
in

PHYSICAL REVIEW D, VOLUME 63, 073008
CP violation and family mixing in the effective electroweak Lagrangian

D. Espriu* and J. Manzano†
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~Received 3 November 2000; published 7 March 2001!

We construct the most general effective Lagrangian of the matter sector of the standard model, including
mixing andCP violating terms. The Lagrangian contains the effective operators that give the leading contri-
bution in theories where the physics beyond the standard model shows at a scaleL@MW . We perform the
diagonalization and passage to the physical basis in full generality. We determine the contribution to the
different observables and discuss the possible new sources ofCP violation, the idea being to be able to gain
some knowledge about new physics beyond the standard model from general considerations, without having to
compute model by model. The values of the coefficients of the effective Lagrangian in some theories, including
the standard model, are presented and we try to draw some general conclusions about the general pattern
exhibited by physics beyond the standard model in what concernsCP violation. In the process we have had to
deal with two theoretical problems which are very interesting in their own: the renormalization of the CKM
matrix elements and the wave function renormalization in the on-shell scheme when mixing is present.
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I. INTRODUCTION

The origin of CP violation remains, to this date, one o
the unsolved puzzles in particle physics. In the minimal st
dard model there is only one source ofCP violation, as is
well known. Although the most general mass matrix does
principle, contain a large number of phases, only the
handed diagonalization matrices survive@combined in a
single Cabibbo-Kobayashi-Maskawa~CKM! mixing matrix
which we denote byK]. This matrix contains only one ob
servable complex phase.

Whether this source ofCP violation is enough to explain
our world is, at present, an open question. In the near fu
new experimental data~mostly involving third generation
quarks! will allow us to measure with good precision tho
elements of the CKM matrix which are poorly known
present. One of the commonly stated purposes of the
generation of experiments is to check the ‘‘unitarity of t
CKM matrix.’’

Stated this way, the purpose sounds rather meaning
Of course if one only retains the three known generati
mixing occurs through a 333 matrix that is, by construction
necessarily unitary. What is really meant by the above st
ment is whether the observableS-matrix elements, which a
tree level are proportional to a CKM matrix element, wh
measured in charged weak decays, turn out to be in g
agreement with the tree-level unitarity relations predicted
the standard model. If we write, for instance,

^qj uWm
1uqi&5Ui j Vm . ~1!

At the tree level, it is clear thatU5K and unitarity of the
CKM matrix implies
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UikUjk* 5d i j . ~2!

However, even if there is no new physics at all beyond
standard model radiative corrections contribute to the ma
elements relevant for weak decays and spoil the unitarity
the ‘‘CKM matrix’’ U, in the sense that the correspondin
S-matrix elements are no longer constrained to verify
above relation. Obviously, departures from unitarity due
the electroweak radiative corrections are bound to be sm
Later we shall see at what level are violations of unitar
due to radiative corrections to be expected.

But of course, the violations of unitarity which are real
interesting are those caused by new physics. Physics be
the standard model can manifest itself in several ways an
several scales. In this work we shall adopt the viewpoint t
new physics may appear at a scaleL which is relatively
large compared to theMZ scale. This remark includes th
scalar sector too; i.e. we assume that the Higgs particle—
exists at all—it is sufficiently heavy. If this is so, an expa
sion in inverse powers ofL is justified and effective La-
grangian techniques@1# can be used. The scaleL could, for
instance, be the mass of a new heavy fermion, some c
positeness scale, or simply the Higgs boson mass.

It is particularly interesting, at least from an instructiv
point of view, to consider the case of a new heavy gene
tion. We can proceed in two ways. One possibility is to tre
all fermions, light or heavy, on the same footing. We wou
then end up with a 434 unitary mixing matrix, the one
corresponding to the light quarks being a 333 submatrix
which, of course need not be—and in fact, will not be
unitary. Stated this way the departures from unitarity~al-
ready at tree level! could conceivably be sizeable. The alte
native way to proceed would be, in the philosophy
effective Lagrangians, to integrate out completely the he
generation. One is then left, at lowest order in the inve
mass expansion, with just the ordinary kinetic and m
terms for light quarks, leading—obviously—to an ordina
©2001 The American Physical Society08-1
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333 mixing matrix, which is of course unitary. Naturally
there is no logical contradiction between the two procedu
because what really matters is the physicalS-matrix element
and this gets, if we follow the second procedure~integrating
out the heavy fields!, two type of contributions: from the
lowest dimensional operators involving only light fields a
from the additional operators obtained after integrating
the heavy fields. The result for the observableS-matrix ele-
ment should obviously be the same whatever procedure
follow, but using the second method we learn that the vio
tions of unitarity in the~three generation! unitarity triangle
are suppressed by some heavy mass~since an additional gen
eration decouples in the observables we are interested@2#!.
This simple consideration illustrates the virtues of the eff
tive Lagrangian approach. We shall say more about this la

The purpose of this paper is to use the philosophy beh
effective Lagrangians to try and learn some more insight
the issue of possible sources ofCP violation beyond the
standard model. We shall, in particular, determine the m
general parametrization, to the lowest non-trivial order, of
possible family mixing andCP-violating effects in the mat-
ter sector of the standard model.~Of course, being com-
pletely general is impossible, so some restrictions shall ap
to our considerations. These shall be spelled out in Sec.!

According to our philosophy we shall, first of all, classi
all possible operators of lowest dimensionality which,
specting all the appropriate symmetries, can be added to
ones which are present in the minimal standard model. T
we shall analyze the most general kinetic and mass te
~including, obviously, mixing!. Even these terms may a
ready be different from those in the minimal standard mod
the reason being that some field redefinitions which are r
tinely done in the standard model are not innocuous in m
general models. We then proceed to diagonalize both,
mass and kinetic terms, and determine the effects of the
agonalization procedure, i.e. of passing to the physical ba
on the most general set of operators of dimension four~again
including the possibility of off-diagonal couplings in famil
space!. We then discuss the conditions for these operator
be CP-odd.

Note that in the minimal standard model, only the le
handed diagonalization matrices appear in physical proce
~combined in the CKM matrixK). When operators beyon
the standard model are included~originally written in the
basis of weak eigenstates! the passage to the physical~diag-
onal! basis becomes more involved. Operators involving j
left handed fields transform into more complex structu
involving K and redefined effective couplings. These stru
tures were not present before the change of variables
cause, in the weak eigenstates basis, they explicitly br
SU(2)L . For operators involving right handed fields the sit
ation is different. We will show that passing to the physic
basis amounts only to a redefinition of their couplings, wi
out changing their structure. It comes perhaps as a surp
that beyond the standard model the passage to the phy
basis involves in either casenon-unitarymatrices.

One of the major contributions presented in this work
the detailed treatment of the issue of wave-function a
CKM matrix elements renormalization constants. There
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two reasons to do so. On the one hand, contact with phys
matrix elements requires that the external legs are prop
normalized and there isa priori no reason why new physic
cannot contribute to the wave-function renormalization co
stants, exactly as they do to the effective vertices. It is sim
inconsistent to include one and not the other. In fact, in
case of the CKM matrix elements, their renormalizati
turns out to be related to the wave-function renormalizat
matrices, so it is obviously necessary to deal with this is
one way or another even in the standard model. On the o
hand, it must be said that the actual on-shell prescription
incorporate the wave-function renormalization conditions
not fully understood yet when mixing is present. This pr
vides for us a second motivation to treat this problem ca
fully.

Another motivation to present the effective Lagrangi
analysis of the family mixing andCP violation problems is
that it can be applied to an analysis of radiative correctio
~for instance in the minimal standard model itself! through
the use of effective couplings. For a particular process
leading contribution from radiative corrections comes a
redefinition of the effective couplings, i.e. to some spec
values for the coefficients of the effective Lagrangian. On
determined, they can be used for other observables with
needing to compute them anew. This procedure proved to
very efficient in recent years in the context of CERNe1e2

collider LEP physics and neutral currents phenomenolo
@3#.

Finally and somewhat related to the previous issue is
fact that an effective Lagrangian provides a conveni
book-keeping device to treat deviations with respect to
standard model tree level predictions in a particular proce
Questions like whether is it legitimate or not to use the u
tarity of the CKM matrix in a given process, given that one
precisely looking for violations of unitarity, can be pose
and answered systematically in an effective Lagrang
framework.

The paper is organized in the following way. In the ne
section we extend the effective electroweak Lagrangian
the matter sector@4# to the case where there is mixin
amongst different generations. We shall see which rest
tions CP-conservation imposes on the coefficients of the
fective Lagrangian. We shall then discuss in Sec. III the p
sage to the physical basis, which is quite interesting in
present framework, and is in fact one of the main results
this work. The effective couplings and some possible obse
able effects are discussed in Sec. IV. In Sec. V we shall t
into account the effects due to renormalization, comment
expected size of the standard model radiative corrections
point out some open problems. In Sec. VI we shall brie
consider two examples: a heavy doublet and the stand
model with a heavy Higgs boson. Conclusions shall be su
marized in Sec. VII.

