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Abstract: A study on the Leggett-Garg inequalities, whiateitmine if the classical hypothesis of macroscopic
realism is true for observables at atomic and $abiz scale measured at different times. It is tbthmat the bounds
in the Leggett-Garg inequalities calculated undkssical assumptions are violated when recaloglathe
Leggett-Garg inequalities under quantum mecharasaumptions. Finally, with the help of the resufs an
experiment based on neutrino flavour oscillatioitss found that classical assumptions are wrong.

l. INTRODUCTION . THEORY
During the first half of the 2Dcentury the foundations of
guantum mechanics were established, the brangiyafics In order to begin, the theory section will start by

which describe the phenomena that happen at atamic describing the assumptions [3] under which classica
sub-atomic scale. However, under this new theory predictions will be described: The first, the ided
revolutionary idea appeared: The idea that instedd macroscopic realisitAl), the idea that a macroscopic object,
deterministic expressions, the phenomena and Besegere which has available two or more distinct states tnesin a
described under probabilistic predictions. Thisaidereated definite state at any given time. The second idkat the
quite the discussions between physicists who agredtis system will be measured with_a non invasive mea§iPg a
description, like Niels Bohr, and physicists whoufht that measure which will not change the state of theesgst

the probabilistic description was due that we lacke

information and once we knew it, the phenomena wdnd It will also be assumed that a measure on therobde
described under deterministic expressions, like eAlb system will return a macroscopic dichotomic vama@l =+1,
Einstein. for which its two-time correlation function [4] ;C=

As a matter of fact, Einstein, together with BorigQ(t))Q(t;)) will be defined as:

Podolsky and Nathan Rosen wrote an article about _
the Einstein—Podolsky—Rosen paradox[1] the year5193 Cij = Z QinPij(Qi'Qj) )
where they described a thought experiment withie th QpQj=+1

assumption of local realisiftause-and-effect are limited to ) -
the speed of light and the particle must have aepisting where Q() =Q; and Q() =Q;, Rj is the probability of
value for any measurement before any measurement Rfaining Qand Q.

made). In this experiment, particles interactedtioh a way Lastly, the n-form Leggett-Garg inequality will be
that we could measure both their position and maumen defined as[4]:

more precisely than Heisenberg's uncertainty poleci =

allows. Therefore, it proved that under local Emjiquantum K, = z Cit1,i — Cnp (2)

mechanics were incomplete and we needed a hiddabiea . i=1

theory. However, at 1964, John Stewart Bell wraseainticle: Where this TFG will focus on the 3-form and 4-fority
On the Einstein Podolsky Rosen paradox[2], where ind K. o . )

introduced the Bell inequalities, a series of irsities which Once the initial assumptions, variables and pararseire
if local realismwas true, they would be bounded by certaiff€fined, the demonstration section starts by obtgiproof
values, but when quantum correlations are consigehese that under these classical assumptions, the 3-fofrthe
bounds are broken and as such, this phenomena tchano L€99ett-Garg parameter is bounded as:

described under a local realigheory. K3= (Gt (32— G =1 (3)

Inspired by Bell's inequalities, A. J. Leggett akisupam . o
Garg wrote at 1985 Quantum mechanics versus Mampasc A. Classical predictions
Realism: Is the Flux There when Nobody Looks?[3jeren } , ,
they introduced a series of inequalities based easures in In order to prove (3), this TFG will obtain theurals by
different times instead of measures of particlea @mtangled tWo different approaches. o N
state(a quantum state which cannot be factored @sduct For the first one, the description of the probapilof
of states of its local constituents) moving bacloaek. obtaining Q and Q will be in terms of a exhaustively

This introduction brings us to the ideas behing fiFG, defined system [4], a model where the hidden végspand
the Leggett-Garg inequalities, which are used te #e ¢ describe all the properties of the system estieely
macroscopic realism is true with the help of therelations before and after the measure respectively.

