
 Degree in Statistics
Degree in Economics

Title:
 Allyn, A Recommender Assistant for Online Bookstores

Author: Laia Esquerrà Schaefer

Statistics Advisor: Esteban Vegas Lozano

Department: Genètica, Microbiologia i Estadística, secció
d’Estadística

Economics Advisor: Dr. Salvador Torra Porras

Department: Econometria, Estadística i Economia Espanyola

Academic year: 2017-18

Universitat Politècnica de Catalunya

Universitat de Barcelona

Double Bachelor Degree in Statistics and
Economics

Bachelor’s Degree Thesis

Allyn: A Recommender Assistant for Online
Bookstores

Laia Esquerrà Schaefer

June 2018

Statistics Advisor: Esteban Vegas Lozano

Economics Advisor: Dr. Salvador Torra Porras

Facultat de Matemàtiques i Estadística

Facultat d’Economia i Empresa

Abstract

Recommender Systems are information filtering engines used to estimate user
preferences on items they have not seen: books, movies, restaurants or other things for
which individuals have di�erent tastes. Collaborative and Content-based Filtering have
been the two popular memory-based methods to retrieve recommendations but these
su�er from some limitations and might fail to provide e�ective recommendations. In this
project we present several variations of Artificial Neural Networks, and in particular,
of Autoencoders to generate model-based predictions for the users. We empirically
show that a hybrid approach combining this model with other filtering engines provides
a promising solution when compared to a standalone memory-based Collaborative
Filtering Recommender. To wrap up the project, a chatbot connected to an e-commerce
platform has been implemented so that, using Artificial Intelligence, it can retrieve
recommendations to users.

Keywords: Recommender systems, Collaborative filtering, Artificial neural networks,
Denoising autoencoders, KerasR, Tensorflow, E-commerce, Information retrieval, Chatbots

AMS Classification (MSC2010): 62M45 Neural nets and related approaches
68T05 Learning and adaptive systems

Resum

Els Sistemes de Recomanació són motors de filtratge de la informació que permeten
estimar les preferències dels usuaris sobre ítems que no coneixen a priori. Aquests poden
ser des de llibres o películes fins a restaurants o qualsevol altre element en el qual els usuaris
puguin presentar gustos diferenciats. El present projecte es centra en la recomanació de
llibres.

Es comença a parlar dels Sistemes de Recomanació al voltant de 1990 però és durant
la darrera dècada amb el boom de la informació i les dades massives que comencen a tenir
major repercussió. Tradicionalment, els mètodes utilitzats en aquests sistemes eren dos:
el Filtratge Col·laboratiu i el Filtratge basat en Contingut. Tanmateix, ambdós són
mètodes basats en memòria, fet que suposa diverses limitacions que poden arribar a portar
a no propocionar recomanacions de manera eficient o precisa.

En aquest projecte es presenten diverses variacions de Xarxes Neuronals Artificials per
a generar prediccions basades en models. En concret, es desenvolupen Autoencoders, una
estructura particular d’aquestes que es caracteritza per tenir la mateixa entrada i sortida.
D’aquesta manera, els Autoencoders aprenen a descobrir els patrons subjacents en dades
molt esparses. Tots aquests models s’implementen utilitzant dos marcs de programació:
Keras i Tensorflow per a R.

Es mostra empíricament que un enfocament híbrid que combina aquests models amb
altres motors de filtratge proporciona una solució prometedora en comparació amb un
recomanador que utilitza exclusivament Filtratge Col·laboratiu.

D’altra banda, s’analitzen els sistemes de recomanació des d’un punt de vista econòmic,
emfatitzant especialment el seu impacte en empreses de comerç electrònic. S’analitzen
els sistemes de recomanació desenvolupats per quatre empreses pioneres del sector així
com les tecnologies front-end en què s’implementen. En concret, s’analitza el seu ús en
chatbots, programes informàtics de missatgeria instantània que, a través de la Intel·ligència
Artificial simulen la conversa humana.

Per tancar el projecte, es desenvolupa un chatbot propi implementat en una aplicació
de missatgeria instantània i connectat a una empresa de comerç electrònic, capaç de donar
recomanacions als usuaris fent ús del sistema de recomanació híbrid dut a terme.

Allyn: A Recommender Assistant for Online Bookstores

Paraules clau: Sistemes de recomanació, Filtratge Col·laboratiu, Xarxes Neuronals
Artificials, Denoising autoencoders, KerasR, Tensorflow, Comerç electrònic, Recuperació
d’informació, Chatbots

Classificació AMS (MSC2010): 62M45 Neural nets and related approaches
68T05 Learning and adaptive systems

Acknowledgements

First, I want to thank my statistics advisor, Esteban Vegas, for all the time spent giving
me useful advice, for encouraging me to overcome the di�culties I encountered during the
realization of this work and for all the work he has put to work with me with the never
ending changes there have been since we first started to talk about it last year.

Second, my economics advisor, Dr. Salvador Torra, for the help and ressources provided
not only for the economic analysis but also for the statistics part.

About a year ago I was introduced to Recommender Systems in a short summer
course. It was most definitely a fascinating topic for me and one thing became clear: I
would do my Bachelor’s Thesis dedicated to it. Therefore I also want to thank Bartek for
introducing this topic in his course although he might not remember me and not even be
aware of what has come out of it.

Furthermore, I want to thank Ernest Benedito, for introducing me to chatbots and
for always being open to collaborate, o�ering his support throughout the project.

Finally, I would like to thank my family and close friends that have o�ered their
support during the realization of this work and the completion of the Degree, with the
special mention of Sandra and Marc, who have been following the progress of it and o�ered
their help in many occasions.

Contents

List of Figures vi

List of Tables vii

List of Abbreviations viii

Notation ix

Introduction 1

Methodology 5

1 Recommender Systems 5
1.1 Data Sources . 6
1.2 Recommendation Techniques . 11

2 Artificial Neural Networks 17
2.1 Precedents . 20
2.2 Elements of an Artificial Neural Network 22
2.3 Variants of Artificial Neural Networks . 31
2.4 Parameter and Hyperparameter Tuning . 35
2.5 Programming Frameworks . 36

3 Chatbots 39
3.1 Building blocks . 40
3.2 A Chatbot as a Recommender System Front-End 42

i

Allyn: A Recommender Assistant for Online Bookstores

I An Economic Analysis 44

4 State of the Art Recommender Systems 45
4.1 Current applications in the Market . 46
4.2 E-commerce and Recommender Systems 48
4.3 Causal Impact on Revenues . 51

5 Actual Use Cases 54
5.1 Amazon.com . 54
5.2 Netflix . 56
5.3 YouTube . 58
5.4 LinkedIn . 61

II Implementation 63

6 The Dataset 64
6.1 Data Enrichment . 66
6.2 Data Preprocessing . 68
6.3 Dimensionality reduction . 72

7 Back-End Development 75
7.1 Experimental Framework . 76
7.2 Model Variations . 81
7.3 Filtering and Recommendation Phase . 85
7.4 Setting Up Accessible Files and Models . 86

8 Front-End Implementation 90
8.1 Chatbot Creation . 91
8.2 Bot API Requests . 93
8.3 Answer formats . 93
8.4 Retrieving Recommendations . 94

Conclusions 97

9 Conclusions and Future Work 97
9.1 Conclusions . 98
9.2 Contributions . 99
9.3 Future Work . 100

ii

Laia Esquerrà Schaefer Contents

Appendices 103

A Auxiliary Data 103
A.1 ANOVA Test Values for Clusters . 103
A.2 ANOVA and Tukey’s HSD Test Values for Models 109
A.3 ANN Training Figures . 114

B R Code 119
B.1 Preprocessing . 119
B.2 Webscraping . 124
B.3 Clustering and Profiling . 126
B.4 Artificial Neural Network . 130
B.5 Chatbot . 137

References 141

iii

List of Figures

2.1 Biological Neuron vs. Perceptron. Source: Cheng and Titterington (1994) 20
2.2 Single Hidden Layer ANN . 22
2.3 Identity Transformation . 24
2.4 Threshold Transformation for ◊ = 0 . 24
2.5 Softmax Transformation . 24
2.6 ReLU Transformation . 25
2.7 Tanh Transformation . 25
2.8 MLP Structure . 26
2.9 Gradient Descent Learning Rates . 29
2.10 LeNet-5 5-layer CNN for Optical Character Recognition 32
2.11 Folded and Unfolded Basic RNN . 33
2.12 Structure of an Autoencoder with 3 Fully-Connected Hidden Layers 34
2.13 Grid-layout vs Random Seach . 36
2.14 Coarse to Fine Search . 36
2.15 Single Layer ANN . 37

4.1 Recommendation System Architecture Demonstrating the Funnel where
Candidate Videos are Retrieved and Ranked before Presenting only a few
to the User. Source: Covington, Paul et al. (2016) 48

4.2 Outgoing Co-purchase Suggestion for a Cookware Product sold on Ama-
zon.com. Source: Amazon.com . 50

4.3 Outgoing Co-purchase Suggestion for a Book sold on Amazon.com. Source:
Amazon.com . 50

5.1 Deep Neural Networks Structure for YouTube’s RS. Source: Covington,
Paul et al. (2016) . 60

6.1 Relative Frequences of the Top 10 Cities 66
6.2 Relative Frequences of the Top 5 Countries 66
6.3 Years of Publication . 70
6.4 User Ages . 70
6.5 Book Ratings . 71
6.6 Hierarchical Clustering of Ratings with User Profile Information 72

iv

Laia Esquerrà Schaefer List of Figures

6.7 Cluster Conditional Distribution for Numerical Variables 73
6.8 Conditional Continent Distribution . 73
6.9 Conditional Genre Distribution . 74

7.1 Training Accuracy per Iteration on 3 Layer Autoencoders with 256-16-256
Hidden Units using Di�erent Optimization Algorithms 77

7.2 Random Search for Initial Hyperparameter Tuning. Bigger points represent
higher accuracies at iteration = 50 . 79

7.3 Train and Validation Accuracy History for M2 80
7.4 Training Accuracy per Iteration and Mini Batch on 1 Layer Autoencoder

with 256 Hidden Units, Gaussian Noise and External Variables 83
7.5 Diagram of the Data Structure . 87

8.1 Bot Initialization Page . 92
8.2 Bot’s Guided Dialog Answer Tree . 94
8.3 Bot Reply Keyboard Markup Examples 95

9.1 Training and Validation Accuracy per iteration on 1 layer Denoising AE on
5166 users . 100

A.1 H1 Training and Validation History . 114
A.2 H2 Training and Validation History . 114
A.3 H3 Training and Validation History . 115
A.4 H5 Training and Validation History . 115
A.5 H7 Training and Validation History . 115
A.6 H4 Training and Validation History . 115
A.7 H6 Training and Validation History . 115
A.8 H8 Training and Validation History . 115
A.9 M1 Training and Validation History . 116
A.10 M3 Training and Validation History . 116
A.11 M2 Training and Validation History . 116
A.12 M4 Training and Validation History . 116
A.13 M5 Training and Validation History . 117
A.14 M7 Training and Validation History . 117
A.15 M9 Training and Validation History . 117
A.16 M6 Training and Validation History . 117
A.17 M8 Training and Validation History . 117
A.18 M10 Training and Validation History . 117
A.19 Gaussian Noise Training and Validation History 118
A.20 Lit & Fict. Training and Validation History 118
A.21 External Variables Training History . 118

v

Allyn: A Recommender Assistant for Online Bookstores

A.22 Mist & Thrill. Training and Validation History 118

vi

List of Tables

2.1 Statistics vs. Machine Learning Terms . 19

6.1 Example of a Repeated Book Title . 69
6.2 Final Merged Book Genres . 69
6.3 Sample of Books Read by Users Under 5 Years Old 71
6.4 Sample of Books for 5 Year Olds . 71

7.1 Baseline Model Results . 75
7.2 1 Hidden Layer Autoencoders Performance 79
7.3 Performance Improvement Adding Dropout to the 1 Layer Autoencoder

with 64 Hidden Units . 81
7.4 Performance Improvement Adding Dropout to the 1 Layer Autoencoder

with 256 Hidden Units . 81
7.5 Performance Comparison for Genre Specific AE 84
7.6 Performance Comparison for General Models 85

vii

List of Abbreviations

AE Autoencoder
AI Artificial Intelligence

ANN Artificial Neural Network
API Application Programming Interface
BX Book-Crossing
CB Content-based
CF Collaborative Filtering

CNN Convolutional Neural Network
DNN Deep Neural Network
DL Deep Learning

GLM Generalized Linear Model
KB Knowledge-based
LP Long Polling

MAE Mean Absolute Error
ML Machine Learning

MLP Multilayer Perceptron
NCAE Neural Collaborative Autoencoder

NL Natural Language
NLP Natural Language Processing
NLU Natural Language Understanding

RMSE Root Mean Square Error
RNN Recurrent Neural Network

RS Recommender System
UBCF User-based Collaborative Filtering

viii

Notation

General

v scalar value
v row vector
v

T column vector
M matrix

‡
x

standard deviation of x

� covariance matrix of x and y

� Cumulative Distribution Function (CDF) of the standard nor-
mal distribution

Sizes

d total number of input nodes
L number of layers in the network
m number of examples in the dataset
n[l] number of hidden units (nodes) of the lth layer
ny output size (or number of classes)

Objects

X œ IRd◊m input matrix
x

(i) œ IRd ith example represented as a vector, i = 1...m

xj œ IR1 jth input node, j = 1...d

Y œ IRny◊m label (output) matrix
y(i) œ IRny output label for the ith example, i = 1...m. It can also be a

vector, y

(i), when ny > 1

ix

Allyn: A Recommender Assistant for Online Bookstores

ŷ(i) œ IRny predicted output value for the ith example, i = 1...m. It can
also be a vector, y

(i), when ny > 1
yj œ IR1 jth output node, j = 1...ny

a

[l] activated value of the hidden units of the lth layer
b

[l] bias vector of the lth layer
W

[l] weight matrix of the lth layer
z

[l] input value of the hidden units of the lth layer

Functions

‡(z) activation function
L(ŷ, y) loss function
J(W , b) cost function

x

Introduction

"People read around ten MB worth of material a day, hear 400MB a day, and see

one MB of information every second" - The Economist (November 30, 2006)

That was in 2006. Almost 12 years after, this volume has increased by a factor of 28

according to Moore’s Law: 5GB worth of material read and 100GB heard a day; 512MB
of information seen every second. We are talking about massive volumes of data, which
have become impossible to process by humans.

The Paradox of Choice defines how having too many options is actually counterpro-
ductive. Furthermore, this data overload not only a�ects users, but also companies who
have faced di�culties to extract relevant information from it.

Through Machine Learning and Recommender Systems, we can overcome these. Both
research fields have been developing high performance technologies and algorithms to
process massive data which have given rise to automated information filtering engines.

Nevertheless, most of these algorithms face several problems; the most relevant being
data sparsity. This means that when trying to provide suggestions to a user for example,
only a few other users might have common elements in their past review history. Without
common information, measuring similarities and providing suggestions for items of use
becomes a hard task. Hybridization methods combining several techniques try to deal
with these deficiencies.

This Thesis is developed with the objective of getting a better insight on Recommender
Systems and provide an end-to-end solution that integrates an algorithm or an hybridized
combination able to compute accurate rating predictions.

1

Allyn: A Recommender Assistant for Online Bookstores

Aim of the Project

The main goal of this project is to get deeper insights on Recommender Systems using
Artificial Neural Networks, two areas in Statistics which haven’t been seen in depth during
the Bachelor’s Degree. As part of this project, we develop a detailed guide to these study
areas.

Furthermore, we want to provide an end-to-end solution, where recommendations
can be retrieved by any user at any time. These kind of solutions are quite infrequent in
the field of Recommender Systems, as companies who have developed them focus on the
integration of these algorithms in their websites. Therefore, we develop an open real-time
solution which opens the door for possible future works, a Chatbot (also refered as Bot).

Through the development of this Thesis, we pretend to accomplish the following goals:

• Provide a general overview on the current state of Recommender Systems and
their penetration in e-commerce platforms.

• Define the most common data structure used to develop Recommender Systems,
and specially the challenges it represents for traditional Statistics.

• Present a general overview on Artificial Neural Networks, how they relate to
Statistics and their role in Recommender Systems.

• Implement a Neural Recommender System able to provide accurate predictions
for new users.

• Introduce the concept of Chatbot and its role as a real-time Recommender Assistant.

• Implement the Chatbot in a front-end application to make the system reachable
for potential users.

Scope

In order to limit the scope of this project to the magnitude of the Bachelor’s Thesis,
the knowledge domain is contrained to online bookstores, and more specifically to the
recommendation of Adult Books. The focus is set on retrieving accurate predictions
without letting the front-end solution aside, which is presented as a simple Proof of
Concept where we test its potential functionalities.

2

Laia Esquerrà Schaefer Introduction

Report Outline

This report consists of nine chapters additionally to this Introduction where the project is
introduced. Chapters are split into several parts:

• Methodology
– Chapter 1: Recommender Systems. An introduction to Recommender

Systems is provided, detailing data sources and recommendation techniques
used.

– Chapter 2: Artificial Neural Networks. We provide deep insights on this
set of techniques, building the algorithm from the ground up.

– Chapter 3: Chatbots. We expose a brief historical introduction to Chatbots
and define their main building blocks. A state of the art analysis on the use of
Chatbots for Recommender Systems is provided

• Part I: An Economic Analysis
– Chapter 4: State of the Art Recommender Systems. We define present

and potential applications of Recommender Systems and discuss their impact
measures.

– Chapter 5: Actual Use Cases. The Recommender Systems implemented
by four specific companies are detailed.

• Part II: Implementation
– Chapter 6: The Dataset. We introduce the set of data available to train

the system.
– Chapter 7: Back-End Development. The experiments developed in order

to define the model are explained and the strucutre of the Chatbot back-end is
detailed, as well as its functionalities.

– Chapter 8: Front-End Implementation. We explain the development of
the front-end for the Chatbot as well as the app channel selected to implement
it.

• Conclusions
– Chapter 9: Conclusions and Future Work. We conclude the project

evaluating the final solution presented, stating the contributions and proposing
future work to do.

• Appendices. Two appendices have been provided, the first with the complete
auxiliary data tables and figures and, a second with the R code used.

3

Methodology

4

Chapter 1

Recommender Systems

Recommender Systems (RS) are information filtering engines used to estimate users’
preferences on items they have not seen. They serve to guide users in a personalized way
which allows them to discover these new products or services they might be interested in
and possibly hadn’t even notices. In order to make recommendations, individual interests
and preferences are indirectly revealed. As software agents, RS present the potential to
support and improve consumers’ decisions in their online product selections, Xiao and
Benbasat (2007).

Thus, RS are designed to help customers by introducing products or services as a
friend or expert would have done in the past, generally recommending items to the users
according to their purchase history or past ratings. Usually, a RS recommends items by
either predicting ratings or providing a ranked list of items for each user.

In this sense, mainly 3 types of recommendation tasks exist based on their output:
rating prediction, ranking prediction (top-n items) and classification. Each user
gets di�erent recommendations according to their profile. Therefore, we need a user model.

Lists of recommended products are usually done in one of two ways: collabora-
tive filtering or content-based filtering. Hybrid methods exist which combine both
approaches. This project will focus on these latter ones.

When it comes to designing RS there are three di�erent paradigms that need to be
taken into account: data used, information provided by the user and domain features.

In the following section we’ll focuse on the data used, while new user’s will provide
information through the chatbot structure, where domain features will also need to be
specified.

5

Allyn: A Recommender Assistant for Online Bookstores

1.1 Data Sources

As information processing systems, implemented RS actively gather data (Ricci, Rokach,
and Shapira 2011) from their website source. But experimental RS can also be built on a
static database. Data is both about items and users. Which data is actually exploited can
vary according to the recommendation technique to be applied.

In this section, the main data structure needed to implement the RS built will be
presented. It is mainly composed of ratings and user and items descriptions as well as
external constraints.

1.1.1 Data Structure

Information gathered by a RS can be split in three main datasets: items, users and ratings
(also called transactions).

Items

Items are the recommended objects, which could also be people (as suggested connections in
LinkedIn). Thus, items can be defined by many di�erent characteristics sush as complexity,
value or utility. According to the core technology of a RS, they can be using a range of
properties and features of the items.

Users

Also users of the RS, can have di�erent goals and/or characteristics. To personalize both
recommendations and interactions with users, RS exploit a range of information about
these users. Also in this case, information can be structured in various ways and the
selection of what information is modeled depends on the recommendation technique. This
model will profile user preferences and needs.

Ratings

In a more general approach we generically refer to a transaction as a recorded interaction
between a user and the RS. Transactions store important information generated during
this interaction, which is useful for the recommendation algorithm implemented.

Ratings are actually the most popular form of transaction data collected by RS. This
collection can be done in two di�erent ways, either implicitly or explicitly. Explicit
ratings are asked to the user, i.e. an opinion on the item is provided on a rating scale.

6

Laia Esquerrà Schaefer Chapter 1. Recommender Systems

On the other hand, implicit ratings reveal that the user has consumed that item but
didn’t give a rating to it.

If an interactive process is supported by the RS, this model can be more refined
as user requests and system actions are alternated. That is, when a user requests a
recommendation, the system has two options: produce a list of suggestions or ask the user
to provide additional preferences in order to provide better results.

Formal Problem Definition

Given a list of M users U = u1, u2, ..., uM , a list of N items I = i1, i2, ..., iN and a list of
items, Iui , which have been rated by user ui; the recommendation task consists in finding,
for a particular user u, the new item i œ I \ Iui for which u is most likely to be interested
in, Ricci, Rokach, and Shapira (2011).

Ratings ui can take a set S of possible values, which can be a numerical scale (e.g.,
S = [1, 10]) or dichotomic (S = {like, dislike}).

We will generally suppose that no more than one rating can be done by a {user, item}
pair. Furthermore, Iuv denotes a set of items which have been rated by two users u and v,
i.e. Iu fl Iv and Uij a set of users which have rated two items i and j.

1.1.2 Data Enrichment Techniques

Publicly avaliable datasets do not always o�er all the information one is expecting to find.
On one hand, avaliable data might not come in the most suitable form for analysis. On
the other side, we might be missing relevant information for our approach.

Variable engineering can help us transform variables to overcome the first problem.
The most simple example is the transformation from a factor variable with N levels, to
N ≠ 1 dummy variables. For our model, we’ll need to reshape geospatial data, we’ll see
later the details on how to do so.

Missing information has nowadays also a solution: search the web for the desired
additional details. Doing this process manually can be very time consuming or even
impossible when working on large datasets. Therefore, we will make a short introduction
to automated data scraping.

7

Allyn: A Recommender Assistant for Online Bookstores

1.1.2.1 Geospatial Data

When defining preferences, cultural aspects can be highly relevant. In this sense, visualizing
preferences on a map for example, can help us define groups that wouldn’t be so obvious
on a factorial plane.

Geospatial data can come in several di�erent forms such as numerical coordinates,
state codes or textual city names. Each type of information requires a di�erent approach.
Numerical coordinates for example, can be easily geolocated on a map using R’s ggmap
package.

Other data formats might need some previous preprocessing to get them in a standard
format. The R package countrycode aloows us to do so. countrycode translates long
country names or coding schemes into another scheme like the o�cial short English country
name. It also creates new variables with the name of the continent or region to which each
country belongs.

This package is not case-sensitive which allows it to understand multiple inputs which
aren’t in a specific format. It is always better to normalize names before though, using
functions like tolower or regular expressions to supress special characters.

1.1.2.2 Data Scraping

Data scraping is a set of techniques used to get data in an unstructured format (HTML
tags) from a website and transform it to a scructured format which can be easily used.
The goal is to look for and extract the desired information, and aggregate it. What they
all have in common is that the engine is looking for a certain kind of information which
previously predetermined.

According to Vargiu and Urru (2012) extracted information can be about types of
events, entities or relationships from textual data. This information has several di�erent
uses, from seach engines to news feeds or dictionaries. One of its potential applications is
to scrape item’s rating data to create recommendation engines.

Almost all programming languages used provide functions that perform web scraping,
although approaches can be very di�erent. There are several ways of scraping data from
the web, Kaushik (2017), some of which are:

• Human Copy-Paste: It is a slow but e�cient way of scraping data from the web.
It refers to humans analyzing and copying the data to local storage themselves.

• Text pattern matching: Using regular expression matching facilities of program-

8

Laia Esquerrà Schaefer Chapter 1. Recommender Systems

ming languages is another simple yet powerful approach to extract information from
the web. Regular expressions are supported in ‘R‘.

• API Interface: Many websites like Facebook, Twitter or LinkedIn provide their
own public and/or private API which can be called using standard code to retrieve
data in the prescribed format.

• DOM Parsing: Using web browsers, programs can also retrieve dynamic content or
parse web pages. From their DOM tree programs can retrieve parts of these pages.

Other scraping techniques include HTTP programming or HTML parsers. Text
mining on the other hand, is used to extract patterns and relevant information in tasks
which require discovering new and previously unkown data. When relying on text mining,
relevant information such as keywords or document-term frequencies are extracted through
linguistic and statistic algorithms. It is used for example to select relevant news articles
whose existance is previously unkown.

1.1.3 Data Preprocessing

1.1.3.1 Similarity Measures

The most popular technique used in RS is Collaborative Filtering (CF) and particularly
the use of a kNN classifier which will be described in the next section. What is now
interesting about it is how the distance or similarity among users is defined.

Based on Ricci, Rokach, and Shapira (2011), we will present five main measures: Eu-
clidean distance (E), Minkowski distance (M), Mahalanobis distance (H), cosine
similarity (C) and Pearson correlation (P).

Euclidean distance

It is the simplest and most common distance which is associated to a straight line between
two points.

dE(x, y) =
ı̂ıÙ

nÿ

k=1
(xk ≠ yk)2 (1.1)

where n is the number of rows or tuples of the data and xk and yk are the kth attributes
or components of data objects x and y, respectively.

9

Allyn: A Recommender Assistant for Online Bookstores

Minkowski distance

This is a generalization of the previously presented, Euclidean distance.

dM(x, y) =
A

nÿ

k=1
|xk ≠ yk|r

B 1
r

(1.2)

where r is the degree of the distance. As we can see, it corresponds to the Euclidean
distance when r = 2. Furthermore, this distance has specific names for several values of r,
among others:

• City block, Manhattan or L1 norm when r = 1

• Supremum, Lmax norm or LŒ norm when r æ Œ

Mahalanobis distance

The Mahalanobis distance is defined as:

dH(x, y) =
Ò

(x ≠ y)�≠1(x ≠ y)T (1.3)

where � is the covariance matrix of the data.