II. EFFECTIVE LAGRANGIAN

Let us first state the assumptions behind the pres
framework. We shall assume that the scale of any new ph
ics beyond the standard model is sufficiently high so that
8-2
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CP VIOLATION AND FAMILY MIXING IN THE . . . PHYSICAL REVIEW D 63 073008
inverse mass expansion is granted, and we shall organiz
effective Lagrangian accordingly. We shall also assume
the Higgs field either does not exist or is massive enoug
permit an effective Lagrangian treatment by expanding
inverse powers of its mass,MH . In short, we assume that a
as yet undetected new particles are heavy, with a mass m
larger than the energy scale at which the effective Lagra
ian is to be used. Thus it is natural to use a non-linear r
ization of theSU(2)L3U(1)Y symmetry where the unphys
cal scalar fields are collected in a unitary 232 matrixU ~see
e.g. @1#!.

An additional assumption that we may make at so
point is that, whatever is the source ofCP-violation beyond
the standard model, when compared to theCP conserving
part, is ‘‘small.’’ This statement does need qualificatio
What really matters, of course, is the observable value of
CP violating parameters, which are customarily calcula
in the mass eigenstate basis. On the other hand, new ph
may ~or may not, we do not know for sure! appear naturally
in the weak basis; i.e. with fields transforming as irreduci
representations of the gauge group. When operators be
the standard model are included they will have, in genera
CP-violating and aCP-conserving part when written in th
weak basis. For the sake of discussion let us imagine
scenario where the origin of fermion masses is unrela
with the physics that contributes to effective operators
yond those already contained in the standard model~perhaps
because the former is associated to a very large scale!. Then
new physics can be separated somehow in two parts: one
contributes to the kinetic and Yukawa operators in the w
basis and is responsible for the known mass structure of
matter sector; the other part contributes, again in the w
basis, to a set of effective operators@the one described late
by Eqs.~8!#. If we assume, for example, that the latter a
totally or almostCP conserving then can have the pecul
situation that manyCP-violating phases may appear in th
coefficients of the effective operators when we pass to
physical base; phases which would not be observable in
minimal standard model. In short, it is conceivable thatCP
conserving physics triggersCP-violation in the physical ba-
sis. Of course the converse is theoretically also possible,CP
violating phases may disappear once things are written in
physical basis.

Let us commence our classification of the operat
present in the matter sector of the effective electroweak
grangian. We shall use the following projectors:

R5
11g5

2
, L5

12g5

2
, tu5

I 1t3

2
, td5

I 2t3

2
,

~3!

where R is the right projector andL the left projector in
chirality space, andtu is the up projector andtd the down
projector inSU(2) space. The different gauge groups act
the scalar,U, and fermionic,f L , f R , fields in the following
way:
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DmU5]mU1 ig
t

2
•WmU2 ig8U

t3

2
Bm ,

Dm
L f L5]m f L1 ig

t

2
•Wm f L1 ig8S Q2

t3

2 DBm f L

1 igs

l

2
•Gm f L , ~4!

Dm
Rf R5]m f R1 ig8QBm f R1 igs

l

2
•Gm f R .

The following terms are universal. They must be pres
in any effective theory whose long-distance properties
those of the standard model. They correspond to the stan
model kinetic and mass terms~we use the notation f to de
scribe both left and right degrees of freedom simultaneou!

L kin
L 5 i f̄XLgmDm

L Lf,

L kin
R 5 i f̄~tuXRu1tdXRd!g

mDm
RRf, ~5!

Lm52 f̄~U~tuỹu
f 1tdỹd

f !R1~tuỹu
f †1tdỹd

f †!U†L !f.

XL , XRu andXRd are non-singular Hermitian matrices ha
ing only family indices, andỹu

f and ỹd
f are arbitrary matrices

and have only family indices too. Note that in generalXRd
ÞXRu , as the only restriction is gauge invariance. In t
standard model, these matrices can always be reabsorbe
an appropriate redefinition of the fields~we shall see this
explicitly later!, so one does not even contemplate the p
sibility that left and right ‘‘kinetic’’ terms are differently
normalized, but this is perfectly possible in an effecti
theory, and the transformations required to bring these
netic terms to the standard form do leave some fingerpri

In order to write the above terms in the familiar form
the standard model we shall perform a series of ch
changes of variables. In general, due to the axial anom
these changes will modify theCP violating terms

Lu5eabmn~u1BabBmn1u2Wab
a Wmn

a 1u3Gab
a Gmn

a !, ~6!

but we will not care about that here.
Notice the appearance of the unitary matrixU collecting

the ~unphysical! Goldstone bosons. The Higgs field—as em
phasized above—should it exist, has been integrated
Since the global symmetries are non-linearly realized
above Lagrangian is not renormalizable.

In addition to Eq.~5! a number of operators of dimensio
four should be included in the matter sector of the effect
electroweak Lagrangian. They are, to begin with, necess
as counterterms to remove some ultraviolet divergences
appear at the quantum level due to the non-linear natur
Eq. ~5!. Moreover, physics beyond the standard model d
in general contribute to the coefficients of those operators
it may do to XL , XRu XRd , ỹu and ỹd . The dimension 4
operators can be written generically as
8-3
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LL5 f̄gmMLOL
mLf1H.c.,

~7!

LR5 f̄gmMROR
mRf1H.c.,

whereML and MR are matrices having family indices onl
andOL

m andOR
m are operators of dimension one having we

indices~u,d! only. These operators were first written by@4#
in the case where mixing between families is absent. T
have been recently considered in@5# and @6#. The extension
to the three-generation case is new.

The complete list of the dimension four operators is

L L
15 i f̄ML

1gmU~DmU !†Lf1H.c.,

L L
25 i f̄ML

2gm~DmU !t3U†Lf1H.c.,

L L
35 i f̄ML

3gmUt3U†~DmU !t3U†Lf1H.c.,

L L
45 i f̄ML

4gmUt3U†Dm
L Lf1H.c., ~8!

L R
15 i f̄MR

1gmU†~DmU !Rf1H.c.,

L R
25 i f̄MR

2gmt3U†~DmU !Rf1H.c.,

L R
35 i f̄MR

3gmt3U†~DmU !t3Rf1H.c.

Without any loss of generality we take the matrices in fam
spaceML

1 , MR
1 , ML

3 andMR
3 Hermitian, whileML

2 , MR
2 and

ML
4 are completely general. If we require the above opera

to be CP conserving, the matricesML,R
i must be real~see

Sec. IV!.
In addition to the above ones, physics beyond the stand

model generates, in general, an infinite tower of high
dimensional operators withd>5 @these operators are eve
tually required as counterterms too due to the non-linear
ture of the Lagrangian~5!#. On dimensional grounds thes
operators shall be suppressed by powers of the scaleL char-
acterizing new physics or by powers of 4pv (v being the
scale of the breaking—250 GeV!. Therefore, if the scale o
new physics is sufficiently high the contribution of high
dimensional operators can be neglected as compared to
of d54. Of course for this to be true the later must
non-vanishing and sizeable. Thanks to the violation of
Appelquist-Carazzone decoupling theorem@7# in spontane-
ously broken theories, this is often the case, unless the
physics is tuned so as to be decoupling as is the case in
minimal supersymmetric standard model~see e.g.@8# for a
recent discussion on this matter!.

III. PASSAGE TO THE PHYSICAL BASIS

Let us first consider the operators which are alrea
present in the standard model, Eq.~5!. The diagonalization
and passage to the physical basis are of course well kno
but some modifications are required when one considers
general case in Eq.~5! so it is worth going through the dis
cussion with some detail.
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We perform first the unitary change of variables

f5@ṼLL1~ṼRut
u1ṼRdt

d!R#f, ~9!

with the help of the unitary matricesṼL , ṼRu and ṼRd .
Hence

~ ỹu
f tu1 ỹd

f td!→~ṼL
†ỹu

f ṼRut
u1ṼL

†ỹd
f ṼRdt

d!, ~10!

and

XL→ṼL
†XLṼL5DL ,

XRu→ṼRu
† XRuṼRu5DRu , ~11!

XRd→ṼRd
† XRdṼRd5DRd ,

whereDL , DRu and DRd are diagonal matrices with eigen
values different from zero. Then, with the help of the no
unitary transformation

f→@DL
21/2L1~DRu

21/2tu1DRd
21/2td!R#f, ~12!

we obtain

DL→~DL
21/2!* DLDL

21/25I ,

Du
R→~DRu

21/2!* DRuDRu
21/25I , ~13!

