the matter fields appear only as external legs. For the t
being we shall keepL4

7 as an independent operator, and
the next section we shall determine its value in the minim
standard model after integrating out a heavy Higgs bos
We shall see that, after imposing that physical on-shell fie
have unit residue,d7 does drop from all physical predictions

What is the expected size of thed i coefficients in the
minimal standard model? This question is easily answere
we take a look at the diagrams that have to be compute
integrate out the Higgs field~Fig. 2!. Notice that the calcu-
lation is carried out in the nonlinear variablesU, hence the

4Although there is only one derivative in Eq.~16! and thus this is
a misname, we stick to the same notation here as in the pu
bosonic effective Lagrangian.

5Of course, hypercharge breaks custodial symmetry, since on
subgroup of SU~2!R is gauged. Therefore,all operators involving
right-handed fields break custodial symmetry. However, there
still a distinction between those operators whose structure is
mally custodially invariant~and custodial symmetry is broken on
through the coupling to the external gauge field! and those which
would not be custodially preserving even if the full SU~2!R were
gauged.
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appearance of the unfamiliar diagram~e!. Diagram ~d! is
actually of order 1/MH

2 , which guarantees the gauge indepe
dence of the effective Lagrangian coefficients. The diagra
are obviously proportional toy2, y being a Yukawa cou-
pling, and also to 1/16p2, since they originate from a one
loop calculation. Finally, the screening theorem shows t
they may depend on the Higgs boson mass only logarith
cally: therefore,

d i
SM;

y2

16p2 log
MH

2

MZ
2 . ~20!

These dimensional considerations show that the vertex
rections are only sizable for third generation quarks.

In models of dynamical symmetry breaking, such as
or ETC, we shall have new contributions to thed i from the
new physics~which we shall later parametrize with four
fermion operators!. We have several new scales at our d
posal. One isM, the mass-normalizing dimension-6 fou
fermion operators. The other can be eithermb ~negligible,
sinceM is large!, mt , or the dynamically generated mass
the techniquarksmQ ~typically of orderLTC, the scale asso
ciated with the interactions triggering the breaking of t
electroweak group!. Thus we can get a contribution of orde

d i
Q;

1

16p2

mQ
2

M2 log
mQ

2

M2 . ~21!

While mQ is, at least naively, expected to be.LTC and
therefore similar for all flavors, there should be a hierarc
for M. As will be discussed in the following sections, th
scaleM which is relevant for the mass generation~encoded
in the only dimension-3 operator in the effective Lagran
ian!, via techniquark condensation and ETC interaction
change~Fig. 1!, is the one normalizing chirality-flipping op
erators. On the contrary, the scale normalizing dimensio
operators in the effective theory is the one that normali
chirality-preserving operators. Both scales need not be
actly the same, and one may envisage a situation with r
tively light scalars present where the former can be mu
lower. However, it is natural to expect thatM should at any
rate be smallest for the third generation. Consequently,
contribution to thed i ’s from the third generation should b
largest.

We should also discuss dimension-5 -6, etc., opera
and why we need not include them in our analysis. Let
write some operators of dimension 5:

q̄LŴUqR1H.c., ~22!

q̄LUB̂qR1H.c., ~23!

ly

a

is
r-

FIG. 1. Mechanism generating quark masses through the
change of an ETC particle.
5-4
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q̄LsmnD [m
† Dn]UqR2q̄LsmnD [nUDm]qR1H.c., ~24!

q̄LUD2qR1H.c., ~25!

q̄LDm
† Ut3U†~DmU !qR2q̄LUt3U†~DmU !DmqR1H.c.,

~26!

¯ ,

where we use the notation Ŵ[ igsmnWmn , B̂
[ ig8smnBmn . These are a few of a long list of about 2
operators, and this including only the ones contributing
the ffZ vertex. All these operators are, however, chiral
flipping, and thus their contribution to the amplitude must
suppressed by one additional power of the fermion mas
This makes their study unnecessary at the present leve
precision. Similar considerations apply to operators of
mensionality 6 or higher.

IV. EFFECTIVE THEORY OF THE STANDARD MODEL

In this section we shall obtain the values of the coe
cients d i in the minimal standard model. The appropria
effective coefficients for the oblique correctionsai have been
obtained previously by several authors@11,12,18#. Their val-
ues are

a05
1

16p2

3

8 S 1

ê
2 log

MH
2

m2 1
5

6D , ~27!

a15
1

16p2

1

12S 1

ê
2 log

MH
2

m2 1
5

6D , ~28!

a850, ~29!

where 1/ê[1/e2gE1 log 4p. We use dimensional regular
ization with a spacetime dimension 422e.

We begin by writing the standard model in terms of t
nonlinear variablesU. The matrix

M5&~F̃,F!, ~30!

constructed with the Higgs doublet,F, and its conjugate
F̃[ i t2F* , is rewritten in the form

M5~v1r!U, U215U†, ~31!

wherer describe the ‘‘radial’’ excitations around the vacuu
expectation value~VEV! v. Integrating out the fieldr pro-
duces an effective Lagrangian of the form~1! with the values
of the ai given above~as well as some other pieces n
shown there!. This functional integration also generates t
vertex corrections~16!.

We shall determine thed i by demanding that the renor
malized one-particle irreducible~1PI! Green functionsĜ are
the same~up to some power in the external momenta a
mass expansion! in both the minimal standard model~SM!
and the effective Lagrangian. In other words, we require t
11403
o
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s.
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-

d

t

DĜ50, ~32!

where, throughout this section,

DG[GSM2Geff , ~33!

and the caret denotes renormalized quantities. This pro
dure is known as matching. It goes without saying that
doing so the same renormalization scheme must be used
on-shell scheme is particularly well suited to perform t
matching and will be used throughout this paper.

One only needs to worry about SM diagrams that are
present in the effective theory, namely, those containing
Higgs boson. The rest of the diagrams give exactly the sa
result, thus dropping from the matching. In contrast, the d
grams containing a Higgs propagator are described by lo
terms~such asL4

1 throughL4
7! in the effective theory: they

involve the coefficientsd i and give rise to the Feynman rule
collected in Appendix B.

Let us first consider the fermion self-energies. There
only one 1PI diagram with a Higgs propagator~see Fig. 2!. A
straightforward calculation gives

SSM
f 52

yf
2

16p2 H p” F1

2

1

ê
2

1

2
log

MH
2

m2 1
1

4G
1mfF1

ê
2 log

MH
2

m2 11G J . ~34!

DS f can be computed by subtracting Eqs.~B7!, ~B8! from
Eq. ~34!.

Next, we have to renormalize the fermion self-energi
We introduce the following notation:

DZ[ZSM2Zeff5dZSM2dZeff , ~35!

whereZSM (Zeff) stands for any renormalization constant
the SM ~effective theory!. To computeDŜ f , we simply add
to DS f the counterterm diagram~D4! with the replacements
dZV,A

f →DZV,A
f anddmf→Dmf . This, of course, amounts to

Eqs. ~D11!, ~D12!, and ~D13! with the same replacements
From Eqs.~D14!, ~D15!, and~D16! ~which also hold forDZ,
Dm, andDS!, one can expressDZV,A

f andDmf /mf in terms

of the bare fermion self-energies and finally obtainDŜ f . The
result is

DŜA,V,S
d 50, ~36!

DŜA
u50, ~37!

DŜV,S
u 54d72

1

16p2

yu
22yd

2

2 F1

ê
2 log

MH
2

m2 1
1

2G . ~38!

We see from Eq.~38! that the matching conditionsDŜV,S
u

50 imply

d75
1

16p2

yu
22yd

2

8 F1

ê
2 log

MH
2

m2 1
1

2G . ~39!
5-5
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The other matchings are satisfied automatically and do
give any information.

Let us consider the vertexffZ. The relevant diagrams ar
shown in Fig. 2@diagrams~b!–~e!#. We shall only collect the
contributions proportional togm andgmg5 . The result is

Gm
f f Z52

i

16p2

yf
2

2
gmH v f S 1

ê
2 log

MH
2

m2 1
1

2D
23afg5S 1

ê
2 log

MH
2

m2 1
11

6 D J . ~40!

By subtracting the diagrams~B2! and ~B3! from Gm
f f Z , one

getsDGm
f f Z . Renormalization requires that we add the cou

terterm diagram~D5! where, again,dZ→DZ. One can check
that bothDZ1

Z2DZ2
Z and DZ1

Zg2DZ2
Zg are proportional to

DSZg(0), which turns out to be zero. Hence the only re
evant renormalization constants areDZV

f and DZA
f . These

renormalization constants have already been determi
One obtains forDĜm

f f Z the result

DĜm
ddZ52

ie

2sWcW
gmH F1

2
~d12d42d22d6!1d31d5G

2g5F 1

16p2

yd
2

2 S 1

ê
2 log

MH
2

m2 1
5

2D
1

1

2
~d12d41d21d6!1d32d5G J , ~41!

DĜm
uuZ52

ie

2sWcW
gmH F1

2
~d12d42d22d6!2d32d5G

2g5F2
1

16p2

yu
2

2 S 1

ê
2 log

MH
2

m2 1
5

2D
2

1

2
~d12d41d21d6!1d32d5G J , ~42!

where use has been made of Eq.~39!. The matching condi-
tion DĜm

f f Z50 implies

FIG. 2. The diagrams relevant for the matching of the ferm
self-energies and vertices~counterterm diagrams are not included!.
Double lines represent the Higgs, dashed lines the Golds
bosons, and wiggly lines the gauge bosons.
11403
ot

-

d.

d12d452
1

16p2

yu
21yd

2

4 S 1

ê
2 log

MH
2

m2 1
5

2D , ~43!

d21d652
1

16p2

yu
21yd

2

4 S 1

ê
2 log

MH
2

m2 1
5

2D , ~44!

d35
1

16p2

yu
22yd

2

4 S 1

ê
2 log

MH
2

m2 1
5

2D ,

~45!

d552
1

16p2

yu
22yd

2

4 S 1

ê
2 log

MH
2

m2 1
5

2D .

~46!

To determine completely thed i coefficients we need to
consider the vertexudW. The relevant diagrams are anal
gous to those of Fig. 2. A straightforward calculation give

DĜm
udW5

ie

4&sW

gmH F yuyd

16p2 S 1

ê
2 log

MH
2

m2 1
5

2D 12d222d6G
3~11g5!2Fyu

21yd
2

16p2

1

2 S 1

ê
2 log

MH
2

m2 1
5

2D
12d112d4G~12g5!J . ~47!