Cosine similarity

This measure considers items as document vectors of an n-dimensional space and compute
their similarity as the cosine of the angle that they form:

dC(x, y) = x · y

||x|| · ||y|| (1.4)

where · indicates vector dot product and ||x|| is the norm of vector x. This similarity is
known as the cosine similarity or the L2 Norm .

Pearson correlation

Lastly, similarity can also be given by the correlation among items which measures the
linear relationship. Pearson correlation is the most common measure for that.

dP (x, y) = �
‡

x

· ‡
y

(1.5)

10

Laia Esquerrà Schaefer Chapter 1. Recommender Systems

where � indicates the covariance matrix between x and y, and ‡ their standard deviation.

Traditionally, in RS, either the cosine similarity or the Pearson correlation have
been used. The latter one is the default setting for the R recommenderlab user-based
collaborative filtering (UBCF) algorithm.

1.2 Recommendation Techniques

RS can be classified into di�erent categories according to the technique used to make the
recommendations. These can have their focus on users, items or ratings itselves, as well as
in any combination of them. Here we present the 4 main recommendation techniques and
particular cases that will be of our interest later.

1.2.1 Collaborative Filtering

CF is the most popular and well-known technique to build RS. It follows a very simple idea,
which is that users tend to buy items preferred by users with similar tastes Adomavicius
and Tuzhilin (2005). This similarity is calculated based on the past rating history of users,
but it could also be implemented to define similarities over items.

The easiest way to apply it is using neighbour-based methods like kNN which are
simple and e�cient, while producing accurate and personalized recommendations.

Algorithm Types

According to Breese, Heckerman, and Kadie (1998), algorithms for collaborative recom-
mendations can be grouped into two general classes: memory-based (or heuristic-based)
and model-based

1. Memory-based: in this case, recommendations or predictions are made based
on similarity values and past user-item ratings are directly used to predict ratings
for new items. Predictions can be done both as a user-based or an item-based
recommendation. Commonly used techniques include:

• Neighbour-based CF

• Cosine-based Similarity

• Clustering

11

Allyn: A Recommender Assistant for Online Bookstores

Advantages

These can be wrapped up in simplicity: these algorithms are simple to implement
and easily understood; justifiability: computed predictions can be intuitively
justified; e�ciency: they require no costly training although recommendations
can be more expensive to compute and; stability: new data can be easly handled
without having to retrain the system and only similarities regarding the new item
need to be computed.

Disadvantages

It main problem is that sparse data and common ratings give unreliable and not
accurate recommendations.

2. Model-based: in contrast to memory-based algorithms, machine learning or data
mining models are used in this case to find complex rating patterns in training rating
data which is then used to predict ratings. Some commonly used techniques are:

• Matrix Factorization

• Bayesian Networks

• Clustering

• Artificial Neural Networks

Advantages

They can achieve valuable predictions even when working with small data about
each user and they can deal with wide range of content, recommending all kinds of
items, even the ones that are di�erent to those seen in the past.

Disadvantages

As in the previous case, and in any RS, the number of ratings is generally small, which
can make models su�er from sparsity. Additionally, model-based techniques present
scalability limitations when dealing with new users or new items as models
might need to be trained again and won’t be able to recommend new products until
there are enough ratings about it.

12

Laia Esquerrà Schaefer Chapter 1. Recommender Systems

1.2.2 Content-based Filtering

Content-based (CB) filtering are based on a similar idea to CF, but in this case, similarity
is defined by the intrinsic characteristics of a user or item. In this sense, the algorithm will
recommend items that are similar to the ones the user has liked in the past. Typically,
this content refers to items but some new approaches also define user profiles. CB RS use
di�erent resources, such as item information or user profiles, to learn latent factors that
define associated features.

According to Felfernig and Burke (2008), the task is to learn a specific classification
rule for each user on the basis of the user’s rating information and the attributes of each
item so that items can be classified as likely to be interesting or not.

When textual ratings are avaliable, exploration of ratings and its reviews allow more
accurate rating predictions since they can more specifically define the sentiment or define
outstanding/lacking product features.

Advantages

Three main advantages can be highlighted:

• Independence: these algorithms depend only on the ratings of the active user or
item, thus, the volume of data loaded is smaller.

• Justifiability: recommendations can be easily explained by listing content features
or descriptions that caused an item to be recommended.

• New items: because an item-content-based (user-content-based) recommender has
access to item (user) features (e.g., keywords or categories/genere or age), it does not
su�er from the new item (user) problem: new items (users) look just like old ones.

Disadvantages

Main disadvantages include:

• Scalability: the new user (item) problem remains in item-content-based (user-
content-based) since users (items) must build up a su�ciently rich profile through
the addition of multiple ratings

• Limited content analysis: most studies are based on lexical similarity (bag-of-
words), thus, missing semantic meaning. Additionally, there is a natural limit in the
number and type of features that are associated.

13

Allyn: A Recommender Assistant for Online Bookstores

• Over-specialization: they are not built to find unexpected recommendations in
the sense that they do not o�er to the user substantially di�erent products, limiting
variability. This limitation is also called the serendipity problem.

Demographic Recommendation Technique

This is a particular case of a user-content-based algorithm which will focus on user’s
demographic features such as age, gender or country to make item recommendations. The
assumption is that di�erent recommendations should be generated for di�erent demographic
niches.

The reason it is pointed out is that avaliable user data includes age and location of
the user making the recommendation, which is intented to be used in addition to a CF
approach.

1.2.3 Knowledge-based Filtering

Knowledge-based (KB) RS recommend products based on specific domain knowledge on
how certain item features satisfy users’ needs and specifications. These algorithms rely
on knowledge sources other than those previously discussed which can be divided on two
main aspects: user requirements and domain knowledge.

According to Felfernig and Burke (2008), there are two well-known approaches to
knowledge-based recommendation: case-based recommendation and constraint-based
recommendation.

In the first, the system will try to discover what the user has in mind and find a
suitable product for it. This requires domain-specific knowledge and considerations which
will are not accessible in this case.

On the other hand, constraint-based recommendations take into account explicitly
defined constraints, which are specially relevant for the present case and will be explained
in more detail.

Constrained-based Recommendations

There are two main types of contraints that can be applied to a problem: filters or
incompatibility. In the case of a Book RS, the user might be looking for a specific genere
or author and items which do not correspond to this specification should not be considered
at all.

14

Laia Esquerrà Schaefer Chapter 1. Recommender Systems

Yet, if there is no item that really fits this wished or the calculated rating is negative
(in the sense of dislike), other mechanisms to fulfill requirements as much as possible with
a minimal set of changes are usually implemented.

The interaction with a KB RS is usually set up as a dialog (or conversational
recommender) where users can specify their requirements in the form of answers to
questions. This is particularly interesting for the present case, as the final model is
implemented on a chatbot.

This process can be explicitly modeled through finite selection options (as have been
implemented) or be enriched with natural language interaction.

The main advantage of KB systems is that they usually work better at the beginning
but might be easily surpassed if they do not provided with learning components.

1.2.4 Hybrid Recommender Systems

A Hybrid RS combines two or more of the techniques listed above. This systems try to
fix the disadvantages of one algorithm by takind advantage of another algorithm able to
overcome them, improving overall performance. There are several ways to combine basic
RS techniques in order to create a hybrid system.

According to Burke (2002), seven di�erent hybridization techniques can be defined:

• Weighted: A linear combination of predictions from di�erent recommendation
techniques is computed to get the final recommendation.

• Switching: Using a switching criteria, the system switches between di�erent recom-
mendation techniques.

• Mixed: A list of results from all recommendations derived from applying various
techniques are presented as a unified list without applying any computations to
combine the results.

• Feature Combination: Results from the collaborative technique are used as
another feature to build a content-based system over the augmented feature set.

• Cascade: Multistage technique that combines the results from di�erent recommen-
dation techniques in a prioritized manner.

• Feature Augmentation: Another technique that runs in multiple stages such that
the rating or classification from an initial stage is used as an additional feature in

15

Allyn: A Recommender Assistant for Online Bookstores

the subsequent stages.

• Meta-level: Model generated from a recommendation technique acts as an input
to the next recommendation technique in the following stage

Many hybrid systems have been proposed in the literature, such as Ge et al. (2011),
Schein et al. (2002) and Gunawardana and Meek (2009). Moreover, papers from Bala-
banovic and Shoham (1997), Melville, Mooney, and Nagarajan (2002) and Pazzani (1999),
compare empirical performance of hybrid and pure collaborative and content-based meth-
ods and demonstrate that the hybrid methods can provide more accurate recommendations
than pure approaches.

16

Chapter 2

Artificial Neural Networks

CF has been widely used in order to recommend new contents to users. However, it presents
a relevant limitation because missing ratings di�cult the computation of similarities
between users or items. This lack of data can represent up to 99%, which brings us to
look for a di�erent approach which can potentially overcome the sparsity problem.

Machine Learning (ML) is a field of computer science which tries to build computer
systems that automatically improve with experience (Mitchell 2006), combining statistical
models and Artificial Intelligence (AI) to build them. These systems aren’t always able to
identify the whole process, but they are still able to build useful aproximations, (Alpaydın
2010). This approximation, accounts for part of the data, which in traditional statistics is
called the explained variance.

The niche of ML is to find relevant patterns in the data without having to previously
establish a formal equation to modelize the data. Therefore, ML o�ers higher flexibility
when it comes to compute non-linear relationships. Additionally, there are several reasons
why these algorithms are increasingly gaining popularity, among others:

• Parameter optimization through complex optimization algorithms huge amounts of
parameters can be tuned.

• Countinuous improvement in systems that can learn over time and update themselves
to the optimal setting in di�erent conditions.

• Automation of tasks by supplying a machine with a learned algorithm, it can develop
tasks on its own, which reduces human error problems but this can also have a
drawback.

Nevertheless, ML algorithms also have some drawbacks which mainly concern time
constraints and error correction. The large amount of data required is not always avaliable

17

Allyn: A Recommender Assistant for Online Bookstores

and, when it is, it might not have the expected quality. Errors in data can make the
algorithm learn a skewed pattern and when an error is made, diagnosing and correcting it
can be highly di�cult. When these immediately detected, operations could run o� before
human intervention allows the identification of the error and its source.

Along this chapter we will present a specific ML algorithm able to learn patterns
and use this knowledge for missing imputation in very sparse data: Artificial Neural
Networks (ANN).

Machine Learning and Statistics

ML is closely related to statistics, and more specifically with computational statistics.
The main di�erence among the two lies on the learning approach. While computational
statistics use the computational power of machines to solve large predefined problems,
ML traditionally presents two di�erent learning paradigms: supervised learning and
unsupervised learning

In supervised learning, the correct values are provided during training, and the task
map inputs to these values by minimizing errors in predictions. This corresponds to the
traditional statistics approach. On the other hand, in unsupervised learning only the input
data is known, and the task is to find patterns inside it. This, can also be done through
Multivariate Analysis.

A third learning paradigm has stood out in the last few years: reinforcement
learning. It stands in between the other two, although it is sometimes presented as part
of supervised learning. Reinforcement learning is used for sequential decisions which lead
to a final state, where a single action is not important, but the final output is. Therefore,
the algorithm is not evaluated step by step (unsupervised), instead, it gets positive or
negative reinforcements, which can be defined by a cost function, provided it finds the best
solution to a problem with the least possible mistakes (supervised). This processes can be
compared to Markov Decision Chains, o�ering a solution for finite horizon problems.

Thus, in supervised learning, ML and statistics overlap, but both approaches are
rather complementary than contradictory, although terminology generally di�ers. Table 2.1
o�ers a small comparison on statistical terms and its denomination in the ML field.

According to Alpaydın (2010), the di�erent applications of ML can be classified in
three main tasks: learning associations, classification and regression. These have the
same main structure as in statistic but present some di�erences regarding its approaches:

18

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

• Learning Associations. In many cases, we will be interested in finding association
rules we didn’t know existed. This is equivalent to learning a conditional probability,
P(Y|X), over the entire dataset instead of in variable pairs.

• Classification. We might be interested in assigning an individual observation in
one of the classes. In ML though, observations are not as simple as in statistics.
Inputs can be for example images, and the task could be optical character recognition,
face recognition or object detection, but it could also be sound.

• Regression. In this sense, data might present very complex underlying patterns,
which don’t have a straightforward modelization. Using ML algorithms it can be
approximated.

Statistics Machine Learning
Classification, Regression,... Supervised Learning
Classifier Hypothesis
Clustering Non-supervised Learning
Coe�cients Weights
Estimation Learning
Explanatory Variable Input
Goodness of Fit criterion Cost Function
Individual Instance
Model Artificial Neural Network,

Decision Tree,...
Response Variable Output/Target
Variable Attribute

Table 2.1: Statistics vs. Machine Learning Terms

ANN are used in many pattern classification and pattern recognition applications,
Cheng and Titterington (1994), which can range from speech recognition, to object
detection or process optimizations. These can be applied to almost every field, including
routing and transportation (e.g. autonomous driving, radar localization. . .) and medicin
(e.g. identification of cancerous cells). But we also have to consider that there are several
structures of ANN, which serve very di�erent purposes, also in regression. Therefore, in
this section, a deeper introduction to ANN will be made, going over all of their elements
and the di�erent types of structures that can be built, in order to select the most suitable
one for the present problem.

19

Allyn: A Recommender Assistant for Online Bookstores

2.1 Precedents

AI. A field that has rapidly grown in the last few years, is leading the creation of algorithms
able to mimic human behaviour. ANN are computational models that take their inspiration
from the brain’s structure. They originated in mathematical neurobiology but have been
broadly used in statistics as an alternative to traditional models.

ANN are structured in perceptrons or nodes, which imitate neurons, each of which
is connected with some or all of its neigbouring nodes through a propagation function,
which in its turn imitates a synapsis in the brain. When information flows from one node
to the following, the reveived input is activated, through an activation function.

In this section, we will present the first ANN that were built and how they relate to
traditional statistics.

2.1.1 The Perceptron

The Perceptron is the most elementary structure for an ANN, a single layer network
with one hidden node and one output node. In some way it is just a new approach to
multivariate regression which gives a graphical representation to statistical models, inspired
on the structure of the brain.

(a) Schematich Diagram of a Real Neuron (b) Artificial Neuron

Figure 2.1: Biological Neuron vs. Perceptron. Source: Cheng and Titterington (1994)

Figure 2.1 present a comparison of the two structures, but the similarity between these
doesn’t go any further. While the human brain contains millions of cells interconnected with
each other to process, integrate and coordinate information received from the environment
through a process which is still hardly understood, ANN can be seen as simple mathematical
functions built on top of each other.

The artificial neuron, takes all input features and weights them into the hidden node.

20

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

Given a set of weights wj œ IR, j = 1, ..., d, where d indicates the total number of input
nodes, the value taken by a hidden node corresponds to a multivariate linear fit:

z =
dÿ

j=1
wjxj + b0 (2.1)

The contribution of the Perceptron is the application of a transformation on this
computed value to obtain the final output, the activation function. Thus, the output value
is the result of applying a function, g(.), to the previous fit.

y = g(z) (2.2)

This said, we will now see how some statistical models had already done this.

2.1.2 The Perceptron and Statistical Models

The modelization of the hidden node we presented previously is a linear function. Thus,
for the specific case of g(z) = Iz, the identity function, the Perceptron corresponds to the
formulation of a linear regression.

y =
dÿ

j=1
wjxj + b0 (2.3)

This is useful when we look for a continuous output, since the response variable to
take values in the range (≠Œ, Œ). In a binary classification problem though, the output
result is a discrete dichotomic value, generally 0 or 1. This variable appears when in a
given sample we look if each indivuals holds or does not hold a target characteristic of the
study and this is codified as (Y = 1) or not (Y = 0).

Logistic regression is a traditional model, used in a supervised learning problem of
this type, where answers are tagged to 0 or 1. Relationships are modeled using the training
data which has known labels and allows the estimation of the parameters. The goal is
to accurately predict this tag and therefore, the error between predictions and known
training data labels is minimized.

To contrain results between [0, 1], in GLM, a transformation called the link function
and notated as f(.) is applied. Given the expected value µ and a linear predictor z,
z = f(µ). Thus, the response function will be µ = f≠1(z) = g(z).

21

Allyn: A Recommender Assistant for Online Bookstores

Some common link functions for binary data are:

• Logit

g(z) = e(z)

1 + e(z) = 1
1 ≠ e≠z

(2.4)

• Probit
g(z) = �(z) (2.5)

• Log-log complementary
g(z) = 1 ≠ eez (2.6)

• Log-log
g(z) = 1 ≠ ee≠z (2.7)

In ANN, these link functions correspond to the activation functions, and we will use
the convention ‡(z) = g(z) for activation functions. The Logit link in particular is a
very common transformation, called softmax in ANN. Thus, a Perceptron, which uses a
softmax activation function will compute the same as a logistic regression with a logit link.

Now that we have proven that linear regression can be seen as a particular case of
ANN, we will move forward to present more complex formulations.

2.2 Elements of an Artificial Neural Network

A single hidden layer ANN can be seen as represented in Figure 2.2, where the di�erent
elements are labeled. A neuron, n of the hidden layer i, receives signals x1, x2, ..., xd from
all the nodes in the input layer j which are connected to it. Each of these connections
has a computed weight wi,j that is optimized in the training process. The new node is
composed by the weigthed sum of its inputs, zi = qd

j=1 wijxj, which is then passed to the
chosen activation function, gi(zi).

Figure 2.2: Single Hidden Layer ANN

In this section, we present all these elements in detail.

22

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

2.2.1 Nodes

The perceptron, or node, is the most elementary feature of an ANN. In some literature,
The Perceptron is also used to call the full structure that we have seen before. Therefore,
we will use the word node to refer to the elements of an ANN, in order to avoid confusions.

Each node receives inputs either from the environment or from other nodes. Those
who receive the external information, form the input layer of the network.

As in the Perceptron, the associations among nodes are done through weights wi,j œ IR,
j = 1, ..., d, where d indicates the total number of connected nodes a the particular node
i = 1, ..., n, where n is the number of nodes in a layer. These weights can be both called
synaptic or connection weights.

We have seen the formulation for a single node. When there are several nodes in a
layer, the formulation in generalized as follows:

zi =
dÿ

j=1
wijxj + bi0 = w

T
i x + bi (2.8)

where w

i

= [wi1, ..., wid]T , x = [x1, ..., xd]T and bi represents the intercept. In matricial
notation, we can express the previous equation for the full layer as follows:

z = W

T
x + b (2.9)

Sometimes, the term b is also referred as bias vector.

Note, that in some ANN literature, the output value is also called x, instead of z.
This is due to a simplification of the process. Following the reasonment we presented
previously, we still need to apply the activation function on this node value, in order to
have the activated value, which will be transferred to the following layers.

Usually, for hidden layers these activated values are also referred as ai © xi, leaving
the terminology x exclusively for the input values in order to avoid confusions. We will
assume this notation.

Details on these activation functions can be found below.

23

Allyn: A Recommender Assistant for Online Bookstores

2.2.1.1 Activation Function

When we talked about logistic regression, we presented several link functions used in
GLM, and we highlighted that the softmax transformation was one of the most popular
activation functions used in ANN. Yet, there are many di�erent functions that have been
used in practice. Here we present a list of the most common transformations and their
graphical representation.

• Identity

‡(z) = z (2.10)

Figure 2.3: Identity Transformation

• Threshold

‡(z) =

Y
_]

_[

1 if z > ◊

≠1 if z Æ ◊
(2.11)

Figure 2.4: Threshold Transformation for ◊ = 0

• Softmax

‡(z) = ez

1 + ez
= 1

1 + e≠z
(2.12)

Figure 2.5: Softmax Transformation

24

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

• Rectified Linear Unit (ReLU)

‡(z) = z+ = max(0, z) (2.13)

Figure 2.6: ReLU Transformation

• Hyperbolic Tangent (tanh)

‡(z) = sinh(z)
cosh(z) = e2z ≠ 1

e2z + 1 (2.14)

Figure 2.7: Tanh Transformation

Activation functions generally limit the range of values that a node will take, except
the Identity transformation, which is rarely used as values can grow exponentially over
the di�erent layers. Softmax and Thresholds are used when the final output will be a
discrete value, such as [0, 1]. The ReLU activation in particular, is very useful when values
can’t be negative or for large datasets, since a node with a negative value is automatically
cancelled from the equation, by taking a 0 value. But, if we don’t want to lose information
in a regression, the tanh function is usually recommended.

2.2.2 Hidden Layers

Hidden layers have been mentioned a couple times until now. As one can deduce, hidden
layers compose the internal structure of an ANN.

According to Alpaydın (2010), a Perceptron or an ANN that has a single layer of
weights can only approximate linear functions of the input. But, several Perceptrons can
be stacked to form a Multilayer Perceptron (MLP). These MLP can implement nonlinear
discriminants in classification and can approximate nonlinear functions of the input, if
used for regression.

25

Allyn: A Recommender Assistant for Online Bookstores

Figure 2.8: MLP Structure

In the structure of a MLP such as the one shown in figure Figure 2.8, the input and
output layers are not counted as hidden layers. Thats why, Figure 2.2 was referred as a
single layer ANN.

The standard notation for the hidden layers will be superscript [l], l = 1, ..., L, where
L is the number of layers in the network. This notation is extended to all the parameters:

• n

[l] : number of hidden units of the lth layer.
• a

[l] : activated value of the hidden units of the lth layer.
• W

[l] : weight matrix of the lth layer.
• b

[l] : bias vector of the lth layer.

Each layer can have its own activation function.

2.2.3 Learning Rule

The learning rule is defined as the algorithm which optimizes the weights of an ANN in
order to fit the desired output.

There are some di�erent learning rules used in the literature, but before introducing
them, we will need to talk about the building blocks for the optimization functions used
to train the weights. Therefore, we will define both the cost and the propagation functions
before moving on to the optimization algorithms.

2.2.3.1 Cost Function

Given some predictions ŷ œ IRn, and the desired output y, a loss function, L(ŷ, y) measures
the discrepancy between them. In other words, it computes the error for a single training
example.

26

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

In ML there are six main loss functions which are commonly used. Di�erent loss
functions are more or less accurate for di�erent data structures. In particular, one can
distiguish discrete and continuous loss functions.

Discrete Functions

Two of the most common discrete loss functions, are categorical crossentropy and the
hinge loss:

• Categorical Cross Entropy

L(ŷ, y)CE = ≠
nÿ

i=1
yi · log ŷi (2.15)

• Hinge Loss

L(ŷ, y)HL = max(0, 1 ≠ ŷ · y) (2.16)

The categorical crossentropy is also called the log loss function and its sum corresponds
to the log-likelihood function for logistic regression which is why it is commonly used for
this model. The hinge loss instead is usually applied to classification problems which use
algorithms such as Support Vector Machines.

Continuous Functions

For this case, the most common loss functions, are the Root Mean Square Error and
the Mean Absolute Error:

• Root Mean Square Error

L(ŷ, y)RMSE =
ı̂ıÙ 1

n

nÿ

i=1
(ŷi ≠ yi) (2.17)

• Mean Absolute Error

L(ŷ, y)MAE =
nÿ

i=1
|ŷi ≠ yi| (2.18)

While these work well for continuous outputs, they wouldn’t have been optimal for
dichomotic answers treated in logistic regression for example, where these metrics will
lead to a non-convex optimization problem, i.e. it results in an optimization problem with
multiple local optima. Thus, in order to find the global optima, we need to correctly define
this measure.

27

Allyn: A Recommender Assistant for Online Bookstores

The cost function is the average of the loss function of the entire training set. It
optimizes, W and b to minimize the overall cost, J(W , b).

2.2.3.2 Propagation Function

Given the parameters W , b and the corresponding cost function, J(W , b), we can find
the local minimum using an optimization algorithm. If the defined cost function is convex,
it will guarantee that this local optima is also the global optima.

In ANN, this optimization is implemented in two directions, what we call forward
and backward propagation.

Forward Propagation

Forward propagation is just the sequential computation of the nodes. Therefore, the
propagation function is defined as the computation of the input of a neuron, given
the weights and the values of all the nodes in the previous layer that are connected to it,
and the application of the corresponding activation function. The most general forward
propagation equation is:

a

[l] = g(W [l≠1]T
x

[l≠1] + b

[l≠1]) (2.19)

Backward Propagation

Backward propagation is the reverse process of updating the weights from the end to the
beggining. In order to do so, it computes the error of the values obtained through the
forward propagation phase, which must have been done before. This computation will
depend on the chosen optimization algorithm, which we present in the following section.

2.2.3.3 Optimization Algorithms

We present and build the backpropagation functions of three main optimization alogrithms:
gradient descent, RMSprop and Adam optimization.

Gradient Descent

Gradient Descent, is an optimization method which iteratively optimizes di�erentiable
cost function. It is based on the traditional optimization of functions: if we want to find

28

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

W and b that minimize a particular cost function, J(W , b), we can find this minimum
value by taking the partial derivatives equal to 0, J Õ(W , b) = 0

Thus, in Gradient Descent, the weights and the bias are updated according to the
following functions:

W : = W ≠ – · ˆJ(W , b)
ˆW

(2.20)

b : = b ≠ – · ˆJ(W , b)
ˆb

(2.21)

where – indicates the learning rate, which determines the magnitude of change to be
made in the parameter. It is generally taken between 0.0 and 1.0, but mostly – Æ 0.2. We
can get an intuition of why we are interested in small learning rates from the follwing
graph:

Figure 2.9: Gradient Descent Learning Rates

The problem with a fixed learning rate is that it can be very slow to converge if it isn’t
properly tuned. Therefore, an adaptative learning rate can be introduced either manually
or through other optimization methods which speed up this convergence.

RMSprop

RMSprop, which stands for Root Mean Square Propagation, is an optimization algorithm
which speeds up the convergence of the values, by denoising some unnecessary oscilations.
This is very important in ML applications, since we are not talking about an IR2 dimensional
space, as shown in Figure 2.9 but a very high dimensional space instead. Thus, if steps
are taken in the wrong direction it can be very hard to eventually reach the optimal value.