Dd
R→~DRd

21/2!* DRdDRd
21/25I ,

and the matrixỹu
f tu1 ỹd

f td transforms into

~DL
21/2!* ṼL

†ỹu
f ṼRuDRu

21/2tu1~DL
21/2!* ṼL

†ỹd
f ṼRdDRd

21/2td

[yu
f tu1yd

f td, ~14!

whereyu
f and yd

f are the Yukawa couplings. Thus, the le
and right kinetic terms can be brought to the canonical fo
at the sole expense of redefining the Yukawa couplin
Since this is all there is in the standard model, we see tha
effect of considering the more general coefficients for
kinetic terms is irrelevant. This will not be the case wh
additional operators are considered. Fermions transform
to this point, in irreducible representations of the gau
group.

We now perform the unitary change of variables

f→@~VLutu1VLdtd!L1~VRut
u1VRdt

d!R#f, ~15!

with unitary matricesVLu , VRu , VLd and VRd and having
family indices only. They are chosen so that the Yuka
terms become diagonal and definite positive~see e.g.@9#!

~VLu
† tu1VLd

† td!~yu
f tu1yd

f td!~VRut
u1VRdt

d!

5du
f tu1dd

f td. ~16!

After all these transformationsLm transforms into
8-4
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Lm52 f̄$~tuU1K†tdU !tudu
f 1~tdU1KtuU !tddd

f %Rf

1H.c., ~17!

where K[VLu
† VLd is well known Cabibbo-Kobayashi

Maskawa matrix. Note in Eq.~17! that when we setU5I we
obtain

Lm52 f̄~tudu
f 1tddd

f !Rf1H.c., ~18!

which is a diagonal mass term. Fermions now transform
reduciblerepresentations of the gauge group.

The left and right kinetic terms now read

L kin
R 5 i f̄gmDm

RRf, ~19!

and

L kin
L 5 i f̄gmLH ]m1 ig8S Q2

t3

2 DBm1 ig
t3

2
Wm

3

1 igS K
t2

2
Wm

11K†
t1

2
Wm

2D1 igs

l

2
•GmJ f.

~20!

CP violation is present if and only ifKÞK* .
As is well known, some freedom for additional phase

definitions is left. If we make the replacement

f→@~WLutu1WLdtd!L1~WRut
u1WRdt

d!R#f, ~21!

we have to change

K5VLu
† VLd→WLu

† VLu
† VLdWLd5WLu

† KWLd , ~22!

and

du5VLu
† yu

f VRu→WLu
† VLu

† yu
f VRuWRu5WLu

† du
f WRu ,

~23!

dd5VLd
† yd

f VRd→WLd
† VLd

† yd
f VRdWRd5WLd

† dd
f WRd ,

but if we want to keepdu
f anddd

f diagonal real and definite
positive, and if we suppose that they do not have degene
eigenstates the only possibility for the unitary matricesW is
to be diagonal withWR(u,d)5WL(u,d) . This freedom can be
used, for example, to extract five phases fromK. After this
no further redefinitions are possible neither in the left nor
the right handed sector.

So much for the standard model. Let us now move to
more general case represented at low energies by thed54
operators listed in the previous section. We have to ana
the effect of the transformations given by Eqs.~9!, ~12! and
~15! @here we include in Eq.~15! the effect of Eq.~21!# on
the operators~8!. The composition of those transformation
is given by
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f→ṼL~DL!21/2~VLutu1VLdtd!Lf1„ṼRu~Du
R!21/2VRut

u

1ṼRd~Dd
R!21/2VRdt

d
…Rf

[~CL
utu1CL

dtd!Lf1~CR
utu1CR

dtd!Rf. ~24!

Note that because of the presence of the matricesD, the
matricesC are in general non-unitary. We begin with th
effective operators involving left handed fields. In this ca
when we perform transformation~24! we obtain

LL→ f̄gmO L
mLf1H.c., ~25!

with the operatorO L
m containing family and weak indice

given by

O L
m5NtuOL

mtu1NKtuOL
mtd1K†NKtdOL

mtd

1K†NtdOL
mtu, ~26!

where we have defined

N[CL
u†MLCL

u . ~27!

Thus new structures do appear involving the CKM matrixK
and left-handed fields. The former cannot be reduced to
starting set of operators by a simple redefinition of the ori
nal couplingsML .

The case of the effective operators involving right hand
fields (LR) is, in this sense, simpler because transformat
~24! only redefine the matricesMR . The operators involving
right-handed fields are

L R
p5 i f̄gmMR

pOp
mRf1H.c., ~28!

with

O1
m5U†~DmU !, O2

m5t3U†~DmU !,
~29!

O3
m5t3U†~DmU !t3.

Note that because of the H.c. inL R
p we can changeO2

m by
U†(DmU)t3 along withMR

2 by MR
2† . So under the transfor

mation ~24! we obtain

L R
p→ i f̄gmO pR

m Rf1H.c.,

with the operatorsO pR
m containing family and weak indice

given by

O pR
m 5CR

u†MR
pCR

utuOp
mtu1CR

u†MR
pCR

dtuOp
mtd

1CR
u†MR

pCR
dtdOp

mtd1CR
d†MR

pCR
utdOp

mtu, ~30!

hence

(
p51

3

L R
p→ (

p51

3

~ i f̄gm
mOpRRf1H.c.!

5 (
p51

3

~ i f̄gmM̃R
pOp

mRf1H.c.!, ~31!
8-5
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with

M̃R
15C1

† MR
1C11C2

† MR
2C11C2

† MR
3C2 ,

M̃R
25C2

† MR
1C11C1

† MR
2C11C1

† MR
3C2 , ~32!

M̃R
35C2

† MR
1C21C1

† MR
2C21C1

† MR
3C1 ,

where C65(CR
u6CR

d)/2. Hence, transformations~24! can
be absorbed by a mere redefinition of the matricesMR

1 , MR
2

andMR
3 .

IV. EFFECTIVE COUPLINGS AND CP VIOLATION

After the transformations discussed in the previous s
tion we are now in the physical basis and in a position
discuss the physical relevance of the couplings in the ef
tive Lagrangian. On dimensional grounds the contribution
all possible dimension four operators to the vertices can
parametrized in terms of effective couplings~see e.g.@10#!

Le f f52gsf̄g
m~aLL1aRR!l•Gmf2ef̄gm~bLL1bRR!Amf

2
e

2cWsW
f̄gm~gLL1gRR!Zmf2

e

sW
f̄gm

3~hLL1hRR!
t2

2
Wm

1f2
e

sW
f̄gm~hL

†L1hR
†R!

t1

2
Wm

2f,

~33!

where we define

aLR5aLR
u tu1aLR

d td, bLR5bLR
u tu1bLR

d td,
~34!

gLR5gLR
u tu1gLR

d td.

After rewriting the effective operators~8! in the physical
basis, their contribution to the couplingsaR ,aL ,bR , . . . can
be found out by settingU5I .

The operators involving right-handed fields give rise
(cW5g/Ag21g8 2 and sW5g8/Ag21g8 2 are the cosinus
and sinus of the Weinberg angle, respectively!

(
p51

3

L R
p52 f̄gm~M̃R

11M̃R
2t3!F e

sW
S t2

2
Wm

11
t1

2
Wm

2D
1

e

cWsW

t3

2
ZmGRf2 f̄gmM̃R

3t3F e

sW
S t2

2
Wm

1

1
t1

2
Wm

2D1
e

cWsW

t3

2
ZmGt3Rf1H.c. ~35!

For the operators involving left-handed fields we have
stead
07300
c-
o
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L L
15 f̄gmH e

cWsW
S N1

tu

2
2K†N1K

td

2 DZm1
e

sW
S N1K

t2

2
Wm

1

1K†N1
t1

2
Wm

2D J Lf1H.c., ~36!

L L
252 f̄gmH e

cWsW
S N2

tu

2
1K†N2K

td

2 DZm

1
e

sW
S 2N2K

t2

2
Wm

11K†N2
t1

2
Wm

2D J Lf1H.c.,

~37!

L L
352 f̄gmH e

cWsW
S N3

tu

2
2K†N3K

td

2 DZm

1
e

sW
S 2N3K

t2

2
Wm

12K†N3
t1

2
Wm

2D J Lf1H.c.

~38!

The contribution fromL L
4 is a little bit different and de-

serves some additional comments. Let us first see how
effective operator looks in the physical basis and after set
U5I

L L
452 f̄gmH ~N4tu2K†N4Ktd!F2 i ]m1eQAm

1
e

cWsW
S t3

2
2QsW

2 DZm1gs

l

2
•GmG1

e

sW
S N4K

t2

2
Wm

1

2K†N4
t1

2
Wm

2D J Lf1H.c. ~39!

One sees thatL L
4 is the only operator potentially contributin

to the gluon and photon effective couplings. This is of cou
surprising since both the photon and the gluon are associ
to currents which are exactly conserved and radiative cor
tions ~including those from new physics! are prohibited at
zero momentum transfer. However one should note that
effective couplings listed in Eq.~33! are not directly observ-
able yet because one must take into account the renorma
tion of the external legs. In factL L

4 is the only operator tha
can possibly contribute to such renormalization at the or
we are working. This issue will be discussed in detail in t
next section. When the contribution from the external legs
taken into account one observes thatL L

4 can be eliminated
altogether from the neutral gauge bosons couplings~and this
includes theZ couplings where the conserved current arg
ment does not apply!.