The matching conditionDĜm
udW50 amounts to the following

set of equations:

d22d652
1

16p2

yuyd

2 S 1

ê
2 log

MH
2

m2 1
5

2D , ~48!

d11d452
1

16p2

yu
21yd

2

4 S 1

ê
2 log

MH
2

m2 1
5

2D . ~49!

Combining these equations with Eqs.~43!,~44!, we finally
get

d152
1

16p2

yu
21yd

2

4 S 1

ê
2 log

MH
2

m2 1
5

2D , ~50!

d252
1

16p2

~yu1yd!2

8 S 1

ê
2 log

MH
2

m2 1
5

2D , ~51!

d450, ~52!

d652
1

16p2

~yu2yd!2

8 S 1

ê
2 log

MH
2

m2 1
5

2D . ~53!

This, along with Eqs.~45!, ~46! and Eq.~39!, is our final
answer. These results coincide, where the comparison is
sible, with those obtained in@19# by functional methods. It is
interesting to note that it has not been necessary to cons
the matching of the vertexf f g.

We shall show explicitly thatd7 drops from theS-matrix
element corresponding toZ→ f f̄ . It is well known that the

ne
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renormalized u-fermion self-energy has residue 11d res,
whered res in given in Eq.~D17! of Appendix D. Therefore,
in order to evaluateS-matrix elements involving externalu
lines at one loop, one has to multiply the corresponding a
putated Green functions by a factor 11nd res/2, wheren is
the number on externalu lines ~in the case under conside
ation n52!. One can check that when this factor is tak
into account, thed7 appearing in the renormalizedS-matrix
vertex are canceled.

We notice thatd1 andd2 indeed correspond to custodial
preserving operators, whiled3 to d6 do not. All these coef-
ficients ~just asa0 , a1 , and a8! are ultraviolet divergent.
This is so because the Higgs particle is an essential ingr
ent to guarantee the renormalizability of the standard mo
Once this is removed, the usual renormalization proc
~e.g., the on-shell scheme! is not enough to render a
‘‘renormalized’’ Green functions finite. This is why the ba
coefficients of the effective Lagrangian~which contribute to
the renormalized Green functions either directly or via co
terterms! have to be proportional to 1/e to cancel the new
divergences. The coefficients of the effective Lagrangian
manifestly gauge invariant.

What is the value of these coefficients in other theor
with elementary scalars and a Higgs-like mechanism? T
issue has been discussed in some detail in@20# in the context
of the two-Higgs-doublet model, but it can actually be e
tended to supersymmetric theories~provided of course sca
lars other than theCP-even Higgs can be made heav
enough; see, e.g.,@21#!. It was argued there that nondeco
pling effects are exactly the same as in the minimal stand
model, including the constant nonlogarithmic piece. Sin
the d i coefficients contain all the nondecoupling effects
sociated with the Higgs particle at the first nontrivial order
the momentum or mass expansion, the low-energy effec
theory will be exactly the same.

V. OBSERVABLES

The decay width ofZ→ f f̄ is described by

G f[G~Z→ f f̄ !54ncG0@~gV
f !2RV

f 1~gA
f !2RA

f #, ~54!

wheregV
f andgA

f are the effective electroweak couplings
defined in@22# andnc is the number of colors of fermionf.
The radiation factorsRV

f andRA
f describe the final state QED

and QCD interactions@23#. For a charged lepton we have

RV
l 511

3ā

4p
1OXā2,S ml

MZ
D 4C,

RA
l 511

3ā

4p
26S ml

MZ
D 2

1OXā2,S ml

MZ
D 4C,

whereā is the electromagnetic coupling constant at the sc
MZ andml is the final state lepton mass.

The tree-level widthG0 is given by
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G05
GmMZ

3

24&p
. ~55!

If we define

r f[4~gA
f !2, ~56!

s̄W
2 [

I f
3

2Qf
S 12

gV
f

gA
f D , ~57!

we can write

G f5ncG0r f@4~ I f
322Qfs̄W

2 !2RV
f 1RA

f #. ~58!

Other quantities which are often used areDr f , defined
through

r f[
1

12Dr f
, ~59!

the forward-backward asymmetryAFB
f ,

AFB
f 5

3

4
AeAf , ~60!

andRb ,

Rb5
Gb

Gh
, ~61!

where

Af[
2gV

f gA
f

~gA
f !21~gV

f !2 ,

andGb , Gh are theb partial width and total hadronic width
respectively~each of them, in turn, can be expressed in ter
of the appropriate effective couplings!. As we see, nearly al
of Z physics can be described in terms ofgA

f and gV
f . The

box contributions to the processe1e2→ f f̄ are not included
in the analysis because they are negligible and they ca
be incorporated as contributions to effective electrowe
neutral current couplings anyway.

We shall generically denote these effective couplings
gf . If we express the value they take in the standard mo
by gf ~SM!, we can write a perturbative expansion for them
the following way:

gf ~SM!5gf ~0!1gf ~2!1ḡf~aSM!1ĝf~dSM!, ~62!

wheregf (0) are the tree-level expressions for these form f
tors andgf (2) are the one-loop contributions which do n
contain any Higgs particle as internal line in the Feynm
graphs. In effective Lagrangian language they are gener
by the quantum corrections computed by operators suc
~6! or the first operator on the RHS of Eq.~1!. On the other
hand, the Feynman diagrams containing the Higgs part
contribute togf ~SM! in a twofold way. One is via theO(p2)
andO(p4) Longhitano effective operators~1! which depend
5-7
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on theai coefficients, which are Higgs-boson-mass dep
dent, and thus give a Higgs-boson-dependent oblique cor
tion to gf ~SM!, which is denoted byḡf . The other one is via
genuine vertex corrections which depend on thed i . This
contribution is denoted byĝf .

The tree-level value for the form factors are

gV
f ~0!5I f

322sW
2 Qf , gA

f ~0!5I f
3. ~63!

In a theory X, different from the minimal standard mod
the effective form factors will take valuesgf ~X!, where

gf ~X!5gf ~0!1gf ~2!1ḡf~aX!1ĝf~dX!, ~64!

and theaX anddX are effective coefficients corresponding
theory X.

Within one-loop accuracy in the symmetry-breaking s
tor ~but with arbitrary precision elsewhere!, ḡf and ĝf are
linear functions of their arguments and thus we have

gf ~X!5gf ~SM!1ḡf~aX2aSM!1ĝf~dX2dSM!. ~65!

The expression forḡf in terms ofai was already given in
Eqs. ~4! and ~5!. On the other hand, from Appendix B w
learn that

ĝV
f ~d1 ,...,d6!5I f

3~d12d42d22d6!2d32d5 , ~66!

ĝA
f ~d1 ,...,d6!5I f

3~d12d41d21d6!2d31d5 . ~67!

In the minimal standard model all the Higgs depende
at the one-loop level~which is the level of accuracy assume
here! is logarithmic and is contained in theai andd i coeffi-
cients. Therefore one can easily construct linear comb
tions of observable where the leading Higgs dependence
cels. These combinations allow for a test of the minim
standard model independent of the actual value of the H
boson mass.

Let us now review the comparison with current ele
troweak data for theories with dynamical symmetry bre
ing. Some confusion seems to exist on this point, so let us
to analyze this issue critically.

A first difficulty arises from the fact that at theMZ scale
perturbation theory is not valid in theories with dynamic
breaking and the contribution from the symmetry break
sector must be estimated in the framework of the effec
theory, which is nonlinear and nonrenormalizable. Obse
able will depend on some subtraction scale.~Estimates based
on dispersion relations and resonance saturation amoun
practice, to the same, provided that due attention is pai
the scale dependence introduced by the subtraction in
dispersion relation.!

A somewhat related problem is that, when making use
the variablesS, T and U @13#, or e1 , e2 , and e3 @24#, one
often sees in the literature bounds on possible ‘‘new ph
ics’’ in the symmetry breaking sector without actually r
moving the contribution from the standard model higgs b
son that the ‘‘new physics’’ is supposed to replace~this is
not the case, e.g., in@13# where this issue is discussed wi
some care!. Unless the contribution from the ‘‘new physics
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is enormous, this is a flagrant case of double counting, bu
is easy to understand why this mistake is made: remov
the Higgs boson makes the standard model nonrenorm
able, and the observable of the standard model without
Higgs boson depend on some arbitrary subtraction scale

In fact, the two sources of arbitrary subtraction scales~the
one originating from the removal of the Higgs boson and
one from the effective action treatment! are one and the sam
and the problem can be dealt with the help of the coefficie
of higher-dimensional operators in the effective theory~i.e.,
the ai andd i!. The dependence on the unknown subtract
scale is absorbed in the coefficients of higher-dimensio
operators and traded by the scale of the ‘‘new physic
Combinations of observable can be built where this sc
~and the associated renormalization ambiguities! drops.
These combinations allow for a test of the ‘‘new physic
independently of the actual value of its characteristic sc
In fact, they are the same combinations of observable wh
the Higgs dependence drops in the minimal standard mo

A third difficulty in making a fair comparison of model
of dynamical symmetry breaking with experiment lies in t
vertex corrections. If we analyze the lepton effective co
plingsgA

l andgV
l , the minimal standard model predicts ve

FIG. 3. The 1-s experimental region in thegA
e-gV

e plane. The
standard model predictions as a function ofmt (170.6<mt

<180.6 GeV) andMH (70<MH<1000 GeV) are shown~the
middle line corresponds to the central valuemt5175.6 GeV!. The
predictions of a QCD-like technicolor theory withnTCnD58 and
degenerate technifermion masses are shown as straight lines~only
oblique corrections are included!. One moves along the straigh
lines by changing the scaleL. The three lines correspond to th
extreme and central values formt . Recall that the precise locatio
anywhere on the straight lines~which definitely do intersect the 1-s
region! depends on the renormalization procedure and thus is
predictable within the nonrenormalizable effective theory. In ad
tion, the technicolor prediction should be considered accurate o
at the 15% level due to the theoretical uncertainties discussed in
text ~this error is at any rate smaller than the one associated with
uncertainty inL!. Notice that the oblique corrections, in the case
degenerate masses, are independent of the value of the tech
mion mass. Assuming universality of the vertex corrections redu
the error bars by about a factor of1

2 and leaves technicolor predic
tions outside the 1-s region.
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FIG. 4. The effect of isospin breaking in th
oblique corrections in QCD-like technicolor theo
ries. The 1-s region for thegA

e-gV
e couplings and

the SM prediction~for mt5175.6 GeV and 70
<MH<1000 GeV! are shown. The different
straight lines correspond to setting the technife
mion masses in each doublet (m1 ,m2) to the
value m25250, 300, 350, 400, and 450 Ge
~larger masses are the ones deviating more fr
the SM predictions! and m151.05m2 ~plot 1!,
m151.1m2 ~plot 2!, m151.2m2 ~plot 3!, and
m151.3m2 ~plot 4!. The results are invariant un
der the exchange ofm1 andm2 . As in Fig. 3, the
prediction of the effective theory is the whol
straight line and not any particular point on it, a
we move along the line by varying the unknow
scale L. Clearly, isospin breakings larger tha
20% give very poor agreement with the dat
even for low values of the dynamically generate
mass.
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small vertex corrections arising from the symmetry-break
sector anyway and it is consistent to ignore them and c
centrate in the oblique corrections. However, this is not
situation in dynamical symmetry-breaking models. We w
see in the next sections that for the second and third gen
tion vertex corrections can be sizable. Thus, if we want
compare experiment to oblique corrections in models of
namical breaking, we have to concentrate on electron c
plings only.