The term RMSprop, comes from the implementation of an exponentially weighted

29

Allyn: A Recommender Assistant for Online Bookstores

average of the squares of the derivatives. At each iteration, i, Sˆwi and Sˆbi are computed
as follows:

Sˆwi = —2Sˆwi≠1 + (1 ≠ —2)
A

ˆJ(W , b)
ˆW

B2

(2.22)

Sˆbi = —2Sˆbi≠1 + (1 ≠ —2)
A

ˆJ(W , b)
ˆb

B2

(2.23)

Sˆw0 = 0 and Sˆb0 = 0. The parameters W and b are updated according to the following
equations:

W : = W ≠ – · 1Ô
Sˆwi + Á

· ˆJ(W , b)
ˆW

(2.24)

b : = b ≠ – · 1Ô
Sˆbi + Á

· ˆJ(W , b)
ˆb

(2.25)

The main advantage is that —2 can be fixed to 0.999 and tuning – becomes less
important, since the learning rate is indirectly decayed at each iteration. A very small
value Á = 10≠8 is usually added in order to avoid zero divisions.

Adam Optimization

Finally, the Adam optimization algorithm is an extension to stochastic gradient descent,
which combines momentum and RMSprop and puts them together. This algorithm has
gained a lot of popularity in DL.

Additionally to the terms presented in RMSprop, the Adam optimizer introduces
the momentum exponentially weighted averages, Vˆwi and Vˆbi at each iteration. The full
formulation is the following:

Given, Vˆw0 = 0, Vˆb0 = 0, Sˆw0 = 0 and Sˆb0 = 0.

Vˆwi = —1Sˆwi≠1 + (1 ≠ —1)
ˆJ(W , b)

ˆW

(2.26)

Vˆbi = —1Sˆbi≠1 + (1 ≠ —1)
ˆJ(W , b)

ˆb

(2.27)

30

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

Sˆwi = —2Sˆwi≠1 + (1 ≠ —2)
A

ˆJ(W , b)
ˆW

B2

(2.28)

Sˆbi = —2Sˆbi≠1 + (1 ≠ —2)
A

ˆJ(W , b)
ˆb

B2

(2.29)

W : = W ≠ – · VˆwiÔ
Sˆwi + Á

(2.30)

b : = b ≠ – · VˆbiÔ
Sˆbi + Á

(2.31)

As in RMSprop, —2 = 0.999 and —1 can be fixed to 0.9. Again, the initial choice of –

has a lower impact on the full learning process.

2.3 Variants of Artificial Neural Networks

Now that we have seen all the building blocks of ANN, we will see that several variants of
ANN can be defined according to their di�erent arquitechtures. In particular, the three
main variants used for di�erent RS will be presented: Convolutional Neural Networks,
Recurrent Neural Networks and Autoencoders.

All of these architectures are built over several hidden layers. Hence, we are talking
about deep learning algorithms.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are deep feed-forward ANN which are generally
used for image processing. Their basic structure is the same of a regular MLP: an input
layer, multiple hidden layers and an output layer. The di�erence falls on the architecture
of the hidden layers, which include:

• Convolutional layers take all the input nodes and compute a single output instead
of computing an output for each node. Mathematically, the convolution corresponds
to cross-correlation. The convolution emulates the activation function, but in this
case it has the advantage that is reduces the number of free parameters. This is
specially relevant for images, where every pixel correspond to three diferent input
values in an RGB setting.

31

Allyn: A Recommender Assistant for Online Bookstores

Convolutions can be valid or same. The first reduce the dimensionality while the
latter, pad the resulting output in order to keep the original dimension. Strides
can also be added to convolutions in order to reduce even more the dimensions, by
"jumping" part of the combinable clusters.

• Pooling layers reduce the dimensions of the original image by clustering several
pixels and combining them into one node. There are two main clustering techniques
than can be applied: max pooling, which takes the highes value from each cluster; or
average pooling, which computes the average of all the pixels in a cluster.

• Fully-connected layers correspond to the traditional layers where every node from
one layer is connected to all the neurons in the following one.

One setting in particular, known as the LeNet-5, became very famous for optical
character recognition. Its structure can be depicted as follows:

Figure 2.10: LeNet-5 5-layer CNN for Optical Character Recognition

CNN can also be used for image classification, and for object detection, where several
objects can be detected inside a single image. Videos and movies can be seen as a sequence
of images, thus, CNN are used in combination with RNN to make video and movie
recommendations.

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are deep ANN, that, unlinke feed-forward networks,
retain previous information to process sequences. In order to do so they can have a single
output at the end or several sequential outputs in intermediate layers, which, in its turn,
are feed to the inputs of the next layer.

32

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

A fully recurrent ANN as shown in Figure 2.11, loops on itself infinitely, being able
to give real-time output at each period of time t.

Figure 2.11: Folded and Unfolded Basic RNN

The main problem in RNN becomes computing gradients. In particular, the high
number of connections can result in vanishing gradients, when over many iterations,
derivatives become extremely small.

Some alternatives have been proposed to deal with this problem, such as Long-Term
Short Memory (LTSM) networks and Gated Reccurent Units (GRU). Both of these
algorithms present mechanisms to “forget” gates over time, putting a higher emphasis on
most recent outputs but at the same time allowing temporal coherence.

We won’t get into more detail on these, since our particular dataset doesn’t have
sequential data. Presenting them was relevant though, because not only video and movie
recommenders use them, but also music RS and sentiment classification, which is very
important for written reviews.

2.3.3 Autoencoders

Autoencoders are a particular case of ANN, born from the idea of mapping an input into
a lower-dimensional representation, which can be later reconstructed to match its original
form. Therefore, they are typically used for dimensionality reduction.

Figure 2.12 presents the basic structure of an autoencoder. Independent from the
number of layers, autoencoders have two main parts:

• Encoder: set of layers which reduce input dimensionality, IRd æ IRn.

33

Allyn: A Recommender Assistant for Online Bookstores

Figure 2.12: Structure of an Autoencoder with 3 Fully-Connected Hidden Layers

• Decoder: set of layers which reconstruct the input, IRn æ IRd.

Undoubdetly, autoencoders are forced to compress the input, learning how to reduce
noise in the process and obtain a d dimensional representation of the data.

Architecturally, a simple autoencoder doesn’t di�er from a feed-forward simple MLP,
which has an input layer, an output layer and one or more hidden layers connected. But,
the output layer has the same number of nodes as the input layer and, in order to make
it map them against each other, we just need to feed it with the same input and output
sorted accordingly.

Some stacked autoencoders have been used for image recognition but we will stick to
its most simple formulation.

In order for an autoencoder not to learn the identity functions, some variations
have been proposed over the years: denoising autoencoders, sparse autoencoders,
variational autoencoders and contractive autoencoders.

Autoencoders for Recommender Systems

Q. Li, Zheng, and Wu (2017) present a generic recommender framework called Neural
Collaborative Autoencoder (NCAE) to perform collaborative filtering, which works well for
both explicit and implicit ratings. NCAE can e�ectively capture the relationship between
interactions performing a non-linear matrix factorization process.

Denoising AE have also gained popularity in RS. These take partially corrupted
inputs and try to reconstruct them entirely. In RS, unavailable reviews do not forward
any information; adding a small blank noise, the strongest trends are. Strub et al. (2016)
built a Stacked Denoising Autoencoder (SDAE)

34

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

Other authors have also developed variants of AE to implement Collaborative DL. H.
Wang, Wang, and Yeung (2014) in particular, integrate SDAE with Probabilistic Matrix
Factorization to perform deep content feature learning and collaborative filtering jointly.

2.4 Parameter and Hyperparameter Tuning

Hyperparameters are defined as those parameters that control lower-level parameters.
Thus, the optimization of the latter depends on these hyperparameters.

In an ANN, parameters are W and b, which are optimized during training. Hyper-
parameters refers to the rest of parameters which will determine how fast or slow this
optimization process goes and how good the algorithm will be able to predict.

Hyperparameters can be ranked, by how important it is to accurately tune them:

• Learning rate. It is the most relevant feature in an ANN, the one that will
determine convergence speed. The higher this value is, the faster it will converge
but it might also turn into high oscilations around the optimal value, without every
reaching it. In order to reduce the pressure on this hyperparameter, we can introduce
a learning rate decay or algorithms such as RMSprop and Adam, which we have
seen weigth its value in every successive iteration.

• Learning rate decay. Determines how fast the learning rate is reduced over
iterations.

• Number of layers. Determine the basic structure of the ANN, and by that, the
number of parameters to be optimized.

• Number of hidden units. In a lower scale than the layers, these are also determi-
nant for the number of parameters to be optimized.

• Mini-batch size. Instead of training with the complete dataset, smaller batches
can be optimized sequentially in each iteration. The smaller its size is, the more
loops we will need to do inside an iteration, but it will also consume less memory.

• —1, —2 and Á can all take default values, 0.9, 0.999 and 10≠8 respectively.

When tuning hyperparameters in an ANN, a grid might not always be recommended,
since in some cases, hyperparameters do not follow a convex distribution, and grid values
migh just be skipping its peaks as shown in Figure 2.13. Instead, random values are more
recommended for the first set up.

35

Allyn: A Recommender Assistant for Online Bookstores

Figure 2.13: Grid-layout vs Random Seach

When trying random numbers, we can achieve combinations which would have never
been found on a grid. This seach can be later refined by taking random numbers around
the intervals that resulted in better accuracies.

Figure 2.14: Coarse to Fine Search

2.5 Programming Frameworks

When dealing with larges amounts of data, implementing all the functions manually can
be both time-expensive and costly. To have an idea, for a feed-forward ANN with one fully
connected hidden layers such as shown in Figure 2.15, we already have (3 · 4) + (4 · 2) = 20
weights, plus its corresponding 20 bias parameters. If this hidden layer had 10 nodes
instead, these would already have (3 · 10) + (10 · 2) = 50 each, over twice as many by
just adding 6 nodes, and this keeps rising exponentially if we add more hidden layers.
Therefore, even if it is interesting to know how all the implementations work, it is much
more e�cient to work with a programming framework.

36

Laia Esquerrà Schaefer Chapter 2. Artificial Neural Networks

Moreover, the bias parameter becomes insignificant when working with very large
ANN, which is why many frameworks leave it aside.

Figure 2.15: Single Layer ANN

Programming frameworks are platforms for developing software applications,
Christensson (2013). These frameworks provide predefined object classes and functions
which can be useful to build specific programs. They work in a similar way as APIs but
they might also include, code libraries and a compiler. Additionally, these compilers might
be prepared to run the code in parallel, speeding up the process.

These way, the specific syntax of a programming language becomes less relevant as it
is the architecture what is actually implemented.

So programming frameworks o�er some clear advantages when dealing with large
architectures in ML. Some of the reasons to choose one are:

• Ease of programming. When building architectures one can really focus on the
development and deployment of the programm.

• Running speed. Since they are prepared to deal with large data, functions have
already been optimized and might even run in parallel.

• Truly open. Many programming frameworks are open source, which allows any
advanced user to make updates and add missing functionalities.

When working with ANN two main frameworks stand out: TensorFlow and Keras.
Both of them have been combined in this thesis to implement the Autoencoder ANN,
which is why we are going to make a brief introduction to both of them.

37

Allyn: A Recommender Assistant for Online Bookstores

2.5.1 TensorFlow

TensorFlow was originally developed by the Google Brain team for internal use, but it
was released on open-source in 2015.

Nowadays, TensorFlow is an open source software library for Machine Intelligence, The
TensorFlow Authors and RStudio (2018), broadly used for machine learning applications,
such as ANN, thanks to its high e�ciency.

It is called symbolic because it allows us to build structures over tensor placeholders
which do not really contain any data. Tensors are the basic structure of TensorFlow,
which imitates a mathematical tensor. When the full architecture is built, it can be run
by chosing optimizers from predefined functions.

TensorFlow can run in parallell on multiple CPUs and GPUs and it has o�cial APIs
for Python and C. R creators have also developed a package to run the Python API from
R and RStudio. This R interface, is able to work jointly with the high-level Keras and
Estimator APIs, and at the same time, access the full core of the TensorFlow API when
needed.

2.5.2 Keras

Keras is an open source Python ANN library, which is able to run on top of other
programming frameworks such as Tensorflow. It provides a very user-friendly approach
to ANN, by having implemented all the necessary building blocks: layers, objectives,
activation functions and optimizers.

Although it can only be use distributed storage when working on a GPU, it provides
several mechanisms to implement custom generators to reduce out-of-memory problems
on CPU.

Next to the development of TensorFlow, R creators have also developed a Keras
API to work from R and Rstudio. According to its creators, Allaire et al. (2018), it is a
high-level ANN API developed with a focus on enabling fast experimentation. This API
allows the creation of ANN using dplyr pipelines, %>%, to sequentially add layers to the
model.

38

Chapter 3

Chatbots

Chatbots (also called ChatterBots or IM bots, among others) are AI instant messaging
systems able to conduct a conversation with humans. These have been implemented for
di�erent purposes, including customer service or conversational commerce.

Their origin goes back to Alan Turing’s formulation of the Turing test, in which he
theorized that a truly intelligent machine would be indistinguishable from a human when
talking to it. Turing is seen as one of the fathers of computation as we know it and his
ideas set the ground for the revolutions we are living in ML and AI, including the rise of
Chatbots.

The first program to pass the test was the chatbot ELIZA, created in 1966. ELIZA
simulated the responses of a psychotherapist using word patterns and a predefined response
database. That means that she was programmed to recognize keywords or phrases in the
input for which a response was stored in the database. Therefore, it would give the same
answer to any input that contained a particular word.

In 1972 a patient for ELIZA was developed, PARRY, a chatbot simulating a paranoid
schizophrenic. Both chatbots have been set up to mantain a conversation with each other
several times.

Since then, advances in technology have allowed the creation of much more complex
AI systems. Turing himself, wrote about the idea of imitating behaviours in games which
has bring to the imitation game being a controverted alternative formulation to the Turing
test.

In this gaming branch, IBM’s Watson1 made one of the most famous achievements
when, in 2011, it won the game Jeopardy! against two of its best players. Originated in

39

Allyn: A Recommender Assistant for Online Bookstores

2006, Watson is a referent in the NLP field.

Nowadays chatbots are implemented on several platforms, such as messaging apps,
companies’ internal platforms and toys; although only 4% of the companies are using
chatbots as part of their websites or apps, according to a 2017 study, Capan (2018).
Nevertheless, the leading technological have all developed their own AI assistants, such as
Apple’s Siri2, Amazon’s Alexa3, Microsoft’s Cortana4 or Google’s Google Assistant5.

3.1 Building blocks

Chatbots generally use Natural Language (NL) techniques to communicate but some of
them only use word patterns as was ELIZA’s case. Nonetheless, this latter version is not
so common anymore, as the NLP field has advanced a lot over the last years. A third
option is avaliable for very restricted communications, structured guided dialogs.

In this section, we introduce the NL Dialogue and the Guided Dialogue structures.

3.1.1 Natural Language

NLP is a branch of computer science and artificial intelligence that helps computers
understand, interpret and manipulate human language, Inc. (2018). It draws from many
disciplines and quick advances in its technology have been done among others thanks to
an increased interest in this human-machine communications.

Basic NLP tasks break down language into samller elemental pieces, in order to
understand relationships between them to create meaning. However, this tasks includes
many di�erent techniques for interpreting human language, such as ML methods. And
there is not only a wide range in its approaches, practical applications also vary a lot from
text to voice inputs.

Using NLP, some of the main capabilities are:

• Content categorization. Document contents can be summarized or indexed,
allowing the identification of relevant information and duplication detection.

• Topic discovery and modeling. Text collections can be classified by their meaning
or theme and advanced analytics, such as optimization and forecasting can be applied
to these texts.

• Contextual extraction. Information from structured text-based sources can be

40

Laia Esquerrà Schaefer Chapter 3. Chatbots

automatically retrieved.
• Sentiment analysis. Moods and subjective opinions within sentences or larger

texts can be idenified and classified.
• Speech-to-text and text-to-speech conversion. Voir commands are written

into text, and vice versa.
• Document summarization. Synopses of large text bodies can be automatically

generated.
• Machine translation. Text or speech can be automatically translated from one

language to another.

NLP is very important for text analytics, when dealing with large volumes of textual
data and structuring unstructured data sources. For chatbots, it is usually the core
element.

Chatbots with NLP cores, o�er a much better user experience since they can ask
anything using their own words. But to train a bot to understand questions in di�erent
ways and to develop a working NLP system which gives reasonable answers requires a
large dictonary and generally very deep trained models.

Since the chatbot in this thesis is only to serve as a front-end to our developed RS,
such an e�ort was considered to be out of scope, although it remains as future work.
Therefore, we opted for a much more guided approach, which required little NLU.

3.1.2 Guided Dialogue

When the use of a chatbot is very limited to a specific purpose, a multiple-choice menu
might usually be enough to gather required information.

The principle is to guide the user in the process to o�er him what he wants. The bot
is responsible for driving the conversation in a structured manner by asking a question
and suggesting a limited range of answers from which the user should choose one. This
process continues until the bot has retrieved all the necessary information.

It o�ers a very basic user experience but it is very convenient for most businesses as
it goes straight to the point, Miso�e (2017). Complexity can be increased by letting users
answer freely but this might just complicate the process even more than just opting for a
NLP approach.

A guided dialogue will be implemented in this thesis using InlineKeyboardMarkup
objects from the telegram.bot package.

41

Allyn: A Recommender Assistant for Online Bookstores

3.2 A Chatbot as a Recommender System Front-End

As we defined in Section 1.2.3, the introduction of Constrain-Based Recommendations is
usually set up as a dialog. The belief that such constraints were needed in a Book RS
were the reason to implement the final model of this thesis on a chatbot.

Research on conversational bots is very intensive nowadays and may open source
solutions are enabling their creation. However, most of them use simple dialog managers
to program conversation and few chatbots have made it to the market and are generating
profits.

From the intersection of AI and ML, come a lot of new opportunities for chatbots.
For example, the lastest developments in RNN have achieved to even generate poems,
Zhang and Lapata (2014), which is a huge step toward instant answer generation.

On the other hand, very few companies have taken advantage of chatbots to implement
RS able to make the final purchase on their own website. Researching the most used
messenger applications that support chatbots (Facebook’s Messenger and Telegram), we
were only able to find a few relevant examples, all of them on Messenger.

One of the most relevant bot is probably Poncho, the weather bot. It has been on
the top rankings of chatbots since it was launched in early 2016 as one of the first bots of
the Messenger platform when it opened to chatbots developers. It o�ers a simple feature
but thanks to its use of NLP, it becomes a very user-friendly app.

The CNN also developed a similar bot updating users with daily news. But, in
contrast to Poncho, it o�ers several items at the same time. On 2016, they spent over six
months rolling out a variety of chatbots across several messaging apps, McEleny (2016).
They considered messaging apps to be an important new channel for them to be the
worldwide leader in mobile and video news and information.

When it comes to e-commerce businesses though only some of the largest retailers have
developed their own bots which enable users to make their purchases during conversation,
Quoc (2017). One of Messenger’s best ranked chatbots in this area is 1-800-Flowers.com,
which allows customers to purchase and send flowers and personalized gifts for di�erent
events. Also in the retail industry we want to highlight Burberry, H&M and Sephora (the
latter two have bots implemented in Kik, a new messaging app which has recently become
popular among 13 to 17 year olds).

Finally, the most relevant chatbot for this Thesis is the eBay ShopBot. The idea was
first developed as a simple tool to remind bidders 15 minutes before an auction listing was

42

Laia Esquerrà Schaefer Chapter 3. Chatbots

about to end so that they could make their last-minute bids. Now, the bot acts as a virtual
personal shopping assistant, to help people find items on eBay. Through conversation,
users can make their specifications and even set price limits to their search. The bot
doesn’t specifically act as a RS but it has the capacity to filter results based on user’s
constrains, a feature which will be very important during our own development.

Two bookstores also seemed to have bots implemented on Messenger, but after several
tries over the last months, we have determined that they are actually inactive. We could
see their first question though, which is aligned with the idea we had on the development
of Allyn, which is not only to be able to recommend a book for the users, but also to look
for a gift for someone else.

43

Part I

An Economic Analysis

44

Chapter 4

State of the Art Recommender
Systems

To date, many uses have been developed for RS but there are also many potential uses
that still haven’t been completely fulfilled. While the purpose of implementing a RS is
clear, there isn’t a full agreement on the evaluation of their economic impact. In this
chapter, we discuss both their current and potential applications as well as their impact
on revenues.

"When making a choice in the absence of decisive first-hand knowledge, choosing as

other like-minded, similarly-situated people have successfully chosen in the past is a

good strategy." - Hill et al. (1995)

Since the first papers on RS appeared, the concept has been clear and an entire
research area of growing interest started to form, the first papers of which date from the
mid-1990s as Adomavicius and Tuzhilin (2005) state. The same authors, point out that the
interest in this rich research area still remained high because of the abundance of practical
applications to help users to deal with information overload and provide personalized
recommendations.

That was 2005, and over 10 years later this interest has done nothing but keep growing.
Information overload is higher than ever, that is common knowledge, and little are those
who manage to take the most out of it; retrieving pertinent information from the copious
resources available is not only di�cult but also time consuming (S. Vairavasundaram et al.
2015). In 2005, only 51% of the population in the developed world, were active users of
the internet, according to the Internation Telecomunications Union (2005) but high-speed
Internet connections have revolutionized the world since then.

45

Allyn: A Recommender Assistant for Online Bookstores

Recommender Systems can be implemented in various ways, but it has been the
Internet which made a change and facilitated its use in several di�erent areas. As
Bobadilla et al. (2013), point out, the most common research papers are focused on
movie recommendation studies; however, a great volume of literature for RS is centered
on di�erent topics, such as music, television, books, documents, e-learning, e-commerce,
applications in markets and web search, among others.

Over the years, the accuracy of this systems hasn’t stood aground, nor have the
algorithms to evaluate these. The kinds of filtering most used at the beginning of the
RS were described in Breese, Heckerman, and Kadie (1998) who evaluated the predictive
accuracy of di�erent algorithms but the base for evaluating the CF RS wasn’t described
until years after.

Our application will be focusing on recommending books but this doesn’t live on
its own. Furthermore, our system, will lead to an e-commerce website which will allow
users to buy the recommended books right away, thus, a�ecting a company’s revenues.
Therefore, we will present an analysis of how di�erent RS have e�ectively boosted online
commerce.

4.1 Current applications in the Market

In Chapter 1.2, we defined four main types of recommendation techniques (collaborative
filtering, content-based filtering, kownledge-based and hybrid filtering). Here, we’re going
to analyse how and which companies actually implement them.

CF is probably the best known recommendation technique, to the point that, it has
been regarded as a synonym of the entire field in several occasions. As we have seen,
it is the utmost simple technique to deliver recommendations which mainly relies on a
person’s ratings, ignoring all additional information we might have. The broadly used and
well-known dataset to learn about recommender systems, MovieLens, is a plain and clear
example of this algorithm’s application.

The MovieLens datasets were first released in 1998 (Harper and Konstan 2015). The
datasets show people’s preferences for movies and as to store the expressed preferences,
{user, item, rating, timestamp} information is saved by rows. The website has used several
di�erent CF algorithms over the years. Starting by the rating cycles presented in Resnick
et al. (1994), the previously cited article also gives us a precise insight on some of these
architectures used over time. The 1997 and 1999 versions used user-user CF, while it turns
over to item-item CF in 2003 (see more in Harper and Konstan (2015)).

46

Laia Esquerrà Schaefer Chapter 4. State of the Art Recommender Systems

CB filtering algorithms on the other side, have become popular over the years as
websites started to retrieve information from their user’s accounts. Thus, these are mainly
implemented on websites that require us to login with a personal account but as we have
seen in Chapter 1.2.2, content doesn’t exlusively refer to the user, associated features can
also be the ones from the item itself. Shopping websites use user-based content filtering,
while news websites like the Washington Post use item-based content filtering.

User’s features generally refer to sociodemographic characteristics of these. There-
fore, we will briefly discuss user-based content filtering alongside the the demographic
recommendation techniques posteriorly.

Regarding item-based filtering, we have seen that algorithms need further machine
learning techniques such as text mining to identify an item’s content. For this task, the
Washington Post team developed Clavis. According to Gra� (2015), the original idea of
developing Clavis was for it to be a classifier that automativally added keyword to stories.
The final though, is a full recommender system that runs term-frequency, inverse document
frequency (tf-idf) algorithm through articles in order to determine its most relevant words.
In a nutshell, it figures out what stories are about and does the same process for each
reader to finally find it’s best matches.

On behalf of demographic recommendation techniques, we have already mentioned
that it’s main benefit is the unnecessay history of user ratings. Inuitively it is the most
common technique applied by retail sellers when a new customer enters the brick-and-
mortar store, i.e., to recommend a book to a client you would pay attention to his age
and genre, among others. To implement this online, we need a user profile since a simple
IP address won’t give us all the information we’re looking for. A plain demographic
recommender would sequentally classify each user in a di�erent group according to it’s
preferences and show him the choices of the group. Nevertheless, this sociodemographic
features are generally used jointly with another technique. Therfore, we move to hybrid
filtering techniques.

Hybrid filtering techniques refer to any combination of at least two algorithms from
above and are the most poopular in the market nowadays.

Amazon, uses personal information to segment users in di�erent cluster models with
internally similar profiles. This allows a new user to be assigned right away before having
purchased or rated any item. Then, an item-item CF is performed in order to identify
items with high rates, which the present customer hasn’t seen yet (Linden, Smith, and
York 2003). But Amazon’s business itself has changed a lot over the last years and new
assumptions have slowly been made in order to define related items for example (Linden
and Smith 2017), more on that in Section 5.1.

47

Allyn: A Recommender Assistant for Online Bookstores

YouTube is another great example of the evolution of Recommender Systems. Origi-
nally, the website focused on previous videos seen by the user to recommend further items.
Currently, the system is composed of two Deep Neural Networks with many di�erent
inputs comprised (Covington, Adams, and Sargin 2016). The first network focuses on
the candidate’s history in order to select a reasonable amount of videos from the full
YouTube corpus that will make it to the second network. The latter adds video features
and other external information jointly with the candidate’s reviews to output a handful of
recomendations. The following feature, extracted from the mentioned publication, shows
us the explained funnel.

Figure 4.1: Recommendation System Architecture Demonstrating the Funnel where Candidate
Videos are Retrieved and Ranked before Presenting only a few to the User. Source: Covington,

Paul et al. (2016)

4.2 E-commerce and Recommender Systems

Nowadays, people are more inclined towards online shopping than rather goin to brick-
and-mortar stores, and when they do, they stand in them, their smartphones in hand
ready to compare prices and product reviews according to Mackenzie, Meyer, and Noble
(2013). In the EU-28, enterprises realised 18 % of their total turnover from e-sales during
2016, consisting of orders via a website or apps or via EDI-type messages (Eurostat 2018).
This drastically changes the market. There is no limited window or shop space which
makes the retailer cut out on some products, even those that have a very low demand
can be displayed. But the website can become overwhelming and retailers need to get
to know their users preferences and interest. This is the main reason, for which RS are
widely accepted (Chandak, Girase, and Mukhopadhyay 2015).