Another way of seeing this~as pointed out in@5#! is by
realizing that after use of the equations of motionL L

4 trans-
forms into a Yukawa term, so the effect ofL L

4 can be ab-
sorbed by a redefinition of the fermion masses and the C
matrix, if the fermions are on-shell, as it will be the case
the present discussion. Then it is clear thatL L

4 may possibly
8-6
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contribute to the renormalization of the CKM matrix el
ments only~i.e. to the charged current sector!.

All this considered, from Eqs.~33! and ~35!–~39!, and
from the results presented in the next section concern
wave function renormalization, we obtain for the photon a
gluon couplings the following contribution coming from th
effective operators~8!:

aL5aR5bL5bR50, ~40!

both for the up and down components. For theZ couplings
the contribution of effective operators~8! is

gL
u52N12N1†1N2†1N21N31N3†,

gL
d5K†~N11N1†1N2†1N22N32N3†!K,

~41!
gR

u5M̃R
11M̃R

1†1M̃R
21M̃R

2†1M̃R
31M̃R

3† ,

gR
d5M̃R

21M̃R
2†2M̃R

12M̃R
1†2M̃R

32M̃R
3† .

The contribution from wave-function renormalization ca
cels the dependence from the vertices on the Hermitian c
bination N41N4†, which is the only one that appears fro
the vertices themselves.

As for the effectiveW couplings we give next the contri
bution coming from the vertices contained in Eq.~8! only.
Naturally, in order to get the full effective couplings on
must still add the contribution from wave-function renorm
ization and from the renormalization of the CKM matr
elements induced by Eq.~8!. Actually we will see in Sec.
V D that these contributions cancel each other at tree leve
in fact the following results include the full dependence
N4

hL5~2N12N1†1N22N2†2N32N3†1N42N4†!K,
~42!

hR5~M̃R
11M̃R

1†1M̃R
22M̃R

2†2M̃R
32M̃R

3†!.

The above effective couplings thus summarize all effe
due to the mixing of families in the low energy theory caus
by the presence of new physics at some large scaleL. Let us
now investigate the possible new sources ofCP violation in
the above effective couplings.

Generically we can write

LL5 f̄gmSmLf1H.c., ~43!

where

Sm[NtuOmtu1NKtuOmtd1K†NKtdOmtd

1K†NtdOmtu, ~44!

then underCP we have

LL→ f̄gmS8mLf, ~45!

with
07300
g
d

-

so

s
d

S8m[NTtuOmtu1KTNTtdOmtu1KTNTK* tdOmtd

1NTK* tuOmtd, ~46!

so in order to haveCP invariance we require

N5N* ,

NK5NK* ,

KTNK* 5K†NK, ~47!

which can be fulfilled requiring

N5N* , K5K* . ~48!

Note that this last condition is sufficient but not necessa
however if we ask forCP invariance of the complete La
grangian~as we should! the last condition is both sufficien
and necessary. Analogously, the right-handed contribut
given by Eq.~35!, is CP invariant provided

M̃R
p5M̃R

p* . ~49!

Equations~40!, ~41! and ~42! thus summarize the contri
bution from dimension four operators to the observables
addition there will be contributions from other higher dime
sional operators, such as for instance dimension five o
~magnetic moment-type operators for example!. We expect
these to be small in theories such as the ones we are co
ering here. The reason is that we assume a large mass
between the energies at which our effective Lagrangian
going to be used and the scale of new physics. This a
matically suppresses the contribution of higher dimensio
operators. However, non-decoupling effects may be left
dimension four operators, which may depend logarithmica
in the scale of the new physics. The clearest example of
is the standard model itself. Since the Higgs boson is th
an essential ingredient in proving the renormalizability of t
theory, removing it induces new divergences which even
ally manifest themselves as logarithms of the Higgs bo
mass. This enhances~for a relatively heavy Higgs boson! the
importance of thed54 coefficients, albeit in the standar
model they are small~except for the top! nonetheless since
the logMH

2 /MW
2 is preceded by a prefactory2/16p2, wherey

is a Yukawa coupling~see@5#!.
Apart from the issue of wave-function and CKM reno

malization, to which we shall turn next, we have finished o
theoretical analysis and we can start drawing some con
sions.

One of the first things one observes is that there are
anomalous photon or gluon couplings, diagonal or not
flavor. This excludes the appearance from new physics c
tributions to the effective couplings and observables con
ered here involving the photon and the gluon. As we ha
seen this can be understood on rather general grounds b
is still nice to see it explicitly.

We also observe at once that many complex phases
pear~or disappear! in the coefficients of the effective opera
tors after the passage to the physical basis. Even if the
8-7



rs
o
KM
ed
pe
er
m
ha

ak

es
ne

n

to
ew
e

s
re

is

ou
t

e

rd
e
e

e

o
ua
ity

is
th
e
in

bu
a

ve
de
er
s;

to
a-
the
ve
ey
s. It
We
his.

ive
-
ve-
n
the
the
we

ory
leg

n we
ell
wave
m.

be-
ive

g
ects
tion
tri-
ole

use
ev-
of

idue
rip-
ell
s

g.

not
ew

ve-
We
oki

in
ry.

e
i-
-
th
mes
we
t be
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trices ML,R were real ~and thus the effective operato
themselves preservedCP) phases do appear after the diag
nalization, both due to the appearance of the usual C
matrix in those effective operators involving left-hand
fields, but also because the diagonalization matrices ap
explicitly, both for left and right-handed operators. Furth
more the effective operators couplings are redefined by
trices which are not unitary in general. It is conceivable t
this might enhance slightly theCP violation induced by the
effective operators, for instance very large custodially bre
ing contributions in the new physics~provided that these
evade the rather stringent bounds coming from ther param-
eter @11#! would give rather different values to the matric
XRu andXRd , yielding eigenvalues smaller than one in o
of the two. These might enhanceCP violation in the right-
handed sector.

In the standard model there is a link between the existe
of three families and the presence ofCP violation. This dis-
appears completely, both in the left and right-handed sec
once additional operators are included. The n
CP-violating contributions need not, in fact, be suppress
by the product of all the mass differences, as it happen
the standard model. This is obviously so if the physics
sponsible for the effective operators in the weak basis
CP-violating, but even if it turns out that the new physics
such that the effective operators do not violateCP in the
weak basis, both the effective left and right-handed c
plings contain many independent phases as pointed ou
Sec. II. Indeed from Eqs.~24!–~27! we see that we can hav
up to 9 independent phases in the left sector~1 in K and the
other 8 in theN’s, the latter not observable in the standa
model! and from Eqs.~24! and~32! we see the we can hav
up to 18 independent phases in the right sector which w
not observable in the standard model.~See @12# for some
work on right-handed phases and mixing matrices.! Obvi-
ously if the matricesM are allowed to be complex mor
phases are available.

How can we check for the presence of all this wealth
new phases? In the left-handed sector the analysis is us
done in terms of the unitarity triangle. Clearly the unitar
triangle as such is gone once the additionald54 operators
are included. To see this we need only to examine Eq.~42!.
The total charged current vertex will be proportional to

U5K1GK, ~50!

whereG is a combination of theN matrices. SinceG is not
anti-Hermitian,U is not unitary in a perturbative sense. Th
of course is what happens when the contribution from
new physics is considered, but it is clear that this will happ
in the standard model too when radiative corrections are
cluded, since radiative corrections give very specific,
non-zero, values for the effective couplings which also le
to violations of unitarity.

However, these deviations of unitarity due to radiati
corrections shall be small. We expect contributions of or
g2/16p2 from the gauge sector and of ord
(y2/16p2)logMH

2 /MW
2 from the scalar sector to the coupling

at most of order a few times 1023. This is almost certainly
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invisible in the ongoing generation of experiments trying
test theCP-violating sector of the standard model. Devi
tions from the tree-level predictions, expressed through
coefficients of the effective Lagrangian and their effecti
coupling counterpart will measurable at present only if th
are sizably larger than the radiative corrections themselve
is not so easy, however, to build models where this is so.
refer the reader to Sec. VI for a few more comments on t
We would also like to draw the reader’s attention to@13# and
references therein.

V. RADIATIVE CORRECTIONS AND
RENORMALIZATION

As we mentioned in the previous section, the effect
couplings presented in Eq.~42! for the charged current ver
tices are not the complete story because CKM and wa
function renormalization gives a non-trivial contributio
there. In this section we shall consider the contribution to
observables due to wave-function renormalization and
renormalization of the CKM matrix elements. The issue,
shall see, is far from trivial.