In Fig. 3 we see the prediction of the minimal standa
model for 170.6,mt,180.6 GeV and 70,MH,1000
GeV, including the leading two-loop corrections@23#, falling
nicely within the experimental 1-s region for the electron
effective couplings. In this and in subsequent plots
present the data from the combined four LEP experime
only. What is the actual prediction for a theory with dynam
cal symmetry breaking? The straight solid lines corresp
to the prediction of a QCD-like technicolor model withnTC
52 andnD54 ~a one-generation model! in the case where
all technifermion masses are assumed to be equal~we follow
@9#: see@25# for related work!, allowing the same variation
for the top quark mass as in the standard model. We do
take into account here the contribution of potentially pres
pseudo Goldstone bosons, assuming that they can be m
heavy enough. The corresponding values for theai coeffi-
cients in such a model are given in Appendix E and
derived using chiral quark model techniques and chiral p
turbation theory. They are scale dependent in such a wa
to make observables finite and unambiguous, but of cou
observables depend in general on the scale of ‘‘new ph
ics’’ L.

We move along the straight lines by changing the scaleL.
It would appear at first sight that one needs to go to un
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ceptably low values of the new scale to actually penetrate
1-s region, something which looks unpleasant at first sig
~we have plotted the part of the line for 100<L
<1500 GeV!, as one expectsL;Lx . In fact, this is not
necessarily so. There is no real prediction of the effect
theory along the straight lines, because only combinatio
which areL-independent are predictable. As for the locati
not along the line, butof the line itself, it is in principle
calculable in the effective theory, but of course subject to
uncertainties of the model one relies upon, since we are d
ing with a strongly coupled theory.~We shall use chiral
quark model estimates in this paper as we believe that t
are quite reliable for QCD-like theories: see the discuss
below.!

If we allow for a splitting in the technifermion masses, th
comparison with experiment improves very slightly. The v
ues of the effective Lagrangian coefficients relevant for
oblique corrections in the case of unequal masses are
given in Appendix E. Sincea1 is independent of the techni
fermion dynamically generated masses anyway, the dep
dence is fully contained ina0 ~the parameterT of Peskin and
Takeuchi@13#! and a8 ~the parameterU!. This is shown in
Fig. 4. We assume that the splitting is the same for all d
blets, which is not necessarily true.6

If other representations of the SU~2!L3SU~3!c gauge
group are used, the oblique corrections have to be modi
in the form prescribed in Sec. VIII. Larger group-theoretic
factors lead to larger oblique corrections and, from this po

6In fact, it can be argued that QCD corrections may, in some ca
@30#, enhance techniquark masses.
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of view, the restriction to weak doublets and color singlets
triplets is natural.

Let us close this section by justifying the use of chi
quark model techniques, trying to assess the errors invol
and at the same time emphasizing the importance of ha
the scale dependence under control. A parameter likea1 ~or
S in the notation of Peskin and Takeuchi@13#! contains in-
formation about the long-distance properties of a stron
coupled theory. In fact,a1 is nothing but the familiarL10
parameter of the strong chiral Lagrangian of Gasser
Leutwyler @26# translated to the electroweak sector. Th
strong interaction parameter can be measured, and it is fo
to beL105(25.660.3)31023 ~at them5Mh scale, which
is just the conventional reference value and plays no spe
role in the standard model!. This is almost twice the value
predicted by the chiral quark model@27,28# (L10
521/32p2), which is the estimate plotted in Fig. 3. Doe
this mean that the chiral quark model grossly underestim
this observable? Not at all. Chiral perturbation theory p
dicts the running ofL10. It is given by

L10~m!5L10~Mh!1
1

128p2 log
m2

Mh
2 . ~68!

According to our current understanding~see, e.g.,@29#!, the
chiral quark model gives the value of the chiral coefficie
at the chiral symmetry breaking scale~4p f p in QCD, Lx in
the electroweak theory!. Then the coefficientL10 ~or a1 for
that matter! predicted within the chiral quark model agre
with QCD at the 10% level.

Let us now turn to the issue of vertex corrections in the
ries with dynamical symmetry breaking and the determi
tion of the coefficientsd i , which are, after all, the focal poin
of this work.

VI. NEW PHYSICS AND FOUR-FERMION OPERATORS

In order to have a picture in our mind, let us assume t
at sufficiently high energies the symmetry-breaking sec
can be described by some renormalizable theory, perha
non-Abelian gauge theory. By some unspecified mechan
some of the carriers of the new interaction acquire a m
Let us generically denote this mass byM. One type of model
that comes immediately to mind is the extended technico
scenario.M would then be the mass of the ETC bosons. L
us try, however, not to adhere to any specific mechanism
model.

Below the scaleM we shall describe our underlyin
theory by four-fermion operators. This is a convenient w
of parametrizing the new physics belowM without needing
to commit oneself to a particular model. Of course, the nu
ber of all possible four-fermion operators is enormous a
one may think that any predictive power is lost. This is n
so because of two reasons:~a! The size of the coefficients o
the four-fermion operators is not arbitrary. They are co
strained by the fact that at scaleM they are given by

2jCG

G2

M2 , ~69!
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where jCG is built out of Clebsch-Gordan factors andG a
gauge-coupling constant, assumed perturbative ofO~1! at the
scaleM. The jCG, being essentially group-theoretical fa
tors, are probably of similar size for all three generatio
although not necessarily identical as this would assum
particular style of embedding the different generations i
the large ETC~for instance! group. Notice that for four-
fermion operators of the formJ•J†, whereJ is some fermion
bilinear, jCG has a well-defined sign, but this is not so f
other operators.~b! It turns out that only a relatively smal
number of combinations of these coefficients do actually
pear in physical observables at low energies.

Matching to the fundamental physical theory atm5M
fixes the value of the coupling constants accompanying
four-fermion operators to the value~69!. In addition, contact
terms, i.e., nonzero values for the effective coupling co
stantsd i , are generally speaking required in order for t
fundamental and four-fermion theories to match. These w
later evolve under the renormalization group due to the p
ence of the four-fermion interactions. Because we expect
M@Lx , the d i will be typically logarithmically enhanced
Notice that there is no guarantee that this is the case for
third generation, as we will later discuss. In this case the
and ETC dynamics would be tangled up~which for most
models is strongly disfavored by the constraints on obliq
corrections!. For the first and second generations, howev
the logarithmic enhancement of thed i is a potentially large
correction and it actually makes the treatment of a fun
mental theory via four-fermion operators largely independ
of the particular details of specific models, as we will see

Let us now get back to four-fermion operators and p
ceed to a general classification. A first observation is th
while in the bosonic sector custodial symmetry is just brok
by the small U~1!Y gauge interactions, which is relativel
small, in the matter sector the breaking is not that small.
thus have to assume that whatever underlying new physic
present at scaleM it gives rise both to custodially preservin
and custodially nonpreserving four-fermion operators w
coefficients of similar strength. Obvious requirements
Hermiticity, Lorentz invariance, and SU~3!c3SU~2!L
3U~1!Y symmetry. NeitherC nor P invariance are imposed
but invariance underCP is assumed.

We are interested ind56 four-fermion operators con
structed with two ordinary fermions~either leptons or
quarks!, denoted byqL , qR , and two fermionsQL

A , QR
A .

Typically, A will be the technicolor index and theQL , QR
will therefore be techniquarks and technileptons, but we m
be as well interested in the case where theQ may be ordinary
fermions. In this case the indexA drops~in our subsequen
formulas this will correspond to takingnTC51!. We shall
not write the indexA hereafter for simplicity, but this degre
of freedom is explicitly taken into account in our results.

As we already mentioned, we shall discuss in detail
case where the additional fermions fall into ordinary rep
sentations of SU~2!L3SU~3!c and will discuss other repre
sentations later. The fieldsQL will therefore transform as
SU~2!L doublets, and we shall group the right-handed fie
QR into doublets as well, but then include suitable insertio
of t3 to consider custodially breaking operators. In order
5-10
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TABLE I. Four-fermion operators which do not change the fermion chirality. The first~second! column
contains the custodially preserving~breaking! operators.

L25(Q̄LgmQL)(q̄LgmqL)

R25(Q̄RgmQR)(q̄RgmqR) R3R5(Q̄Rgmt3QR)(q̄RgmqR)

RR35(Q̄RgmQR)(q̄Rgmt3qR)

R3
25(Q̄Rgmt3QR)(q̄Rgmt3qR)

RL5(Q̄RgmQR)(q̄LgmqL) R3L5(Q̄Rgmt3QR)(q̄LgmqL)

LR5(Q̄LgmQL)(q̄RgmqR) LR35(Q̄LgmQ3)(q̄Rgmt3qR)

rl 5(Q̄RgmlW QR)•(q̄LgmlW qL) r 3l 5(Q̄RgmlW t3QR)•(q̄LgmlW qL)

lr 5(Q̄LgmlW QL)•(q̄RgmlW qR) lr 35(Q̄LgmlW t3QL)•(q̄RgmlW t3qR)

(Q̄LgmqL)(q̄LgmQL)

(Q̄RgmqR)(q̄RgmQR) (Q̄Rgmt3qR)(q̄RgmQR)1(Q̄RgmqR)(q̄Rgmt3QR)

(Q̄Rgmt3qR)(q̄RgmQR)

(Q̄L
i gmQL

j )(q̄L
j gmqL

i )

(Q̄R
i gmQR

j )(q̄R
j gmqR

i )

(Q̄L
i gmqL

j )(q̄L
j gmQL

i )

(Q̄R
i gmqR

j )(q̄R
j gmQR

i ) (Q̄R
i gmqR

j )(q̄R
j gm@t3QR# i)
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determine the low-energy remnants of all these four-ferm
operators~i.e., the coefficientsd i!, it is enough to know their
couplings to SU~2!L and no further assumptions about the
electric charges~or hypercharges! are needed. Of course
since theQL , QR couple to the electroweak gauge boso
they must not lead to new anomalies. The simplest poss
ity is to assume that they reproduce the quantum numbe
one family of quarks and leptons~that is, a total of four
doubletsnD54!, but other possibilities exist@for instance,
nD51 is also possible@31#, although this model presents
global SU~2!L anomaly#.

