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Abstract: A study on the Leggett-Garg inequalities, which determine if the classical hypothesis of macroscopic 
realism is true for observables at atomic and sub-atomic scale measured at different times. It is found that the bounds 
in  the Leggett-Garg inequalities calculated under classical assumptions are violated  when recalculating the 
Leggett-Garg inequalities under quantum mechanical assumptions.  Finally, with the help of the results of  an 
experiment based on neutrino flavour oscillations,  it is found that classical assumptions are wrong. 

  

I. INTRODUCTION 

During the first half of the 20th century the foundations of 
quantum  mechanics were established, the branch of physics 
which describe the phenomena that happen at atomic and 
sub-atomic scale. However, under this new theory a 
revolutionary idea appeared: The idea that instead of 
deterministic expressions, the phenomena and processes were 
described under probabilistic predictions. This idea, created 
quite the discussions between physicists who agreed to this 
description, like Niels Bohr, and physicists who thought that 
the probabilistic description was due that we lacked 
information and once we knew it, the phenomena would be 
described under deterministic expressions, like Albert 
Einstein. 

As a matter of fact, Einstein, together with Boris 
Podolsky and Nathan Rosen wrote an article about 
the Einstein–Podolsky–Rosen paradox[1] the year 1935, 
where they described a thought experiment within the 
assumption of local realism (cause-and-effect are limited to 
the speed of light and the particle must have a pre-existing 
value for any measurement before any measurement is 
made). In this experiment, particles interacted in such a way 
that we could measure both their position and momentum 
more precisely than Heisenberg's uncertainty principle 
allows. Therefore, it proved that under local realism, quantum 
mechanics were incomplete and we needed a hidden variable 
theory. However, at 1964, John Stewart Bell wrote his article: 
On the Einstein Podolsky Rosen paradox[2], where he 
introduced the Bell inequalities, a series of inequalities which 
if local realism was true, they would be bounded by certain 
values, but when quantum correlations are considered, these 
bounds are broken and as such, this phenomena cannot be 
described under a local realism theory. 

Inspired by Bell's inequalities, A. J. Leggett and Anupam 
Garg wrote at 1985 Quantum mechanics versus Macroscopic 
Realism: Is the Flux There when Nobody Looks?[3] where 
they introduced a series of inequalities based on measures in 
different times instead of measures of particles in a entangled 
state(a quantum state which cannot be factored as a product 
of states of its local constituents) moving back-to-back. 

This introduction brings us to the ideas behind this TFG, 
the Leggett-Garg inequalities, which are used to see if 
macroscopic realism is true with the help of the correlations 
of measured observables at different times. 

 
In this TFG we present the Leggett-Garg inequalities and 

their violation in a recent experiment performed with 
neutrinos, and finish with the conclusion. 

II. THEORY 

 
In order to begin, the theory section will start by 

describing the assumptions [3] under which classical 
predictions will be described: The first, the idea of 
macroscopic realism (A1), the idea that a macroscopic object, 
which has available two or more distinct states must be in a 
definite state at any given time. The second idea, that the 
system will be measured with a non invasive measure (A2),a 
measure which will not change the state of the system. 

 
It  will also be assumed that a measure on the observed 

system will return a macroscopic dichotomic variable Q = ±1,  
for which its two-time correlation function [4] Cij = 〈Q(t�)Q(t�)〉 will be de�ined as: 

 
��� = � ���������� , ���

��,� !±#
 

 

(1)  

where Q(ti) ≡Qi and Q(tj) ≡Qj, Pij is the probability of 
obtaining Qi and Qj. 

 Lastly, the n-form Leggett-Garg inequality will be 
defined as[4]: 

 $% ≡  � ��'#,�
%(#

�!#
− �%,#  (2)  

Where this TFG will focus on the 3-form and 4-form: K3 
and K4. 