48

Laia Esquerrà Schaefer Chapter 4. State of the Art Recommender Systems

In this section, we will present the main advantages of using RS in e-commerce
sites to help improve client retention. We have grouped them into four main groups:
personalization, customer satisfaction, discovery and revenue.

Personalization

When browsing the web, we have a door open to almost every product in the world but
we don’t want to look unguided through it all. As the previous articles cites, we want to
be taken care of by the system who should provide us with intelligent solutions and, at
the same time, online retailers want to be able to satisfy our interests for us to become
their long term customers. That hasn’t changed from the brick-and-mortar store. But,
the main di�erence is, we don’t have a single shop window where we have to display our
best matches for the majority of the users. The home screen provided to each individual
customer can be sorted in a di�erent way according to his/her preferences. Nevertheless,
evidence shows that users can only process about the first 20 titles. Then, a question
arises, is the relevant space of a website also limited?

In this process we can analogize the rows in a website to the aisles of a brick-and-
mortar store as Ba and Pavlou (2002) suggest. Online interconnected products, would
then resemble the products placed on neighboring shelves in the store. Therefore we will
need to make sure, interesting contents are on the top of the page and, in order to know
each person’s best match, we need Recommender Systems.

Customer satisfaction

When setting up recommendations, another question arises: when do we need to provide
the user with similar items to those he has previously liked? And when, need they be
di�erent? This brings us back to some basic economic concepts: some products are
substitutes and others are complementary. Substitute products have the same function for
the user such as having a PepsiCo drink or a Coke. It wouldn’t make sense to recommend
the second if the first is already in his cart, although it might get a potentially high rating
from the user. On the other hand, complementary products work best together, for many,
co�ee would have little impact on the utility function without milk. Recommending the
latter when the consumer added the co�ee in his/her cart would be suitable, although he
might not forget anyway but this is a topic we will address later.

Oestreicher-Singer, Gal and Sundararajan, Arun (2011) suggest that on average, the
explicit visibility of a purchase resulting from a recommendation (also called co-purchase),

49

Allyn: A Recommender Assistant for Online Bookstores

can increase up to three-fold the influence that complementary products have on each
others’ demand levels. A clear example of complementary suggestions would be, for
example, that if we are looking for cookware in Amazon.com and a frying pan catches our
attention, we are very likely to get a glass lid suggested as shown in Figure 4.2.

Figure 4.2: Outgoing Co-purchase Suggestion for a Cookware Product sold on Amazon.com.
Source: Amazon.com

But then, the utility derived from consuming certain goods is not in their form or
use, but in their content, such as in books or movies. In these cases, users will usually
reveal a preference for a certain type of content, for a genre. Therefore, recommendations
will generally focus on similar items and only show something new for the user to try from
time to time. In Figure 4.3 two Fantasy Books about life facts. As the two products do
not need to be consumed at the same time, they can both be purchased together.

Figure 4.3: Outgoing Co-purchase Suggestion for a Book sold on Amazon.com. Source: Ama-

zon.com

Not missing out on the recommended copurchases can significantly increase customers’
satisfaction.

50

Laia Esquerrà Schaefer Chapter 4. State of the Art Recommender Systems

Discovery

Some of the products previously shown as copurchases can be seen as newly discovered
products by the user an aparently, this would strangle variety while consumers strive for
it. On the contrary, Ba and Pavlou (2002) show that category diversity increases up to
1pp in copurchases.

But diversity isn’t randomly introduced, assortative mixing, is a technique which
introduces a bias in the recommendations in order to favor of connections between similar
nodes in a network. Hence, it allows us to learn about new products or item from users
with similar taste. Limit to it is that it won’t suggest a categorically diverse product,
therefore, we need network diversity, which captures full di�erences among its users.

Revenue

According to Sharma, Hofman, and Watts (2015), recommenders generate between 10 and
30% of site activity and revenue but this impact requires a deeper analysis we will provide
in the following section.

In conclusion, Recommender Systems are widely accepted in e-commerce retailers
for their various advantages. Among others, they help create faithful long-term customer
relationships at the same time that they can be accountable for revenue increases.

4.3 Causal Impact on Revenues

Recommender Systems have a higher impact on the world’s best known websites’ revenues
every day. Nevertheless, part of the accounted tra�c would have most certainly also
happened through other means in abscence of recommendations. As we saw before, Sharma,
Hofman, and Watts (2015) estimate that up to a third of all tra�c is generated through
recommendations in the present setting but 75% of this activity would still take place if
recommendations were absent.

To analyse this e�ect, we will detail three main points: user penetration, direct impact
on revenues and indirect impact on revenues as Dias et al. (2008) suggest, adding some
critical discussions over the estimated performances.

51

Allyn: A Recommender Assistant for Online Bookstores

User penetration

This is the most simple measure of a RS’s value. It doesn’t measure how good recom-
mendations are but only if the system is broadly used and accepted by the users. Thus,
penetration is understood as the proportion of shoppers having added at least one of the
recommended products to their online cart.

In most cases, this ratio is very likely to be overestimating the tra�c RS actually
generate. From (2015) we want to bring forward a very important point not to overestimate
the impact of RS.

The activity caused by RS might not be as straightforward as the first authors
presented, number of views coming from clicking on recommendations over the total
pageviews. This would be overstate and optimistic since it would attribute all these sales
or views to the Recommender System. However, let’s consider the recommendation from
Figure 4.2: if we were to buy a frying pan and did not have a lid for it, that would probably
be our next search after adding the pan to our cart, i.e., we would be looking for it even if
we weren’t suggested to. In the case where we are suggested to buy the according glass lid,
we are saving the time it would take us to find it if we buy it through the recommendation
link, but our purchase is not necessarily an output of the RS. Thus, clicking through the
recommender might just be convenient but not adding value.

Direct revenues

Under direct extra revenue, the authors define the total amount of money shoppers spent
on purchasing items recommended by RS.

In their study, in collaboration with the biggest e-grocer in Switzerland, they obtain
an increase in the total monthly turnover of 0.30%, which seems rather small but would
be in line with the actual 25% of the newly generated page activity (in its turn, 10-30% of
the total tra�c) that can be exclusively accounted to the RS.

Moreover, a direct revenue generated in a grocery shop is less relevant in itself than
in an electronics or apparel firm, for grocery products are generally cheaper to buy once
but are bought regularly, generating indirect revenues as we’ll see later.

Thus, for certain products, the direct e�ect of recommendations can be inflated by
up to 200% if we consider all revenues from the user penetration ratio. Instead, the actual
click-rate values are around 5% in durable goods while they can be below 1% in consumable

52

Laia Esquerrà Schaefer Chapter 4. State of the Art Recommender Systems

goods. Still, that has a considerable magnitude if we think of the total turnover these kind
of companies have.

Indirect revenues

Indirect revenues can be defined as the money spent on items or categories first introduced
to a user by the RS but not necessarily in the current session.

And why are they more relevant in grocery stores? As we mentioned, groceries are a
regular purchase and it is only when we have these repeated activity that we can account
for indirect revenue.

Let’s contrast for example smartphones and whole cereals. They are both in now but
while we can mainly profit from the use of a single smartphone at a time, we eat several
times a day. The first is a durable good, while the second is a consumable good and the
price of a smartphone is obvisouly much higher than a pack of cereal. These two products
are not comparable in any of this cases and neither are they from a recommender’s point
of view. If we bought a new device which was recommended to us by a RS, it would only
account to its direct turnover. Instead, if the RS notices that we have always been eating
wheat and suggests us to try oats, we might buy them and if we like them, add these to
our regular diet, purchasing them every week.

So, the second time we buy a product which was first introduced to us by the RS, can
still be accounted as its result since we would still not be buying that particular product
if we hadn’t noticed it the first time.

When the study put together all these sales, the extra revenue generation in a grocery
store ranged from 2% up to 26%, even higher than revenues from a single purchase in
durable goods.

Summarizing, RS have a considerable impact on a company’s turnover, although the
calculation isn’t always straigthforward. We might need to adjust convenience click-rates
and take into account both first and repeated sales to accurately estimate performance.

53

Chapter 5

Actual Use Cases

Now that we have seen overall use statistics and potential economic impact, we provide a
brief analysis on where big companies stand regarding the use of this kind of systems and
which are the main techniques out in the market.

RS are widely implemented on the websites of the companies we present and we
will see that these companies do not use a single recommendation technique. Details on
how four big e-commerce companies have implemented their own RS and the outcomes
they have achieved are provided. We break down the di�erent algorithms, detailing what
impact each one them has in the di�erent businesses and when they first introduced them.

5.1 Amazon.com

Amazon.com is well-known for personalization and recommendations, Linden and Smith
(2017), but even its system needed updates over the two decades Amazon.com has been
setting up personalized stores for its users. This said, Amazon.com was the pioneer
company implementing RS.

Just a few years after its foundation, Amazon.com started developing its own RS
algorithm, which has become the most popular and well-known recommendation technique
all over the world: item-to-item CF. In the first research paper on it, Linden, Smith,
and York (2003), presented the system whose patent had already been filed in 1998.

Back then, many applications only used explicit ratings to represent their customer’s
interests. Instead, Amazon.com introduced the usage of items viewed, demographic data,
click-through and conversion rates, among others. Although our system will not go that

54

Laia Esquerrà Schaefer Chapter 5. Actual Use Cases

far, it is important to introduce this groundbreaking system which set the foundations for
RS and, for our interest, was built on an online bookstore.

5.1.1 System Architecture

The algorithm mainly developed by software eningeers Greg Linden and Brent Smith,
takes from: Traditional CF, which just aggregates items from similar customers, eliminates
items the user has already purchased or rated, and recommends the remaining items to
the user; Cluster Models, that divide the customer base into many segments to which
customers are later assigned; and Search-Based Methods, which search for content-related
items.

Rather than matching the user to similar customers, item-based CF matches each of
the user’s purchased and rated items to similar items, then combines those similar items
into a recommendation list, Linden, Smith, and York (2003).

Amazon.com’s original model used cosine-based similarity to compute similar products
in an iterative search over customers with common product pairs. This computation
was an extemely time-consuming although it was done o�ine. However, it reduced from
O(N2M) to O(NM) as most pairs were unavaliable. Furthermore, the authors proposed a
further extension sampling only customers who purchased best-selling titles, which highly
reduced runtime with little impact on quality.

Notice, that this system was introduced in a time where Amazon.com primarily sold
books. Over the years, Amazon.com has expanded its business to almost every retail
sector, becoming the largest online retailer in the world, measured by revenue and market
capitalization. It now has a catalog with hundreds of millions of items, which has led to
the revision of assumptions from the original algorithm. Its authors highlight two main
changes:

• Definition of Related Items: given two related items X and Y, it was originally
assumed that X-buyers had the same P(Y) as the rest. Purchase histories have
determined it to be a non-uniform distribution though. To calculate P(Y) over
X-buyers aa binomial expansion is now used in order to make the algorithm robust
to non-random occurences, which previously biased recommendations to too obvious
or irrelevant items.

• The Importance of Time: the relationship among purchases heavily depends on
their proximity in time. In this sense, some purchases are sequential, going back to
our example from Figure 4.2, it wouldn’t make sense to recommend the glass lid

55

Allyn: A Recommender Assistant for Online Bookstores

before the frying pan. Furthermore, customer’s needs and tastes change over time,
which makes previous purchases become less relevant but at the same time, can give
an insight of their life-cycle and help recommendations in another way. All these
elements have been taken into account in further developments.

5.1.2 Outcomes

In the years following the implementation of this RS, recomendations became so extensively
used that a Microsoft Research report, which we have already analysed - Sharma, Hofman,
and Watts (2015) -, estimated that 30 percent of Amazon.com’s page views were from
recommendations. The report didn’t leave it there though and as we saw in Section 5.2,
only part of it wouldn’t have occurred in abscence of recommendations.

5.2 Netflix

Netflix’s RS became specially famous after the release of the Netflix Prize, an open
competition to find the best CF algorithm, which started on October 2, 2006 and lasted
almost three years.

The competition held by this company had the goal to predict user ratings for films
without any futher information about the users and the films, beside the past ratings.
The Grand Prize would be granted to the team which achieved a reduction in the Test
RMSE of at least 10%. Over the years where no team achieved the goal, progress prizes
were awarded. The Grand Prize was awarded on September 18, 2009 to a team that had
achieved a 10.06% improvement on Netflix’s own algorithm, setting their Test RMSE at
0.8567.

While the competition lasted, discussions rose around the evaluation metric and the
goal improvement. It was claimed that even a 1% improvement significantly changed
user’s recommendations, which is relevant for our Thesis in order to determine whether
we achieved a significant improvement regarding the baseline model or not.

5.2.1 System Architecture

The Netflix RS presents a very complex architecture built on six di�erent algorithms based
on Matrix Factorization. It uses matrix decomposition to derive P and Q which can be

56

Laia Esquerrà Schaefer Chapter 5. Actual Use Cases

used to make predictions.

Personalized Video Ranker: PVR

This engine, orders the entire catalog, or a subset for a particular genre, for each particular
user, which indirectly limits the videos that will be seen by a user since studies have shown
that attention is lost after the first 10 to 20 titles. It is widely used over the di�erent
sections, which limits actual personlizations.

Top-N Video Ranker

Another specific engine, which is a particular case of the previous one, is the Top N. Its
goal is to find the best recommendations for a user which will be displayed in the Top
Picks row. To do so, it is optimized and evaluated only over the head of the rankings,
instead of he entire catalog.

Trending Now

Gomez-Uribe and Hunt (2015) found that short-term trends also a�ect a user’s interest.
They identify two particular trends: periodic and one-o�. Repeated trends summarize
yearly events or celebrations such as Christmas or Valentine’s Day in North America,
determining recurrently seen movies. The latter on the other hand, are related to short-term
events or news such as natural disasters.

Continue Watching

This engine, which is mainly useful for TV series with several sequential episodes, helping
users remember where they left o�, is also used for some movies. This continue watching
ranker only presents videos that are estimate to still be interesting to the user though, in
contrast to other RS which present all unviewed titles that have been previously searched.
Therefore, it estimates whether a user will continue watching or stopped because he lost
interest using the time elapsed and the abandonment point among others.

Video-Video Similarity

Also called sims, this is the only non-personalized algorithm included which focuses on
content. This engine computes ranks from each videos content, comparing its features
with those of previously seen elements. As it ranks videos compared to a single element, it
allows users to have an idea of what they are similar to and form their own expectations.

57

Allyn: A Recommender Assistant for Online Bookstores

Page Generation: Row Selection and Ranking

The final engine, which allows Netflix to put together the entire home page estimated
which of the precomputed rows represent a user’s best choices. Therefore, it uses the
output of the other five algorithms in order to construct a single page ensuring a balance
between relevance and diversity. The number of displayed rows of each type is completely
free on the current implementation, which makes the system more flexible.

5.2.2 Outcomes

According to Gomez-Uribe and Hunt (2015), the RS is directly responsible for about 80%
of the hours streamed and also makes part of the results presented by the search engine
used in the 20% remaining. However, we need to take into account that the authors do
represent the company and as we presented in the previous chapter, causal impact is not
so straightforwardly computed.

Regarding diversity, Netflix estimated that the e�ective catalog size quadruples
though personalized recommendations, as it finds niches for generally unpopular videos
that wouldn’t have made it to the top ranks of a general classification.

Furthermore, improved engagement and take-rates are proven to be related with user
retention, which is very important for a company.

5.3 YouTube

Over the years, the world’s largest video-sharing website - YouTube -, has developed one
of the most sophsiticated RS there exist, Covington, Adams, and Sargin (2016). With
its recommendations, YouTube helps its users to find relevant content in an ever-growing
video corpus.

According to these authors, YouTube’s RS faces three main challenges: the scale
of their corpus, the freshness and the dynamism of this corpus, and the noise from
the historical behaviour which doesn’t necessarily indicate current preferences. In order
to overcome all these challenges and present interesing recommendations to the users,
YouTube combines several features including their search engine, a front page highlight,
and related videos.

This use case is extremely relevant for our Thesis since it is one of the few examples

58

Laia Esquerrà Schaefer Chapter 5. Actual Use Cases

of RS that use ANN. Furthermore, YouTube’s RS was built by Google Brain using
TensorFlow, before they open-sourced this technology which we will also be using.

Beside this example work on ANN for RS has been done in few papers, such as J. Liu,
Dolan, and Pedersen (2010), Huang et al. (2015) and Tang et al. (2015).

5.3.1 System Architecture

The main structure of the YouTube RS are two sequential ANN: one for candidate
generation and one for ranking.

This two-stage approach allows them to make recommendations from their millions of
videos and make sure that the small number of suggested videos are relevant and engaging
for the particular user.

Since there are a lot of avaliable features, ranking the entire corpus would be extremely
time-consuming and a previous filter is needed. The first stage in particular, candidate
generation, uses user-based CF to retrieve a small subset from the full corpus which will be
later ranked. That is, potentially relevant videos are filtered according to previous watches,
search queries and demographics during this stage. According to its engineers, this system
started mimicking the previous matrix factorization approach they had implemented,
thus the current setting can be described as a non-linear generalization of factorization
techniques.

On the other hand, the ranking stage scores all these preselected videos in order to
present only a few best recommendations, ranked by their score, to the user. Its main
role is to summarize all avaliable features in order to calibrate predictions, specially in
candidate videos which are not directly comparable either because of their source or their
authors. In this stage, some relevant relevant videos with not so appealing thumbnails
might come up.

Both stages are built as DNN with several fully connected layers with ReLU activation
functions on the hidden layers as represented in Figure 5.1. Their input and output layers
di�er though.

The candidate generation input, as we can see from Figure 5.1a is a numerical
vector composed out of three main elements: average video watches, average search tokens
and user demographic embeddings with several engineered features. Its output uses a
softmax activation function to compute the class probabilities for each video, returning
only the top N.

59

Allyn: A Recommender Assistant for Online Bookstores

The ranking input on the other hand is shown in Figure 5.1b. Again it is a numerical
vector with hundreds of video features, embedding categorical features and normalizing
numerical ones. Its output uses a weighted logistic activation function to return expected
watch time.

(a) Candidate Generation
(b) Ranking

Figure 5.1: Deep Neural Networks Structure for YouTube’s RS. Source: Covington, Paul et al.

(2016)

5.3.2 Outcomes

According to the authors, candidate generation improves the o�ine holdout precision
results and increased the watch time dramatically on recently uploaded videos in A/B
testing. On the other hand, ranking, performed much better on watch-time weighted
ranking evaluation metrics compared to predicting click-through rate directly.

In their study, Zhou, Khemmarat, and Gao (2010) estimate that almost 51% of the
views of a particular video come from suggested related videos, accounting for about 30%
of the overall page views. They also show that the click through rate diminishes as the
position in the ranked video list generated by the RS lowers. However, it decreases at a
lower rate than in other RS, which would indicate that any of the recommended videos is
actually potentially interesting to the user.

Furthermore, they found that the RS helps increase the diversity of video views
gaining engagement from their users.

60

Laia Esquerrà Schaefer Chapter 5. Actual Use Cases

5.4 LinkedIn

LinkedIn, the largest online professional social network, uses RS to promote engagement
among people, jobs, companies, groups, and other entities. Therefore, a navigation panel
is implemented for each entity type on the site, which that allows members to browse and
discover other content, L. Wu et al. (2014).

The original design was intended to showcase co-occurrence in profile views, that
is, provide users with similar profiles to those they were viewing. But over time this
infrastructure has grown to a full platform called Browsemap.

Browsemap is a horizontal platform with mostly shared components. It uses a pipeline
to construct co-ocurrence matrices which are later used to compute similarities. All
computations are done o�ine on Hadoop and then forwarded online via API. Thus, it
is easy to specify new needs by setting up the location of the input data and needed
parameter changes in the pipe. Its authors define three properties:

1. It supports all entity types and creating a new browsemap requires little e�ort.

2. The platform is flexible to deal with di�erent characteristics, such as the inclusion of
expiry dates.

3. It is a scalable system which easily permits the inclusion of new features and products.

5.4.1 System Architecture

The browsemaps use item-to-item CF to build a latent graph of co-occurrences of entities
using member browsing history. Its architecture presents two main elements: o�ine
batch computation and online query API.

O�ine Batch Computation

Browsing events are transported to Hadoop via a distributed publish-subscribe messaging
system for event collection, Zhuang (2013). The latent browsemap is then computed o�ine
using several techniques to dampen overly correlated individuals and weight newer views
more than older ones.

To put together the di�erent characteristics of each entity, a collection of modules
was developed to describe how to build a browsemap. Each module performs a particular
task, one of the most relevant ones being to remove expired o�ers. These modules are

61

Allyn: A Recommender Assistant for Online Bookstores

internally implemented as a set of Hadoop jobs, where each job produces an output that
is the input for the next job.

Online Query API

Latent browsemap graphs are loaded into an open source distributed storage system,
Voldemort, Sumbaly et al. (2012). This system provides low response time and high
throughput which allow responding to user requests in good time. Furthermore, this API
is built to be non-dependant on the entity type, which allows it to load any provided
browsemap.

Additionally to the Browsemap, LinkedIn has also implemented di�erent CB filtering
engines over time in the “Similar entity” panel.

5.4.2 Outcomes

Initially, some of LinkedIn entities were not compatible with the developed profile
browsemap and were better o� using CF, although they had computational di�cul-
ties with the incrmental data volume. Since the Browsemap platform was developed, all
entites and actions have been using it to produce recommendations.

Nevertheless, both CF and CB filtering can coexist on the same page without acting in
detriment of one another. Moreover, similarity rankers of these RS can be augmented with
additional browsemap elements such as co-occurrences of views, follows, likes, comments
and searches, as latent features.

One particular case that had a lot of impact on recommendations was the inclusion
of a picture in the member module which lifted click-through rate 50%. This performance
increase surpassed any algorithmic improvements by a sizable margin. Additionally, the
inclusion of a job browsemap at the end of an application process increased in 500% the
job application rate, according to an A/B test split. Both of these achievements have been
very important for LinkedIn.

62

Part II

Implementation

63

Chapter 6

The Dataset

The Book-Crossing (BX) dataset was mined during a 4-week scrape from August to
September 2004 by Cai-Nicolas Ziegler (2005) from the Book-Crossing community with
permission from Ron Hornbaker, CTO of Humankind Systems.

The original dataset is structured in three di�erent tables:

• users: has 3 variables about 278,858 users (anonymized but with demographic
information):

– UserID: numeric with a unique level for each individual.

– Location: character with generally three elements structured as "city, state,
country", although some have more and others less.

– Age: numeric.

• books: has 8 variables and 271,379 items:

– ISBN: character id with a unique level for each item (6-13 characters, although
the standard format are 10).

– BookTitle: character strings.

– BookAuthor: character strings.

– YearOfPublication: numeric.

– Publisher: character strings.

– ImageURLS: character strings. An Amazon link to the small thumbnail image.

64

Laia Esquerrà Schaefer Chapter 6. The Dataset

– ImageURLM: character strings. An Amazon link to the medium size frontpage
image.

– ImageURLL: character strings. An Amazon link to the large size frontpage
image.

• reviews: has 3 variables and 1,149,780 observations which represent either explicit
or implicit ratings:

– UserID: numeric id for the user providing the rating.

– ISBN: character id of the rated book.

– BookRating: numeric rating provided by a unique (UserID, ISBN) pair. Implicit
ratings, namely that the book has been read but not rated, are represented
with zeros.

This original dataset presents an extreme sparsity, only 1,149,780 out of 278,858 ·
271,379 = 75,676,205,182 potential ratings are available, which implies that 99.9986% of
the values are missing. Furthermore, out of these available reviews only 37.88% have a
specific value (explicit ratings) with the rest being zero, namely implicit ratings. Thus,
some condensation steps were necessary.

For our approach, only explicit ratings were kept. After that, we removed books with
less than 5 mentions and only members with at least 3 ratings were kept (opposed to the
minimum of 20 mentions and 5 ratings, respectively, that were selected for the original
work on this dataset).

Thus, the resulting dataset had more moderate dimensions, with 11,573 users,
10,500 books and 127,397 ratings. The latter is smaller than in the original work, due
to the elimination of implicit ratings which don’t have a specific value. This step reduced
missings to 99.90%, now having 127,397 out of the 11,573 · 10,500 = 121,516,500
possible. Sparsity still being extremely high will be the first problem to solve.

In this chapter we will talk about the preprocessing and exploitation of present
variables as well as about the use of further mining techniques to add additional book
taxonomy variables.

65

Allyn: A Recommender Assistant for Online Bookstores

6.1 Data Enrichment

In this first section the focus is set on two particular elements: the expoitation of user
locations and the addition of book taxonomy.

6.1.1 Geospatial data

Analysing user’s locations, we found out that not all of them had exactly “city, state,
country”. Nevertheless, the city was always in first position and country at the end; and
with a given city name, the rest of variables can eventually be recovered. MaxMind for
example o�ers structured databases with cities, coordinates and countries.

Figure 6.1: Relative Frequences of the Top 10
Cities

Figure 6.2: Relative Frequences of the Top 5
Countries

We decided to actually keep city and
country as two separate variables. These
were split from the original location using a
simple regular expression to find the position
of the first and last comma in a string. Those
users with no text behind the last variable
take missing values for country.

Further details can be consulted in Ap-
pendix Section B.1.

The top 10 most popular cities in the
dataset only represent 8.42% of the users, an
average of less than 1% of users from each
city as we can see in Figure 6.1. Thus, this
factor variable will not be of much use for
itself. Country on the other side, has two very
predominant levels. Figure 6.2 shows the top
5 most popular countries. The USA gather
76.8% of the data, followed by Canada with
almost 10%; both being North America, we
will be interested in checking if the behaviour
in these countries has the same distribution
as the rest of the dataset since one might
expect di�erences in tastes over cultures.

66

Laia Esquerrà Schaefer Chapter 6. The Dataset

Additionally, the user’s continents are added using countycode with origin =
"country.name" and destination = "continent".

6.1.2 Webscraping

In order to enrich data with external information, we mined Amazon.com’s highes level
of book taxonomy and some other content information, such as length, format and
recommended ages.