We shall first be concerned with theQL , QR fields be-
longing to the representation3 of SU~3!c and, afterwards,
focus in the simpler case where theQL , QR are color singlet
~technileptons!. ColoredQL , QR fermions can couple to or
dinary quarks and leptons either via the exchange of a c
singlet or of a color octet. In addition, the exchanged part
can be either an SU~2!L triplet or a singlet, thus leading to
large number of possible four-fermion operators. More i

TABLE II. Chirality-changing four-fermion operators. To eac
entry, the corresponding Hermitian conjugate operator should
added. The left~right! column contains custodially preservin
~breaking! operators.

(Q̄LgmqL)(q̄RgmQR) (Q̄LgmqL)(q̄Rgmt3QR)

(q̄L
i qR

j )(Q̄L
kQR

l )e ike j l (q̄L
i @t3qR# j )(Q̄L

kQR
l )e ike j l

(q̄L
i QR

j )(Q̄L
kqR

l )e ike j l (q̄L
i QR

j )(Q̄L
k@t3qR# l)e ike j l

(Q̄LgmlW qL)•(q̄RgmlW QR) (Q̄LgmlW qL)•(q̄RgmlW t3QR)

(q̄L
i lW qR

j )•(Q̄L
klW QR

l )e ike j l (q̄L
i lW @t3qR# j )•(Q̄L

klW QR
l )e ike j l

(q̄L
i lW QR

j )•(Q̄L
klW qR

l )e ike j l (q̄L
i lW QR

j )•(Q̄L
klW @t3qR# l)e ike j l
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portant for our purposes will be whether they flip or not t
chirality. We use Fierz rearrangements in order to write
four-fermion operators as the product of either two co
singlet or two color octet currents. A complete list is pr
sented in Tables I and II for the chirality-preserving a
chirality-flipping operators, respectively.

Note that the two upper blocks of Table I contain ope
tors of the formJ• j , where (J) j stands for a~heavy! fermion
current with well-defined color and flavor numbers, name
belonging to an irreducible representation of SU~3!c and
SU~2!L . In contrast, those in the two lower blocks are not
this form. In order to make their physical content more tra
parent, we can perform a Fierz transformation and repl
the last nine operators~two lower blocks! in Table I by those
in Table III. These two bases are related by

~Q̄LgmqL!~ q̄LgmQL!5
1

4
l 21

1

6
L21

1

4
lW 21

1

6
LW 2, ~70!

~Q̄L
j gmQL

i !~ q̄L
i gmqL

j !5
1

2
L21

1

2
LW 2, ~71!

~Q̄L
j gmqL

i !~ q̄L
i gmQL

j !5
1

2
l 21

1

3
L2, ~72!

~Q̄RgmqR!~ q̄RgmQR!5
1

4
r 21

1

6
R21

1

4
rW 21

1

6
RW 2, ~73!

~Q̄RgmqR!~ q̄Rgmt3QR!1~Q̄Rgmt3qR!~ q̄RgmQR!

5
1

2
rr 31

1

3
RR31

1

2
r 3r 1

1

3
R3R, ~74!

e
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TABLE III. New four-fermion operators of the formJ• j obtained after Fierzing. The left~right! column
contains custodially preserving~breaking! operators. In addition, those written in the two upper blocks
Table I should also be considered. Together with the above they form a complete set of chirality-pres
operators.

l 25(Q̄LgmlW QL)•(q̄LgmlW qL)

r 25(Q̄RgmlW QR)•(q̄RgmlW qR) r 3r 5(Q̄RgmlW t3QR)•(q̄RgmlW qR)

rr 35(Q̄RgmlW QR)•(q̄RgmlW t3qR)

r 3
25(Q̄RgmlW t3QR)•(q̄RgmlW t3qR)

LW 25(Q̄LgmtWQL)•(q̄LgmtWqL)

RW 25(Q̄RgmtWQR)•(q̄RgmtWqR)

lW25(Q̄LgmlW tWQL)•(q̄LgmlW tWqL)

rW25(Q̄RgmlW tWQR)•(q̄RgmlW tWqR)
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~Q̄Rgmt3qR!~ q̄Rgmt3QR!5
1

4
r 21

1

6
R22

1

4
rW 22

1

6
RW 2

1
1

2
r 3

21
1

3
R3

2, ~75!

~Q̄R
j gmQR

i !~ q̄R
i gmqR

j !5
1

2
R21

1

2
RW 2, ~76!

~Q̄R
j gmqR

i !~ q̄R
i gmQR

j !5
1

2
r 21

1

3
R2, ~77!

~Q̄R
i gmqR

i !~ q̄R
i gm@r 3QR# j !5

1

2
r 31

1

3
R3R, ~78!

for colored techniquarks. Notice the appearance of some
nus signs due to the Fierzing and that operators such aL2

~for instance! get contributions from four-fermion operato
which do have a well-defined sign as well as from oth
which do not.

The use of this basis simplifies the calculations consid
ably as the Dirac structure is simpler. Another obvious
vantage of this basis, which will become apparent only la
is that it will make it easier to consider the long-distan
contributions to thed i , from the region of momentam
,Lx .

The classification of the chirality-preserving operator
volving technileptons is of course simpler. Again, we u
Fierz rearrangements to write the operators asJ• j . However,
in this case only a color singletJ ~and, thus, also a colo
singlet j ! can occur. Hence the complete list can be obtain
by crossing out from Table III and from the first eight row
of Table I the operators involvinglW . Namely, those desig
nated by lower case letters. We are then left with the t
operatorsLW 2, RW 2 from Table III and with the first six rows o
Table I: L2, R2, R3R, RR3 , R3

2, RL, R3L, LR, andLR3 . If
we choose to work instead with the original basis
chirality-preserving operators in Table I, we have to supp
ment these nine operators in the first six rows of the ta
with (Q̄LgmqL)(q̄LgmQL) and (Q̄RgmqR)(q̄RgmQR), which
11403
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are the only independent ones from the last seven ro
These two basis are related by

~Q̄LgmqL!~ q̄LgmQL!5
1

2
L21

1

2
LW 2, ~79!

~Q̄RgmqR!~ q̄RgmQR!5
1

2
R21

1

2
RW 2, ~80!

for technileptons.
It should be borne in mind that Fierz transformations,

presented in the above discussion, are strictly valid only
four dimensions. In 422e dimensions, for the identities to
hold we need ‘‘evanescent’’ operators@32#, which vanish in
four dimensions. However, the replacement of some fo
fermion operators in terms of others via the Fierz identities
actually made inside a loop of technifermions and therefor
finite contribution is generated. Thus the two basis will eve
tually be equivalent up to terms of order

1

16p2

G2

M2 mQ
2 , ~81!

wheremQ is the mass of the technifermion~this estimate will
be obvious only after the discussion in the next sections!. In
particular, no logarithms can appear in Eq.~81!.

Let us now discuss how the appearance of other repre
tations might enlarge the above classification. We shall
be completely general here, but consider only those opera
that may actually contribute to the observables we have b
discussing~such asgV andgA!. Furthermore, for reasons tha
shall be obvious in a moment, we shall restrict ourselves
operators which are SU~2!L3SU~2!R invariant.

The construction of the chirality-conserving operators
fermions in higher-dimensional representations of SU~2! fol-
lows essentially the same pattern presented in Appendi
for doublet fields, except for the fact that operators such

~Q̄LgmqL!~ q̄LgmQL!, ~Q̄L
i gmQL

j !~ q̄L
j gmqL

i !, ~82!

and their right-handed versions, which appear on the rig
hand side of Table I, are now obviously not acceptable si
QL andqL are in different representations. Those operato
5-12
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EFFECTIVE ELECTROWEAK CHIRAL LAGRANGIAN: . . . PHYSICAL REVIEW D 60 114035
restricting ourselves to color singlet bilinears~the only ones
giving a nonzero contribution to our observables!, can be
replaced in the fundamental representation by

~Q̄LgmQL!~ q̄LgmqL!, ~Q̄LgmtWQL!~ q̄LgmtWqL!, ~83!

when we move to theJ• j basis. Now it is clear how to
modify the above when using higher representations for
Q fields. The first one is already included in our set of cu
todially preserving operators, while the second one has to
modified to

LW [~Q̄LgmTW QL!~ q̄LgmtWqL!, ~84!

whereTW are the SU~2! generators in the relevant represen
tion. In addition, we have the right-handed counterpart,
course. We could in principle now proceed to construct c
todially violating operators by introducing suitableT3 andt3

matrices. Unfortunately, it is not possible to present a clo
set of operators of this type, as the number of independ
operators does obviously depend on the dimensionality
the representation. For this reason we shall only cons
custodially preserving operators when moving to higher r
resentations, namely,L2, R2, RL, LR, LW 2, andRW 2.