Once the initial assumptions, variables and parameters are 
defined, the demonstration section starts  by obtaining proof 
that under these classical assumptions, the 3-form of the 
Leggett-Garg parameter is bounded as:  
 $* ≡  �+# + �*+ −  �*# ≤ 1    (3)  

 
A. Classical predictions 

 
In order to prove (3), this TFG  will obtain the bounds by 

two different approaches.  
For the first one, the description of the probability of 

obtaining Qi and Qj  will be in terms of a exhaustively 
defined system [4], a model where the hidden variables ζ and 
ζ'  describe all the properties of   the system exhaustively 
before and after the measure respectively.  

The first step will be obtaining the expression for the  
probability of measuring Qi and Qj: 

 
���� , ���
=  / 012013�( ��|12)5�(12|�� , 1)3�(��|1)6(1) 

(4)  
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The measurement at ti/j is represented as function 3�/�(��/�|3), the function that describes how the measure will 

disturb the state of the system as 5�(12|�� , 1) and lastly, the 
probability distribution over the ζ and ζ'  variables as 6(1).  

 
Because the condition (A2) is imposed, the measure will 

not disturb the state of the system ,which gives the following 
condition: 5�(12|�� , 1) =  8(12 −  1) : 

 ���� , ��� =  / 013�( ��|1)3�(��|1)6(1) (5)  

 
By combining the two expressions used to define the 

correlation function (1): 

 

〈����〉
=  / 01 � ����3�(��|1)3�(��|1)6(1)

��,� 9±:
= / 01〈��〉;〈��〉;6(1) 

 

(6)  

where 〈… 〉 represents an expectation value of a variable ζ. 
Using this equation in (2) when n = 3 and n = 4: 

 
$* = / 01=〈�+〉;〈�#〉; + 〈�*〉;〈�+〉;

−  〈�*〉;〈�#〉;>6(1) 
(7)  

$? = / 01=〈�+〉;〈�#〉; + 〈�*〉;〈�+〉;
+  〈�?〉;〈�*〉;−  〈�?〉;〈�#〉;>6(1) 

(8)  

 
Since the expectation value of Qi = ±1,as defined under 

(A1), using table 1 is noted that for a measure for K3, it is 
obtained K3 = -3 or 1, therefore, for multiple measures, the 
average K3 will be bounded as -3≤K3≤1. As observed, not 
only there is proof of expression (3), but there is also proof of 
a lower bound.  〈�#〉;  〈�+〉;  〈�*〉;  K3 

+ + + 1 

- + + 1 

+ - + -3 

+ + - 1 

- - + 1 

- + - -3 

+ - - 1 

- - - 1 

TABLE I: The value of K3 for each possible combination of  〈��〉; ,where +1 is written as + and -1 as -. 
 

Similarly for K4 using table 2 , the bounds for an average 
K4 are described as  -2≤K4≤2. 

 
 〈�#〉;  〈�+〉;  〈�*〉;  〈�?〉;  K4 

+ + + + 2 

- + + + 2 

+ - + + -2 

+ + - + -2 

+ + + - 2 

- - + + -2 

- + - + 2 

- + + - -2 

+ - - + -2 

+ - + - 2 

+ + - - -2 

- - - + 2 

- - + - -2 

- + - - -2 

- - - - 2 

- - - - 2 

TABLE II: The value of K4 for each possible combination of  〈��〉; , where +1 is written as + and -1 as -. 

 

The second approach will be proven by using the 
correlation function Cij obtained from the joint probability 
Pij(Qi,Qj)(1) and simply obtaining all possible combinations.  

 
Under assumption (A1),observable Q always has a well-

defined value, so the two-time probability can be obtained 
from[4]:  

 
������ , ��� = � ���(�*, �+, �#)

�@;BC�,�
 

 

(9)  

 
�D. F.  �#+(�# , �+) = �#+(+, �+, �#)+  �#+(−, �+, �#)� 
 

 

However, due to assumption (A2), the state of the system 
will not be affected by the measure, therefore, the order at 
which the measure is realized is irrelevant, and 
Pij(Q3,Q2,Q1)=  P (Q3,Q2,Q1). 