When we calculate cross sections in perturbation the
we have to take into account the residues of the external
propagators. The meaning of these residues is clear whe
do not have mixing. In this case, if we work in the on-sh
scheme, we can attempt to absorb these residues in the
function renormalization constants and forget about the
However the Ward identities force us to set up relations
tween the renormalization constants that invalidate the na
on-shell scheme@14#. The issue is resolved in the followin
way: Take whatever renormalization scheme that resp
Ward identities and use the corresponding renormaliza
constants everywhere in except for the external legs con
butions. For the latter we just have to impose the mass p
and unit residue conditions. This recipe is equivalent to
the Ward identities-complying renormalization constants
erywhere and afterwards perform a finite renormalization
the external fields in order to assure mass pole and res
one for the propagators. This is the commonly used presc
tion in the context of the popular and convenient on-sh
scheme@14# and, in the context of effective theories wa
used in@15# and in @5#.

Now let us now turn to the case where we have mixin
This was studied some time ago by Aokiet al. @16# and a
on-shell scheme was proposed. Unfortunately the issue is
settled. We have studied the problem with some detail an
since, as already mentioned, the contribution from wa
function renormalization is important in the present case.
have found out that the set of conditions imposed by A
et al. over-determine the renormalization constants and is
fact incompatible with the analytic structure of the theo
Moreover, even if this problem is ignored, it was found som
time ago @17# that the proposal conflicts with the Becch
Rouet-Stora-Tyutin~BRST! symmetry of the theory. There
fore, now we will analyze the renormalization issue wi
some detail and then we shall propose a couple of sche
which are free of the over-determination problem. Once
have obtained those schemes we will show how they mus
8-8
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used in order to avoid conflict with Ward identities.
The renormalized fermionic propagator is given by

S~p!5
i

p”2m2Ŝ~p!

5 i „p”2m2Ŝ~p!…21

5 i @„12Ŝ~p!~p”2m!21
…~p”2m!#21

5 i ~p”2m!21
„12@2 i Ŝ~p!# i ~p”2m!21

…

21

5 i ~p”2m!211 i ~p”2m!21@2 i Ŝ~p!# i ~p”2m!211•••,

~51!

where, since we have mixing, the renormalized self-ene

Ŝ(p) have family indices. Unless explicitly said otherwis
all expressions are valid both for up and down type fermio
We will indicate the weak indicesu or d only when neces-
sary. From Poincare´ invariance we can write

Ŝ i j ~p!5p” „Ŝ i j
gR~p2!R1Ŝ i j

gL~p2!L…1Ŝ i j
R~p2!R1Ŝ i j

L ~p2!L,
~52!

whereL andR are left and right projectors respectively, s

Si j
21~p!52 i „p”2m2Ŝ~p!…i j 52 i ~p”2mi !d i j 1 i Ŝ i j ~p!.

~53!

The on-shell conditions given by Aokiet al. are

Si j
21~pj !uj

s~pj !50, ~54!

ūi
s~pi !Si j

21~pi !50, ~55!

i ~p” i2mi !
21Sii

21~pi !ui
s~pi !5ui

s~pi !, ~56!
e

07300
y

s.

ūi
s~pi !Sii

21~pi !i ~p” i2mi !
215ūi

s~pi !, ~57!

where we do not sum over repeated indices and wherepi
2

→mi
2 ~on-shell!. With uj

s we indicate the Dirac spinor satis
fying the on-shell condition

~p” i2mi !ui
s~pi !50. ~58!

From Eqs.~53! and ~54! we obtain

„@Ŝ i j
gL~mj

2!mj1Ŝ i j
R~mj

2!#R

1@Ŝ i j
gR~mj

2!mj1Ŝ i j
L ~mj

2!#L…uj
s~pj !50, ~59!

and from there

Ŝ i j
gL~mj

2!mj1Ŝ i j
R~mj

2!50,

~60!

Ŝ i j
gR~mj

2!mj1Ŝ i j
L ~mj

2!50.

Analogously from Eqs.~53! and ~55! we obtain

ūi
s~pi !„miŜ i j

gR~mi
2!R1miŜ i j

gL~mi
2!L1Ŝ i j

R~mi
2!R

1Ŝ i j
L ~mi

2!L…50, ~61!

and from there

miŜ i j
gR~mi

2!1Ŝ i j
R~mi

2!50,

~62!

miŜ i j
gL~mi

2!1Ŝ i j
L ~mi

2!50.

From Eqs.~53! and ~56! we obtain
Ŝ i i
gR~mi

2!1mi
2
„Ŝ i i

gR8~mi
2!1Ŝ i i

gL8~mi
2!…1mi„Ŝ i i

R8~mi
2!1Ŝ i i

L8~mi
2!…50,

~63!
Ŝ i i

gL~mi
2!1mi

2
„Ŝ i i

gL8~mi
2!1Ŝ i i

gR8~mi
2!…1mi„Ŝ i i

L8~mi
2!1Ŝ i i

R8~mi
2!…50,
nd
al-
and finally from Eqs.~53! and~57! we obtain again the sam
equations that we have derived from the condition~56!. So
we can write the whole set of Aokiet al. renormalization
conditions as

05Ŝ i j
gL~mj

2!mj1Ŝ i j
R~mj

2!,

05miŜ i j
gR~mi

2!1Ŝ i j
R~mi

2!, ~64!

05Ŝ i i
gR~mi

2!1mi
2
„Ŝ i i

gR8~mi
2!1Ŝ i i

gL8~mi
2!…

1mi„Ŝ i i
R8~mi

2!1Ŝ i i
L8~mi

2!…,
as well as those obtained by the exchangeR↔L.
With the help of the mass counterterm and the left a

right wave-function renormalization constants the renorm

ized self energyŜ i j can be written as

Ŝ i j 5S i j 2
1

2
p”L~dZi j

L†1dZi j
L !2

1

2
p”R~dZi j

R†1dZi j
R!

1
1

2
R~dZi j

L†mj1midZi j
R!1

1

2
L~dZi j

R†mj1midZi j
L !

1d i j dmi , ~65!
8-9
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whereS i j is the bare self-energy. Using Eqs.~52!, ~64!, and
~65! we can obtain the following relations among bare se
energies

„S i j
gL~mj

2!2S i j
gL†~mj

2!…mj1„S i j
R~mj

2!2S i j
L†~mj

2!…50, ~66!

and a similar relation exchangingR↔L. But we know that
this relations are not satisfied because self-energies are
Hermitian due, e.g., to the branch cut generated by the l
of massless virtual fotons. The appearance of this type
~false! relations is due to the over-determination of con
tions ~54!–~57!.

There are several ways to solve this over-determinat
here we will present the ones that we believe are more ph
cal.

A. ‘‘Incoming fermion’’ scheme

To avoid over-determination we will define the followin
renormalization conditions. We will keep foriÞ j the Aoki
et al. renormalization condition~54! namely

Si j
21~p!uj

s~p!50 iÞ j , p2→mj
2 , ~67!

which physically means that we have no mixing on shell
the incoming fermions and in terms of self energies amou
to

05Ŝ i j
gL~mj

2!mj1Ŝ i j
R~mj

2!, iÞ j , ~68!

and a similar condition exchangingR↔L. For i 5 j we only
impose this condition over the real part of the inverse pro
gator

Re~ iS21! i i ~p!ui
s~p!50 p2→mi

2 , ~69!

the restriction to the real part is necessary because ferm
need not be stable particles~in fact they are not in general! so
an appropriate condition for the mass pole is Eq.~69!, which
in terms of self energies amounts to

05„Ŝ i i
gR~mi

2!1Ŝ i i
gR†~mi

2!…mi1Ŝ i i
L ~mj

2!1Ŝ i i
L†~mi

2!, ~70!

and a similar condition exchangingR↔L. We also add the
unit residue condition

~p”2mi !
21Re~ iS21! i i ~p!ui

s~p!5ui
s~p!, p2→mi

2 , ~71!

which can be shown to be equivalent to

ūi
s~p!Re~ iS21! i i ~p!~p”2mi !

215ūi
s~p!, p2→mi

2 . ~72!

The diagonal antihermitian parts of the bare self-energy
finite, so it can be shown that in order to keep the renorm
ized ones finite we only need to impose

dZii
L 2dZii

L†5dZii
R2dZii

R†1const. ~73!

In the on-shell scheme without mixingdZii
L 2dZii

L†5dZii
R

2dZii
R†50 is tacitly assumed. However due to the rephas

freedom only condition~73! is necessary to absorb all th
divergencies. Here, for simplicity reasons, we also take
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dZii
L 2dZii

L†5dZii
R2dZii

R†50. ~74!

Note that apart from taking the real part in Eqs.~69!, ~71!,
~72! we have also omitted Aokiet al.condition~55! to avoid
over-determination. We can expect that another set of c
sistent condition that include condition~55! ~for iÞ j , and
taking the real part in the diagonal case! can be given, and
actually this is the case.