If we examine Tables I, II, and III we will notice that bot
chirality-violating and chirality-preserving operators appe
It is clear that at the leading order in an expansion in exte
fermion masses only the chirality-preserving operat
~Tables I and III! are important; those operators containi
both aqL and aqR field will be further suppressed by add
tional powers of the masses of the fermions and thus s
leading. Furthermore, if we limit our analysis to the study
the effectiveW6 andZ couplings, such asgV andgA , as we
do here, chirality-flipping operators can contribute on
through a two-loop effect. Thus the contribution from t
chirality-flipping operators contained in Table II is su
pressed both by an additional 1/16p2 loop factor and by a
mQ

2 /M2 chirality factor. If for the sake of the argument w
take mQ to be 400 GeV, the correction will be below or
the 10% level for values ofM as low as 100 GeV. This
automatically eliminates from the game operators gener
through the exchange of a heavy scalar particle, but of co
the presence of light scalars, below the mentioned limit, r
ders their neglection unjustified. It is not clear where sim
ETC models violate this limit~see, e.g.,@33#!. We just as-
sume that all scalar particles can be made heavy enoug

Additional light scalars may also appear as pseudo G
stone bosons at the moment the electroweak symm
breaking occurs due toQ̄Q condensation. We had to assum
somehow that their contribution to the oblique correcti
was small~e.g., by avoiding their proliferation and makin
them sufficiently heavy!. They also contribute to vertex cor
rections~and thus to thed i!, but here their contribution is
naturally suppressed. The coupling of a pseudo Goldst
bosonv to ordinary fermions is of the form

1

4p

mQ
2

M2 vq̄LqR ; ~85!
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thus, their contribution to thed i will be of order

g
G4

~16p2!2 S mQ
2

M2D 2

log
Lx

2

mv
2 . ~86!

Using the same reference values as above, a pseudo G
stone boson of 100 GeV can be neglected.

If the operators contained in Table II are not relevant
the W6 andZ couplings, what are they important for? Afte
electroweak breaking~due to the strong technicolor forces o
any other mechanism! a condensatêQ̄Q& emerges. The
chirality-flipping operators are then responsible for gene
ing a mass term for ordinary quarks and leptons. Their lo
energy effects are contained in the onlyd53 operator ap-
pearing in the matter sector, discussed in Sec. II. We thus
that the four-fermion approach allows for a nice separat
between the operators responsible for mass generation
those that may eventually lead to observable consequenc
the W6 andZ couplings. One may even entertain the pos
bility that the relevant scale is, for some reason, different
both sets of operators~or, at least, for some of them!. It
could, at least in principle, be the case that scalar excha
enhances the effect of chirality-flipping operators, allowi
for large masses for the third generation, without giving u
acceptably large contributions to theZ effective coupling.
Whether one is able to find a satisfactory fundamental the
where this is the case is another matter, but the four-ferm
approach allows one, at least, to pose the problem.

We shall now proceed to determine the constantsd i ap-
pearing in the effective Lagrangian after integration of t
heavy degrees of freedom. For the sake of the discussion
shall assume hereafter that technifermions are degenera
mass and set their masses equal tomQ . The general case is
discussed in Appendix E.

VII. MATCHING TO A FUNDAMENTAL THEORY

At the scalem5M we integrate out the heavier degrees
freedom by matching the renormalized Green functions co
puted in the underlying fundamental theory to a four-fermi
interaction. This matching leads to the values~69! for the
coefficients of the four-fermion operators as well as to
purely short-distance contribution for thed i , which shall be
denoted byd̃ i . The matching procedure is indicated in Fi
5. It is perhaps useful to think of thed̃ i as the value that the
coefficients of the effective Lagrangian take at the match
scale, as they contain the information on modes of frequ
cies m.M . The d̃ i will be, in general, divergent; i.e., the
will have a pole in 1/e. Let us see how to obtain these coe

FIG. 5. The matching at the scalem5M .
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ficients d̃ i in a particular case.
As discussed in the previous section, we understand

at very high energies our theory is described by a ga
theory. Therefore we have to add to the standard model
grangian~already extended with technifermions! the follow-
ing pieces:

2
1

4
EmnEmn2

1

2
M2EmEm1GQ̄gmEmq1H.c. ~87!

TheEm vector boson~of massM! acts in a large flavor group
space which mixes ordinary fermions with heavy ones.@The
notation in Eq.~87! is somewhat symbolic as we are n
implying that the theory is vector like; in fact, we do n
assume anything at all about it.#

At energiesm,M we can describe the contribution from
this sector to the effective Lagrangian coefficients either
ing the degrees of freedom present in Eq.~87! or via the
corresponding four-quark operator and a nonzero value
the d̃ i coefficients. Demanding that both descriptions rep
duce the same renormalizedffW vertex fixes the value of the
d̃ i .

Let us see this explicitly in the case where the interme
ate vector bosonEm is a SU~3!c3SU~2!L singlet. For the
sake of simplicity, we take the third term in Eq.~87! to be

GQ̄LgmEmqL . ~88!

At energies belowM, the relevant four-quark operator is the

2
G2

M2 ~Q̄LgmqL!~ q̄LgmQL!. ~89!

In the limit of degenerate techniquark masses, it is quite c
that only d̃1 can be different from zero. Thus one does n
need to worry about matching quark self-energies. Conc
ing the vertex~Fig. 5!, we have to impose Eq.~32!, where
now

DG[GE2G4Q . ~90!

Namely,DG is the difference between the vertex comput
using Eq.~87! and the same quantity computed using t
four-quark operators as well as nonzerod̃ i coefficients@recall
that the caret in Eq.~32! denotes renormalized quantities#. A
calculation analogous to that of Sec. IV~now the leading
terms in 1/M2 are retained! leads to

d̃152
G2

8p2

mQ
2

M2

1

ê
. ~91!

VIII. INTEGRATING OUT HEAVY FERMIONS

As we move down in energies, we can integrate lower a
lower frequencies with the help of the four-fermion operat
~which do accurately describe physics belowM!. This modi-
fies the value of thed i :

d i~m!5 d̃ i1Dd i~m/M !, m,M . ~92!
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The quantityDd i(m/M ) can be computed in perturbatio
theory down to the scaleLx where the residual interaction
labeled by the indexA become strong and confine the tec
nifermions. The leading contribution is given by a loop
technifermions.

To determine such contribution it is necessary to dem
that the renormalized Green functions match when compu
using explicitly the degrees of freedomQL , QR and when
their effect is described via the effective Lagrangian coe
cients d i . The matching procedure is illustrated in Fig.
The scalem of the matching must be such thatm,M , but
such thatm.Lx , where perturbation theory in the techn
color coupling constant starts being questionable.

The result of the calculation in the case of degener
masses is

Dd i~m/M !52 d̄ i S 12 ê log
m2

M2D , ~93!

where we have kept the logarithmically enhanced contri
tion only and have neglected any other possible cons
pieces.d̄ i is the singular part ofd̃ i . The finite parts ofd̃ i are
clearly very model dependent~cf., for instance, the previous
discussion on evanescent operators! and we cannot possibly
take them into account in a general analysis. According
we ignore all other terms in Eq.~93! as well as those finite
pieces generated through the Fierzing procedure~see discus-
sion in the previous section!. Keeping the logarithmically
enhanced terms therefore sets the level of accuracy of
calculation. We will call Eq.~92! the short-distance contri
bution to the coefficientd i . General formulas for the cas
where the two technifermions are not degenerate in ma
can be found in Appendix E.

Notice that the final short-distance contribution to thed i

is ultraviolet finite, as it should be. The divergences ind̃ i are
exactly matched by those inDd i . The pole ind̃ i combined
with singularity inDd i provides a finite contribution.

There is another potential source of corrections to thed i
stemming from the renormalization of the four-fermion co
pling constantG2/M2 ~similar to the renormalization of the
Fermi constant in the electroweak theory due to gluon
change!. This effect is, however, subleading here. The rea
is that we are considering technigluon exchange only
four-fermion operators of the formJ• j , where, again,j ~J!
stands for a~heavy! fermion current~which gives the leading
contribution, as discussed!. The fields carrying technicolo
have the same handedness, and thus there is no multip
tive renormalization and the effect is absent.

Of course, in addition to the short-distance contributi
there is a long-distance contribution from the region of in

FIG. 6. Matching at the scalem5Lx .
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EFFECTIVE ELECTROWEAK CHIRAL LAGRANGIAN: . . . PHYSICAL REVIEW D 60 114035
gration of momentam,Lx . Perturbation theory in the tech
nicolor coupling constant is questionable, and we have
resort to other methods to determine the value of thed i at the
Z mass.

There are two possible ways of doing so. One is simply
mimic the constituent chiral quark model of QCD. There o
loop of chiral quarks with momentum running between t
scale of chiral symmetry breaking and the scale of the c
stituent mass of the quark, which acts as infrared cut
provides the bulk of the contribution@28,29# to f p , which is
the equivalent ofv. Making the necessary translations, w
can write, for QCD-like theories,

v2.nTCnD

mQ
2

4p2 log
Lx

2

mQ
2 . ~94!

Alternatively, we can use chiral Lagrangian techniqu
@34# to write a low-energy bosonized version of the tech
fermion bilinearsQ̄LGQL and Q̄RGQR using the chiral cur-
rentsJL andJR . The translation is

Q̄LgmQL→
v2

2
trU†iD mU, ~95!

Q̄Lgmt iQL→
v2

2
trU†t i iD mU, ~96!

Q̄RgmQR→ v2

2
trUiD mU†, ~97!

Q̄Rgmt iQR→ v2

2
trUt i iD mU†. ~98!

Other currents do not contribute to the effective coefficien
Both methods agree.

Finally, we collect all contributions to the coefficientsd i
of the effective Lagrangian. For fields in the usual repres
tations of the gauge group,

d15aLW 2
G2

M2 S v21nTCnD

mQ
2

4p2 log
M2

Lx
2 D

2
1

16p2

yu
21yd

2

4 S 1

ê
2 log

L2

m2D , ~99!

d25S aRW 21
1

2
aR

3
2D G2

M2 S v21nTCnD

mQ
2

4p2 log
M2

Lx
2 D

2
1

16p2

~yu1yd!2

8 S 1

ê
2 log

L2

m2D , ~100!
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d35
1

2
aR3L

G2

M2 S v21nTCnD

mQ
2

4p2 log
M2

Lx
2 D

1
1

16p2

yu
22yd

2

4 S 1

ê
2 log

L2

m2D , ~101!

d450, ~102!

d55
1

2
aR3R

G2

M2 S v21nTCnD

mQ
2

4p2 log
M2

Lx
2 D

2
1

16p2

yu
22yd

2

4 S 1

ê
2 log

L2

m2D , ~103!

d65
1

2
aR

3
2
G2

M2 S v21nTCnD

mQ
2

4p2 log
M2

Lx
2 D

2
1

16p2

~yu2yd!2

4 S 1

ê
2 log

L2

m2D , ~104!

while in the case of higher representations, where only c
todially preserving operators have been considered, onlyd1
andd2 get nonzero values~throughaLW 2 andaRW 2!. The long-
distance contribution is, obviously, universal~see Sec. II!,
while we have to modify the short-distance contribution
replacing the Casimir of the fundamental representation
SU~2! for the appropriate one@1/2→c(R)#, the number of
doublets by the multiplicity of the given representation, a
nc by the appropriate dimensionality of the SU~3!c represen-
tation to which theQ fields belong.