 
The correlation functions for K3 are as follows, where +1 

is written as + and -1 as -: 
 

 
�+# = �(+, +, +) − �(+, +, −)  − �(−, −, +) + �(−, −, −) −   �(+, −, +) + �(+, −, −) +  �(−, +, +) −  �(−, +, −)  

(10)  

 

 
�*+ = �(+, +, +) + �(+, +, −) + �(−, −, +) + �(−, −, −) −   �(+, −, +) − �(+, −, −) −  �(−, +, +) −  �(−, +, −)  

(11)  

 

 
�*# = �(+, +, +) − �(+, +, −)  − �(−, −, +) + �(−, −, −) +   �(+, −, +) − �(+, −, −) −  �(−, +, +) +  �(−, +, −)  

(12)  

 
After all the Cij are obtained, they will be used in 

expression (2) with n=3,and thanks to ∑ �(�*, �+, �#) ≡ 1�:,�H,�I , the following expression is 
obtained: 
 $* = 1 − 4K�(+, −, +) + �(−, +, −)> (13)  

The choice of �(+, −, +)= �(−, +, −)= 0 yields the 
upper bound 1,and �(+, −, +) + �(−, +, −) = 1 yields the 
lower bound -3,the same bounds found with the other 
approach, further solidifying our proof. 

For K4  using the previous method: 
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$? = 2 − 4K�(+, −, +, +) +�(−, +, +, −) + �(−, −, +, −) +�(+, +, −, +) + �(+, −, −, +) +�(−, +, −, −) + �(+, −, +, −) +�(−, +, −, +)>  
(14)  

which with analogous procedure as before, yields             
-2≤K4≤2 , 

Once is proven that K3 and K4 are bounded, the question 
of how a Kn would be classically bounded is answered by[4]: 

 
−M ≤ $% ≤ M − 2 if n odd −(M − 2) ≤ $% ≤ M − 2 if n even 

(15)  

 
The reasoning behind this bounds being as follows: 

Thanks to expression (6),it is known that 〈��〉 · 〈��〉  can be 
used to replace 〈�� · ��〉, so building any Kn using (2) and the 
definition of Cij, an absolute maximum value of n-1 is 
obtained for  ∑ ��'#,�%(#�!# .  

In order to obtain the upper bound, ∑ ��'#,�%(#�!#  needs to be 
maximized, achieved by imposing that all the 〈��〉 must be 
equal, doing this procedure, ∑ ��'#,�%(#�!#  is equal to n-1, 
however, as there is a −〈�%〉 · 〈�#〉, it makes the upper bound 
n-2. 

For the lower bound, due to its construction, the sum of 〈��'#〉 · 〈��〉  has to be negative. Therefore, the following 
condition is obtained, 〈��'#〉 = −〈��〉. 

 It is also observed that all the terms can be expressed as 〈�� OPP〉 · 〈�� QRQ%〉, from which is extracted the condition that 
in order to obtain the lowest possible value, -(n+1), 〈�� QRQ%〉 =  −〈�� OPP〉. 

But, Kn is not only the sum term, there's also a 〈�%〉 ·〈�#〉,which under the previous condition, is +1 if n is even or 
-1 if n is odd, which makes the lower bound for Kn -n if n is 
odd and    -n+2 if n is even. 

B. Quantum mechanical predictions 
 

Once the classical bounds are obtained and proven, the 
task will change to redoing the same procedures but under 
quantum mechanics in order to see if differences appear in 
the bounds we obtain[5]. 

First, operator Q returns the value +1 when |+SS1〉  is 
measured and the value -1 when |−SS1〉 is measured, therefore, 

the projection of operator Q will be 
#'T

+ , where a is the value 

obtained in the measure. 
Second, the expression of the joint probability (used to define 
expression (1)) of obtaining for Qi outcome U =  ±1 and for 
Qj outcome V = ±1 is: 

 

�(U, V) =  〈W X#'T��+ · #'Y� + · #'T��+ X W〉 = #
? +

#
? U〈W|��|W〉 + #

Z V〈W|��|W〉 +
 #Z UV〈W|[�� , ��\|W〉 +  #

Z V〈W|������|W〉     
(16)  

 
With the use of (1),��� = ∑ UV�(U, V)T,Y!±# , and 

using the previous notation, Cij can be expressed as: 

 ��� =  12 〈W|[�� , ��\|W〉 (17)  

 
However, it is  also possible to work with vectors, in such 

case,    Qi is equal to U]� · ]̂, where U]�  is a unit vector for ti and ]̂ is a vector of Pauli matrices. 