of measured observables at different times. The first step will be obtaining the expression the
probability of measuring and Q
In this TFG we present the Leggett-Garg inequaliied P(Qi, Q,-)
their violation in a recent experiment performedthwi _ , , , (4)
neutrinos, and finish with the conclusion. - fd( d¢g; (Qi1¢ri(¢1Qw 5 (@il Ir )
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- - + + -2
The measurement at; tis represented as function j + j + 2
§i7j(Qi/j18), the function that describes how the measure will _ + N B 2
disturb the state of the systemjag(’|Q;,{) and lastly, the + - - + 2
probability distribution over theand variables ag({). + _ + _ 2
. - . - - -2
Because the condition (A2) is imposed, the measiiie + + - " >
not disturb the state of the system ,which givesfttiowing " 5
condition:y; (¢'1Q;, ) = 6(¢" = O) - + - :2
P0n0) = [ #5(Q105@IONE)  ©) : : : : ;
- - - - 2
By combining the two expressions used to define the  TABLE II: The value of I for each possible combination of
correlation function (1): (Q;);, where +1 is written as + and -1 as -.
(Q:Q;)
_ N E O IANNE The second approach will be proven by using the
fd( Z Q:Q;45(Q;1)8: (@O correlation function ¢ obtained from the joint probability
QwQj=t1 (6) P;i(Q,Q)(1) and simply obtaining all possible combinations
- [ dgt0dct@end) |
Under assumption (Al),observable Q always has & wel

. _ defined value, so the two-time probability can b#amed
where(...) represents an expectation value of a varigble from[4]:

Using this equation in (2) when n =3 and n = 4:

P;(Qi Q) = Pij(Qs, Q2
K = [ dtl@cloc+ @@ o /(2:0) Qk;i,j (0@
= {Q3)¢{Qu)¢ ()
3lererr (e-g- P1(Q1,Q2) = Pi2(+,0Q2,Q1)
Ko = [ d8[@c400); + (@)et@a); o T Piy(= Qs Q1))
+ (Qu4)¢(Qs)
_ (Q:)Z(Qj)g]u(f) However, due to assumption (A2), the state of rstesn

will not be affected by the measure, therefore, dhder at

Since the expectation value of ©+1,as defined under which the measure is realized is irrelevant, and

(A1), using table 1 is noted that for a measureKgrit is Pi(Qa.Q2 QU= P (Q.Q2Qu)-
obtained Kk = -3 or 1, therefore, for multiple measures, the
average K will be bounded as <¥:<1. As observed, not
only there is proof of expression (3), but theralg proof of
a lower bound.

The correlation functions for Lare as follows, where +1
is written as + and -1 as -:

CZl :P(+,+,+)—P(+,+,—) -

(Q1)¢ (Qa)¢ (Qs)¢ K3 P(=, = 4) + P(= — =) — P(+,—+) + (10)
* * * ! P(+,—,=) + P(=+,+) = P(=,+,—)
- + + 1
* - + -3 Csp = P(+,+,+) + P(+,+,-) +
+ + - 1 P(—,—4) + P(—,— =) — P(+,—+) — (11)
: : + 1 P(+,—,=) = P(=+,+) — P(—+-)
- + - -3
- - - 1 C31 = P(+,+,4) = P(+,+,—) —
- - - 1 P(—,—+)+P(——-)+ P(+,—,+)— (12)

TABLE |: The value of K for each possible combination of P(+,= =)= P(=++) + P(—=+,-)

(Qi)¢,where +1 is written as + and -1 as -. . . .
After all the G are obtained, they will be used in

Similarly for K4 using table 2 , the bounds for an averag%Xpress'g? 2) )= \{v'ththe ?07%3?: extﬁzzzin isto
K,are described as <R;<2. og':zlaQizr%d' Qs @2, Q) = 1, 9 &xp

K3 =1-4[P(+,—+)+P(—+, )] (13)
The choice of P(+,—,+)=P(—,+,—)= 0 yields the

Qe | Qo | (@) | (Qude | K |00 hound 1,anBi(+, — +) + P(—, +,—) = 1 yields the
A A + A 2 lower bound -3,the same bounds found with the other
- + + + 2 approach, further solidifying our proof.
+ - + + -2 For K, using the previous method:
+ + - + -2
+ + + - 2
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K,=2—-4[P(+,— ++) + Expressing (17) in this new definition, the producif

P(—, +,+,—-)+P(—— +—)+ (d; - )-(d; - ) obtained in the anticommutation due to the
P(+,+,—+)+P(+,——+)+ (14) redefinition of Q are equal t; - d;)! + i(d;xd;) - &, and
P(—+,— )+ P+ —+-)+ remembering that the anticommutation of two Pauirioes
P(=,+,—1)] are zero, the alternative expression is obtained:
which with analogous procedure as before, yields Ci=a-a (18)
-25K 422,

Once is proven that¥and K, are bounded, the question  Once the correlation function for quantum mechargcs
of how a K, would be classically bounded is answered by[4]obtained, using expression (18) the rebui2lin terms of
—n<K,<n-2ifnodd (15) unit vectors for eachis:[4]
—(n—-2)<K,<n-2ifneven n-1

Ko=) Guy-d— yed (19)
The reasoning behind this bounds being as follows: —~
Thanks to expression (6),it is known tH&) - (Q;) can be Where defining); as the angle between vectogs and @
used to replacéy; - Q;), so building any Kusing (2) and the equation (19) turns into:
definition of G, an absolute maximum value of n-1 is

obtained forY™ ! Cyq ;. n-1 n-1
In order to obtain the upper bour®{=' C;, ; needs to be Ky = Z cosd; — cos Z 0; (20)
maximized, achieved by imposing that all #@&) must be i=1 i=1

equal, doing this procedur&,’={' C;;,; is equal to n-1,
however, as there is-a(Q,,) - {(Q,), it makes the upper bound
n-2.