These expressions require several comments. First of
they contain the same~universal! divergences as their coun
terparts in the minimal standard model~MSM!. The scaleL
should, in principle, correspond to the matching scaleLx ,
where the low-energy nonlinear effective theory takes ov
However, we write an arbitrary scale just to remind us th
the finite part accompanying the logarithm is regulator d
pendent and cannot be determined within the effect
theory. Recall that the leadingO(nTCnD) term is finite and
unambiguous, and that the ambiguity lies in the forma
subleading term~which, however, due to the logarithm i
numerically quite important!. Furthermore, only logarithmi-
cally enhanced terms are included in the above expressi
Finally, one should bear in mind that the chiral quark mod
techniques that we have used are accurate only in the l
nTC expansion~actually nTCnD here!. The same comment
apply, of course, to the oblique coefficientsai presented in
Appendix E.

The quantitiesaLW 2, aRW 2, aR
3
2, andaR3L and aR3R are the

coefficients of the four-fermion operators indicated by t
subindex ~a combination of Clebsch-Gordan and Fierzi
factors!. They depend on the specific model. As discussed
previous sections, these coefficients can be of either s
This observation is important because it shows that the c
tribution to the effective coefficients has no definite sign@35#
indeed. It is nice that there is almost a one-to-one corresp
5-15
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dence between the effective Lagrangian coefficients~all of
them measurable, at least in principle! and four-fermion co-
efficients.

Apart from these four-fermion coefficients, thed i depend
on a number of quantities~v, mQ , Lx , G, andM!. Let us
first discuss those related to the electroweak symm
breaking~mQ andLx! and postpone the considerations onM
to the next section@G will be assumed to be ofO~1!#. v is
of course the Fermi scale and hence not an unknown a
(v.250 GeV). The value ofmQ can be estimated from Eq
~94! sincev2 is known andLx , for QCD-like technicolor
theories, is;4pv. Solving for mQ , one finds that ifnD
54, mQ.v, while if nD51, mQ.2.5v. Notice thatmQ and
v depend differently onnTC, so it is not correct to simply
assumemQ.v. In theories where the technicolorb function
is small ~and it is pretty small ifnD54 and nTC52!, the
characteristic scale of the breaking is pushed upwards, so
expectLx@4pv. This bringsmQ somewhat downwards, bu
the decrease is only logarithmic. We shall therefore takemQ
to be in the range 250–450 GeV. We shall allow for a m
splitting within the doublets too. The splitting within eac
doublet cannot be too large, as Fig. 4 shows. For simplic
we shall assume an equal splitting of masses for all doub

IX. RESULTS AND DISCUSSION

Let us first summarize our results so far. The values of
effective Lagrangian coefficients encode the informat
about the symmetry breaking sector that is~and will be in the
near future! experimentally accessible. Thed i are therefore
the counterpart of the oblique corrections coefficientsai ,
and they have to be taken together in precision analysi
the standard model, even if they are numerically less sign
cant.

These effective coefficients apply toZ physics at LEP, top
quark production at the Next Linear Collider, measureme
of the top decay at the Collider Detector at Fermilab~CDF!,
or indeed any other process involving the third generat
~where their effect is largest!, provided the energy involved
is below 4pv, the limit of applicability of chiral techniques
~Of course, chiral effective Lagrangian techniques fail w
below 4pv if a resonance is present in a given channel:
also @36#.!

In the standard model thed i are useful to keep track of th
logMH dependence in all processes involving either neu
or charged currents. They also provide an economical
scription of the symmetry-breaking sector, in the sense
they contain the relevant information in the low-energy
gime, the only one testable at present. Beyond the stan
model the new physics contributions is parametrized by fo
fermion operators. By choosing the number of doublets,mQ ,
M, andLx suitably, we are in fact describing in a single sh
a variety of theories: extended technicolor~commuting and
noncommuting!, walking technicolor @37# or top-quark-
assisted technicolor, provided that all remaining scalars
pseudo Goldstone bosons are sufficiently heavy.

The accuracy of the calculation is limited by a number
approximations we have been forced to make and wh
have been discussed at length in previous sections. In p
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tice, we retain only terms which are logarithmically e
hanced when running fromM to mQ , including the long-
distance part, below Lx . The effective Lagrangian
coefficientsd i are all finite at the scaleLx , the lower limit
of applicability of perturbation theory. Below that scale th
run following the renormalization group equations of t
nonlinear theory and new divergences have to be subtrac7

These coefficients contain finally the contribution fro
scalesM.m.mQ , the dynamically generated mass of th
technifermion@expected to be ofO(LTC).# In view of the
theoretical uncertainties, to restrict oneself to logarithmica
enhanced terms is a very reasonable approximation w
should capture the bulk of the contribution.

Let us now proceed to a more detailed discussion of
implications of our analysis. Let us begin by discussing
value that we should take forM, the mass scale normalizin
four-fermion operators. Fermion condensation gives a m
to ordinary fermions via chirality-flipping operators of ord

mf.
G2

M2 ^Q̄Q&, ~105!

through the operators listed in Table II. A chiral quark mod
calculation shows that

^Q̄Q&.v2mQ . ~106!

Thus, while^Q̄Q& is universal, there is an inverse relatio
betweenM2 andmf . In QCD-like theories this leads to th
following rough estimates for the massM @the subindex re-
fers to the fermion which has been used in the left-hand s
~LHS! of Eq. ~105!#

Me;105 TeV, Mm;10 TeV, Mb;3 TeV. ~107!

If taken at face value, the scale forMb is too low: even the
one for Mm may already conflict with current bounds o
FCNC, unless they are suppressed by some other mecha
in a natural way. Worse, the top quark mass cannot be
sonably reproduced by this mechanism. This well-kno
problem can be partly alleviated in theories where tech
color walks or invoking top quark color or a similar mech
nism@38#. ThenM can be made larger andmQ , as discussed
somewhat smaller. For theories which are not vector like,
above estimates become a lot less reliable.

However, one should not forget that none of the fou
fermion operators playing a role in the vertex effective co
plings participates at all in the fermion mass determinati
In principle, we can then entertain the possibility that t
relevant mass scale for the latter should be lower~perhaps
because they get a contribution through scalar exchange

7The divergent contribution coming from the standard modeld i ’s
has to be removed, though, as discussed in Sec. V, so the differ
is finite and would be fully predictable had we good theoreti
control on the subleading corrections. At present only
O(nTC ,nD) contribution is under reasonable control.
5-16



e
te
e

s
-

rd

EFFECTIVE ELECTROWEAK CHIRAL LAGRANGIAN: . . . PHYSICAL REVIEW D 60 114035
FIG. 7. Oblique and vertex corrections for th
electron effective couplings. The ellipses indica
the 1-s experimental region. Three values of th
effective massm2 are considered: 250 GeV~a!,
350 GeV ~b!, and 450 GeV~c! and two split-
tings: 10% ~right! and 20%~left!. The dotted
lines correspond to including oblique correction
only. The coefficients of the four-fermion opera
tors vary in the range@22, 2#, and this spans the
region between the two solid lines. The standa
model prediction~thick solid line! is shown for
mt5175.6 GeV and 70<MH<1500 GeV.
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some of them can be generated this way!. Even in this case it
seems just natural thatMb ~the scale-normalizing chirality
preserving operators for the third generation, that is! is low
and not too different fromLx . Thus the logarithmic en-
hancement is pretty much absent in this case and some o
approximations made become quite questionable in this c
~Although even for theb couplings there is still a relatively
large contribution to thed i ’s coming from long-distance con
tributions.! Put in other words, unless an additional mech
nism is invoked, it is not really possible to make defin
estimates for theb effective couplings without getting into
the details of the underlying theory. The flavor dynamics a
electroweak breaking are completely entangled in this c
If one only retains the long-distance part~which is what we
have done in practice!, we can, at best, make order-o
magnitude estimates. However, what is remarkable in a
is that this does not happen for the first and second gen
tion vertex corrections. The effect of flavor dynamics c
then be encoded in a small number of coefficients.

We shall now discuss in some detail the numerical c
sequences of our assumptions. We shall assume the a
values for the mass scaleM; in other words, we shall place
ourselves in the most disfavorable situation. We shall o
present results for QCD-like theories andnD54 exclusively.
For other theories the appropriate results can be very ea
obtained from our formulas. For the coefficientsaLW 2, aR3R ,

aR3L , etc., we shall use the range of variation@22,2# @since
they are expected to be ofO~1!#. Of course, larger values o
the scaleM would simply translate into smaller values fo
those coefficients, so the results can be easily scaled do

Figure 7 shows thegA
e , gV

e electron effective couplings
when vertex corrections are included and allowed to v
within the stated limits. To avoid clutter, the top quark ma
is taken to the central value 175.6 GeV. The standard mo
prediction is shown as a function of the Higgs boson ma
The dotted lines in Fig. 7 correspond to considering obliq
corrections only. Vertex corrections change these results
depending on the values of the four-fermion operator coe
cients, the prediction can take any value in the strip limi
by the two solid lines~as usual, we have no specific predi
tion in the direction along the strip due to the dependence
L, inherited from the non renormalizable character of
effective theory!. A generic modification of the electron cou
plings is of O(1025), small, but much larger than in th
standard model and, depending on its sign, may help to b
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a better agreement with the central value.
The modifications are more dramatic in the case of

second generation, for the muon, for instance. Now, we
pect changes in thed i ’s and, eventually, in the effective cou
plings of O(1023). These modifications are just at the lim
of being observable. They could even modify the relati
betweenMW andGm ~i.e., Dr !.

Figure 8 shows a similar plot for the bottom effectiv
couplingsgA

b , gV
b . It is obvious that taking generic values fo

the four-fermion operators@of O~1!# leads to enormous
modifications in the effective couplings, unacceptably lar
in fact. The corrections become more manageable if we
low for a smaller variation of the four-fermion operator c
efficients ~in the range@20.1,0.1#!. This suggests that the
natural order of magnitude for the massMb is ; 10 TeV, at
least for chirality preserving operators. As we have d
cussed, the corrections can be of either sign.

