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Abstract: We study dark and bright solitons in confined Bose-Einstein condensates of ultracold
gases with repulsive and attractive atom-atom interaction. First, we compute analytic properties
of the solitons in absence of the trap. Then, we consider the problem of the collision of a bright
soliton with a barrier. This is studied by solving numerically the 1D Gross-Pitaevskii equation in
the presence of a harmonic oscillator potential and a Rosen-Morse barrier. We discuss in detail the
conditions for having a transmission coefficient of T = 0.5. Then, we study the evolution of the
energies during this process and the nature of the part transmitted.

I. INTRODUCTION

Recently solitons have been a very active field of re-
search in many areas of science such as astrophysics,
molecular biology and non-linear optics [1]. The term
soliton is associated to localized solitary wave packets
that maintain their shape and have particle-like prop-
erties that allow them to strongly interact with other
solitons and retain their identity [1] .

The existence of these type of solutions is a common
feature of nonlinear equations. One ideal physical sys-
tem to study nonlinear phenomena in quantum many-
body physics are Bose-Eisntein condensates (BECs) in
ultracold gases. As in BECs most of the atoms populate
the same quantum state, the condensate can be described
by a mean-field theory such as the Gross-Pitaevskii (GP)
theory [2]. The nonlineality is a consequence of the inter-
atomic interactions. In particular, depending on whether
the interactions are attractive or repulsive the solitons
that will appear will correspond to bright or dark soli-
tons, respectively.

Both types of solitons correspond to a modulation of
the density profile. Bright solitons [3, 4] are associated
to a local maxima of the density presenting an increase of
the density profile whereas dark solitons [5] correspond to
a localized suppression of the background density. Dark
solitons that present a total suppression of the back-
ground density are called completely dark solitons and
appear when the propagating velocity is zero.

This work is organized as follows. First in Section II we
will explain the mean-field theory used, then in Section
III we will characterize solitons in homogeneous systems
that are solutions of the 1D Gross-Pitaveskii equation.
Then, in Section IV we will perform numerical simula-
tions of bright solitons moving in the space inside an
harmonic trap with a Rosen-Morse barrier at its cen-
ter [6]. The use of a Rosen-Morse barrier will avoid the
shape effects during the collision. In the last part of the
study we will scrutinize under which conditions the ini-
tial soliton splits in two after colliding with the barrier.
In Section V we will summarize the main conclusions.

II. THEORETICAL BACKGROUND

The evolution of BECs can be described using the time
dependent mean-field Gross-Pitaveskii equation [2]. In
absence of trapping potential, it reads,

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂z2
+ g|ψ|2ψ (1)

where g measures the inter-atomic interaction strength.
The GP equation reduces to the Schrödinger equation in
absence of interactions. To study solitonic solutions it is
useful to introduce a new set of units,
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ξ
, ṽ =
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c
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~/(|g|ni)
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where ξ is the healing length of the soliton, c is the sound
speed and ni will be specified in the following.

In solitonic units the Gross-Pitaveskii equation reads,
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where n = |ψ(z̃, t̃)|2. The coefficient g
|g| depends on the

nature of the interaction, attractive for bright solitons
and repulsive for dark solitons, and ni are defined as
the background density, n∞, for dark solitons and as the
central density, n0, for bright solitons. If we consider the
homogeneous case, Vext = 0.

In Section III we will introduce an external potential
for the numerical simulation, we will consider an har-
monic trap with a Rosen-Morse barrier [7] at its center
of the form,

Vext(z̃)

n0|g|
= Ṽb

1

cosh2 z̃
σ̃

+
1

4
ω̃2z̃2, (4)

where ω̃ is the frequency of the confinement, and Ṽb and
σ̃ are the parameters of the potential barrier expressed
in the solitonic units.
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FIG. 1: Density profile of a stationary bright (top panel) and
a dark (lower panel) soliton solution. The healing length, ξ,
gives an idea of the soliton width.

III. DARK AND BRIGHT SOLITONS:
HOMOGENEOUS SYSTEM

We focus the study on solitons whose wave functions
are solution of the homogeneous case. As we men-
tioned previously, we consider separately dark and bright
soltions. The dark soliton solution of the time dependent
GP equation reads [2],

ψ(z̃, t̃) =
√
n∞(iṽ +

√
1− ṽ2 tanh [(

z̃√
2
− ṽt̃)

√
1− ṽ2]), (5)

where ṽ is the propagation speed.
The bright soliton solution propagating at a velocity ṽ

reads [8],

ψ(z̃, t̃) =
√
n0

1

cosh z̃√
2

eiz̃ṽ/
√
2ei(

1
2−

ṽ2

4 )t̃. (6)

A. Chemical potential

If we consider the time-independent Gross-Pitaeveskii
equation we can compute the chemical potential associ-
ated to solitons without velocity, ṽ = 0, knowing that the

wave function introduced before are solution of the time
independent GP,

−∂
2ψ(z̃)

∂z̃2
− µ

|g|ni
+

g

|g|
n

ni
ψ(z̃) = 0, (7)

considering that for dark solitons we will have g = |g| and
ni = n∞ and for bright solitons g = −|g| and ni = n0.