To do that, the DOM parsing approach to data scraping will be used. This relies
on the CSS selectors of the webpage to find the relevant fields which contain the desired
information. It also requires to previously know the link where the information is.

In R, the rvest package (2016) is an easy tool to harvest information from webpages.
It mainly requires the creation of the html link with read_html(). We can then access
the CSS path using html_nodes() and [[]]. html_text() is used at the final step to get
the text from the latest node, and then as.character() or as.numeric() can be used
to convert it into the desired format.

Let’s see an example to parse the genre of a particular book. First, we need to find the
specific link were to the desired website. We chose to work with Amazon.com in particular
because it has a very structured links which can be reconstructed using the following logic:

https://www.amazon.com/the-book-title/dp/ISBN/

We built these links as a new column in our dataset, link_string. Given
link_string, we then need to convert it into an html link:

booklink <- xml2::read_html(link_string)

Next, we need to find the CSS path to sequentially access these nodes. The CSS
of a website element can be found through (right-click) > inspect > Copy > Copy
selector in the browser which retrieves something like:

#wayfinding-breadcrumbs_feature_div > ul > li:nth-child(3) > span > a

To access it in R we will also need to define its position in the main page first. Moreover
a last to convert it into a new character string will also be required. This translates to:

booklink %>%

html_nodes(�div#a-page�) %>%

html_nodes(�div#dp�) %>%

67

Allyn: A Recommender Assistant for Online Bookstores

html_nodes(�div#wayfinding-breadcrumbs_container�)%>%

html_nodes(�div#wayfinding-breadcrumbs_feature_div�) %>%

html_nodes(�ul�) %>%

html_nodes(�li�) %>%

.[3] %>%

html_text()

Regarding selected variables, we were mainly interested in three:

• Genre: it was the most relevant book taxonomy we were missing in the original
dataset. We expected people in general to have a preference for some specific
genres.

• Number of Pages: when recommending a book we found that it might be
interesting to know how much time the user wants to invest in this reading. Being
able to filter out shorter or longer books could help to do so.

• Recommended Age: for children’s books it is very important to know for
which ages they are recommended. We consider this variable to be the equivalent
of genre in adult books but for kids.

Since many books on ont he BX dataset are rare, non-English books, or outdated
titles as Ziegler et al. (2005) mention in their work, not all the links we built up worked
and not all of them were found. We managed to add up with just two simple functions:

• 99.17% of the book’s Genres, thus, we will be using this variable.
• 58.76% of the book’s Number of Pages. As it wasn’t as much as we expected we

decided not to use it for now.
• 65.15% of the Recommended Ages for children’s books.

6.2 Data Preprocessing

Categorical and numerical variables require di�erent preprocessing measures. Techniques
considered in this project have been the following:

1. Categorical variables.

• Text cleansing

• Merging small factor levels

2. Numerical variables.

• Outlier detection

• Re-escalation

68

Laia Esquerrà Schaefer Chapter 6. The Dataset

Categorical Variables

In the filtered and completed dataset most variables are character strings or factors without
a standard notation. Over 10.56% of the book titles are repeated but either written slightly
di�erent or published by di�erent editorial companies. Nevertheless, the following title is
essentially the same for a user:

BookTitle
Wuthering Heights
Wuthering Heights (Penguin Classics)

Table 6.1: Example of a Repeated Book Title

In order to standardize all character strings, several text cleansing steps are applied:

1. All elements between brackets and parentheses are removed;

2. Final spaces are removed and extra whitespaces are stripped;

3. All punctuation signs are removed;

4. The entire strings are set to lower case;

5. Strings are converted to factors.

Regarding genres mined from Amazon.com, 37 di�erent levels were originally scraped
with some of them being redundant or having very few observations. Genres are merged
into 8 final levels as follows:

Grouped genre Original genres Number of books
literature and fiction literature and fiction 4,784
mistery and thriller mistery, thriller and suspense 1,896
kids and teens children’s books, kids and teens 769
sci-fi and fantasy sci-fi, science fiction and fantasy 550
reference business, computers, engineering, math,

medical, law, politics and education
477

romance romance and gay and lesbian romance 396
biographies and mem-
oirs

biographies and memoirs 377

other religion, history, arts, photograpy, en-
tertainment, comics, cookbooks, ...

1,251

Table 6.2: Final Merged Book Genres

To limit the extent of this Thesis, we decided to leave children’s books out of scope,
whose recommendation process is completely di�erent than the rest since children do not

69

Allyn: A Recommender Assistant for Online Bookstores

generally choose their books, nor rate them. These were kept in a separate “Kids & Teens”
subset for future work. After applying this last selection, our datasets contain: 11,480
users who gave 119,065 ratings to 9,731 di�erent books.

Numerical Variables

There are two main numerical explanatory variables in the dataset: YearOfPublication
for the books and Age for users; plus the response variable BookRating.

Figure 6.3: Years of Publication

After setting zero values to NA since
they have no meaning regarding the year
of publication, Figure 6.3 shows that most
books were published in the last decade (re-
garding the original mining date). Only a
few books date from the early 20th century.
None of them has extreme or dubitous val-
ues though. The oldest novel in particular,
is from a Nobel Prize-winning British au-
thor, William Golding, published in 1920
and generally well received.

Figure 6.4: User Ages

Ages present a more
delicate distribution with
unexpectedly low val-
ues and impossibly high
ones as shown in Fig-
ure 6.4. Age is aprox-
imately normally dis-
tributed between 0 and
75 years; and values be-
tween 75 and 100 are rare
but there is no clear ev-
idence to treat them as
errors. The world’s old-
est person is 116 years old

which makes higher values impossible and the average life expectancy at birth worldwide
is around 70.5 ages. Although keeping high ages, we’ll cut at 110 years since users could
have been registered some years before the scrape.

70

Laia Esquerrà Schaefer Chapter 6. The Dataset

On the other hand, there are children’s ages in adult books. Manually checking
some books read by users under 5 years old, Table 6.3, we observe that these must be all
mistaken.

BookTitle BookAuthor
Clara Callan Richard Bruce Wright
The Kitchen God’s Wife Amy Tan
The Testament John Grisham
Beloved (Plume Contemporary Fiction) Toni Morrison

Table 6.3: Sample of Books Read by Users Under 5 Years Old

Nevertheless, books for 5 year olds that were left out in the “Kids & Teens” subset,
seemed to be accurate for children who start to read, Table 6.4.

BookTitle BookAuthor
A Kiss for Little Bear Else Holmelund Minarik
101 Dalmatians Walt Disney
Lion King Disney Disney
Prince and the Pauper Walt Disney Disney

Table 6.4: Sample of Books for 5 Year Olds

Therefore, ages under 5 were also removed from the initial dataset but children’s ages
were kept for the “Kids & Teens” subset.

Figure 6.5: Book Ratings

Finally, book ratings also present a par-
ticularity. As seen in Figure 6.5, there are
values for all possible ratings but on average
these are generally high. The average book
rating is 7.74 and the median is 8 with 50%
of the values between 7 and 9. This values
aren’t rare though if we think that a user
starts to read a book with the expectation
that he/she will actually like it, not even
choosing undesired books. Notwithstanding,
we need to take into account that this can im-
pair learning in the ANN but normalization
is not appropriate in this case and neither is
rescaling although it was planned to use it,
since both books rated with 1 and 10 exist,
but are just rare, re-escalation has no actual e�ect. No further action is taken on behalf of
this during the preprocessing stage but it will need to be taken into account when building
up the ANN.

71

Allyn: A Recommender Assistant for Online Bookstores

6.3 Dimensionality reduction

Ideally, neither feature selection or extraction would be needed if the algorithm is able
to discard irrelevant variables by setting their coe�cients to zero. However, high data
dimensionality can reduce computational memory and simpler models are not only more
robut but also easier to interpret.

There are two main methods to reduce data dimensionality: feature selection and
feature extraction. Hierarchical clustering is used in this Thesis to analyse variable
importance to determine which variables to select as well as to determine potential latent
variables. Nevertheless, using the full dataset exceeds the RAM limit we have, leaving the
R session out-of-memory. Thus a subset will need to be used.

Around a tenth of the users dataset is used to analyse clusters. It contains 1200 users
who have done 15185 ratings on 6068 books, an average of 2.5 ratings per book. After
several runs with di�erent samples we found that this subset ensures a representative
behaviour while not being exessively costly. A hierarchical clustering is done over ratings
enriched with user profiles and relevant book information. In particular, seven variables
are considered:

• BookTitle

• BookAuthor

• Genre

• BookRating

• Users - Age

• Users - Country

• Users - Continent

Three clearly distinguished classes appear in Figure 6.6.

Figure 6.6: Hierarchical Clustering of Ratings with User Profile Information

72

Laia Esquerrà Schaefer Chapter 6. The Dataset

Profiling the resulting classes, Figure 6.7a shows that there are no significant di�erences
over clusters regarding book ratings and user ages, both with ANOVA p-values which are
almost 0.

(a) Conditional Book Ratings Distribution (b) Conditional Age Distribution

Figure 6.7: Cluster Conditional Distribution for Numerical Variables

While this result is interesting for book ratings, because it ensures that these are
equally distributed over all groups, it gives us a first indication that Age might not be
relevant to explain book ratings. Also continents present a similar distribution over the
di�erent clusters, Figure 6.7a, with Americas accounting for up to 93.11% of the users in
class 3, 91.47% in class 2 and 86.21% in class 1. In the rest of continents, the predominant
class is 1. With a 9.35% of the observations, Europe is the second most frequent in this
class.

Figure 6.8: Conditional Continent Distribution

On the other hand, clusters
present a very distinct distribu-
tion regarding book genres, Fig-
ure 6.9. Cluster 1 in particular is
96.65% Literature & Fiction while
Mistery & Thriller accounts for up
to 99.37% of cluster 3. These two
were also the most popular genres
in the dataset. Thus, two separate
ANN will be built to predict their
ratings, while the rest of books will
be considered in a general ANN
also used for users who don’t spec-
ify the desired genre.

73

Allyn: A Recommender Assistant for Online Bookstores

Figure 6.9: Conditional Genre Distribution

74

Chapter 7

Back-End Development

The system built in this thesis is based on Balabanovic and Shoham (1997), who propose
a hybrid recommendation engine that analyses content to define user profiles and identify
clusters of similar users. According to the authors, this approach has the advantage of
making good recommendations to users that do not share similarity with other users by
building their profiles. Additionally, a constrain element will be added to select the genere
specifically required by the user.

The final dataset on which we are working contains 11,480 users, 9,731 books and
119,065, with user profiles only having two relevant variables which can be directly used,
which limits the possibility of building user profiles.

In the development of this thesis, a UBCF model, implemented with recommenderlab
is used as a baseline model. The dataset is randomly split 90/10 into training and test
samples using the evaluationScheme function with method = "split" which separates
users either into one or the other. The same split will be used for the ANN.

The training dataset contains 10,330 users who have provided 97,694 ratings to
any of the 9,731 books; while the test set contains 1,148 users and their corresponding
9,756 ratings to the 9,731 books.

The baseline RS is built using the Recommender function with Pearson correlation as
the similarity measure. The following results are achieved:

RMSE MSE MAE
2.32 5.38 1.67

Table 7.1: Baseline Model Results

All these metrics have a scaling problem, which means that their magnitude depends

75

Allyn: A Recommender Assistant for Online Bookstores

on the units of the variables and there is no measure on how good or bad a particular value
is. There is generally no upper bound. Nevertheless, they allow us to compare models
with the same input and output variables among them.

MAE has an interpretability advantage over RMSE, since it indicates on average how
many points predictions di�er from real values. In this particular case, the range of values
is also known, ratings always go from 1 to 10, thus this model predicts on average a rating
that is either 1.67 points above or below the actual rating. Therefore we will define a
custom metric for the ANN based on the MAE, in order to make it comparable.

Three di�erent AE types are built in this Thesis: a Denoising Autoencoder,
an Autoencoder with external variables and Genre Specific Autoencoders. All
share the same hyperparameter specifications which are tuned on a traditional AE. Keras
and Tensorflow for R are used in order to develop the models.

7.1 Experimental Framework

To define the optimal structure of the built AE, we start by setting the specifications of
the ANN on which hyperparameters and then parameters are tuned.

When tuning hyperparameters, the focus is set on the validation sample, while the
test sample is used to choose the best model.

7.1.1 Model Specifications

Activation Function

Since we are interested in clearly di�erentiating good and bad ratings without loosing
diversity, the tanh activation function will be used in this thesis for the all the hidden
layers. This is the most common choice in literature for this type of regression problems.

For the output layer, a custom activation corresponding to the normalization and
rescalation of the ratings will be used. The following formula is implemented:

‡(zi) = zi ≠ min(z)
max(z) ≠ min(z) · 9 + 1 (7.1)

76

Laia Esquerrà Schaefer Chapter 7. Back-End Development

Cost Function and Accuracy Metric

The problem discussed in this thesis presents a continuous output, so both RMSE and MAE
implemented in Keras could be used for the cost function. Pointing to the interpretability
advantage described above, MAE loss is used as the cost function and to define the
accuracy metric.

Given x œ [1, 10], we can define the upper bound for MAE (max MAE = 9). The
custom accuracy metric is defined as:

Accuracy = 1 ≠ MAE(ŷ, y)
9 (7.2)

This metric defines the percentual accuracy of predictions scaled from 0 to 1. In order
to implement it, the cost function will be limited to the known input nodes, k = i1, ..., id

where ij ”= 0.

Furthermore, since an AE inputs and outputs the same values, in the testing framework
all true values would be known if used as an input of the AE. Therefore a fix proportion of
the ratings provided by each individual is masked and the accuracy will only be computed
on these.

Optimization algorithm

Figure 7.1: Training Accuracy per Iteration on 3 Layer
Autoencoders with 256-16-256 Hidden Units using Di�er-
ent Optimization Algorithms

To explore the e�ects of using dif-
ferent optimmization algorithms,
three of the most popular choices
have been tested over 50 iterations
on a 3 layer AE with 256-16-256
hidden units.

Adam was found to outper-
form all optimization algorithms
over the 10th iteration. RMSprop
performs slightly better than Adam
during these 10 first but then slows
down improving earlier. Gradient
Descent on the other hand, learns

77

Allyn: A Recommender Assistant for Online Bookstores

slowlier but is still improving on the 50th iteration which probably indicates that the
learning rate not optimal.

Hence, we conclude that Adam is the best optimizer choice for the problem.

7.1.2 Hyperparameter Tuning

Two steps of random search are implemented in order to tune the learning rate, –, and
the number of layers. At each step 50 training interations are performed. The four
initial sampled combinations are:

1. H1: Learning rate = 0.0005 with 5 hidden layers (128-64-16-128-256)

2. H2: Learning rate = 0.001 with 1 hidden layer (64)

3. H3: Learning rate = 0.001 with 3 hidden layers (128-16-256)

4. H4: Learning rate = 0.002 with 3 hidden layers (128-16-256)

Model H2 achieves the best validation accuracy as seen in Figure 7.2b. Thus, four
additional combinations are sampled around it. In this case, we consider two assymetric
AE with 2 hidden layers since actually known values in the input vector are much less
than the full output. This should allow the decoder to better learn how to reconstruct
ratings. The following combinations are considered:

5. H5: Learning rate = 0.0005 with 1 hidden layer (64)

6. H6: Learning rate = 0.0008 with 2 hidden layers (64-256)

7. H7: Learning rate = 0.0012 with 1 hidden layer (64)

8. H8: Learning rate = 0.0015 with 2 hidden layers (64-256)

By just one tenth of di�erence, H2 still achieves the best validation accuracy, with
all three 1 hidden layer models leading. As all these di�erences were rather low, a one-way
ANOVA was built to test if they actually are significant. Each model is considered a class.

Y
_]

_[

H0 : µ1 = µ2 = · · · = µ8

H1 : ÷µi ”= µj, for some i ”= j

With a p-value π 0.05, we have evidence to say that there is at least one pair of

78

Laia Esquerrà Schaefer Chapter 7. Back-End Development

(a) Training Accuracies Grid (b) Validation Accuracies Grid

Figure 7.2: Random Search for Initial Hyperparameter Tuning. Bigger points represent higher
accuracies at iteration = 50

models with significantly di�erent validation mean accuracies. To test among which models
the di�erences are, we evaluate all pairwise (µi ≠ µj) comparisons through a Tuckey HSD
test, which reveals that accuracy among pairs with a di�erent number of layers presents
significant di�erences, while there is no evidence to determine whether di�erences among
those models with the same number of layers but a di�erent learning rate are. More details
on the specific values in Appendix Section A.2.

This said, models with one hidden layer (H2, H5 and H7) present a significantly better
accuracy than those with more hidden layers, but it doesn’t reveal a better learning rate
among these three. Thus, we will keep the most common learning rate, 0.001 which means
that the architecture of H2 is chosen to develop further variations.

Figure 7.2 refers only to the final accuracy. Details on the evolution of the training
and validation accuracies over iterations are provided in Appendix Section A.3. As we can
see, validation accuracy remains almost constant. Thus, we will stop iterations at 20 from
now on.

Next, the number of hidden units are tuned for which four models are trained.

Model Number of
hidden units Test Accuracy 95% CI Total params

M1 32 0.8310 ±0.0073 632,547
M2 64 0.8348 ±0.0072 1,255,363
M3 128 0.8329 ±0.0072 2,500,995
M4 256 0.8340 ±0.0073 4,992,259

Table 7.2: 1 Hidden Layer Autoencoders Performance

As we can see, the number of parameters increases exponentially while accuracy

79

Allyn: A Recommender Assistant for Online Bookstores

doesn’t necessarily improve. According to the test accuracies achieved, m2 is the best
model, but again di�erences are very small and performing a one-way ANOVA in this
case, Pr(>F) = 0.9066. Thus, there is no evidence to say that any of these models is
significantly di�erent.

Figure 7.3: Train and Validation Accuracy His-
tory for M2

According to the parsimony princi-
ple, we should choose the simplest model
but we have to take one more thing into
account. As we can see in Figure 7.3, there
is a huge gap between train and validation
accuracies, while the latter are similar to
the observed test accuracy. This is a sign
of overfitting and to reduce it, we will in-
corporate dropout, which can highly reduce
the number of nodes in this hidden layer
depending on dropout rates. Thus, we will
keep a slightly larger model, m2, and the
largest one we evaluated, m4, to test the im-
pact of this dropout on the di�erent sizes.

Full history details avaliable in Appendix Section A.3.

7.1.3 Overfitting the Data

When training single layer encoders and decoders, training data can be quickly overfitted
even for a small layer size of 32. Dropout is a regularization techinique that randonmly
drops out units from an ANN, preventing the parameters to overfit patterns. The dropout
rate indicates, the percentage of individual nodes that will not be used to optimize weights
in each iteration. These nodes are reinserted to the ANN afterwards with their previous
weigths.

Using dropout, the number of trainable parameters at each iteration reduces signifi-
cantly, although over the full network these remain the same as all weigths are trained at
some point.

Three dropout rates are introduced on the two previously best fit models, achieving
the following results:

In both cases, test accuracy slightly improves as dropout rates increase, with dropout
= 0.65 achieving the best test results in both cases. Train accuracy is slightly reduced,

80

Laia Esquerrà Schaefer Chapter 7. Back-End Development

Model Dropout rate Train Accuracy Test Accuracy
m2 0 0.9507 0.8348
m5 0.4 0.9399 0.8349
m6 0.5 0.9351 0.8355
m7 0.65 0.9245 0.8376

Table 7.3: Performance Improvement Adding Dropout to the 1 Layer Autoencoder with
64 Hidden Units

Model Dropout rate Train Accuracy Test Accuracy
m4 0 0.9488 0.8340
m8 0.4 0.9472 0.8350
m9 0.5 0.9438 0.8322
m10 0.65 0.9381 0.8377

Table 7.4: Performance Improvement Adding Dropout to the 1 Layer Autoencoder with
256 Hidden Units

which slims down the overfitting gap. Furthermore, dropout improves the accuracy on
the 256 hidden units AE slightly more than for the 64 hidden units one where di�erences,
although still not statistically significant, have a much lower Pr(>F).

Since computational cost of the best fitted model is not higher than the cost of the
simplest model, m10 is used as the baseline AE.

7.2 Model Variations

Three main variations are developed over the m10 model in order to try to improve accuracy
further. Avaliable data and the clustering results are used to define these.

7.2.1 Denoising Autoencoder

The reconstruction criterion alone has been unable to fully extract useful features. Even
after applying dropout, parameters overfit the training dataset and accuracy on the masked
inputs is not presumably high. Here we present the application of a new strategy focused
on not only masking but corrupting the input. In doing so, the AE is forced to denoise
information recovering only relevant data. According to Vincent and Larochelle (2010)
this approach has two underlying ideas:

• A higher level representation should be rather stable and robust under corruptions
of the input.

81

Allyn: A Recommender Assistant for Online Bookstores

• Second, it is expected that performing the denoising task well requires extracting
features that capture useful structure in the input distribution.

The input is corrupted using a gaussian or white noise Á ≥ N(0, 0.0001). This is
provided as the first layer of the AE. Keras has a predefined layer in order to do so:

model <- keras_model_sequential()
model %>%

layer_gaussian_noise(stddev = 0.0001, input_shape = c(n))

Test accuracy is slightly improved up to 83.92%.

7.2.2 Autoencoder with External Variables

Next, we tried to add user’s information to the defined Denoising AE although the previous
clustering did not reveal a strong relationship. An external matrix is created with the
following variables:

Age + Age2 + America

The latter is a binary variable indicating whether the user is from America or not.
When adding this external matrix, two input layers are built and then concatenated as
follows.

model <- keras_model(
inputs = c(input, aux_input),
outputs = output)

This increases the number of parameters up to 5,168,221. This increase, added to the
memory increase of loading the full external matrix generated an out-of-memory problem
in our R session. Therefore, we had to change the approach when training the model.
Instead of loading the entire dataset - with both the rating matrix and the external matrix
- into the session, a sampling generator is created. This generator only loads to the
memory a random sample of the training set with the corresponding mini batch size. The
following code presents an example sampling generator:

sampling_generator <- function(sample_name, batch_size) {

filename = paste0("data/fit_", sample_name, "_input.csv")
aux_file = paste0("data/fit_aux_", sample_name, ".csv")

82

Laia Esquerrà Schaefer Chapter 7. Back-End Development

data = fread(filename)
aux_data = fread(aux_file)

function() {
rows <- sample(1:nrow(in_data), batch_size, replace = TRUE)
list(list(as.matrix(data[rows,]), as.matrix(aux_data[rows])),

as.matrix(data[rows,]))
}

}

Working with a sampling generator allows us to train bigger models but is much
more time consuming and computationally costly. Testing the generator on the traditional
model it increases computation time up to 150%.

Figure 7.4: Training Accuracy per Iteration and Mini Batch on
1 Layer Autoencoder with 256 Hidden Units, Gaussian Noise and
External Variables

In this case, as ran-
dom samples are taken at
each step, the accuracy
doesn’t improve linearly
as shown in Figure 7.4.
The model is very sensi-
tive to the selected ran-
dom sample and over 20
iterations no stable re-
sults have been achieved.
But there hasn’t been an
accuracy peak up to the
previously best training

accuracies either.

The model achieves a test accuracy of 75,08%, far from the previous models at a
much higher cost. Thinking on the final implementation which takes place in a dynamic
environment, we cannot have such a time consuming model, which would lose user’s
attention.

7.2.3 Genre Specific Autoencoders

From the hierarchical clustering performed in Section 6.3 we highlighted a di�erentiated
behaviour in two specific genres: Literature & Fiction and Mistery & Thriller. Here two

83

Allyn: A Recommender Assistant for Online Bookstores

constrained models are built to see if we can improve accuracy on these subsets.

Both models were built using the optimal AE structure defined in Section 7.1 with
Gaussian noise but only the subset for each genre is considered in these two specific AE.
This reduced both the number of input and output nodes and thus, the number of trainable
parameters. Nevertheless the expected accuracy increase was not achieved. This might
be due to the simulatenous reduction of the training sample, since not all the users have
rated book in these categories: 73.29% have rated at least one Literature & Fiction book
but only 34.77% have rated a Mistery & Thriller book.

We considered retuning the number of hidden units in the layer but experiments
determined that 256 was still the optimal size. Using this setting, the following results are
achieved:

Denoising AE Lit. & Fict. AE Mist. & Thrill. AE
Train Accuracy 0.9396 0.9226 0.8969
Validation Accuracy 0.8409 0.8304 0.8420
Test Accuracy 0.8392 0.8356 0.8329
Test 95% CI ±0.0071 ±0.0077 ±0.0095

Table 7.5: Performance Comparison for Genre Specific AE

We can observe that the CI is wider the more specific the model is and less books it
comprises. Again, as di�erences are not statistically significant, we conclude that using
the general Denoising AE to predict ratings for all genres and filtering a posteriori will
ensure the best performance for the chatbot.

7.2.4 Results

We started by tuning two hyperparameters, namely the number of hidden layers and the
learning rate. While the first showed significant di�erences in the validation accuracy, the
second didn’t and we opted for its default value in R, 0.001.

Next, the number of hidden nodes were also tuned. As for the learning rate, no
significant di�erences were found and we opted for larger but not computationally more
costly models on which dropout was applied to reduce overfitting.

Four models have been trained on the full dataset having more or less success predicting
ratings. The Denoising AE has achieved the overall best performances.

Furthermore, we did not fins statistically significant improvements in the accuracy of
genre-specific models and decided not to implement them separately to guarantee a better

84

Laia Esquerrà Schaefer Chapter 7. Back-End Development

Baseline
Model

Baseline AE Denoising AE AE with
External Vars

Train Acc. - 0.9381 0.9396 0.8582
Validation Acc. - 0.8409 0.8409 -
Test Acc. 0.8143 0.8377 0.8392 0.7508

Table 7.6: Performance Comparison for General Models

performance in the chatbot.

Last, we analysed the errors of the best fitted model as (ŷ ≠ y). These errors are
randomly distributed with its 95% CI being (-0.1929, 0.0161). This interval includes
the 0, which means that we do accurately predict some values but we can observe a
slight assymetry around 0. This tendence for negative values means that we are generally
underrating books. Nevertheless, we consider that a more appropriate error measure
should be implemented, as predicted values itselves are not as much relevant as the final
order.

7.3 Filtering and Recommendation Phase

7.3.1 Collaborative Filtering

CF has been the common link element through all the models. Similarity over the past
rating history of users is calculated on the baseline model using Pearson correlation, a
memory-based technique. On the other hand, AE apply model-based CF which guarantees
higher diversity.