Expressing (17) in this new definition, the products of 
(U]� · ]̂)·( U]� · ]̂) obtained in the anticommutation due to the 
redefinition of Qi  are equal to�U]� · U]��_ + `�U]�aU]�� · ]̂, and 
remembering that the anticommutation of two Pauli matrices 
are zero, the alternative expression is obtained: 
 ��� =  Ubccc] · Udccc] (18)  
 

Once the correlation function for quantum mechanics is 
obtained, using expression (18)  the  rebuilt Kn(2) in terms of  
unit vectors for each ti is:[4] 

 $% =  � U]�'# · U]�
%(#

�!#
−  U]% · U]# (19)  

Where defining θi as the angle between vectors ai+1 and ai, 
equation (19) turns into: 
 

 $% =  � cos g�
%(#

�!#
− cos h� g�

%(#

�!#
i (20)  

 
And if K3 and K4 are represented, the maximum values 

obtained are 3 2k  UM0 2√2 respectively. 
It is observed that they violate the bounds of K3 and K4 

described under classical predictions (1 and 2 respectively). 
This is an important result, because thanks to this difference 
of boundaries, it is  possible to check with the construction of 
K3 or K4 if the system behaves classically or quantum 
mechanically by the range of values obtained during the 
measure. 

An example of how the theory would be applied would be 
supposing that the system evolves under the following toy 
model Hamiltonian: 

 m =  n ô2   

As such, the time evolution operator will assume the 
form: 

 
U =  cos�n�q� − q�� · 1 2k �_ −
` sin�n�q� − q�� · 1 2k � ô  

(21)  

 
Defining operator Q(ti)≡Qi as �� =  r̂, Qj will be 

obtained applying the time evolution operator to Qi: 

 
�(q�) ≡ �� ≡ st�q� − q�� · �� · s�q� − q�� =
cos un�q� − q��v r̂  

(22)  

 
 And for simplicity, it is  assumed that the time intervals 

between measures are equal,q�'# − q� = w .  
For obtaining Cij  expression (17) will be used and for Kn 

it is obtained: 

 
$% =  (M − 1) cos(nw)

− cos�(M − 1)nw� 
(23)  

 
This expression, which if n =3 is represented as: 

 $* =  2 cos(nw) − cos(2nw) (24)  
  
and the graphical representation is as follows: 
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FIG. 1: The graphical representation of K3  in (24) 
the region where the values are forbidden under classical 
predictions is shaded. 

 
And for n=4, the expression and representation are as 

follows: 
 $? = 	3 cos�nw� ) cos�3nw�

 

FIG. 2: The graphical representation of K4 in (25)
region where the values are forbidden under classical predictions is 
shaded. 

As it is seen, under quantum mechanical 
Leggett-Garg inequalities are violated, as explained before
is also observed that for K3,only the upper bound is relevant, 
but for K4 both bounds are important. 

 
III.  EXPERIMENT

 
Once the theory is explained , the following step will be 

to prove if the Leggett-Garg inequalities are violated or not
reality with the help of realized experiments
comparison will be realized between the theory predictions 
and the data obtained.  

In this TFG the experiment used is  based
of the Leggett-Garg inequalities in neutrino
oscillations[6]. 

This experiment studies the oscillation of neutrino 
flavours between the muon and the electron neutrinos. As 
such, it is assigned the observable Q to neutrino flavo�|Sxy〉 � 	 |Sxy〉 and �|SxQ〉 � 	)|SxQ〉, for muon
neutrino states respectively. 
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in (24) for Ωτ, where 

are forbidden under classical 

expression and representation are as 

� � (25)  

 
in (25) for Ωτ , where the 

region where the values are forbidden under classical predictions is 

under quantum mechanical evolution, the 
explained before. It 

,only the upper bound is relevant, 

EXPERIMENT 

the following step will be 
Garg inequalities are violated or not in 

with the help of realized experiments, where a 
comparison will be realized between the theory predictions 

based on the violation 
nequalities in neutrino flavour 

the oscillation of neutrino 
flavours between the muon and the electron neutrinos. As 

the observable Q to neutrino flavours  as 
, for muon- and electron- 

In  order to compare the theory with the data obtained, the 
prediction will be calculated by
of Q for a time interval tj-ti under
for neutrino propagation given by (with 