And if K3 and K, are represented, the maximum values
obtained are?'/2 and 2+/2 respectively.

For the lower bound, due to its construction, thenf It is observed that they violate the bounds gfad K
(Qi+1) - (Q;) has to be negative. Therefore, the followin escribed under classical predictions (1 and 2ecisgely).
condition is obtainedQ;,,) = —(Q;). his is an important result, because thanks todHfsrence

It is also observed that all the terms can be esged as of boundaries, it is possible to check with thastauction of
(0 oaa) - {Qi even), from which is extracted the condition thatis or K4 if the system behaves cIassmaI.Iy or quantum
in order to obtain the lowest possible value, _mﬂmechamcally by the range of values obtained duting
, — . measure.
@ gﬁ?) K, is<%(;td%)r.1ly the sum term, there's alsdgg) - An example of how the theory would be applied wdd
(Q,),which under the previous condition, is +1 if reieen or  SUPPOSING that the system evolves under the fallgwdy

-1 if n is odd, which makes the lower bound for K if n is model Hamiltonian:

odd and -n+2if nis even. = Q;x
B Quantum mechanical predictions As such, the time evolution operator will assume th
Once the classical bounds are obtained and prahen, form: 1
task will change to redoing the same proceduresubder U= cos(2(tj —t;) - /2)1 - 21)
guantum mechanics in order to see if differencgseapin isin(2(t; —t;) - 1/2)0—x
the bounds we obtain[5].
First, operator Q returns the value +1 whrl) is Defining operator QEQ as Q; = g,, Q will be

measured and the value -1 wHenll)+Ls measured, therefore, gptained applying the time evolution operator {o Q
the projection of operator Q will bez— where a is the value Qtp=Q; = U’F(tj - fi) Q- U(tj — tz) =
obtained in the measure. oS (Q(t. _ ti)) o,

Second, the expression of the joint probabilitye(uo define /
expression (1)) of obtaining for;Qutcomea = +1 and for
Q, outcomeb = 1 is:

(22)

And for simplicity, it is assumed that the timedrvals
between measures are eqyal,— t; = 7 .

i 1+bQj i Al | .

P(a,b) = (¢ |1+ZQ - 1+§Q Y) = i+ For obtaining ¢ expression (17) will be used and fof K
1 1 it ined:
la JUY + b ) + (16) it is obtained:
s W1Q:1¥) + (IPIlelll’) K, = (n—1)cos(2) (23)
5 DWI{Q QW) + Zb(WIQ:Q;QilY) — cos((n — 1))

With the use of (1f; = X4p-+1abP(a,b), and This expression, which if n =3 is represented as:
using the previous notation; €Can be expressed as: K; = 2cos(2t) — cos(201) (24)

1
= = 2 0; 17
Cy 2 wile o) 7 and the graphical representation is as follows:

However, it is also possible to work with vectdrssuch
case, Qis equaltai; - &, whered; is a unit vector for;tand
o is a vector of Pauli matrices.
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Qt/nt

FIG. 1. The graphical representation of Kn (24) for Qt, where
the region where the valueare forbidden under classic
predictions is shaded.

And for n=4, theexpression and representation are
follows:

K, = 3cos(2t) — cos(3021) (25)
I(4
3 -
1 .
¥<P
-1 A
'3 1 1 I 1
0 0,5 1 1,5 2
Qt/n

FIG. 2: The graphical representation of ik (25) for Qt , where the
region where the values are forbidden under clakpiedictions i
shaded.

As it is seenunder quantum mechanicevolution, the
Leggett-Garg inequalities are violated,eaplained befol. It
is also observed that forsfonly the upper bound is releva
but for K, both bounds are important.

Il. EXPERIMENT

Once the theory is explainedhe following step will be
to prove if the LeggetGarg inequalities are violated or in
reality with the help of realized experime, where a
comparison will be realized between the theory fotezhs
and the data obtained.