Some of the advantages and disadvantages mentioned in Section 1.2.1 have been
proven. Regarding e�ciency for example, the baseline UBCF model is trained in just 0.05
seconds while the Denoising AE takes up to 5.25 minutes. Nevertheless, training is an
o�ine computation in the final application and focus should be set on the prediction time.
Here, the baseline UBCF su�ers from a much higher cost taking up to 20.99 minutes to
predict the entire test set, which the Denoising AE does in just 0.01 seconds.

7.3.2 Knowledge-Based Filtering

Constrained-based recommendations are applied if the user specifies a particular genre. In
this sense, only books meeting user’s requests are recommended, no matter if books out of

85

Allyn: A Recommender Assistant for Online Bookstores

this subset have higher predicted ratings.

For our analysis, each book is mapped exclusively to one general book taxonomy.
Thus, when the user specifies a genre through the front end application, the genre variable
is simply used to filter ISBNs in scope.

7.3.3 Content-Based Filtering

User’s age and location have not only proven not to be relevant in the present setting
but to increase computational cost, slowing down learning and decreasing accuracy if the
algorithm is stopped beforehand. CB filtering is not applied in the final model.

7.3.4 Hybridization

Cascade hybridization is applied to obtain personalized recommendations for each user,
although further hybridization techniques which could improve recommendations even
more are discussed in Future Work. The cascade method is applied sequentially as follows:

1. First, the full ratings are predicted using the model-based CF technique, namely the
Denoising AE;

2. Then, elements are filtered according to user constraints.

Selected elements are then are sorted according to predicted ratings and only top
items are presented to the user.

7.4 Setting Up Accessible Files and Models

Our RS presents a particularity over all discussed implementations in chapter 5. It works
in a dynamic environment where recommendations are specifically asked for, being the
main element of the interface. In this first version of the chatbot in particular, users would
be newly logged in each time they start the Bot. Thus, we are always on the cold-start
edge which is overcome asking for specific ratings and using a pre-trained model.

In order to have this model avaliable we need to set it up in an accessible format
for the chatbot. This specifically applies to: all data files, the predictive modeling
engine and the recommender engine. In this section we detail how all the datasets

86

Laia Esquerrà Schaefer Chapter 7. Back-End Development

and files needed to run the chatbot are structured.

Figure 7.5: Diagram of the Data Structure

7.4.1 Data Structure

There are several tables that must be accessed or updated while the Bot is running.

To do so, we decided to manage our DB through the R package RSQlite. This package
embeds the SQLite database engine in R, providing a DBI-compliant interface. SQLite is
a public-domain, singleuser, very light-weight database engine that implements a decent
subset of the SQL 92 standard, including the core table creation, updating, insertion, and
selection operations, plus transaction management, Mueller et al. (2018).

There are three main elements that needed to be stored: top picks both for all genres
as for each specific genre, book informations and the model input order.

87

Allyn: A Recommender Assistant for Online Bookstores

7.4.1.1 Top Picks

A subset of the Top 20 books for each genre and a global subset are generated using a
weigthed average among popularity and average rating. Popularity is defined as the
number of users who have given an explicit rating to the book scaled from 1 to 10 in order
to match the rating scale.

BookV alue = 0.6 · Popularity + 0.4 · AvgRating

We decided to give a slightly lower weigth to average ratings because of their litle
variablity, described in Section 6.2.

The generated tables are stored in the SQLite database using the convention
genre_top (with genre = �all� for the global Top 20).

7.4.1.2 Book Informations

Only a small subset with the necessary variables of the complete books table was uploaded
to SQLite. We decided to reduce its dimension because the table has to be accessed every
time a user gets to the end of the personalization phase and runtime is a very precious
element when working in a real-time environment. On the other hand, no books were
removed since all of them can be potentially recommended to a user over time.

7.4.1.3 Model Input Order

In order to ensure that the model can be executed accurately, a small two column table was
developed; one column indicating the order and the other the corresponding ISBN. By only
storing these two we minimized not only storage memory used but also computation time
when accessing it. The reason the order wasn’t included in the previous book information
table is that both actions are accessed at di�erent time points, thus, loading unnecessary
variables before computing predictions.

In R, each numeric id used 48 bytes of memory and the ISBN string 104 bytes.

88

Laia Esquerrà Schaefer Chapter 7. Back-End Development

7.4.2 Predictive Modeling Engine

There are two main ways to store a pretrained Keras model:

1. Storing the entire object using the keras_save() function and then reload it
through keras_load().

2. Storing the model weights and the model structure as two separate ob-
jects. The first is stored using keras_save_weights() and then reloaded with
keras_load_weights(). The latter can be saved as a .json, .txt or .R plain script.

Although the first option seems slightly simpler it has the disadvantage that the full
object takes a lot of memory. Thus, loading it can also be time consuming, which would
strongly work against our application. To reload a model in the second format we just
have to make sure that the model structure is read into the environment before loading
the weigths on top of it.

For this Thesis, the latter option is used for its higher e�ciency. This implies that we
have two files currently stored in a local environment that need to be moved to the cloud
server for the bot to be able to run uninterruptedly:

• model.R, the plain text file with the model architecture; and

• model_weigths.h5, a hierarchically formatted data file which contains the multi-
dimensional array with the weigths.

Having both files in the environment, a new prediction can be retrieved instantaneouly
by passing a new vector into the model %>% predict() pipe. We use the model input
order table to make sure that provided ratings are introduced into the correct input node.

7.4.3 Recommender Engine

Given the predicted output vector, which comes in the same input order, some quick
sequential step are taken to retrieve final recommendations:

1. Add corresponding ISBN and join Book Informations through it;
2. Filter out items for which an explicit rating has been provided;
3. If required, filter specified genre;
4. Sort list by predicted rating;
5. Return top rows with all the required information to the Bot.

89

Chapter 8

Front-End Implementation

The front-end solution developed for this Thesis is a chatbot called Allyn. Although
chatbots were not our first option we opted for this approach as soon as we found out
about them because they o�er a novel real time solution which could change the traditional
vision of RS, implemented on static websites and, at the same time, give chatbots a new
purpose which hasn’t been explored much.

There are may things to be taken into account when building a chatbot but above
all, the tool must ensure a friendly and useful interactions with its users. In this sense,
the tool must be adapted to the target users, meeting all requirements at the lowest cost
possible.

Miller (1968) analyses the response time in this type of interactions to determine that
up to 0.1 seconds are the limit for a user to feel it as an instantaneous reply but up to
1 second will still keep the conversation flow uninterrupted. We will need to take this
into account if we want users to be comfortable using the tool and feel like they have the
Bot’s attention. Nevertheless, up to 10-15 seconds might be acceptable when computing
complex replies such as the recommendations, but the user needs to get a notification of
the underlying process taking place.

Furthermore, a chatbot doesn’t interact with a single user at a time, thus, it’s
implementation should be scalable to an increase in target users. Nevertheless, our chatbot
is a Proof of Concept which still doesn’t have defined target users. Therefore, we will focus
on programming it as e�ciently as possible but we will not be able to test all its limits.

Without having further specifications on the target groups, we decided to set the
Bot’s inteface language to english, which would allow us to potentially make the tool
avaliable for more bookstores.

90

Laia Esquerrà Schaefer Chapter 8. Front-End Implementation

8.1 Chatbot Creation

The first decisions to make when building a chatbot are two:

1. Choosing the programming language

There are many di�erent programming languages that allow us to create chatbots
such as Python, Clojure, PHP, Java or Ruby, Miteva (2017). Some of these are faster
than others but we had to take into account that e�ciency also depends on the quality
of the code. After testing Python for a while, we decided to develop the chatbot in R
where the tools for building a chatbot, although scarcer, were also avaliable. R had
been the programming language used to train the models, thus this would also avoid
e�ciency losses from the translation of commands from one language to the other.

2. Selecting the App channel

On the other hand, we had little knowledge of the potential front-end applications
where a chatbot could be integrated. But one thing was clear, it had to be a commonly
used channel, supported by mobile and/or computer devices, which would remove
initial barriers to actually implement the tool in a bookstore. Our first contact with
chatbots had been over Telegram but no current enterprise use cases had been found
(see Section 3.2). We decided to look futher to see whether Telegram was actually a
valuable option or platforms such as Messenger should be used. Afther reading both
about avaliable platforms, Brisson (2016), and about Telegram specifically, we found
some key facts about the latter that led us to the decision to use Telegram as the
front-end channel. These are:

• Telegram is well known for its focus on privacy which is specially relevant when
we think that potential applications include private company’s informations.
In particular, it allows users to define secret chats which stored on the device,
not in the cloud and can be set to destruct after a certain time.

• Although it is not the most popular platform, it is one of the most common
messaging apps both worldwide and in Spain with over 62M active monthly
users.

• Telegram has a specific feature which allows users to make secure payments
over the App which would be a key feature in a final client application.

• Telegram Messenger is not only accessible on multiple devices (included
mobile, computer and tablet which were on our scope) but also on multiple

91

Allyn: A Recommender Assistant for Online Bookstores

platforms such as Andoid, Microsoft Windows and macOS, which ensures
potential client compatibility.

• Telegram has an o�cial API to create chatbots.

• Two di�erent R packages to communicate with telegram and build chatbots
are already avaliable: telegram and telegram.bot. The latter was created at
the beggining of this year by a student of our same university from whom we
had had the first references about chatbots. This facilitated a lot, what would
be our first development.

8.1.1 Setting up the Chatbot

Figure 8.1: Bot Initialization Page

The o�cial way to create a chatbot couldn’t be
another than a chatbot itself, namely the BotFather.
To create a Bot, the developer just needs to talk to
BotFather and follow a few simple steps, Telegram
(2015). To start, two parameters have to be provided:

• Name. This is the name which is displayed
during the conversation. Our Bot is called
Allyn, a diminutive for Alan and more specif-
ically in honor of Alan Turing, considered the
father of modern computation who laid the
foundations for AI. We found the name conve-
nient for a chatbot, specifically concerning the
Turing Test.

• Username. This username is the id name
through which bots, as users, are found over
Telegram. In the case of bots it must end with
“bot”. We set it to booksRS_bot.

Once a bot is created, the developer recieved
an authorization token, required to authorize the bot and to make the HTTPS requests to
Telegram’s Bot API. It is used to control the bot, thus, it must be kept private but it should
be something along the lines of 110201543:AAHdqTcvCH1vGWJxfSeofSAs0K5PALDsaw.

92

Laia Esquerrà Schaefer Chapter 8. Front-End Implementation

8.2 Bot API Requests

The telegram.bot package is built using Long Polling (LP). LP is a variation of the
traditional Polling, a techique which retrieves updates by sending an HTTPS GET request
to the Bot API, specifying the Bot in scope, through the getUpdates method.

In LP, no notification is sent while there aren’t any updates, the connection is simple
kept open instead. The connection can’t remain open forever though. In this sense, it
stays until the URL status changes or a specific time passes. This time lapse is specified
through the timeout argument. Thus a chatbot created using this package will be active
through a main loop over the following steps:

1. Calling ‘getUpdates‘. HTTPS requests to Telegram using LP are done through
this method. As the Bot is still on a Beta Phase and no one has access to it, the
‘timeout‘ argument is set to 10 seconds in order to minimize requests but keeping
‘start‘ replies under an acceptable time for human attention.

2. Receive Answer. When a user presses a reply button, the status of the URL
changes and thus the actual GET request is done, retrieving the message update
information.

3. Process Answer. The selected option is retrieved using update$callback_query-
$data. This option is then processed and the corresponding branches of the Dialog
Tree are activated.

4. Send Response. The generated answer is sent to the user through another HTTPS
request sent to Telegram, specifying the user id to whom the response is addressed.

5. Back to 1

Further information about the package in its CRAN Reference Manual Documentation,
Benedito (2018).

8.3 Answer formats

A rule based classifier is used to process all answers. In this sense we have implemented a
fully guided dialog that follows the structure provided in Figure 8.2.

93

Allyn: A Recommender Assistant for Online Bookstores

Figure 8.2: Bot’s Guided Dialog Answer Tree

One can observe that there are mainly two types of end nodes but messages will
depend on who the bookholder is and provided results vary according to specified genres.
The structure is implemented so that these two nodes are only defined once. Using a
variable answer code of the type genre_bookholder, the di�erent messages from the
response_key.json and SQLite tables are accessed.

On the other hand, both binary selections and required actions are predefined using
ReplyKeyboardMarkup objects with the reply options as shown in Figure 8.3a. When a
user is asked to rate books, an initial set of the 8 most popular titles for the selected
taxonomy is presented and when a specific selection is made, more detailed information is
provided. As shown in Figure 8.3b. This list is updated each time a user provides a rating.

8.4 Retrieving Recommendations

Users are allowed to rate as many books as they like up to a total of 20. At each step,
the new rating and its corresponding ISBN are appended to a list which is set to a sorted
vector at the final step.

In the current setting, the model is loaded into the environment the whole time but
should be moved to an external server from which the bot would also run. This allows us

94

Laia Esquerrà Schaefer Chapter 8. Front-End Implementation

(a) Binary Reply Keyboard Markup Example (b) Detailed zoom-in to a Selected Book to be Rated

Figure 8.3: Bot Reply Keyboard Markup Examples

to directly pass the column vector into the model and return the top picks in less than
0.25 seconds.

Top Picks are formatted in parse_mode = �Markdown� which allows us to include
hyperlinks. We present: the book title, the author and a link to the specific books in
an online bookstore of our choice for this Proof of Concept.

95

Conclusions

96

Chapter 9

Conclusions and Future Work

During this project many things have been learned but among all, we take away a
global overview on Recommender Systems and more specifically on Autoencoders for
Recommender Systems. In this chapter we expose the overall outcomes that have been
achieved and propose some future work in which we have already started to work.

As many obstacles have been faced during the development of this Thesis, we present
many key take-aways that can help people willing to develop similar projects by highlighting
the most relevant contributions.

The final outcome of this project has covered all the initial goals that had been set:

• A detailed chapter on Recommender Systems has been developed. Part
I, presents a full economic impact analysis to cover their penetration in e-
commerce platforms.

• Throughout the Recommender System chapter, details on the most common
dataset structures are provided and a thorough introduction to ANN, including
an analysis on the common ground shared between ML and Statistics, points out
how these ML techniques can overcome challenges of traditional Statistics.

• There were large amounts of information available on Artificial Neural Net-
works. To get a better insight on their algorithms and be able to develop
one of our own, we had to summarize relevant information from many di�erent
documents, which was a slow process.

• A Denoising AE able to retrieve rating predictions has been developed.

• Chatbots on the other hand, were much less documented and there were barely

97

Allyn: A Recommender Assistant for Online Bookstores

use cases of Recommender Assistants.

• A Chatbot for Telegram, Allyn, has been set up. It is able to retrieve basic
recommendations, although communication is still limited.

9.1 Conclusions

The key take-aways from this project can be split into two main parts, namely the back-end
and the front-end.

On the Back-End Development, we highlight:

• Predicting ratings using Machine Learning techniques is very sensitive to data and
might be unstable. Our dataset wasn’t centered, presenting a higher prevalence
of high ratings. This has led to some problems during the optimization of the
Artificial Neural Network. Quality data is key on developing any system.

• Besides quality data, we have faced some problems due to the enormous amount
of missing data (99.90% of the ratings). It was our main problem to solve and we
have provided a solution with 83.92% of accuracy but we consider that it could
improve much further with just a little bit more information or using another
hybridization technique such as Feature Augmentation. One of the key elements
that could improve these recommendations alone is a temporal reference on when
each rating was provided.

• Model-based Collaborative Filtering has proven to be much more time e�cient
than Memory-based Collaborative Filtering. Nonetheless, it has a relevant
drawback when it comes to incorporating new items as the entire model has
to be retrained. We present a further alternative whose potential is still to be
determined in Section 9.3 to develop a slightly more complex algorithm able to
deal with it more e�ciently.

• Creating a rich Recommender System does not only require quality data but
also high computation ability available. The number of parameters in Artificial
Neural Networks grows exponentially when new nodes are introduced. This led
to the need of creating both a sample and a predict generator in order for our
computer to be able to process all information without running out-of-memory.

98

Laia Esquerrà Schaefer Chapter 9. Conclusions and Future Work

On the other hand, regarding the Front-End:

• We have been able to implement this system into an actual text messaging
application which gives us the opportunity to reach out to a lot of users. A
Telegram Bot has been implemented with a friendly user interface and fast replies.
The solution is scalable to di�erent e-commerce businesses with enough data
availability to retrain the model.

• Implementing a chatbot is not as straightforward as one may think. Many di�erent
things were taken into account when developing this front-end application. Data
storage has to be minimized and set up in an accessible format and functions
have to be connected to the server.

Thus, many things took a higher e�ort than was initially expected, such as the
sampling generators needed to overcome out-of-memory problems which were hard to
identify and collapsed progress for some weeks. These have introduced an over-cost along
the entire project.

Furthermore, a lot of autonomous learning has been done during the development
of the project, which has provided a deeper knowledge about several fields and it is not
always easy to identify relevant information on its own.

Looking back, an entire Bachelor’s Thesis could be done just on Artificial Neural
Netwoks or other algorithms for Recommender Systems, and another one for the imple-
mentation of a Chatbot to provide users with an even better experience. We have not
been able to develop all these aspects at a full level of detail, but a great e�ort was put to
achieve a complete end-to-end solution, for which we are very satisfied. We also hope that
this work opens up the doors for this innovative solution for Recommender Systems.

9.2 Contributions

With this project, two main contributions are provided.

• Regarding Statistics, we have laid the foundations for an innovative approach
on rating predictions and further work is already being tested. More details in
Section 9.3.

• Regarding Economics, an end-to-end solution is provided ready to be implemented
in actual online bookstores or even in any other e-commerce business. This solution
mainly requires booklinks to be updated to the corresponding bookstore and models

99

Allyn: A Recommender Assistant for Online Bookstores

need to be updated using more updated data. Further work on scaling the solution
is also being developed.

9.3 Future Work

Taking into account the di�erent contributions made and problems faced, we consider
that the present project opens the doors to three main developments: ANN for Feature
Augmentation, Improving the Chatbot Experience and Scaling the Solution.
As work on these items is already being developed by the author of this Thesis, we here
present some further details.

9.3.1 Artificial Neural Networks for Feature Augmententation

In this project, the di�erent filtering techniques have been implemented sequentially, which
is called Cascade Hybridization. Nevertheless, we have found ourselves stuck around 83%
of accuracy. Then, a question arose: what would happen if these features were actually
fed as an input of the original UBCF model?

This approach, called Feature Augmentation has been tested on a smaller set. In
particular, the original dataset was first split in two (corresponding to 5740 users each), one
for the ANN and another one for the UBCF. In each one of these sets a 90/10 train/test
split was done. Thus, we have 5166 in each train set and 574 in tests.

Figure 9.1: Training and Validation Accuracy per itera-
tion on 1 layer Denoising AE on 5166 users

Training the Denoising AE
with this smaller set, didn’t a�ect
its accuracy, which had been con-
stant over most epochs. We achieve
a test accuracy of 83.99%. Addi-
tionally, when feeding the UBCF
algorithm with these condensed vec-
tors instead of the original sparse
vectors, accuracy increases up to
90.91%.

This unusual technique can be
assimilated to a mathematical op-
eration done in several engineering
fields called Linear Prediction,

100

Laia Esquerrà Schaefer Chapter 9. Conclusions and Future Work

where previous samples are used to estimate discrete-time signals from them as a linear
function. In order to validate this technique though, original and new correlations among
user vectors need to be checked.

Correlations among all vectors on a sample of 20 of the users with the highest number
of ratings (orig_corr) have been tested against their new correlation (new_corr). On
35.23% of the permutations, new correlation was in orig_corr ±0.1. We consider this
value to be low although we had a small sample. Thus, further comprobations need to be
done.

Besides, the accuracy of the ANN itself could be improved with a temporal reference,
building RNN which take into account common trends of the present period.

9.3.2 Improving the Chatbot Experience

The current version of Allyn works with a fully guided dialog. The chatbot experience
can be improved through NLP enabling users to give free replies. This hasn’t been
implemented during the development of this Thesis because it requires to additionally
train a full model to process text and identify intents which requires an extra dataset
of common user messages classified to their meaning. The bot, although not processing
these type of replies, is enabled to store them into a user-logs database. By gathering this
information, we expect to be able to develop this model in the future.

We also intend to add some small new functionalities in the guided dialog itself such
as “Go back” buttons, nonetheless, these need to be added from scratch, thus updating
the telegram.bot package will be required. Moreover, speech-to-text algorithms could
be potentially added a posteriori too. Using R, a Google API to do this is available,
googleLanguageR.

9.3.3 Scaling the Solution

By using ANN as dense refeeding for traditional UBCF, we would be improving scalability,
since this latter memory-based algorithm is able to adapt to newcoming items, although
no rating reference exists while no user gives it an explicit evaluation.

Retraining frequence of the rating predictions using the ANN, which was more time
expensive can be reduced, focusing on intermediate sucessive retraining of the UBCF
replacing predictions with new actual ratings, which was faster.

101

Appendices

102

Appendix A

Auxiliary Data

A.1 ANOVA Test Values for Clusters

A.1.1 BookRating

Detailed Analysis for: BookRating
--

[1] "Summary by Class:"

Cluster 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 7.00 8.00 7.63 9.00 10.00

Cluster 2

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 7.000 8.000 7.952 10.000 10.000

Cluster 3

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 7.000 8.000 7.529 9.000 10.000

103

Allyn: A Recommender Assistant for Online Bookstores

[2] "p-value ANOVA: 1.46525531631466e-27"
[3] "p-value Kruskal-Wallis: 7.03901640049976e-36"

A.1.2 Age

Detailed Analysis for: Age
--

[1] "Summary by Class:"

Cluster 1

Min. 1st Qu. Median Mean 3rd Qu. Max. NA�s
13.00 28.00 35.00 37.03 44.00 99.00 3129

Cluster 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA�s
13.00 27.00 32.00 34.58 41.00 97.00 1707

Cluster 3

Min. 1st Qu. Median Mean 3rd Qu. Max. NA�s
14.00 31.00 37.00 41.11 50.00 99.00 1415

[2] "p-value ANOVA: 8.54732967361984e-57"
[3] "p-value Kruskal-Wallis: 1.11708515218191e-51"

A.1.3 Country

Detailed Analysis for: Country
--

[1] "Relative Weight in Cluster:"

104

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

P australia austria belgium bermuda canada
1 0.0139161755 0.0016371971 0.0070399476 0.0006548788 0.0874263261
2 0.0042529062 0.0011341083 0.0019846895 0.0005670542 0.0819393252
3 0.0008726003 0.0004363002 0.0143979058 0.0000000000 0.0785340314

P cayman islands chile china cyprus czech republic
1 0.0003274394 0.0016371971 0.0004911591 0.0001637197 0.0009823183
2 0.0002835271 0.0000000000 0.0053870145 0.0000000000 0.0002835271
3 0.0004363002 0.0000000000 0.0013089005 0.0026178010 0.0021815009

P egypt finland france germany greece
1 0.0014734774 0.0008185986 0.0026195154 0.0085134250 0.0004911591
2 0.0005670542 0.0005670542 0.0019846895 0.0096399206 0.0000000000
3 0.0004363002 0.0000000000 0.0000000000 0.0056719023 0.0000000000

P hong kong ireland italy japan kuwait
1 0.0003274394 0.0018009168 0.0011460380 0.0006548788 0.0004911591
2 0.0002835271 0.0028352708 0.0045364332 0.0002835271 0.0000000000
3 0.0000000000 0.0004363002 0.0004363002 0.0008726003 0.0000000000

P malaysia malta mexico netherlands new zealand
1 0.0019646365 0.0004911591 0.0004911591 0.0029469548 0.0153896529
2 0.0014176354 0.0000000000 0.0002835271 0.0017011625 0.0053870145
3 0.0030541012 0.0000000000 0.0008726003 0.0021815009 0.0026178010

P philippines poland portugal romania singapore
1 0.0075311067 0.0006548788 0.0096594630 0.0044204322 0.0018009168
2 0.0045364332 0.0014176354 0.0014176354 0.0002835271 0.0014176354
3 0.0008726003 0.0008726003 0.0017452007 0.0000000000 0.0008726003

P south korea spain switzerland united kingdom usa
1 0.0001637197 0.0207924034 0.0013097577 0.0281597904 0.7691552063
2 0.0002835271 0.0014176354 0.0031187978 0.0292032889 0.8296002268
3 0.0004363002 0.0030541012 0.0008726003 0.0226876091 0.8486038394

[2] "Test Values:"

P australia austria belgium bermuda canada
1 6.518122e+00 3.580549e+00 8.347023e+00 -1.752654e+00 3.446962e+01

105

Allyn: A Recommender Assistant for Online Bookstores

2 2.301935e+00 -1.656513e+02 -9.482815e-02 -1.385665e+00 1.877697e+01
3 -3.520774e+00 1.516862e-01 8.849428e+00 -1.394162e+00 1.502456e+01

P cayman islands chile china cyprus czech republic
1 4.638679e-01 4.060218e+00 5.862482e-01 -1.047678e+01 2.119010e-01
2 -6.033199e+00 -6.149878e-01 7.557036e+00 -2.915335e+01 -1.209336e+01
3 -4.584537e+00 -3.703180e+00 -1.209746e+00 -6.044155e+00 -2.790913e-01

P egypt finland france germany greece
1 -1.260070e-01 -4.352490e+00 -1.513039e+01 9.878732e+00 -2.450325e+00
2 7.042951e-01 -7.845357e+01 1.172755e+00 -5.807383e+01 -9.353994e+00
3 -1.884748e+01 -1.764520e+03 -8.449184e+00 3.133025e+00 -1.971394e+00

P hong kong ireland italy japan kuwait
1 -4.788686e+00 -3.324232e-01 2.233431e+00 3.140403e-01 1.690791e+00
2 -3.224648e+00 -9.013466e+00 4.250907e+00 9.349344e-02 -2.244959e+00
3 -1.971394e+00 2.293685e-01 -1.873201e+00 -2.506450e+00 -7.885577e+00

P malaysia malta mexico netherlands new zealand
1 -1.165572e+00 -3.041913e+00 -5.079807e+00 -1.273407e+01 1.675930e+01
2 -1.351718e+01 -2.544286e+01 1.009802e-01 6.372782e-01 -5.604238e+01
3 -2.747950e+00 -7.885577e+00 -2.561125e+01 -5.167054e+00 1.223245e+00