One could, at least in the case of degenerate mas
translate the experimental constraints on thed i ~recall that
their experimental determination requires a combination

FIG. 8. Bottom effective couplings compared to the SM pred
tion for mt5175.6 as a function of the Higgs boson mass~in the
range@70,1500# GeV!. The ellipses indicate 1-, 2-, and 3-s experi-
mental regions. The dynamically generated masses are 250
~a!, 350 GeV~b!, and 400 GeV~c!, and we show a 20% splitting
between the masses in the heavy doublet. The degenerate case
not present quantitative differences if we consider the experime
errors. The central lines correspond to including only the obliq
corrections. When we include the vertex corrections~depending on
the size of the four-fermion coefficients!, we predict the regions
between lines indicated by the arrows. The four-fermion coe
cients in this case take values in the range@20.1,0.1#.
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charged and neutral processes, since there are six of the! to
the coefficients of the four-fermion operators. Doing
would provide us with a four-fermion effective theory th
would exactly reproduce all the available data. It is obvio
however, that the result would not be very satisfacto
While the outcome would, most likely, be coefficients
O~1! for the electron couplings, they would have to be
O(1021), perhaps smaller for the bottom. Worse, the sa
masses we have used lead to unacceptably low values fo
top quark mass~105!. Allowing for a different scale in the
chirality-flipping operators would permit a large top qua
mass without affecting the effective couplings. Taking this
a tentative possibility, we can pose the following proble
measure the effective couplingsd i for all three generations
and determine the values of the four-fermion operator co
ficients and the characteristic mass scale that fits the
best. In the degenerate mass limit we have a total of 8
knowns@5 of them coefficients, expected to be ofO~1!# and
18 experimental values~three sets of thed i!. A similar exer-
cise could be attempted in the chirality-flipping sector. If t
solution to this exercise turned out to be mathematically c
sistent ~within the experimental errors!, it would be ex-
tremely interesting. A negative result would certainly ru
out this approach. Notice that dynamical symmetry break
predicts the patternd i;mf , while in the standard modeld i

;mf
2.

We should end with some words of self-criticism. It ma
seem that the previous discussion is not too conclusive
that we have managed only to rephrase some of the lo
standing problems in the symmetry breaking sector. Ho
ever, theraison d’être of the present paper is not really t
propose a solution to these problems, but rather to establ
theoretical framework to treat them systematically. Expe
ence from the past shows that often the effects of new ph
ics are magnified and thus models are ruled out on this ba
only to find out that a careful and rigorous analysis lea
some room for them. We believe that this may be the cas
dynamical symmetry-breaking models, and we believe
that only through a detailed and careful comparison with
experimental data will progress take place.

The effective Lagrangian provides the tools to look for
‘‘existence proof’’ ~or otherwise! of a phenomenologically
viable, mathematically consistent dynamical symmet
breaking model. We hope that there will be any time so
sufficient experimental data to attempt to determine the fo
fermion coefficients, at least approximately.
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APPENDIX A: d54 OPERATORS

The procedure we have followed to obtain Eqs.~8!–~15!
is very simple. We have to look for operators of the for
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c̄Gc, wherec5qL ,qR andG contains a covariant derivativ
Dm and an arbitrary number ofU matrices. These operator
must be gauge invariant so not any form ofG is possible.
Moreover, we can drop total derivatives and, sinceU is uni-
tary, we have the following relation:

DmU52U~DmU !†U. ~A1!

Apart from the obvious structureDmU which transform asU
does, we immediately realize that the particular form ofGR
implies the following simple transformations for the comb
nationsUt3U† and (DmU)t3U†:

Ut3U†U†°GLUt3U†GL
† , ~A2!

~DmU !t3U†°GL~DmU !t3U†GL
† . ~A3!

Keeping all these relations in mind, we simply write dow
all the possibilities forc̄Gc and find the list of operators
~8!–~15!. It is worth mentioning that there appears to
another family of four operators in which theU matrices also
occur within a trace:c̄Gc tr G8. One can check, however
that these are not independent. More precisely,

i q̄LgmqLtr~DmU !t3U†5L4
3, ~A4!

i q̄LgmUt3U†qLtr~DmU !t3U†52L4
11L4

4, ~A5!

i q̄RgmqRtr~DmU !t3U†5L4
5, ~A6!

i q̄Rgmt3qRtr~DmU !t3U†5L4
21L4

6 . ~A7!

Note thatL4
7 ~as well asLR8 discussed above! can be re-

duced by equations of motion to operators of lower dime
sion which do not contribute to the physical processes we
interested in. We have checked that its contribution inde
drops from the relevantS-matrix elements.

APPENDIX B: FEYNMAN RULES

We write the effectived54 Lagrangian as

Leff5d8LR81 (
k51

7

dkL4
k , ~B1!

where dk are real coefficients that we have to determi
through the matching. We need to match the effective the
described byLeff to both the MSM and the underlying theor
parametrized by the four-fermion operators. It has prov
more convenient to work with the physical fieldsW6, Z, and
g in the former case, whereas the use of the Lagrangian fi
W1, W2, W3, andB is clearly more straightforward for the
latter. Thus we give the Feynman rules in terms of both
physical and unphysical basis:
5-18
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~B2!

~B3!

~B4!

~B5!

~B6!

The operatorsL4
7 andL48 contribute to the two-point function. The relevant Feynman rules are

~B7!

~B8!
un
th
i
t

o-
e

g of
ow
Rather than giving the actual Feynman rules in the
physical basis, we collect the various tensor structures
can result from the calculation of the relevant diagrams
Table IV. We include only those that can be matched
insertions of the operatorsL4

1,...,L4
6 ~the contributions toL4

7

11403
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and L48 can be determined from the matching of the tw
point functions!. The corresponding contributions of thes
structures tod1 ,...,d6 are also given in Table IV. Onced7
has been replaced by its value, obtained in the matchin
the two-point functions, only the listed structures can sh
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up in the matching of the vertex: otherwise, the SU~2!3U~1!
symmetry would not be preserved.

APPENDIX C: FOUR-FERMION OPERATORS

The complete list of four-fermion operators relevant f
the present discussion is in Tables I and II in Sec. VI. It
also explained in Sec. VI the convenience of Fierzing
operators in the last seven rows of Table I in order to w
them in the formJ• j . Here we just give the list that come
out naturally from our analysis, Tables I and II, without fu
ther physical interpretation. The list is given for fermio
belonging to the representation3 of SU~3!c ~techniquarks!.
By using Fierz transformations one can easily find out re
tions among some of these operators when the fermions
color singlet~technileptons!, which is telling us that some o
these operators are not independent in this case. A lis
independent operators for technileptons is also given in S
VI.

Let us outline the procedure we have followed to obt
this basis in the~more involved! case of colored fermions.

There are only two color singlet structures one can bu
out of four fermions, namely,

~ c̄c!~c̄8c8![c̄acac̄b8cb8 ~C1!

~ c̄lW c!•~ c̄8lW c8![c̄a~lW !abcb•c̄g8~lW !gdcd8 , ~C2!

wherec stands for any field belonging to the representat
3 of SU~3!c ~c will be either q or Q!, a,b, . . . , arecolor
indices, and the primes~8! remind us thatc andc̄ carry same
additional indices@Dirac, SU~2!, . . . #.

Next, we clasify the Dirac structures. Sincec is eithercL
@it belongs to the representation~1

2,0! of the Lorentz group#
or cR @representation~0,1

2!#, we have five sets of fields to
analyze, namely,

$c̄L ,cL ,c̄L8cL8% @R↔L#, $c̄L ,cL ,c̄R ,cR%, ~C3!

$c̄L ,cR ,c̄L8 ,cR8 % @R↔L#. ~C4!

There is only an independent scalar we can build with e
of the three sets in Eq.~C3!. Our choice is

TABLE IV. Various structures appearing in the matching of t
vertex and the corresponding contributions tod1 ,¯,d6 .

Tensor structure d1 d2 d3 d4 d5 d6

i q̄Lg@t1W” 11t2W” 2#qL
1 1

i q̄Lt3@gW” 32g8B” #qL
1 21

i q̄L@gW” 32g8B” #qL
21

i q̄Rg@t1W” 11t2W” 2#qR
21 1

i q̄Rt3@gW” 32g8B” #qR
21 21

i q̄R@gW” 32g8B” #qR
21
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c̄LgmcLc̄L8gmcL8 @R↔L#, ~C5!

c̄LgmcLc̄RgmcR , ~C6!

where the prime is not necessary in the second equa
becauseR and L suffice to remind us that the twoc
and c̄ may carry different @Su~2!, technicolor, . . . # in-
dices. There appear to be four other independent sc
operators: c̄LgmcL8c̄L8gmcL @R↔L#, c̄LcRc̄RcL , and

c̄LsmncRc̄RsmncL . However, Fierz symmetry implies tha
the first three are not independent, and the fourth one v
ishes, as can be also seen using the identity 2ismng5

5emnrlsrl . For each of the two operators in Eq.~C4!, two
independent scalars can be constructed. Our choice is

c̄LcRc̄L8cR8 @R↔L#, ~C7!

c̄LcR8cL8cR @R↔L#. ~C8!

Again, there appear to be four other scalar operato
cLsmncRc̄L8smncR8 @R↔L#, c̄LsmncR8 c̄L8smncR @R↔L#,
which, nevertheless, can be shown not to be independen
related to Eqs.~C7! and ~C8! by Fierz symmetry. To sum-
marize, the independent scalar structures are Eqs.~C5!, ~C6!,
~C7!, and~C8!.

Next, we combine the color and the Dirac structures. W
do this for the different cases~C5!–~C8! separately. For op-
erators of the form~C5!, we have the two obvious possibili
ties ~hereafter, color and Dirac indices will be implicit!

~ c̄LgmcL!~ c̄L8gmcL8 ! @R↔L#, ~C9!

~ c̄LgmcL8 !~ c̄L8gmcL! @R↔L#, ~C10!

where fields in parentheses have their color indices c
tracted as in Eqs.~C1! and ~C2!. Note that the operato
(c̄LgmlW cL)•(c̄L8gmlW cL8), or its R version, is not indepen-

dent @recall that (lW )ab•(lW )gd52daddbg22/3dabdgd#. For
operators of the form~C6!, we take

~ c̄LgmcL!~ c̄RgmcR!, ~C11!

~ c̄LgmlW cL!•~ c̄RgmlW cR!. ~C12!