Performing the calculations in the incoming fermio
scheme we obtain the following set of wave-function ren
malization constants:

dZi j
L†1dZi j

L 5
2

mj
22mi

2 $S i j
gL~mj

2!mj
22S i j

gL†~mi
2!mi

2

1S i j
gR~mj

2!mimj2S i j
gR†~mi

2!mjmi

1S i j
R~mj

2!mj2S i j
R†~mi

2!mi1S i j
L ~mj

2!mi

2S i j
L†~mi

2!mj% ~ iÞ j !, ~75!

dZi j
L 2dZi j

L†5
2

mj
22mi

2 $S i j
gL~mj

2!mj
21S i j

gL†~mi
2!mi

2

1S i j
gR~mj

2!mjmi1S i j
gR†~mi

2!mjmi

1S i j
L ~mj

2!mi1S i j
L†~mi

2!mj1S i j
R~mj

2!mj

1S i j
R†~mi

2!mi% ~ iÞ j !, ~76!

dZii
R†1dZii

R5mi
2
„S i i

gR8~mi
2!1S i i

gR8†~mi
2!1S i i

gL8~mi
2!

1S i i
gL8†~mi

2!…1mi„S i i
R8~mi

2!1S i i
R8†~mi

2!

1S i i
L8~mi

2!1S i i
L8†~mi

2!…1S i i
gR~mi

2!

1S i i
gR†~mi

2!, ~77!

and, as usual, similar conditions obtained after the excha
R↔L.

We also have we also have

dmi52
1

4
$„S i i

gL~mi
2!1S i i

gL†~mi
2!1S i i

gR~mi
2!

1S i i
gR†~mi

2!…mi1S i i
R~mi

2!1S i i
R†~mi

2!1S i i
L ~mi

2!

1S i i
L†~mi

2!%. ~78!

Here it is worth noting that even though this scheme has
conditions than the Aokiet al. set we still obtain restrictions
over bare self energies, namely

S i i
L ~mi

2!1S i i
L†~mi

2!5S i i
R~mi

2!1S i i
R†~mi

2!, ~79!

but in this case it can be seen by direct calculation to o
loop that this relation holds.
8-10
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B. ‘‘Outcoming fermion’’ scheme

Another possibility is to define an on-shell scheme by
following set of conditions. We impose

ūi
s~p!Si j

21~p!50 ~ iÞ j , p2→mi
2!, ~80!

which physically means that we have no mixing on shell
the outcoming fermions and in terms of self energ
amounts to

05miŜ i j
gR~mi

2!1Ŝ i j
R~mi

2!, ~81!

plus theR↔L condition.
For i 5 j we again impose this condition only ove

Re(iS21) that is

ūi
s~p!Re~ iS21! i i ~p!50, p2→mi

2 , ~82!

which in terms of self energies amounts to

05„Ŝ i i
gR~mi

2!1Ŝ i i
gR†~mi

2!…mi1Ŝ i i
R~mi

2!1Ŝ i i
R†~mj

2!,
~83!

and, as customary, the exchangedR↔L condition. The unit
residue conditions are the same as in the incoming ferm
scheme.

Performing the calculations in the outcoming fermi
scheme we obtain the following set of wave-function ren
malization constants:

dZi j
L 1dZi j

L†5
2

mi
22mj

2 $S i j
gL~mi

2!mi
22S i j

gL†~mj
2!mj

2

1S i j
gR~mi

2!mimj2S i j
gR†~mj

2!mjmi

1S i j
R~mi

2!mj2S i j
R†~mj

2!mi1S i j
L ~mi

2!mi

2S i j
L†~mj

2!mj% ~ iÞ j !, ~84!

dZi j
L 2dZi j

L†5
2

mj
22mi

2 $miS i j
L ~mi

2!1mjS i j
L†~mj

2!

1mjS i j
R~mi

2!1miS i j
R†~mj

2!

1mjmiS i j
gR~mi

2!1mimjS i j
gR†~mj

2!

1mi
2S i j

gL~mi
2!1mj

2S i j
gL†~mj

2!% ~ iÞ j !,

~85!

dZii
R†1dZii

R5mi
2
„S i i

gR8~mi
2!1S i i

gR8†~mi
2!1S i i

gL8~mi
2!

1S i i
gL8†~mi

2!…1mi„S i i
R8~mi

2!1S i i
R8†~mi

2!

1S i i
L8~mi

2!1S i i
L8†~mi

2!…1S i i
gR~mi

2!

1S i i
gR†~mi

2!, ~86!

and, in addition, those obtained after the replacementR↔L .
The mass counterterm is identical to the one obtained in
incoming fermion scheme.
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Here again we obtain the relation~79!. Note that diagonal
counterterms coincide in both schemes while this is not
case for off-diagonal ones and of course when there is
mixing the usual renormalization constants are reproduc

So far we have presented the above schemes with
specifying weak indicesu or d. In the next subsections w
will see that the above schemes can be imposed alternat
on up or down type fermions but noton both at the same
time. The reason is that gauge symmetry impose certain
lations between renormalization constants that are not
filled in the former case.

C. The role of Ward identities

Let us obtain the Ward identities that relate renormali
tion constants in the physical base. The non-physical b
belongs to an irreducible representation ofSUL(2) ~weak
doublet! and we want the renormalization group to resp
this representation, that is

uL
05ZL(1/2)uL ,

~87!

dL
05ZL(1/2)dL ,

where the wave function renormalizationZL(1/2) is the same
for the two components of the weak doublet. The no
physical basis is related to the physical one via a bi-unit
transformation given by

uL
05VLu

0 uL
0 , uL5VLuuL ,

~88!

dL
05VLd

0 dL
0 , dL5VLddL ,

so we obtain

uL
05VLu

0†ZL(1/2)VLuuL[ZuL(1/2)uL ,

~89!

dL
05VLd

0†ZL(1/2)VLddL[ZdL(1/2)dL ,

where we have defined the wave function renormalization
the up and down flavors in the physical basis asZuL(1/2)

5VLu
0†ZL(1/2)VLu and ZdL(1/2)5VLd

0†ZL(1/2)VLd respectively.
From Eqs.~89! we immediately obtain@18#

K05VLu
0†VLd

0 5ZuL(1/2)VLu
† VLdZdL2(1/2)5ZuL(1/2)KZdL2(1/2),

~90!

and

ZuL†(1/2)ZuL(1/2)5VLu
† ZL†(1/2)ZL(1/2)VLu

5VLu
† VLdZdL†(1/2)ZdL(1/2)VLd

† VLu

5KZdL†(1/2)ZdL(1/2)K†. ~91!

If we define the CKM renormalization constant asK05K
1dK we can rewrite Eqs.~90! and ~91! in perturbation
theory as
8-11
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dK5
1

2
~dZuLK2KdZdL!, ~92!

dZuL†1dZuL5K~dZdL†1dZdL!K†. ~93!

Equations~92! and~93! relating renormalization constants
the physical base are consequence ofSUL(2) gauge invari-
ance and must be satisfied by any renormalization schem

Now we can see that a simple solution to obtain all ren
malization constants respecting Ward identities is to imp
one of the presented on-shell schemes for the down~up!
fermions and then use Eq.~93! to obtain the left Hermitian
part of the wave function for the up~down! fermions. For the
anti-Hermitian and right Hermitian parts of the up~down!
fermions we can use the same expressions used for the d
~up!, but with theu↔d replacement. This procedure leads
a finite set of Green functions and it is obviously complia
with the Ward identities. However, this procedure alone d
not lead to up and down propagators with the desired pr
erties listed in one of the two on-shell schemes. Thus
external legs the above renormalization prescription mus
supplemented with an additional finite renormalization, e
suring the compliance with the incoming or outgoin
schemes~depending whether the particle is in the in or o
state!. We will illustrate this point in the next section wher
we calculate the contribution to the renormalization of t
CKM matrix given by Eq.~92! and the wave function renor
malization which in the effective Lagrangian comes in bo
cases solely fromL L

4 .

D. Contribution of L L
4 to wave-function renormalization

The operatorL L
4 is the only one contributing to self

energies and, hence, to the wave-function renormaliza
constants. It also gives a contribution~among others! to the
neutral current vertices which@see Eq.~39!#, when compared
to the tree level standard model contribution, is proportio
to

@~N41N4†!tu2„K†~N41N4†!K…td#L. ~94!

The contribution fromL L
4 to the bare self-energies is

SR(u,d)5SL(u,d)50,

SgRu5SgRd50,

SgLd5K†~N41N4†!K,

SgLu52~N41N4†!, ~95!

hence using either the incoming or outcoming on-shell ren
malization conditions we obtain~both give identical results
in the present case, but note that this is not true in gene!

1

2
~dZi j

dL1dZi j
dL†!5„K†~N41N4†!K…i j , ~96!