In this TFGthe experiment used iBaser on the violation
of the Leggett-Garg niequalities in neutrir flavour
oscillations[6].

This experiment studiegshe oscillation of neutrin
flavours between the muon and the electron newdrids
such, it is assignethe observable Q to neutrino fleurs as

Qlvy) = |lv,) and Q|v,) = —|v,), for muor- and electron-

neutrino states respectively.
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In order to compare the theory with the data obtaittex
prediction will be calculatetdy the predicted time evolution
of Q for a time interval;#; unde the following Hamiltonian
for neutrino propagation given by (wih=c=1)[6]:

H
Tnve2 +mvu2 Vc
= (p-i— 4p + > +Vy |l
1V, — wcos20 w sin 26 (26)
+E( w sin 20 wcosZB—VC)
_ r-o
=7”01+ T

Where aime evolution operator will be calculated.
0 is the neutrino vacuum mixing an, measured as
38.54°[7], m, and m. are the mass of t respective

) m,,% —m,,>? ) o
neutrinos, wz( Vi ve )/Zp is the oscillation

frequency experimental data gives the value (mw2 -
m,e?) =241x107° eV7]. Ve =V2Gin,, is the
charged/neutral current potential due to coheremtvdrd
scattering of neutrinos with electrons/nons in matter and
Gr is the Fermi coupling const;, however, since it is
considered that mattesffect: are negligible in this case,
VC/N =0.

Since the term proportional to the identity matraffects
all flavour states identically it will not contribeito flavour
oscillations, also sincéhis experiment is | the relativistic
limit, it is possible toapproximate p for E as the relativis
neutrino momentum-energy.

=
Ql

, with 7=(1,0,1,)=
is obtained the time evolution

Considering B=

(wsin26,0,—w cos 26), it
operator U as:

S

U(w:t;,t;) = U(yy;) = cos(yy;)I —
isin(lpij) (ry -0 + 1, - 0,)
Where the oscillation frequencyw for energy E is
expressed in the phagg as:

Y = %(tj -t) (28)

If Q; is defined a%); = o,, and with the help of the time
evolution operatorst is obtainecas :

Q= U(wy) QU (wy)
cos(lpij)z o,
Sin(lp:ij)z (1 -2rd)a,

(27)

+ (29)
. 2
+ 2 sm(tpi}-) Ty T, 0y
+ 2 sin(z/)i]-) cos(lpij)rxay
By using the correlation function7);
C;j = 1—2sin(p;;)” sin(26)? (30)

And using this resuliand considering tha.;- ti =t, the
theoretical Kis:
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= 2+ 2sin(3;;)” sin(260)? (31)
-6 sin(tpij)z sin(26)?
4
3
S 2
1
0 : : . . .
0 0,5 1 1,5 2 2,5
b1

FIG. 3: The graphical representation tife theoetical K, (31)
versus the sum of relative phasesed instead of the relative phi
in order to better compare the theoretical predlicivith the date
considering sin(@? = 0.95[7} where the region where the valt
are forbidden under classical predictions is shi

The data was gathered by the MINOS neut
experiment[7], which measures a beiaitially consistin of
98% muonneutrinos with an energy range of-50 GeV.

Takinga look at the experiments rest
4

08 1
Relative phase )"y

12 14 16

FIG. 4. The distribution of K versus the sum of the phasy;
obtained from the experiment.

Figure obtained from [6].A. Formaggio, DIl. Kaiser, M.M.

Murskyj
Inequali

Itis
violatio

and T.E. Weiss, Violation of the Leg¢-Garg
ty in Neutrino Oscillations, PRL 117, 0504216

observed thatot only the values obtained are a cl
n of the LeggetGarg inequalitieiand as such proof

that macroscopic realism is not trfor neutrinos) but that the

values

follow the quantum mechanical prediction,ichl

suggests that quantum mechanics are the correttothéd
describe atomic and swiemic phenomena.

V. CONCLUSIONS

As seen with the theonunder the hypothesis of
macroscopic realis and that a_non-invasive
measureis realized the bounds obtained on the
construction of K(the Legge-Garg parameter,
defined as a series of correlation functions in
under classicapredictions are broken when, is
constructed under quantum mechan
predictions.Therefore, by comparit the range of
values obtained during a measitit is possible to
check if classicalprediction: in this scale are
correct or not.

Thanks to theexperimen there is data to check if
macroscopic realism is true iratomic and sub-
atomicscale. As seen, data suggests a violatf
the Leggettsarg inequalities ar proof that
suggests that thehenomen in this scale behaves
as quantum mechanics dicts.
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