Finally, for operators of the form~C7! and ~C8!, our choice
is

~ c̄LcR!~ c̄L8cR8 ! @R↔L#, ~ c̄LlW cR!•~ c̄L8lW cR8 ! @R↔L#,
~C13!

~ c̄LcR8 !~ c̄L8cR! @R↔L#, ~ c̄LlW cR8 !•~ c̄L8lW cR! @R↔L#.
~C14!
5-20
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EFFECTIVE ELECTROWEAK CHIRAL LAGRANGIAN: . . . PHYSICAL REVIEW D 60 114035
All them are independent unless further symmetries@e.g.,
SU~2!L3SU~2!R# are introduced.

To introduce the SU~2!L3SU~2!R symmetry, one just as
signs SU~2! indices~i, j, k, . . . ! to each of the fields in Eqs
~C9!–~C14!. We can drop the primes hereafter since there
no other symmetry left but technicolor, which for the prese
analysis is trivial~recall that we are only interested in fou
fermion operators of the formQQ̄qq̄; thus, technicolor indi-
ces must necessarily be matched in the obvious w
QAQ̄Aqq̄!. For each of the operators in Eqs.~C9! and~C10!,
there are two independent ways of constructing SU~2!L
3SU~2!R invariants. Only two of the four resulting operato
turn out to be independent~actually, the other two are ex
actly equal to the first ones!. The independent operators a
chosen to be

~ c̄L
i gmcL

i !~ c̄L
j gmcL

j ![~c̄LgmcL!~ c̄LgmcL! @R↔L#,
~C15!

~ c̄L
i gmcL

j !~ c̄L
j gmcL

i ! @R↔L#. ~C16!

For each of the operators in Eqs.~C11!–~C14!, the same
straightforward group analysis shows that there is only
way to construct an SU~2!L3SU~2!R invariant. Discarding
the redundant operators and imposing hermiticity andCP
invariance, one finally has, in addition to the operators~C15!
and ~C16!, those listed below@from now on, we understand
that fields in parenthesis have their Dirac, color, and a
flavor indices contracted as in Eq.~C15!#:

~ c̄LgmcL!~ c̄RgmcR!, ~C17!

~ c̄LgmlW cL!•~ c̄RgmlW cR!, ~C18!

~ c̄L
i cR

j !~ c̄L
kcR

l !e ike j l 1~ c̄R
i cL

j !~ c̄R
k cL

l !e ike j l , ~C19!

~ c̄L
i lW cR

j !•~ c̄L
klW cR

l !e ike j l 1~ c̄R
i l̄cL

j !•~ c̄R
k l̄cL

l !e ike j l .
~C20!

We are now in a position to obtain very easily the cus
dially preserving operators of Tables I and II. We simp
replacec by q andQ ~a pair of each: a field and its conju
gate! in all possible independent ways.

To break the custodial symmetry we simply insertt3 ma-
trices in theR sector of the custodially preserving operato
we have just obtained~left columns of Tables I and II!. How-
ever, not all the operators obtained this way are indepen
since one can prove the following relations:

~ q̄R
i gmQR

j !~Q̄R
j gm@t3qR# i !

5~ q̄Rgmt3QR!~Q̄RgmqR!1~ q̄RgmQR!~Q̄Rgmt3qR!

2~ q̄R
i gm@t3QR# j !~Q̄R

j gmqR
i ! ~C21!
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~ q̄R
i gm@t3QR# j !~Q̄R

j gm@t3qR# i !

5~ q̄RgmQR!~Q̄RgmqR!1~ q̄Rgmt3QR!~Q̄Rgmt3qR!

2~ q̄R
i gmQR

j !~Q̄R
j gmqR

i ! ~C22!

~ q̄R
i gm@t3qR# j !~Q̄R

j gm@t3QR# i !

5~ q̄RgmqR!~Q̄RgmQR!1~ q̄Rgmt3qR!~Q̄Rgmt3QR!

2~ q̄R
i gmqR

j !~Q̄R
j gmQR

i ! ~C23!

~ q̄R
i gm@t3qR# j !~Q̄R

j gmQR
i !1~ q̄R

i gmqR
j !~Q̄R

j gm@t3QR# i !

5~ q̄RgmqR!~Q̄Rgmt3QR!1~ q̄Rgmt3qR!~Q̄RgmQR!.

~C24!

Our final choice of custodially breaking operators is t
one in the right columns of Tables I and II.

APPENDIX D: RENORMALIZATION OF THE MATTER
SECTOR

Although most of the material in this section is standa
it is convenient to collect some of the important expressio
as the renormalization of the fermion fields is somewhat
volved and also to set up the notation. Let us introduce th
wave-function renormalization constants for the fermi
fields:

S u
dD

L

→ZL
1/2S u

dD
L

,

uR→~ZR
u !1/2uR , ~D1!

dR→~ZR
d !1/2dR,

whereu(d) stands for the field of the up-type~down-type!
fermion. We write

Zi511dZi . ~D2!

We also renormalize the fermion masses according to

mf→mf1dmf , ~D3!

wheref 5u,d. These substitutions generate the counterte
needed to cancel the UV divergences. The correspond
Feynman rules are
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~D4!

~D5!

~D6!(L)

a l

~D7!
d
ia

ze
h

o

e
of

sly
s.
pe

ons
e
nta-
s

Here we have introduced the notation

dZL5dZV
u,d1dZA

u,d , dZR
u,d5dZV

u,d2dZA
u,d ~D8!

and

v f5
I f

322QfsW
2

2sWcW
, af5

I f
3

2sWcW
. ~D9!

Note that the Feynman rules for the vertices contain ad
tional renormalization constants which should be famil
from the oblique corrections.

The fermion self-energies can be decomposed as

S f~p!5p8SV
f ~p2!1p8g5SA

f ~p2!1mSS
f ~p2!. ~D10!

By adding the conterterms one obtains the renormali
self-energies, which admit the same decomposition. One

ŜV
f ~p2!5SV

f ~p2!2dZV
f , ~D11!

ŜA
f ~p2!5SA

f ~p2!1dZA
f , ~D12!

ŜS
f ~p2!5SS

f ~p2!1
dmf

mf
1dZV

f , ~D13!

where the caret denotes renormalized quantities. The
shell renormalization conditions amount to
11403
i-
r

d
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n-

dmu,d

mu,d
52SV

u,d~mu,d
2 !2SS

u,d~mu,d
2 !, ~D14!

dZV
d5SV

d~md
2!12md

2@SV
d8~md

2!1SS
d8~md

2!#, ~D15!

dZA
u,d52SA

u,d~mu,d
2 !, ~D16!

whereS8(m2)5@]S(p2)/]p2#p25m2. Equation~D14! guar-
antees thatmu , md are the physical fermion masses. Th
other two equations come from requiring that the residue
the down-type fermion be unity. One cannot simultaneou
impose this condition to both up- and down-type fermion
Actually, one can easily work out the residue of the up-ty
fermions, which turns out to be 11d res with

d res5ŜV
u~mu

2!12mu
2@ŜV

u8~mu
2!1ŜS

u8~mu
2!#. ~D17!

APPENDIX E: EFFECTIVE LAGRANGIAN
COEFFICIENTS

In this appendix we shall provide the general expressi
for the coefficientsai andd i in theories of the type we hav
been considering. The results are for the usual represe
tions of SU~2!3SU~3!c . Extension to other representation
is possible using the prescriptions listed in Sec. VIII:
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a05
nTCnD

64p2MZ
2sW

2 S m2
21m1

2

2
1

m1
2m2

2 ln ~m1
2/m2

2!

m2
22m1

2 D
1

1

16p2

3

8 S 1

ê
2 log

L2

m2D , ~E1!

a152
nTCnD

96p2 1
nTC~nQ23nL!

3396p2 ln
m1

2

m2
2

1
1

16p2

1

12S 1

ê
2 log

L2

m2D , ~E2!

a852
nTC~nc11!

96p2

1

~m2
22m1

2!

3H 5

3
m1

42
22

3
m2

2m2
21

5

3
m2

4

1~m2
424m2

2m1
21m1

4!
m2

21m1
2

m2
22m1

2 ln
m1

2

m2
2J , ~E3!

wherenTC is the number of technicolors~taken equal to 2 in
all numerical discussions!, andnD is the number of techni-
doublets. It is interesting to note that all effective Lagrang
coefficients~except fora1! depend onnD and are indepen
dent of the actual hypercharge~or charge! assignment.nQ
andnL are the actual number of techniquarks and technil
tons. In the one-generation modelnQ53, nL51, and, conse-
quently,nD54. Furthermore, in this modela1 is mass inde-
pendent. For simplicity, we have writtenm1 for the
dynamically generated mass of theu-type technifermion and
m2 for the one of thed-type, and assumed that they are t
same for all doublets. This is of course quite questionable
a large splitting between the technielectron and te
nineutrino seems more likely and they should not necessa
coincide with techniquark masses, but the appropriate
pressions can be easily inferred from the above formu
anyway:

d15
nDnTCG2

16p2M2 aLW 2H m1
21m2

2

2
2m1

2S 11
m1

2

m1
22m2

2D log
m1

2

M2

2m2
2S 11

m2
2

m2
22m1

2D log
m2

2

M2J , ~E4!
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d25
nDnTCG2

16p2M2 $~aLR3
2aRR3

!A21aR
3
2A11aRW 2

B1%,

~E5!

d35
nDnTCG2

16p2M2 $~aL2
2aRL!A21aR3̂LA1%, ~E6!

d45
nDnTCG2

16p2M2 aLW 2H m1
21m2

2

2
1m1

2S 12
m1

2

m1
22m2

2D log
m1

2

M2

1m2
2S 12

m2
2

m2
22m1

2D log
m2

2

M2J , ~E7!

d55
nDnTCG2

16p2M2 $~aLR2aR2
!A21aR3RA1%, ~E8!

d65
nDnTCG2

16p2M2 $~aLR3
2aRR3

!A21aR
3
2A11aRW 2

B2%,

~E9!

d750, ~E10!

where

A657m1
2 log

m1
2

M22m2
2 log

m2
2

M2 , ~E11!

B6562m1m22m1
2S 16

2m1m2

m1
22m2

2D log
m1

2

M2

2m2
2S 16

2m2m1

m2
22m1

2D log
m2

2

M2 . ~E12!

We have not bothered to write the chiral divergence coun
terms in the above expressions. They are identical to thos
Sec. VIII. Although we have written the full expressions o
tained using chiral quark model methods, one should be w
aware of the approximations made in the text.
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