µdark = n∞|g| , (8)

µbright = −1

2
|g|n0 , (9)

these expressions agree with the ones in [9] and [2], re-
spectively.

B. Number of atoms

We have considered that the thermodynamic vari-
able is the chemical potential rather that the number
of atoms. So, the number of atoms will be obtained,

N = −∂E
∂µ

=

∫ ∞
−∞
|ψ(r)|2dr . (10)

If we consider the wave-function introduced for bright
solitons, the number of atoms is

Nbright = 2
√

2ξn0 . (11)

And following an analog procedure for dark solitons [8],

Ndark = −2
√

2ξn∞ . (12)

We can notice the negative sign obtained for dark soli-
tons. This sign can be interpreted due to the fact that
dark solitons are a region of decreased density whereas
bright solitons are a gain of density.

C. Energy

The energy of the soliton can be computed as,

E =

∫ ∞
−∞

(
~2

2m
|∇Ψ|2 + Vext(r)|Ψ|2 +

g

2
|ψ|4)dr. (13)

We can separate three terms that contribute to the en-
ergy,

E = Ekin + Epot + Eint, (14)

where in the kinetic energy for bright solitons we consider
two different terms Ekin = Evkin + Epkin. The first one is
the kinetic energy associated to a velocity of the soliton
and the second term will be the quantum pressure. As
we are considering the homogeneous situation, the total
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energy will only depend on the kinetic and interaction
term.

First we consider dark solitons

ekin =
1

|N |

∫ ∞
∞

~2

2m
|dΨ

dz
|2dz =

1

3
(1− ṽ)3/2|g|n∞ . (15)

And, for the interaction term we have to substract the
background density to compute only the soliton part of
the energy,
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|N |

∫ ∞
∞

g

2
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3
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(16)
The total energy becomes,

edark =
2

3
(1− ṽ)3/2|g|n∞. (17)

For bright solitons, first we consider solitons at rest, so
the only term that will contribute to the kinetic energy
will be the associated to the quantum pressure,

epkin =
Epkin
N

=
1

6
|g|n0 , (18)

if we add velocity to bright solitons, there will be an extra
term due to the velocity,

evkin =
Evkin
N

=
|g|n0ṽ2

2
. (19)

The interaction term obtained following the same pro-
cedure used for dark solitons but without subtracting the
background density for obvious reasons reads,

eint =
Eint

N
= −1

3
|g|n0 . (20)

Finally, the total energy for bright solitons reads,

ebright = −1

6
|g|n0 +

|g|n0ṽ2

2
. (21)

D. Virial theorem

The virial theorem can be derived in 1D and can be
used to check if the energies found previously for bright
solitons satisfy this relation. To begin with we have to
consider a transformation given a parameter λ,

ϕ(r)→ ϕλ(r) = λ
1
2ϕ(λr). (22)

The total energy considering this parameter is given
by

e(λ) = λeint(ϕ) + λ2ekin(ϕ), (23)

as in the ground state is a minimum and corresponds to
the energy of λ = 1

de(λ)

dλ
= 0 . (24)

The relation that energies must satisfy is

eint(ϕ) + 2ekin(ϕ) = 0 . (25)

The results found in Eqs. (18) and (20) fulfill this rela-
tion.

E. Current density

We can also compute the current density associated to
solitons. It will measure the propagation of matter in the
system. The general expression reads [2],

j(r, t) =
−i~
2m

(ψ∗∇ψ − ψ∇ψ∗). (26)

For dark solitons we obtain

j(r, t) = −ṽcn∞(1− ṽ2)
1

cosh2 [( z̃√
2
− ṽt̃)

√
1− ṽ2]

, (27)

if we subtract the density corresponding to a dark soliton
with the wave function we have introduced before of the
background density n∞ we find

n∞ − ρ = n∞(1− ṽ2)
1

cosh2 [( z̃√
2
− ṽt̃)

√
1− ṽ2]

. (28)

That allows us to express the current density in a com-
pact form as,

j(r, t) = −v(n∞ − ρ). (29)

The movement of the dark soliton produces an associ-
ated current density with opposite sign as the velocity
of propagation of the dark soliton. This is because dark
solitons are a lack of particles in a background density.

For bright solitons we get,

j(z, t) =
n0cṽ

cosh2 z̃√
2

. (30)

The density associated with the wave function we are
considering is,

ρ =
n0

cosh2 z̃√
2

, (31)

and therefore we can write the current density in the
familiar form,

j = vρ, (32)

which can be interpreted contrasting with the case of
dark solitons as the particles contained in the soliton are
the responsible to create the current density due to their
movement.