P philippines poland portugal romania singapore
1 1.025025e+01 -1.294693e+00 1.148902e+01 9.638504e+00 3.499223e+00
2 2.363875e+00 9.593649e-01 -6.469196e+00 -2.282633e+00 2.125807e+00
3 2.083033e-01 5.013279e-01 1.056707e+00 -2.214747e+00 -1.563768e+00

P south korea spain switzerland united kingdom usa
1 -6.195790e-01 1.914211e+01 1.034140e+00 1.826108e+01 2.155935e+02
2 -9.796897e-01 -5.644070e+00 -4.359297e+00 1.254677e+01 1.425373e+02
3 -6.420056e+00 -1.147401e+00 -1.874053e+00 3.599017e+00 6.193203e+00

[3] "P-values:"

P australia austria belgium bermuda canada
1 3.559658e-11 1.714364e-04 3.500241e-17 9.601693e-01 1.144602e-260
2 1.066941e-02 1.000000e+00 5.377743e-01 9.170753e-01 5.827315e-79
3 9.997849e-01 4.397172e-01 4.398432e-19 9.183656e-01 2.534981e-51

106

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

P cayman islands chile china cyprus czech republic
1 3.213712e-01 2.451346e-05 2.788544e-01 1.000000e+00 4.160921e-01
2 1.000000e+00 7.307186e-01 2.061782e-14 1.000000e+00 1.000000e+00
3 9.999977e-01 9.998935e-01 8.868119e-01 1.000000e+00 6.099126e-01

P egypt finland france germany greece
1 5.501368e-01 9.999933e-01 1.000000e+00 2.574011e-23 9.928636e-01
2 2.406245e-01 1.000000e+00 1.204471e-01 1.000000e+00 1.000000e+00
3 1.000000e+00 1.000000e+00 1.000000e+00 8.650732e-04 9.756606e-01

P hong kong ireland italy japan kuwait
1 9.999992e-01 6.302151e-01 1.276028e-02 3.767452e-01 4.543837e-02
2 9.993694e-01 1.000000e+00 1.064533e-05 4.627558e-01 9.876146e-01
3 9.756606e-01 4.092913e-01 9.694797e-01 9.939025e-01 1.000000e+00

P malaysia malta mexico netherlands new zealand
1 8.781063e-01 9.988246e-01 9.999998e-01 1.000000e+00 2.421556e-63
2 1.000000e+00 1.000000e+00 4.597831e-01 2.619718e-01 1.000000e+00
3 9.970015e-01 1.000000e+00 1.000000e+00 9.999999e-01 1.106185e-01

P philippines poland portugal romania singapore
1 5.901810e-25 9.022869e-01 7.490021e-31 2.749183e-22 2.333078e-04
2 9.042451e-03 1.686875e-01 1.000000e+00 9.887740e-01 1.675968e-02
3 4.174961e-01 3.080702e-01 1.453227e-01 9.866113e-01 9.410640e-01

P south korea spain switzerland united kingdom usa
1 7.322325e-01 5.631118e-82 1.505353e-01 8.445954e-75 0.000000e+00
2 8.363803e-01 1.000000e+00 9.999935e-01 2.070244e-36 0.000000e+00
3 1.000000e+00 8.743920e-01 9.695385e-01 1.597109e-04 2.947678e-10

A.1.4 Continent

Detailed Analysis for: Continent
--

107

Allyn: A Recommender Assistant for Online Bookstores

[1] "Relative Weight in Cluster:"

P Africa Americas Asia Europe Oceania
1 0.0014734774 0.8621480026 0.0135887361 0.0934839555 0.0293058284
2 0.0005670542 0.9146583499 0.0136092997 0.0615253757 0.0096399206
3 0.0004363002 0.9310645724 0.0100349040 0.0549738220 0.0034904014

[2] "Test Values:"

P Africa Americas Asia Europe Oceania
1 1.6494271 281.9377162 -869.5242931 31.5278499 13.6020797
2 -1987.3957334 203.4261948 0.4371695 16.1000629 -35.1551120
3 -20.9604880 158.9150269 -31.4220979 -167.3904016 -5.9401365

[3] "P-values:"

P Africa Americas Asia Europe Oceania
1 4.953009e-02 0.000000e+00 1.000000e+00 1.804127e-218 1.946032e-42
2 1.000000e+00 0.000000e+00 3.309942e-01 1.274227e-58 1.000000e+00
3 1.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

A.1.5 Genre

Detailed Analysis for: Genre
--

[1] "Relative Weight in Cluster:"

P bio & memoirs kids & teens lit & fict mist & thril
1 0.0006499415 0.0037696607 0.9664630183 0.0127388535
2 0.1013680197 0.2209015474 0.0044853106 0.0004485311
3 0.0003297066 0.0000000000 0.0023079459 0.9937355753

P other reference romance sci-fi & fantasy
1 0.0048095671 0.0012998830 0.0029897309 0.0072793449

108

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

2 0.3449203857 0.1211033864 0.0753532182 0.1314196008
3 0.0029673591 0.0003297066 0.0003297066 0.0000000000

[2] "Test Values:"

P bio & memoirs kids & teens lit & fict mist & thril
1 -21.546222 -100.692742 235.477584 -16.712294
2 16.069514 37.107095 -6.006420 -96.612867
3 -176.763910 -8.948538 -3.429984 120.253033

P other reference romance sci-fi & fantasy
1 -40.648851 -27.363512 -400.878431 -17.999956
2 80.223869 38.639315 -67.744221 42.529628
3 -4.177202 -21.875134 -42.077646 -12.934815

[3] "P-values:"

P bio & memoirs kids & teens lit & fict mist & thril
1 1.000000e+00 1.000000e+00 0.000000e+00 1.000000e+00
2 2.086721e-58 1.079376e-301 1.000000e+00 1.000000e+00
3 1.000000e+00 1.000000e+00 9.996982e-01 0.000000e+00

P other reference romance sci-fi & fantasy
1 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
2 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00
3 9.999852e-01 1.000000e+00 1.000000e+00 1.000000e+00

A.2 ANOVA and Tukey’s HSD Test Values for Mod-
els

A.2.1 Hyperparameter Tuning - Number of Hidden Layers and
Learning Rate

Tuning Number of Hidden Layers and Learning Rate
--

109

Allyn: A Recommender Assistant for Online Bookstores

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
model 7 0.003077 0.0004396 98.95 <2e-16 ***
Residuals 392 0.001742 0.0000044

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tuckey HSD

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = lm(accuracy ~ model, data = anova_table))

$model
diff lwr upr p adj

h2-h1 0.0070780640 5.793348e-03 0.0083627797 0.0000000
h3-h1 0.0014191798 1.344642e-04 0.0027038955 0.0188063
h4-h1 0.0012265140 -5.820164e-05 0.0025112297 0.0734641
h5-h1 0.0072250818 5.940366e-03 0.0085097975 0.0000000
h6-h1 0.0047711821 3.486466e-03 0.0060558977 0.0000000
h7-h1 0.0072664961 5.981780e-03 0.0085512118 0.0000000
h8-h1 0.0036676241 2.382908e-03 0.0049523397 0.0000000
h3-h2 -0.0056588842 -6.943600e-03 -0.0043741686 0.0000000
h4-h2 -0.0058515500 -7.136266e-03 -0.0045668344 0.0000000
h5-h2 0.0001470178 -1.137698e-03 0.0014317334 0.9999698
h6-h2 -0.0023068820 -3.591598e-03 -0.0010221663 0.0000022
h7-h2 0.0001884321 -1.096284e-03 0.0014731477 0.9998381
h8-h2 -0.0034104400 -4.695156e-03 -0.0021257243 0.0000000
h4-h3 -0.0001926658 -1.477381e-03 0.0010920498 0.9998121
h5-h3 0.0058059020 4.521186e-03 0.0070906177 0.0000000
h6-h3 0.0033520023 2.067287e-03 0.0046367179 0.0000000
h7-h3 0.0058473163 4.562601e-03 0.0071320320 0.0000000
h8-h3 0.0022484442 9.637286e-04 0.0035331599 0.0000045

110

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

h5-h4 0.0059985678 4.713852e-03 0.0072832835 0.0000000
h6-h4 0.0035446681 2.259952e-03 0.0048293837 0.0000000
h7-h4 0.0060399821 4.755266e-03 0.0073246978 0.0000000
h8-h4 0.0024411100 1.156394e-03 0.0037258257 0.0000004
h6-h5 -0.0024538998 -3.738615e-03 -0.0011691841 0.0000003
h7-h5 0.0000414143 -1.243301e-03 0.0013261300 1.0000000
h8-h5 -0.0035574578 -4.842173e-03 -0.0022727421 0.0000000
h7-h6 0.0024953141 1.210598e-03 0.0037800297 0.0000002
h8-h6 -0.0011035580 -2.388274e-03 0.0001811576 0.1526592
h8-h7 -0.0035988721 -4.883588e-03 -0.0023141564 0.0000000

A.2.2 Hyperparameter Tuning - Layer Sizes

Tuning Layer Sizes
--

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
model 3 0.01 0.002986 0.185 0.907
Residuals 4724 76.22 0.016136

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tuckey HSD

Tukey multiple comparisons of means
95% family-wise confidence level

$model
diff lwr upr p adj

m2-m1 0.0035866880 -0.009841661 0.01701504 0.9023134
m3-m1 0.0018590631 -0.011569286 0.01528741 0.9845675
m4-m1 0.0030498336 -0.010378515 0.01647818 0.9370274
m3-m2 -0.0017276249 -0.015155974 0.01170072 0.9875351

111

Allyn: A Recommender Assistant for Online Bookstores

m4-m2 -0.0005368544 -0.013965203 0.01289149 0.9996119
m4-m3 0.0011907705 -0.012237578 0.01461912 0.9958302

A.2.3 Dropout on M2

Dropout on M2
--

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
model 3 0.01 0.002289 0.143 0.934
Residuals 4724 75.60 0.016003

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tuckey HSD

Tukey multiple comparisons of means
95% family-wise confidence level

$model
diff lwr upr p adj

m5-m2 0.0003840442 -0.01298899 0.01375708 0.9998559
m6-m2 0.0007898598 -0.01258318 0.01416290 0.9987545
m7-m2 0.0030989649 -0.01027407 0.01647200 0.9334518
m6-m5 0.0004058157 -0.01296722 0.01377885 0.9998300
m7-m5 0.0027149207 -0.01065812 0.01608796 0.9538836
m7-m6 0.0023091050 -0.01106393 0.01568214 0.9708289

A.2.4 Dropout on M4

Dropout on M4
--

112

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
model 3 0.02 0.006425 0.406 0.749
Residuals 4724 74.79 0.015833

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tuckey HSD

Tukey multiple comparisons of means
95% family-wise confidence level

$model
diff lwr upr p adj

m4-m10 -0.0037612162 -0.01706303 0.009540595 0.8864519
m8-m10 -0.0029290734 -0.01623088 0.010372738 0.9421783
m9-m10 -0.0055966300 -0.01889844 0.007705181 0.7010153
m8-m4 0.0008321428 -0.01246967 0.014133954 0.9985216
m9-m4 -0.0018354138 -0.01513723 0.011466398 0.9847163
m9-m8 -0.0026675566 -0.01596937 0.010634255 0.9554412

A.2.5 Denoising AE and Genre-Specific AE

Denoising AE and Genre-Specific AE
--

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
model 2 0.01 0.004315 0.269 0.764
Residuals 2908 46.70 0.016060

113

Allyn: A Recommender Assistant for Online Bookstores

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tuckey HSD

Tukey multiple comparisons of means
95% family-wise confidence level

$model
diff lwr upr p adj

m10-lit 0.0007823712 -0.01181954 0.013384283 0.9883840
mist-lit -0.0035761237 -0.01821004 0.011057797 0.8345193
mist-m10 -0.0043584948 -0.01866792 0.009950934 0.7550893

A.3 ANN Training Figures

A.3.1 Hyperparameter Tuning - Number of Hidden Layers and
Learning Rate

Figure A.1: H1 Training and Validation History Figure A.2: H2 Training and Validation History

114

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

Figure A.3: H3 Training and Validation History

Figure A.4: H5 Training and Validation History

Figure A.5: H7 Training and Validation History

Figure A.6: H4 Training and Validation History

Figure A.7: H6 Training and Validation History

Figure A.8: H8 Training and Validation History

115

Allyn: A Recommender Assistant for Online Bookstores

A.3.2 Hyperparameter Tuning - Layer Sizes

Figure A.9: M1 Training and Validation History

Figure A.10: M3 Training and Validation His-
tory

Figure A.11: M2 Training and Validation His-
tory

Figure A.12: M4 Training and Validation His-
tory

116

Laia Esquerrà Schaefer Appendix A. Auxiliary Data

A.3.3 Dropout

Figure A.13: M5 Training and Validation His-
tory

Figure A.14: M7 Training and Validation His-
tory

Figure A.15: M9 Training and Validation His-
tory

Figure A.16: M6 Training and Validation His-
tory

Figure A.17: M8 Training and Validation His-
tory

Figure A.18: M10 Training and Validation His-
tory

117

Allyn: A Recommender Assistant for Online Bookstores

A.3.4 Model Variations

Figure A.19: Gaussian Noise Training and Vali-
dation History

Figure A.20: Lit & Fict. Training and Valida-
tion History

Figure A.21: External Variables Training His-
tory

Figure A.22: Mist & Thrill. Training and Vali-
dation History

118

Appendix B

R Code

B.1 Preprocessing

#STEP 00: clean up environment and load packages ----------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "countycode"))

load("data/final_filtered_data.RData")

#STEP 01: identify repeated books -------------------------------------

table(table(books$BookTitle)>1)/length(unique(books$BookTitle))
rep_books <- names(table(books$BookTitle)[table(books$BookTitle)>1])

#STEP 02: set all character values tolower ----------------------------

BOOK TITLES

#remove elements between brackets and parentheses
books$BookTitle <- gsub("\\[([^]]*)\\]","",books$BookTitle)
books$BookTitle <- gsub("\\(.*?\\)","",books$BookTitle)
#remove final spaces

119

Allyn: A Recommender Assistant for Online Bookstores

books$BookTitle <- gsub("\\s+$", "",books$BookTitle)
#remove punctuation signs and lower case
books$BookTitle <- tolower(gsub("[^[:alnum:][:space:]]", "",

books$BookTitle))
#remove double spaces and turn into factors
books$BookTitle <- gsub("\\s\\s", " ", books$BookTitle)

BOOK AUTHORS

books$BookAuthor <- gsub("not applicable na ", NA,
tolower(gsub("[[:punct:]]", "",

gsub("\\s+$", "", books$BookAuthor))))

sort(table(books$BookAuthor), decreasing = T)
sort(table(books$Publisher), decreasing = T)[1:50]

PUBLISHER

books$Publisher <- gsub("amp", "", tolower(gsub("[[:punct:]]", "",
books$Publisher)))

length(unique(books$Publisher))

#STEP 03: split users location to city/county/country -----------------

commas <- lengths(gregexpr(",", gsub(", ", ",", users$Location,
fixed = TRUE)))

users[, new_loc := strsplit(gsub(", ", ",", Location, fixed = TRUE), ",")]
users[, city := unlist(lapply(users$new_loc, function(x) x[[1]]))]
users[, country := unlist(lapply(users$new_loc, last))]

users[city == "n/a", city := NA]
users[country == "n/a", country := NA]

endcomma <- which(regexpr("\\,$", gsub(", ", ",", users$Location,
fixed = TRUE))!=-1)

users[endcomma, country := NA]

120

Laia Esquerrà Schaefer Appendix B. R Code

rm(endcomma)

users <- users[, -c("Location", "new_loc"), with=F]

#STEP 04: add continents --

users[, continent := countrycode(country, "country.name", "continent")]

manual correction of error values
users[country %in% c("phillipines"), �:=� (contintent = "Asia")]
users[country %in% c("united state", "america", "van wert"),

�:=� (country = "usa", contintent = "Asia")]
users[country %in% c("antarctica"), �:=� (contintent = "Antarctica")]
users[country %in% c("catalonia", "euskal herria"),

�:=� (country = "spain", contintent = "Europe")]
users[country %in% c("england"),

�:=� (country = "great britain", contintent = "Europe")]
users[country %in% c("far away...", "n/a universe"),

�:=� (city = NA, country = NA, contintent = NA)]

#STEP 05: remove probable Age typos -----------------------------------

users[[which(colnames(users)=="Age")]] <-
as.numeric(users[[which(colnames(users)=="Age")]])

the world�s oldest person is 116 years old
table(users$Age)
although improbable high ages are there, we�ll cut at 110
users[Age > 110, Age := NA]

manually checking books read by users under 5 years old,
we observe that these must be all mistaken
ids <- users[Age < 5, UserID]
isbns <- reviews[UserID %in% ids, ISBN] %>% unique()
books[ISBN %in% isbns, .(BookTitle, BookAuthor)]

but, 5yo (age at which most kids start learning to read)

121

Allyn: A Recommender Assistant for Online Bookstores

books are accurate
ids <- users[Age == 5, UserID]
isbns <- reviews[UserID %in% ids, ISBN] %>% unique()
books[ISBN %in% isbns, .(BookTitle, BookAuthor)]

removing ages below 5
users[Age < 5, Age := NA]

rm(list=c("ids", "isbns"))

#STEP 06: create booklink variable ------------------------------------

clean up necessary variables
books[, nchar_ISBN := nchar(ISBN), by="ISBN"]
books[, full_ISBN := paste0(paste(rep(0, 10-nchar_ISBN), collapse=""),

ISBN), by="ISBN"]
books[, clean_title := gsub("\\s", "-",

gsub("((?:\b|)?([.,:;!?]+)(?: |\b)?)",
"", BookTitle)), by="BookTitle"]

merge booklink
books[, booklink := paste("https://www.amazon.com", clean_title, "dp",

paste0(full_ISBN, "/"), sep="/")]

save.image("data/post_preprocessing.RData")

#STEP 00: clean up environment and load packages -----------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "countrycode"))

load("data/clean_postwebscraping_datasets.RData")

#STEP 01: set all character values tolower -----------------------------

122

Laia Esquerrà Schaefer Appendix B. R Code

books[, genere := tolower(genere)]
books[, other := tolower(other)]
books[, pages := tolower(pages)]
books[, ages := tolower(ages)]

#STEP 02: merge redundant levels ---------------------------------------

table(books[,genere])

books[grep("business", genere), genere := "business"]
books[grep("suspense", genere), genere := "mistery & thriller"]
books[grep("science fiction & fantasy", genere),

genere := "sci-fi & fantasy"]
books[grep("computers", genere), genere := "reference"]
books[grep("engineering", genere), genere := "reference"]
books[grep("math", genere), genere := "reference"]
books[grep("medical", genere), genere := "reference"]
books[grep("law", genere), genere := "reference"]
books[grep("politics", genere), genere := "reference"]
books[grep("textbooks", genere), genere := "reference"]
books[grep("education", genere), genere := "reference"]
books[grep("boys", genere), genere := "kids & teens"]
books[grep("children", genere), genere := "kids & teens"]
books[grep("teen", genere), genere := "kids & teens"]
books[grep("gay", genere), genere := "romance"]
books[grep("religion", genere), genere := "religion"]
books[grep("bible", genere), genere := "religion"]
books[grep("entertainment", genere), genere := "entertainment"]
books[grep("comics", genere), genere := "entertainment"]

sort(table(books[,genere]), decreasing = T)

#STEP 03: input generes by knn? --

save.image("data/post_second_preprocessing.RData")

123

Allyn: A Recommender Assistant for Online Bookstores

B.2 Webscraping

#STEP 00: clean up environment and load packages ----------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "parallel", "doParallel", "foreach",

"dplyr", "rvest", "rapportools"))

load("data/post_feature_engineering.RData")

#STEP 01: set up parameters ---

spec <- 3
cl <- makeCluster(spec)
registerDoParallel(cl)

#STEP 02: create placeholders --

downloads <- books[genere == "other",.(ISBN, booklink, genere)] %>%
setDT()

downloads[, �:=� (genere=as.character(NA_character_),
pages=as.character(NA_character_), counter=0)]

downloads[[3]] <- as.character(downloads[[3]])
downloads[[4]] <- as.character(downloads[[4]])

#STEP 03: scrape variables in parallel -------------------------------

iter <- which(is.na(downloads[,genere]))
n <- ceiling(length(iter)/1000)

foreach(i = iter, .packages = c(�rvest�, �xml2�, �rapportools�),
.verbose = T, .combine = rbind) %dopar% {

a <- (j-1)*1000+1

124

Laia Esquerrà Schaefer Appendix B. R Code

b <- min(c(j*1000, length(iter)))

for(i in iter[b:a]){
print(paste("###--- ", which(iter == i), "/", length(iter) ," ---###"))
downloads[i,"counter"] <- downloads[i,"counter"] + 1

booklink <- tryCatch(xml2::read_html(downloads[i, booklink]),
error=function(e){NA})

Get book genre from website
webgenre <- NULL
webgenre <- tryCatch(

booklink %>%
html_nodes(�div#a-page�) %>%
html_nodes(�div#dp�) %>%
html_nodes(�div#wayfinding-breadcrumbs_container�)%>%
html_nodes(�div#wayfinding-breadcrumbs_feature_div�) %>%
html_nodes(�ul�) %>%
html_nodes(�li�) %>%
.[3] %>%
html_text(),

error = function(e){}
)

if(!(rapportools::is.empty(webgenre))) {
downloads[i, 3] <- gsub("[[:space:]]*$", "", gsub("^\\s+", "",

gsub("\n", "", webgenre)), perl=T)
}

downloads[i,,drop = F]

Get book genre from website
npage_age <- NULL
npage_age <- tryCatch(

booklink %>%
html_nodes(�body�) %>%
html_nodes(�div#a-page�) %>%
html_nodes(�div#dp�) %>%
html_nodes(�div#dp-container�)%>%

125

Allyn: A Recommender Assistant for Online Bookstores

html_nodes(�div#detail-bullets�) %>%
html_nodes(�table�) %>%
.[1] %>%
html_nodes(�tr�) %>%
html_nodes(�td�) %>%
html_nodes(�div�) %>%
html_nodes(�ul�) %>%
html_nodes(�li�) %>%
.[1] %>%
html_text(),

error = function(e){}
)

if(!(rapportools::is.empty(npage_age))) {
downloads[i,4] <- npage_age

}

downloads[i,,drop = F]
}

}

downloads_clean <- downloads[-which(is.na(downloads[,3])),]
stopCluster(cl)

save.image("data/post_webscraping.RData")

B.3 Clustering and Profiling

#STEP 00: clean up environment and load packages ----------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "cluster"))

load("data/post_second_preprocessing.RData")

#STEP 01: subset only 4000 users to do the clustering ----------------

126

Laia Esquerrà Schaefer Appendix B. R Code

select indices
set.seed(1644)
ind <- sample(1:nrow(users), 1200)

subset and merge datasets
subset <- users[ind,]
subset <- reviews[subset, nomatch=0,on="UserID"]
subset <- books[,.(ISBN, BookTitle, BookAuthor, genere)][subset,,

on="ISBN"]
subset[!(genere %in% c("literature & fiction", "mistery & thriller",

"kids & teens", "sci-fi & fantasy", "reference",
"biographies & memoirs", "romance")),

genere := "other"]

for(i in 1:length(colnames(subset))){
if(is.character(subset[[i]])){

subset[[i]] <- as.factor(subset[[i]])
}

}

subset[["UserID"]] <- as.factor(subset[["UserID"]])
subset <- subset[,.(BookTitle, BookAuthor, genere, BookRating, Age,

country, continent)]

rm(list=c("i", "ind"))

dissimMatrix <- daisy(subset, metric = "gower", stand=TRUE)

#Dendogram
par(mar=(c(0,4,3,4)),cex=0.75)
h <- hclust(dissimMatrix,method="ward.D")
plot(h, xaxt="n", xlab="", sub="", ylab="", labels=FALSE, hang=-50,

main="")
abline(h = 300, col="#D95F02")

#clearly K=3
k <- 3

127

Allyn: A Recommender Assistant for Online Bookstores

cut <- cutree(h, k[1])
cut <- as.factor(cut)

#Adding the variable to the subset:
subset[,URcluster := cut]

rm(list=setdiff(ls(), c("subset", "dissimMatrix", "h", "cut", "k")))
save.image("data/clustering.RData")

#STEP 00: clean up environment and load packages ----------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "cluster", "ggmosaic", "RColorBrewer",

"lettercase"))

#load("data/post_webscraping.RData")
load("data/clustering.RData")

#STEP 01: select relevant variables -----------------------------------

r_var <- c("BookRating", "Age", "country", "continent", "genere",
"URcluster")

data <- as.data.frame(subset[,(r_var), with=F])

#STEP 02: defining the functions --------------------------------------

#Compute test values for all the classes of P for a numerical variable
TestXnumVal <- function(Xnum,P){

nk <- as.vector(table(P));
n <- sum(nk);
xk <- tapply(Xnum,P,mean);
txk <- (xk-mean(Xnum))/(sd(Xnum)*sqrt((n-nk)/(n*nk)));
pxk <- pt(txk,n-1,lower.tail=F);
return (pxk)

128

Laia Esquerrà Schaefer Appendix B. R Code

}

#Compute test values for all the classes of P for a categorical variable
TestXqualiVal <- function(P,Xquali){

taula <- table(P,Xquali);
n <- sum(taula);
pk <- apply(taula,1,sum)/n;
pj <- apply(taula,2,sum)/n;
pf <- taula/(n*pk);
pjm <- matrix(data=pj,nrow=dim(pf)[1],ncol=dim(pf)[2]);
dpf <- pf - pjm;
dvt <- sqrt(((1-pk)/(n*pk))%*%t(pj*(1-pj)));
zkj <- dpf/dvt;
pzkj <- pnorm(zkj,lower.tail=F);
return (list(rowpf=pf,vtest=zkj,pval=pzkj))

}

#STEP 03: evaluate --

##CUT SELECTION

P<-data$URcluster
K<-dim(data)[2] - 1

nc<-length(levels(as.factor(P)))
pvalk <- matrix(data=0, nrow=nc,ncol=K, dimnames=list(levels(P),

names(data)[1:5]))
nameP<-"Class"
n<-dim(data)[1]

for(k in which(!names(data)%in%"URcluster")){
if (is.numeric(data[,k])){

#numeric
print(paste("Detailed Analysis for:", names(data)[k]))

boxplot(data[,k]~P, main=paste("Boxplot of", names(data)[k], "vs",
nameP), horizontal=TRUE)