1

2
~dZi j

dR1dZi j
dR†!50, ~97!
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1

2
~dZi j

dL2dZi j
dL†!5

mj
d21mi

d2

mj
d22mi

d2
„K†~N41N4†!K…i j ~ iÞ j !,

~98!

1

2
~dZi j

dR2dZi j
dR†!5

2mi
dmj

d

mj
d22mi

d2
„K†~N41N4†!K…i j ~ iÞ j !,

~99!

1

2
~dZii

dL2dZii
dL†!5

1

2
~dZii

dR2dZii
dR†!50. ~100!

Had we have used the same conditions for the up fermi
we would have obtained

1

2
~dZi j

uL1dZi j
uL†!52~N41N4†! i j , ~101!

1

2
~dZi j

uR1dZi j
uR†!50, ~102!

1

2
~dZi j

uL2dZi j
uL†!52

mj
u21mi

u2

mj
u22mi

u2 ~N41N4†! i j ~ iÞ j !,

~103!

1

2
~dZi j

uR2dZi j
uR†!52

2mi
umj

u

mj
u22mi

u2 ~N41N4†! i j ~ iÞ j !,

~104!

1

2
~dZii

uL2dZii
uL†!5

1

2
~dZii

uR2dZii
uR†!50, ~105!

note that Eqs.~96! and ~101! are indeed incompatible with
the Ward identity~93! as expected. A solution to this incom
patibility is simply to take one of the two sets as valid f
one of the fermions~or even none of them; for example w
can use the minimal scheme!, use the Ward identity to de
termine the left Hermitian part of the renormalization of t
other fermion, while keeping the anti-Hermitian and rig
Hermitian parts from the original prescription. The renorm
ization of the CKM matrix is then fixed by Eq.~92!. Then we
proceed to renormalize the external fermions with additio
finite renormalization constantsẐuL(1/2) and ẐdL(1/2) with
ẐuL(1/2)ZuL(1/2) andẐdL(1/2)ZdL(1/2) satisfying the incoming or
outgoing schemes, as appropriate. For instance a consi
scheme in the present case would be to retain Eqs.~96!–
~100!, and then Eqs.~102!–~105!. Then replace Eq.~101! by
~93!, which implies

1

2
~dZi j

uL1dZi j
uL†!5~N41N4†! i j . ~106!

Note the sign difference with respect to Eq.~101!.
The above one is a Ward identity-compliant set of wa

function renormalization constants. From them, it is imm
diate to read the way the CKM matrix renormalizes. As f
the additional~finite, if radiative corrections were included!
renormalization, in the present case this amounts
8-12
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dẐi j
dL50,

1

2
~dẐi j

uL1dẐi j
uL†!522~N41N4†! i j , ~107!

1

2
~dẐi j

uL2dẐi j
uL†!50,

but the whole procedure is~for the external legs! equivalent to use directly Eqs.~96!–~105! in the first place.
The bare kinetic term in the physical base in the standard model is given by

Lkin5 i f̄gmH ]m1 i
e

sW
S K

t2

2
Wm

11K†
t1

2
Wm

2DL1 ieQAm1 i
e

cWsW
F S t3

2
2QsW

2 DL2QsW
2 RGZm1 igs

l

2
•GmJ f. ~108!

To calculate the tree level contribution ofL L
4 via this term after renormalization we write it as

Lkin→ i f̄gm@~ ẐuL†(1/2)ZuL†(1/2)L1ZuR†(1/2)R!tu1~ ẐdL†(1/2)ZdL†(1/2)L1ZdR†(1/2)R!td#H ]m1 i
e

sW
S ZuL(1/2)KZdL(21/2)

t2

2
Wm

1

1ZdL†(21/2)K†ZuL†(1/2)
t1

2
Wm

2DL1 ieQAm1 i
e

cWsW
F S t3

2
2QsW

2 DL2QsW
2 RGZm1 igs

l

2
•GmJ

3@~ZuL(1/2)ẐuL 1/2L1ZuR(1/2)R!tu1~ZdL(1/2)ẐdL(1/2)L1ZdR(1/2)R!td#f, ~109!

where we have introduced the additional finite renormalization constantsẐuL(1/2) and ẐdL(1/2) necessary to avoid mixing an
maintain residue 1 in the propagators. We have also renormalizedK according to the Ward identity~90!. With the renormal-
ization constants taken into account we observe that the total contribution ofL L

4 to the neutral current vertices vanishes. Th
is a very non-trivial check of the whole procedure. Of course nothing prevents the appearance ofN4 at higher orders when one
for instance, performs loops with the effective operators. But this a purely academic question at this point.

Finally let us see what happens to the charged current vertices. The total contribution ofLkin andL L
4 including renormal-

ization constants to the charged vertex is

S I 1
dẐuL1dẐuL†

4
2

dẐuL2dẐuL†

4
D S I 1

dZuL1dZuL†

2
1~N42N4†! DKS I 1

dẐdL1dẐdL†

4
1

dẐdL2dẐdL†

4
D

5S I 1
dẐuL1dẐuL†

4
2

dẐuL2dẐuL†

4
1

dZuL1dZuL†

2
1~N42N4†! DK1KS dẐdL1dẐdL†

4
1

dẐdL2dẐdL†

4
D

5S I 1~N42N4†!2
dẐuL2dẐuL†

4
DK1KS dẐdL2dẐdL†

4
D

5K1~N42N4†!K, ~110!
e
re
u-

th
or

ni-
all
the
self

me

out
ra-
where we have used the Ward identity~93! along with Eqs.
~96!–~100!, Eqs. ~102!–~105! and Eq. ~107!. We observe
that the total contribution ofLkin1L L

4 is in fact equal to the
contribution ofL L

4 alone. The contributions coming from th
wave function and CKM renormalizations cancel out at t
level. Another point to note is that this particular contrib
tion preserves the perturbative unitarity ofK, in accordance
with the equations-of-motion argument. This completes
theoretical analysis of the CKM and wave-function ren
malization.
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VI. SOME EXAMPLES

Let us now try to get a feeling about the order of mag
tude of the coefficients of the effective Lagrangian. We sh
consider two examples: the effective theory induced by
integration of a heavy doublet and the standard model it
in the limit of a heavy Higgs boson.

In the heavy doublet case we shall make use of so
recent work by Del Aguila and co-workers@19#. These au-
thors have recently analyzed the effect of integrating
heavy matter fields in different representations. For illust
8-13
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tion purposes we shall only consider the doublet case h
As emphasized in@19# while additional chiral doublets ar
surely excluded by the LEP data, vector multiplets are n

Let us assume that the standard model is extended w
doublet of heavy fermionsQ of massM, with vector cou-
pling to the gauge field. For the time being we shall assu
a light Higgs boson. In addition there will be an extend
Higgs-Yukawa term of the form

l j
(u)Q̄f̃Ruj1l j

(d)Q̄fRdj , ~111!

where

f5
1

A2
S w11 iw2

v1h1 iw3
D , f̃5 i t2f* , f5S u

dD .

~112!

The heavy doublet can be exactly integrated. This pro
dure is described in detail in@19#. After this operation we
generate the following effective couplings~all of them cor-
responding to operators of dimension six!

if†Dmf f̄afq
(1)gmLf1H.c.,

if†t jDmf f̄afq
(3)gmt jLf1H.c.,

if†Dmf f̄afugmtuRf1H.c.,

if†Dmf f̄afdgmtdRf1H.c., ~113!

1

A2
f tt2Dmf f̄affgmt2Rf1H.c.,

2f†f f̄f̃aufRu1H.c.,

2f†f f̄fadfRd1H.c.,

where

Dmf5S ]m1 ig
t

2
•Wm1 i

g8

2
BmDf. ~114!

The coefficients appearing in Eq.~113! take the values

afq
(1)50, ~115!

afq
(3)50,

~afu! i j 52
1

2
l i

(u)†l j
(u) 1

M2
,

~afd! i j 5
1

2
l i

(d)†l j
(d) 1

M2
,

07300
re.
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a

e

e-

~aff! i j 5
1

2
l i

(u)†l j
(d) 1

M2
,

ỹu→ ỹu~ I 2afuM2!,

ỹd→ ỹd~ I 1afdM2!.

The above results are taken from@19# and have been de
rived in a linear realization of the symmetry group, where t
Higgs fieldh is explicitly included, along with the Goldston
bosons. It is easy however to recover the leading contri
tion to the coefficients of our effective operators~8!. The
procedure would amount to integrating out the Higgs fie
of course. This would lead to two type of contributions: tre
level and one loop. The latter are enhanced by logs of
Higgs boson mass, but suppressed by the usual loop fa
1/16p2. In addition there are the multiplicative Yukawa co
plings. It is not difficult to see though that only the ligh
fermion Yukawa couplings appear and hence the loop c
tribution is small. To retain the tree-level contribution on
we simply replacef by its vacuum expectation value.