 

 

m
� 	z{ ,	|}Q+ ,|}y4{
, 12 ~

�� ) � cos 2g� sin 2g
≡ ��_ ,	�] N ]̂2  

 
 
Where a time evolution operator U
 θ is the neutrino vacuum mixing angle

38.54º[7], mνμ and mνe are the mass of the

neutrinos, � ≡ �|}y+ )|}Q

frequency, experimental data gives the value of

|}Q+� � 2.41	a	10(* eV2[7].
charged/neutral current potential due to coherent forward 
scattering of neutrinos with electrons/neutr
GF is the Fermi coupling constant
considered that matter effects��/� � 0 . 

Since the term proportional to the identity matrix I affects 
all flavour states identically it will not contribute to flavour 
oscillations, also since this experiment is in
limit, it is possible to approximate p for E as the relativistic 
neutrino momentum-energy. 

 

Considering Hosc≡ �]N�cc]
+ , 

�� sin 2g , 0, )� cos 2g�, it is
operator U as: 

 

 
s��: q�, q�� ≡ s�W���` sin�W��� ��o N ô ,	�r

Where the oscillation frequency 
expressed in the phase ψij as: 

 W�� � 	�2 �q
If ��� is defined as ��� ≡ r̂,

evolution operators , ���  is obtained 

 

��� � 	s�W���t
�	 cos�W��
,	sin�W:��
,	2 sin�W
, 	2 sin�W

By using the correlation function (1
 ��� � 1 ) 2 sin�W

And using this result, and considering that t
theoretical K4 is: 

1,5 2

1,5 2

Barcelona, January 2018 

order to compare the theory with the data obtained, the 
by the predicted time evolution 

under the following Hamiltonian 
for neutrino propagation given by (with ћ=c=1)[6]: 

}y+ , ��2 , ��� _� sin 2g� cos 2g ) ��� 	
(26)  

time evolution operator U will be calculated. 
 is the neutrino vacuum mixing angle, measured as 

are the mass of the respective 

}Q+� 2{�  is the oscillation 

, experimental data gives the value of    �|}y+ )
. ��/� � √2��MQ/% is the 

charged/neutral current potential due to coherent forward 
scattering of neutrinos with electrons/neutrons in matter and 

is the Fermi coupling constant, however, since it is 
effects are negligible in this case,     

Since the term proportional to the identity matrix I affects 
all flavour states identically it will not contribute to flavour 

this experiment is in the relativistic 
approximate p for E as the relativistic 

, with �] � ��o , 0, �r� �
it is obtained the time evolution 

� � � cos�W���_ )�r N r̂�  (27)  

the oscillation frequency ω for energy E is 

�q� ) q�� (28)  

, and with the help of the time 
is obtained as : 

� �t���s�W���
� ���+ r̂
� ���+ �1 ) 2�o+� r̂
�W���+ �o�r ô�W��� cos�W����o �̂ 

(29)  

By using the correlation function (17): 

�W���+ sin�2g�+ (30)  
and considering that ti+1- ti = τ ,  the 
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$?
= 2 , 2 sin�3W���+ sin�2g�+
) 6 sin�W���+ sin�2g�+ 

 

FIG. 3:  The graphical representation of the theor
versus the sum of relative phase (used instead of the relative phase 
in order to better compare the theoretical prediction with the data)
considering sin(2θ)2 = 0.95[7], where the region where the values 
are forbidden under classical predictions is shaded.

The data was gathered by the MINOS neutrino 
experiment[7], which measures a beam initially consisting
98% muon-neutrinos with an energy range of 0.5

Taking a look at the experiments results:

FIG. 4:  The distribution of K4 versus the sum of the phases 
obtained from the experiment. 
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