IV. SIMULATION AND RESULTS

In this section we study numerically the temporal
evolution of bright solitons using the Crank-Nicolson
method, which is described in detail in [10-11]. We also
introduce a harmonic oscillator potential and a Rosen-
Morse barrier, it is important to point out that now we
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FIG. 2: Behaviour of the transmission coefficient T for dif-
ferent kinetic energy of the initial bright soliton. The initial
soliton is at z̃ = 15 and the parameters of the trap and the
barrier are ω̃ = 30π10−3, Ṽb = 0.8 and σ̃ = 0.67. The initial
velocity of the bright soliton is changed to obtain a rang of
kinetic energies. This figure agrees with Fig.2 of [6].

are considering a non homogeneous system in contrast to
the previous sections.

When a bright soliton collides with the Rosen-Morse
barrier, the soliton splits into two different solitons where
one of them crosses the barrier and the other is reflected.
In Fig. 2 we show the fraction of the soliton that is
transmitted as a function of the initial kinetic energy
of the soliton. As seen in the figure, depending on the
initial kinetic energy we can get almost all values for the
transmission coefficient. Now we will focus on splitting
the initial bright soliton in two equal parts, T = 0.5.
With the data obtained for Figure 2 the velocity that
will satisfy this condition corresponds to,

ṽ = 0.62624 . (33)

In Fig. 3 we show the density profile after the collision
for this initial velocity. The full evolution is shown in
Fig. 4. The soliton is seen to split in two parts that
seem to behave like soltions. In the particular case we
are considering, imposing the condition T = 0.5, we have
checked that the two parts can be adjusted to a soli-
ton solution with a different n0 which implies a different
healing lenght. In our case the central density of the new
solitons is found to be n0 = 0.26. Qualitatively we have
observed that the propagation speed for the two bright
solitons is not the same, the transmitted soliton has a
higher velocity than the reflected. After the splitting,
the two solitons recombine after colliding with the bar-
rier in such a way that in the end the soliton crosses the
barrier.

Let us now study how the energies evolve during the
collision. The interaction energy remains constant until
the soliton reaches the barrier, see Fig. 5. When the

FIG. 3: Simulation of a solition crossing a Rosen-Morse bar-
rier with an harmonic trap that fulfills the condition T=0.5,
the solitons after the collision with the barrier have the same
number of particles. This example corresponds to Ṽb = 0.8,
σ̃ = 0.67 and ṽ = 0.62624.

FIG. 4: Process of splitting and recombination of a bright
soliton. At the time the soliton crosses the barrier, t̃ = 7 it
splits into two which move in opposite directions. Due to the
harmonic oscillator where they are trapped, the two solitons
collide again at t̃ = 40 with the barrier and after the collision
they recombine in a soliton that completely crosses the bar-
rier. The color represents the values |ψ(z̃, t̃)|2 and its shown
the evolution during t̃ of the position z̃.The initial position is
z̃ = 15, the velocity is ṽ = 0.62624 and the parameters of the
barrier and the trap Ṽb = 0.8, σ̃ = 0.67 and ω̃ = 30π10−3.

soliton collides with the barrier there is an increment of
the energy because during the first instant of the collision
the soliton reduces its width. Then, after the collision,
the interaction energy is smaller since the two remaining
solitons are smaller. Regarding the kinetic energy, we
can see how it increases when the soliton is closer to the
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FIG. 5: Evolution of the energies of the soliton during the
collision. In this figure is shown the interaction, kinetic and
potential energy during the process of a bright soliton collid-
ing with a Rosen-Morse barrier and the conservation of the
total energy. The collision occurs at t̃=7. The energy is given
in solitonic units, |g|n0. This figure corresponds to the simu-
lation shown in Fig. 4.

center of the harmonic oscillator. However, when the col-
lision with the Rosen-Morse barrier is produced, it starts
to decrease. The behavior of the potential energy can be
understood in the following way. First it decreases, cor-
responding to the soliton approaching the center of the
trap. At the collision it increases due to the barrier.

V. CONCLUSIONS

We have studied solitons in BECs using the Gross-
Pitaveskii equation. We have been able to compute mag-

nitudes such as the chemical potential, the number of
atoms, the current density and the total energy for dark
and bright solitons. We have also checked the virial the-
orem for the energies computed for bright solitons.

We have analyzed the propagation of bright solitons
for a non homogeneous Gross-Pitaveskii equation, intro-
ducing a Rosen-Morse barrier and an harmonic oscillator.
We have studied the transmission coefficient as a func-
tion of the initial kinetic energy. This has allowed us to
find a relation between this coefficient and the velocity of
the soliton and we have been able to numerically adjust
this relation to obtain the condition for T = 0.5.

In addition, we have focused in this situation and sim-
ulated the process of collision and recombination of a
bright soliton. And we have studied the energies during
the collision process.

On the other hand, we have observed that the remain-
ing parts of the soliton when it collides with the barrier
can be described using the Eq. (6) with a different pa-
rameter n0 and therefore with a different ξ which lead
us to conclude that they are also bright solitons. Finally,
as a possible continuation of this work we could study
in more detail the velocity of both, the transmitted and
reflected solitons.
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