Sinceafq
(1) andafq

(3) are zero there is no net contribution
the left effective couplings. On the contrary,afu , afd , and
aff contribute to the effective operators containing righ
handed fields

MR
2†1MR

2†

2
52

v2

8
~afd1afd

† 1afu1afu
† !,

MR
22MR

2†

2
5

v2

8
~aff2aff

† !,

~116!

MR
11MR

1†

2
5

v2

16
~afd1afd

† 2afu2afu
† 1aff1aff

† !,

MR
31MR

3†

2
5

v2

16
~afd1afd

† 2afu2afu
† 2aff2aff

† !.

As we can see, the contribution to the effective couplin
and hence to the observables, is always suppressed
power ofM 22, the scale of the new physics, as announced
the introduction. The contribution from many other mode
involving heavy fermions can be deduced from@19# in a
similar way and general patterns inferred.

The second example we would like to briefly discuss
the standard model itself. Particularly, the standard mode
the limit of a heavy Higgs boson. In the case without mixi
the effective coefficients were derived in@5#. The results in
the general case where mixing is present are given by
8-14
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~M̃22M̃2†! i j 52
1

16p2

mi
uKi j mj

d2mi
dKi j

† mj
u

4v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

~M̃21M̃2†! i j 5
1

16p2

mi
d22mi

u2

4v2 S 1

ê
2 log

MH
2

m2
1

5

2D d i j ,

~M̃11M̃1†! i j 52
1

16p2

~mi
u21mi

d2!d i j 1mi
uKi j mj

d1mi
dKi j

† mj
u

8v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

~M̃31M̃3†! i j 52
1

16p2

~mi
u21mi

d2!d i j 2mi
uKi j mj

d2mi
dKi j

† mj
u

8v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

~N41N4†! i j 5
1

16p2

mi
u2d i j 2Kikmk

d2Kk j
†

4v2 S 1

ê
2 log

MH
2

m2
1

1

2D , ~117!

~N2†1N2! i j 5
1

16p2

mi
u2d i j 2Kikmk

d2Kk j
†

4v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

~N11N1†! i j 52
1

16p2

mi
u2d i j 1Kikmk

d2Kk j
†

4v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

~N31N3†! i j 50,

~N22N2†! i j 52~N42N4†! i j ,
of a
avy
not
tes

rity

at

the
odel
lari-
At

he
la-

s of
par-
ess
t
ard

to
ve

ith
where we have used dimensional regularization withd54
22e and $g5,gm%50; we have also defined 1/ê51/e2g
1 log4p. From Eqs.~117!, ~41! and ~42! we immediately
obtain the contribution to theZ andW current vertices

gL
u5

1

16p2

mi
u2d i j

2v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

gL
d52

1

16p2

mi
d2d i j

2v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

gR
u52

1

16p2

mi
u2d i j

2v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

~118!

gR
d5

1

16p2

mi
d2d i j

2v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

hL5
1

16p2

mi
u2Ki j 1Ki j mj

d2

4v2 S 1

ê
2 log

MH
2

m2
1

5

2D ,

hR52
1

16p2

mi
uKi j mj

d

2v2 S 1

ê
2 log

MH
2

m2
1

5

2D .
07300
These coefficients summarize the non-decoupling effects
heavy Higgs boson in the standard model. Note that a he
Higgs boson gives rise to radiative corrections that do
contribute to flavor changing neutral currents, but genera
contributions to the charged currents that alter the unita
of the left mixing matrix U and produces a right mixing
matrix which is non-unitary and of course is not present
tree level.

The divergence of these coefficients just reflect that
Higgs boson is a necessary ingredient for the standard m
to be renormalizable. These divergences cancel the singu
ties generated by radiative corrections in the light sector.
the end of the day, this amounts to cancelling all 1/e and
replacingm→MW .

Although, strictly speaking, the above results hold in t
minimal standard model, experience from a similar calcu
tion ~without mixing! in the two-Higgs doublet model@20#
leads us to conjecture that they also hold for a large clas
extended scalar sectors, provided that all other scalar
ticles in the spectrum are made sufficiently heavy. Unl
some additionalCP violation is included in the two-double
potential, there is only one phase: the one of the stand
model.

Thus we have seen how different type of theories lead
a very different pattern for the coefficients of the effecti
theory and, eventually, to theCP-violating observables.
Theories with scalars are, generically, non-decoupling, w
8-15
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large logs, which are nevertheless suppressed by the u
loop factors. Theories with additional fermions are deco
pling, but provide contributions already at tree level. F
heavy doublets only in the right-handed sector, it turns o

VII. CONCLUSIONS

In this work we have performed a rather detailed analy
of the issue of possible departures from the standard m
in the charged current sector, with an special interest in
issue of possible new sources ofCP violation. The analysis
we have performed is rather general. We only assume
all—so far—undetected degrees of freedom are he
enough for an expansion in inverse powers of their mas
be justified.

We have retained in all cases the leading contribution
the observables from the effective Lagrangian. To be fu
consistent one should, at the same time, include the one-
corrections from the standard model without a Higgs bo
~universal!. We have not done so, so our results are sensi
to the contribution from the new physics—encoded in
coefficients of the effective Lagrangian—inasmuch as t
dominates over the standard model radiative correctio
Anyhow, it is usually possible to treat radiative correctio
with the help of effective couplings, thus falling back aga
in an effective Lagrangian treatment.

There are two main theoretical results presented in
work. First of all, we have performed a complete study of
the possible new operators, to leading order, and the wa
implement the passage to the physical basis when these
ditional interactions are included. To our knowledge this
the first time that this issue has been considered in
present framework with such an exhaustive detail. Secon
we have analyzed in detail the issue of wave function a
CKM matrix element renormalization. Both need to be
cluded when the contribution from the effective operators
the different observables is considered. This has been, to
knowledge, been ignored in past treatments in the literat
As mentioned in the paper, the issue is interesting by its

We have also computed the relevant coefficients in
number of theories. Theories with extended matter sec
give, in principle, relatively large contributions, since th
contribute at the tree level. When only heavy doublets
considered, the relevant left couplings are left untouch
Observable effects should be sought after in the right-han
sector. The contribution from the new physics is decoupl
~i.e. vanishes when the scale is sent to infinity!. However the
limits on additional vector generations are weak, roughly o
requires only their mass to be heavier than the top one
this may lead to large contributions. Of course, there
mixing parametersl, which can be bound from flavo
changing phenomenology. Measuring the right-handed c
plings seems the most promising way to test these poss
effects. Stringent bounds exist in this respect fromb→sg,
constraining the couplings at the few per mille level@21#. If
one assumes some sort of naturality argument for the sca
the coefficients in the effective Lagrangian, this preclud
observation unless at least the 1% level of accuracy
reached. Theories with extended scalar sectors are~unless
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fine tuning of the potential is present such as in e.g. sup
symmetric theories! non-decoupling and in order to make i
contribution larger than the universal radiative correctio
one requires a heavy Higgs boson~although their contribu-
tion, with respect to universal radiative corrections is nev
theless enhanced by the top Yukawa coupling!.

In general, even if the physics responsible for the gene
tion of the additional effective operators isCP-conserving,
phases which are present in the Yukawa and kinetic c
plings become observable. This should produce a wealt
phases and newCP-violating effects. As we have seen, co
tributions reaching the 1% level are not easy to find, so
will be extremely difficult to find any sizeable deviation wit
respect the standard model in the ongoing experiments.

A systematic study of the phenomenology of these c
plings is now under way, as is clear that a lot of work r
mains to be done, such as identifying the adequate obs
ables for the wealth of phases that might appe
Furthermore, we have obtained the effective Lagrangian
the MW scale and we still have to scale down to theb, c or
kaon mass, which is a nontrivial task.

On a more practical level our results are relevant on th
different fronts. First of all we have, hopefully, clarified th
issue of wave-function and CKM matrix elements renorm
ization. While the use we have made of our proposal is li
ited ~only one coefficient of the effective Lagrangian contri
utes to the wave function and CKM renormalizations!, our
proposal meets all the necessary requirements. Secondly
can incorporate a good part of the radiative corrections in
standard model itself in thed54 effective operators~we
have seen that explicitly for the Higgs contribution! so our
results will be relevant the day that experiments become
curate enough so that radiative corrections are required
nally, the effective Lagrangian approach consists not only
writing down the Lagrangian itself, but it comes with a we
defined set of counting rules. This set of counting rules
lows in the case of the CKM matrix elements a perturbat
treatment of the unitarity constraint. If one assumes that
contribution from new physics and radiative corrections
comparable, then it is legitimate to use the unitarity relatio
in all one-loop calculations. On the contrary the tree-le
predictions should be modified to account for the presenc
the new-physics which introduces new phases. This pro
dure can be extended to arbitrary order.

Note added in proof. We recently became aware of ye
another modification of the Aokiet al.and Denner and Sack
renormalization conditions by Barroso, Brucher and San
@22# which apparently leads to gauge independent result
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