129

Allyn: A Recommender Assistant for Online Bookstores

print("Summary by Class:")
for(s in levels(as.factor(P))) {print(summary(data[P==s,k]))}
o<-oneway.test(data[,k]~P)
print(paste("p-value ANOVA:", o$p.value))
kw<-kruskal.test(data[,k]~P)
print(paste("p-value Kruskal-Wallis:", kw$p.value))
pvalk[,k]<-TestXnumVal(data[,k], P)

}else{
#categoric
print(paste("Detailed Analysis for:", names(data)[k]))
xtab = as.data.frame(table(data[,k], data[,"URcluster"]))
names(xtab)[2] = "Cluster"

ggplot(data = xtab) +
geom_mosaic(aes(weight = Freq, x = product(Var1), fill=Cluster)) +
scale_fill_brewer(palette = "Dark2") +
theme_light() +
theme(legend.position="bottom",

legend.background = element_rect(linetype="solid",
colour ="gray4"),

legend.title = element_text(face= "bold"),
axis.text.x=element_text(angle = 45, hjust = 1)) +

labs(title = paste0("Conditional Distribution of ",
str_title_case(names(data)[k]), " over Clusters"),

x = names(data)[k], y = "Relative Frequence")
print("Values:")
print(TestXqualiVal(P,data[,k]))

}
}

B.4 Artificial Neural Network

B.4.1 Model.R

#STEP 01: select users info to add ------------------------------------

if(!exists("train_output")){

130

Laia Esquerrà Schaefer Appendix B. R Code

train_output <- train_input
test_output <- test_input

}

n <- ncol(train_input)

#STEP 02: define custom functions -------------------------------------

K <- backend()

custom_activation <- function(x){

x <- (x-K$min(x))/(K$max(x)-K$min(x))*9+1

}
attr(custom_activation, "py_function_name") <- "custom_activation"

custom_loss <- function(y_true, y_pred) {

convert tensors to R objects
on <- K$greater_equal(y_true, K$constant(1))

calculate the loss
loss <- loss_mean_absolute_error(tf$boolean_mask(y_true, on),

tf$boolean_mask(y_pred, on))

return(loss)
}

attr(custom_loss, "py_function_name") <- "custom_loss"

custom_metric <- function(y_true, y_pred) {

convert tensors to R objects
on <- K$greater_equal(y_true, K$constant(1))

calculate the loss
mae <- metric_mean_absolute_error(tf$boolean_mask(y_true, on),

131

Allyn: A Recommender Assistant for Online Bookstores

tf$boolean_mask(y_pred, on))

return(1-mae/9)
}

attr(custom_metric, "py_function_name") <- "custom_metric"

#STEP 03: define model structure --------------------------------------

model <- keras_model_sequential()
model %>%

layer_gaussian_noise(stddev = 0.0001, input_shape = c(n)) %>%
layer_dense(units = 256, activation = �tanh�) %>%
layer_dropout(rate=0.65) %>%
layer_dense(units = n, activation = custom_activation)

summary(model)

optimizer_adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999,
epsilon = NULL, decay = 0)

model %>% compile(
loss = custom_loss,
optimizer = �adam�,
metrics = custom_metric

)

B.4.2 Model_train.R

#STEP 00: clean up environment and load packages ----------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "keras", "kerasR", "tensorflow",

"reticulate"))

choices = c("all", "lit", "mist")

132

Laia Esquerrà Schaefer Appendix B. R Code

gen = menu(choices = choices, title = "Select genere:")

gen = choices[gen]

load(paste0("data/", gen, "_selected_train_test.RData"))

mod="gaussian"

#STEP 01: load model --

source("r/model/model.R")

#STEP 02: train the model ---

time = Sys.time()
history <- model %>% fit(

train_input, train_output,
epochs = 20, batch_size = 32,
validation_split = 0.2

)
round(Sys.time() - time,2)

plot(history)
keras_save_weights(model, path = paste0("model_weights/", mod, "_w.h5"))

B.4.3 Model1.R

#STEP 00: clean up environment and load packages ---------------------
rm(list=ls(all=TRUE))

source("r/misc_functions.R")
p_inst(c("data.table", "tidyr", "keras", "kerasR", "tensorflow",

"reticulate"))

gen="all"

133

Allyn: A Recommender Assistant for Online Bookstores

load(paste0("data/", gen, "_selected_train_test.RData"))

#STEP 01: select users info to add ------------------------------------

n <- ncol(train_input)
m <- nrow(train_input)
rm(list=setdiff(ls(), c("n", "m")))

#STEP 02: define custom functions -------------------------------------

K <- backend()

custom_activation <- function(x){

x <- (x-K$min(x))/(K$max(x)-K$min(x))*9+1

}
attr(custom_activation, "py_function_name") <- "custom_activation"

custom_loss <- function(y_true, y_pred) {

convert tensors to R objects
on <- K$greater_equal(y_true, K$constant(1))

calculate the loss
loss <- loss_mean_absolute_error(tf$boolean_mask(y_true, on),

tf$boolean_mask(y_pred, on))

return(loss)
}

attr(custom_loss, "py_function_name") <- "custom_loss"

custom_metric <- function(y_true, y_pred) {

convert tensors to R objects
on <- K$greater_equal(y_true, K$constant(1))

134

Laia Esquerrà Schaefer Appendix B. R Code

calculate the loss
loss <- loss_mean_absolute_error(tf$boolean_mask(y_true, on),

tf$boolean_mask(y_pred, on))

return(1-loss/9)
}

attr(custom_metric, "py_function_name") <- "custom_metric"

#STEP 03: define model structure --------------------------------------

input_t <- layer_input(shape = c(n), name = �input�)
aux_input_t <- layer_input(shape = c(3), name = �aux_input�)

output <- layer_concatenate(c(input_t, aux_input_t), axis=1) %>%
layer_gaussian_noise(stddev = 0.0001) %>%
layer_dense(units = 265, activation = �tanh�) %>%
layer_dropout(rate = 0.65) %>%
layer_dense(units = 9731, activation = custom_activation)

model <- keras_model(
inputs = c(input_t, aux_input_t),
outputs = output)

summary(model)

model %>% compile(
loss = custom_loss,
optimizer = �adam�,
metrics = custom_metric

)

#STEP 04: define generator --

sampling_generator <- function(sample_name, batch_size) {

135

Allyn: A Recommender Assistant for Online Bookstores

input_filename = paste0("data/fit_", sample_name, "_input.csv")
output_filename = paste0("data/fit_", sample_name, "_output.csv")
aux_file = paste0("data/fit_aux_", sample_name, ".csv")

in_data = fread(input_filename)
out_data = fread(output_filename)
aux_data = fread(aux_file)

function() {
rows <- sample(1:nrow(in_data), batch_size, replace = TRUE)
list(list(as.matrix(in_data[rows,]), as.matrix(aux_data[rows])),

as.matrix(out_data[rows,]))
}

}

#STEP 05: train the model ---

history <- model %>% fit_generator(
sampling_generator("train", batch_size = 64),
steps_per_epoch = m/64, epochs = 20)

plot(history)
keras_save_weights(model, path = paste0("model_weights/external_w.h5"))

#STEP 06: evaluate model --

err <- model %>% evaluate_generator(
sampling_generator("test", batch_size = 32),
steps = m/32

)
err

pred_generator <- function(sample_name, batch_size) {

filename = paste0("data/fit_", sample_name, "_input.csv")
aux_file = paste0("data/fit_aux_", sample_name, ".csv")

136

Laia Esquerrà Schaefer Appendix B. R Code

data = fread(filename)
aux_data = fread(aux_file)

function() {
rows <- sample(1:nrow(data), batch_size, replace = TRUE)
list(as.matrix(data[rows,]), as.matrix(aux_data[rows]))

}
}

pred <- model %>% predict_generator(
pred_generator("test", batch_size = 64),
steps = m/64

)

B.5 Chatbot

start <- function(bot, update){
bot$sendMessage(

chat_id = update$message$chat_id,
text = sprintf(response_key[["Start"]],

update$message$from$first_name),
reply_markup = InlineKeyboardMarkup(

list(list(InlineKeyboardButton("Find a gift")),
list(InlineKeyboardButton("Book for me")))

)
)

}

genre <- function(bot, update){
bot$sendMessage(

chat_id = update$callback_query$message$chat$id,
text = response_key[["Genre"]],
reply_markup = InlineKeyboardMarkup(

list(list(InlineKeyboardButton("Yes!")),
list(InlineKeyboardButton("Nope, let�s explore what you�ve got!")))

)
)

137

Allyn: A Recommender Assistant for Online Bookstores

}

genre_selection <- function(bot, update){
bot$sendMessage(

chat_id = update$callback_query$message$chat$id,
text = response_key[["SpecifyGenre"]],
reply_markup = InlineKeyboardMarkup(

list(list(InlineKeyboardButton("Literature & Fiction")),
list(InlineKeyboardButton("Mistery"),

InlineKeyboardButton("Romance")),
list(InlineKeyboardButton("Sci-Fi & Fantasy")),
list(InlineKeyboardButton("Biographies"),

InlineKeyboardButton("Reference")),
list(InlineKeyboardButton("All generes"))

)
)

)
}

pers_rec <- function(bot, update){
bot$sendMessage(

chat_id = update$callback_query$message$chat$id,
text = response_key[["Pers"]],
reply_markup = InlineKeyboardMarkup(

list(list(InlineKeyboardButton("Yes, please!")),
list(InlineKeyboardButton("Let�s see the top picks"))

)
)

)
}

rat_grid <- function(bot, update){
bot$sendMessage(

chat_id = update$callback_query$message$chat$id,
text = sprintf(response_key[["Rat"]],

update$callback_query$message$chat$first_name),
reply_markup = InlineKeyboardMarkup(

list(list(InlineKeyboardButton(simple_cap(bbdd$BookTitle[1])),
InlineKeyboardButton(simple_cap(bbdd$BookTitle[2]))),

138

Laia Esquerrà Schaefer Appendix B. R Code

list(InlineKeyboardButton(simple_cap(bbdd$BookTitle[3])),
InlineKeyboardButton(simple_cap(bbdd$BookTitle[4]))),

list(InlineKeyboardButton(simple_cap(bbdd$BookTitle[5])),
InlineKeyboardButton(simple_cap(bbdd$BookTitle[6]))),

list(InlineKeyboardButton(simple_cap(bbdd$BookTitle[7])),
InlineKeyboardButton(simple_cap(bbdd$BookTitle[8]))),

list(InlineKeyboardButton("Done"))
)

)
)

}

rate <- function(bot, update){
bot$sendMessage(

chat_id = update$message$chat_id,
parse_mode = �Markdown�,
text = paste0(�[�, simple_cap(title), �](�, link, �) by \n_�,

simple_cap(auth), �_�),
reply_markup = InlineKeyboardMarkup(

list(list(InlineKeyboardButton(1),
InlineKeyboardButton(2),
InlineKeyboardButton(3),
InlineKeyboardButton(4),
InlineKeyboardButton(5)))

)
)

}

send_top <- function(bot, update){
bot$sendMessage(chat_id = update$callback_query$message$chat$id,

parse_mode = �Markdown�,
disable_web_page_preview = T,
text = llista)

}

send_rec <- function(bot, update){
bot$sendMessage(

chat_id = update$callback_query$message$chat$id,
parse_mode = �Markdown�,

139

Allyn: A Recommender Assistant for Online Bookstores

text = paste0(�[�, simple_cap(pred_top_picks$BookTitle[1]),
�](�, pred_top_picks$booklink[1], �) by \n_�,
simple_cap(pred_top_picks$BookAuthor[1]), �_�)

)
}

140

References

Adomavicius, Gediminas, and Alexander Tuzhilin. 2005. “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions.” IEEE
Transactions on Knowledge and Data Engineering 17 (6). IEEE: 734–49.

Allaire, JJ, François Chollet, RStudio, and Google. 2018. “R interface to Keras.”
https://keras.rstudio.com/index.html.

Alpaydın, Ethem. 2010. Introduction to Machine Learning Second Edition. Vol. 56.

Ba, S, and P Pavlou. 2002. “The Demand E�ects of Product Recommendation
Networks: An Empirical Analysis of Network Diversity and Stability.” Mis Quarterly 26
(3): 243–68.

Balabanovic, Marko; and Yoav Shoham. 1997. “Content-Based, Collaborative
Recommendation.” Communications of the ACM 40 (3).

Benedito, Ernest. 2018. “Package ‘Telegram.bot’.” CRAN-R, 17. https://cran.
r-project.org/web/packages/telegram.bot/telegram.bot.pdf.

Bobadilla, J., F. Ortega, A. Hernando, and A. Gutiérrez. 2013. “Recommender
systems survey.” Knowledge-Based Systems 46. Elsevier B.V.: 109–32.

Breese, John S., David Heckerman, and Carl Kadie. 1998. “Empirical analysis of
predictive algorithms for collaborative filtering.” Proceedings of the 14th Annual Conference
on Uncertainty in Artificial Intelligence, 43—–52.

Brisson, Keith. 2016. “11 best messaging platforms for your chatbot or conversational
app.” https://blog.init.ai/pick-your-platform-wisely-c5ab5bc7555d.

Burke, Robin. 2002. “Hybrid Recommender Systems: Survey and Experiments.” User
Modeling and User-Adapted Interaction 12 (4): 331–70.

Capan, F. 2018. “The AI Revolution is Underway.” https://www.pm360online.com/

141

https://keras.rstudio.com/index.html
https://cran.r-project.org/web/packages/telegram.bot/telegram.bot.pdf
https://cran.r-project.org/web/packages/telegram.bot/telegram.bot.pdf
https://blog.init.ai/pick-your-platform-wisely-c5ab5bc7555d
https://www.pm360online.com/the-ai-revolution-is-underway/
https://www.pm360online.com/the-ai-revolution-is-underway/

Allyn: A Recommender Assistant for Online Bookstores

the-ai-revolution-is-underway/.

Chandak, Manisha, Sheetal Girase, and Debajyoti Mukhopadhyay. 2015. “Introducing
hybrid technique for optimization of book recommender system.” Procedia Computer
Science 45 (C). Elsevier Masson SAS: 23–31.

Cheng, B, and Dm Titterington. 1994. “Neural networks: A review from a statistical
perspective” 9 (1): 2–54.

Christensson, P. 2013. “Framework Definition.” https://techterms.com/definition/
framework.

Covington, Paul, Jay Adams, and Emre Sargin. 2016. “Deep Neural Networks for
YouTube Recommendations.” Proceedings of the 10th ACM Conference on Recommender
Systems - RecSys ’16, 191–98.

Dias, M. Benjamin, Dominique Locher, Ming Li, Wael El-Deredy, and Paulo J.G.
Lisboa. 2008. “The value of personalised recommender systems to e-business.” Proceedings
of the 2008 ACM Conference on Recommender Systems - RecSys ’08, no. January: 291.

Dogtiev, Artyom. 2017. “Telegram Revenue and Usage Statistics (2017).” http:
//www.businessofapps.com/data/telegram-statistics/.

Eurostat. 2018. “E-commerce statistics,” no. December 2017: 1–10. http://ec.europa.
eu/eurostat/statistics-explained/pdfscache/14386.pdf.

Felfernig, Alexander, and Robin Burke. 2008. “Constraint-Based Recommender Sys-
tems: Technologies and Research Issues.” ICEC ’08 Proceedings of the 10th International
Conference on Electronic Commerce, 10.

Ge, Xinyang, Jia Liu, Qi Qi, and Zhenyu Chen. 2011. “A New Prediction Approach
Based on Linear Regression for Collaborative Filtering” 4 (August): 2586–90.

Gomez-Uribe, Carlos A., and Neil Hunt. 2015. “The Netflix Recommender System.”
ACM Transactions on Management Information Systems 6 (4): 1–19.

Gra�, Ryan (Northwestern University). 2015. “How the Washington Post used data
and natural language processing to get people to read more news.” https://knightlab.
northwestern.edu/2015/06/03/how-the-washington-posts-clavis-tool-helps-to-make-news/
-personal/.

Gunawardana, Asela, and Christopher Meek. 2009. “A Unified Approach to Building

142

https://www.pm360online.com/the-ai-revolution-is-underway/
https://www.pm360online.com/the-ai-revolution-is-underway/
https://techterms.com/definition/framework
https://techterms.com/definition/framework
http://www.businessofapps.com/data/telegram-statistics/
http://www.businessofapps.com/data/telegram-statistics/
http://ec.europa.eu/eurostat/statistics-explained/pdfscache/14386.pdf
http://ec.europa.eu/eurostat/statistics-explained/pdfscache/14386.pdf
https://knightlab.northwestern.edu/2015/06/03/how-the-washington-posts-clavis-tool-helps-to-make-news/-personal/
https://knightlab.northwestern.edu/2015/06/03/how-the-washington-posts-clavis-tool-helps-to-make-news/-personal/
https://knightlab.northwestern.edu/2015/06/03/how-the-washington-posts-clavis-tool-helps-to-make-news/-personal/

Laia Esquerrà Schaefer References

Hybrid Recommender Systems.” RecSys, 117–24.

Harper, F. Maxwell, and Joseph A. Konstan. 2015. “The MovieLens Datasets.” ACM
Transactions on Interactive Intelligent Systems 5 (4): 1–19.

Huang, Wenyi, Zhaohui Wu, Chen Liang, Prasenjit Mitra, and C Lee Giles. 2015. “A
Neural Probabilistic Model for Context Based Citation Recommendation.” AAAI 2015:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2404–10.

Inc., SAS Institute. 2018. “Natural Language Processing.” Accessed July 4. https://
www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.html.

Internation Telecomunications Union, ITU. 2005. “ICT facts and figures 2005.” Itu.

Kaushik, Saurav. 2017. “Beginner’s Guide on Web Scraping in R (using
rvest) with hands-on example.” https://www.analyticsvidhya.com/blog/2017/03/
beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/.

Li, Qibing, Xiaolin Zheng, and Xinyue Wu. 2017. “Collaborative Autoencoder for
Recommender Systems.”

Linden, Greg, and Brent Smith. 2017. “Two Decades of Recommender Systems at
Amazon.com.” IEEE Internet Computing 7 (1): 12–18.

Linden, Greg, Brent Smith, and Jeremy York. 2003. “Amazon.com recommendations:
Item-to-item collaborative filtering.” IEEE Internet Computing 7 (1): 76–80.

Liu, Jiahui, Peter Dolan, and Elin Rønby Pedersen. 2010. “Personalized news
recommendation based on click behavior.” Proceedings of the 15th International Conference
on Intelligent User Interfaces - IUI ’10, 31.

Mackenzie, Ian, Chris Meyer, and Steve Noble. 2013. “How retailers can
keep up with consumers.” https://www.mckinsey.com/industries/retail/our-insights/
how-retailers-can-keep-up-with-consumers.

McEleny, Charlotte. 2016. “What CNN has learnt after six months of chatbot experi-
mentation.” http://www.thedrum.com/news/2016/11/16/what-cnn-has-learnt-after-six/
-months-chatbot-experimentation.

Melville, Prem, Raymond J Mooney, and Ramadass Nagarajan. 2002. “Content-
boosted collaborative filtering for improved recommendations.” “Proceedings of the 18th

143

https://www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.html
https://www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.html
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
http://www.thedrum.com/news/2016/11/16/what-cnn-has-learnt-after-six/-months-chatbot-experimentation
http://www.thedrum.com/news/2016/11/16/what-cnn-has-learnt-after-six/-months-chatbot-experimentation

Allyn: A Recommender Assistant for Online Bookstores

National Conference on Artificial Intelligence (AAAI)”, no. July: 187–92.

Miller, Robert B. 1968. “Response time in man-computer conversational transactions.”
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I on -
AFIPS ’68 (Fall, Part I), 267.

Miso�e, Augustin. 2017. “[ChatBot] Who wins? Guided dialogue and Natural lan-
guage dialogue.” https://tutorials.botsfloor.com/chatbot-who-wins-guided-dialogue-and/
-natural-language-dialogue-781ecb1d96af.

Mitchell, Tom M. 2006. “The Discipline of Machine Learning.” Machine Learning 17
(July): 1–7.

Miteva, Sara. 2017. “5 Programming Languages You Can Use to Create Chatbots.”
http://valosohub.com/blog/2017/08/21/programming-languages-chatbots/.

Mueller, Kirill, Hadley Wickham, David A James, and Seth Falcon. 2018. “Package
‘RSQLite’.” CRAN-R, 12.

Oestreicher-Singer, Gal and Sundararajan, Arun. 2011. “The Visible Hand? Demand
E�ects of Recommendation Networks in Electronic Markets.” Management Science, 1–42.

Pazzani, Michael J. 1999. “A framework for collaborative, content-based and demo-
graphic filtering.” Artificial Intelligence Review 13 (5): 393–408.

Quoc, Michael. 2017. “10 Ecommerce Brands Succeeding with Chatbots.” https:
//www.abetterlemonadestand.com/ecommerce-chatbots/.

Resnick, Paul, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
1994. “GroupLens : An Open Architecture for Collaborative Filtering of Netnews.”
Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,
175–86.

Ricci, Francesco, Lior Rokach, and Bracha Shapira. 2011. Recommender Systems
Handbook.

Schein, Andrew I., Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. 2002.
“Methods and metrics for cold-start recommendations.” Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval - SIGIR ’02, no. August: 253.

Sharma, Amit, Jake M. Hofman, and Duncan J. Watts. 2015. “Estimating the Causal

144

https://tutorials.botsfloor.com/chatbot-who-wins-guided-dialogue-and/-natural-language-dialogue-781ecb1d96af
https://tutorials.botsfloor.com/chatbot-who-wins-guided-dialogue-and/-natural-language-dialogue-781ecb1d96af
http://valosohub.com/blog/2017/08/21/programming-languages-chatbots/
https://www.abetterlemonadestand.com/ecommerce-chatbots/
https://www.abetterlemonadestand.com/ecommerce-chatbots/

Laia Esquerrà Schaefer References

Impact of Recommendation Systems from Observational Data.”

Strub, Florian, Jeremie Mary, Romaric Gaudel, Florian Strub, Jeremie Mary, Romaric
Gaudel, Hybrid Collaborative, Florian Strub, Florian Strub, and Inria Fr. 2016. “Hybrid
Collaborative Filtering with Neural Networks To cite this version : Hybrid Collaborative
Filtering with Neural Networks.”

Sumbaly, Roshan, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam Shah.
2012. “Serving Large-scale Batch Computed Data with Project Voldemort.” Proceedings
of the 10th USENIX Conference on File and Storage Technologies (FAST ’12), 223–36.

Tang, Duyu, Bing Qin, Ting Liu, and Yuekui Yang. 2015. “User modeling with neural
network for review rating prediction.” IJCAI International Joint Conference on Artificial
Intelligence 2015-January (Ijcai): 1340–6.

Telegram, LLC. 2013. “Telegram a new era of messaging.” https://telegram.org.

———. 2015. “Bots: An introduction for developers.” https://core.telegram.org/bots.

The TensorFlow Authors and RStudio. 2018. “R Interface to TensorFlow.” https:
//tensorflow.rstudio.com.

Vairavasundaram, Subramaniyaswamy, Vijayakumar Varadharajan, Indragandhi
Vairavasundaram, and Logesh Ravi. 2015. “Data mining-based tag recommendation
system: An overview.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 5 (3): 87–112.

Vargiu, Eloisa, and Mirko Urru. 2012. “Exploiting web scraping in a collaborative
filtering- based approach to web advertising.” Artificial Intelligence Research 2 (1): 44–54.

Vincent, Pascal, and Hugo Larochelle. 2010. “Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a Local Denoising Criterion
Pierre-Antoine Manzagol.” Journal of Machine Learning Research 11: 3371–3408.

Wang, Hao, Naiyan Wang, and Dit-Yan Yeung. 2014. “Collaborative Deep Learning
for Recommender Systems.”

Wickham, Hadley (RStudio). 2016. “Package ‘ Rvest’.”

Wu, Lili, Sam Shah, Sean Choi, Mitul Tiwari, and Christian Posse. 2014. “The
browsemaps: Collaborative filtering at LinkedIn.” CEUR Workshop Proceedings 1271

145

https://telegram.org
https://core.telegram.org/bots
https://tensorflow.rstudio.com
https://tensorflow.rstudio.com

Allyn: A Recommender Assistant for Online Bookstores

(RSWeb).

Xiao, Bo, and Izak Benbasat. 2007. “E-Commerce Product Recommendation agents:
Use, Characteristics, and Impact.” MIS Quarterly 31 (1): 137–209.

Zhang, Xingxing, and Mirella Lapata. 2014. “Chinese Poetry Generation with
Recurrent Neural Networks.” Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP’14), 670–80.

Zhou, Renjie, Samamon Khemmarat, and Lixin Gao. 2010. “The Impact of YouTube
Recommendation System on Video Views.” Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, 404–10.

Zhuang, Zhongfang. 2013. “The ’Big Data’ Ecosystem at LinkedIn.” SIGMOD,
1125–34.

Ziegler, Cai-Nicolas C.N., Sean M. S.M. McNee, Joseph a. J.a. Konstan, and Georg
Lausen. 2005. “Improving recommendation lists through topic diversification.” Proceedings
of the 14th International Conference on World Wide Web WWW 05, no. January: 22.

146

	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	Introduction
	Methodology
	Recommender Systems
	Data Sources
	Recommendation Techniques

	Artificial Neural Networks
	Precedents
	Elements of an Artificial Neural Network
	Variants of Artificial Neural Networks
	Parameter and Hyperparameter Tuning
	Programming Frameworks

	Chatbots
	Building blocks
	A Chatbot as a Recommender System Front-End

	I An Economic Analysis
	State of the Art Recommender Systems
	Current applications in the Market
	E-commerce and Recommender Systems
	Causal Impact on Revenues

	Actual Use Cases
	Amazon.com
	Netflix
	YouTube
	LinkedIn

	II Implementation
	The Dataset
	Data Enrichment
	Data Preprocessing
	Dimensionality reduction

	Back-End Development
	Experimental Framework
	Model Variations
	Filtering and Recommendation Phase
	Setting Up Accessible Files and Models

	Front-End Implementation
	Chatbot Creation
	Bot API Requests
	Answer formats
	Retrieving Recommendations

	Conclusions
	Conclusions and Future Work
	Conclusions
	Contributions
	Future Work

	Appendices
	Auxiliary Data
	ANOVA Test Values for Clusters
	ANOVA and Tukey's HSD Test Values for Models
	ANN Training Figures

	R Code
	Preprocessing
	Webscraping
	Clustering and Profiling
	Artificial Neural Network
	Chatbot

	References

