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Abstract: We analyze the effects of including ∆(1232) isobars in an equation of state (EoS) for
cold, β-stable neutron star matter, employing Relativistic Nuclear Mean Field Theory. The selected
EoS reproduces the properties of nuclear matter and finite nuclei, and also allows for the presence
of hyperons in neutron stars having masses larger than 2M�. We find that the composition and the
structure of neutron stars are critically influenced by the addition of the ∆’s, an observation that
allows us to constraint their interaction with the meson fields sigma and omega. Imposing that the
EoS is stable and ensures the existence of 2M� neutron stars, as well as requiring agreement with
data of ∆ excitation in nuclei, we find that, in the absence of other mechanisms stiffening the EoS
at high densities, the interaction of the ∆’s with the sigma and omega fields must be stronger than
that of the nucleons.

I. INTRODUCTION

Neutron stars are the most compact objects known
without an horizon event [1], and their cores contain
strongly interacting matter, several times denser than the
matter at the center of nuclei.

The structure and properties of neutron stars primarily
depend on the equation of state (EoS). Even though the
EoS at saturation density can be determined from several
experimental sources, the large densities at the center of
these objects have not been reached experimentally, and
the EoS of neutron stars’ cores remains a mystery.

In order to model the structure and composition of
matter in these extreme conditions, new phenomenologi-
cal theories, which take into account effective particle in-
teractions, phase transitions and general relativity, have
been developed [2–5].

The composition of a neutron star is driven by the so
called β-equilibrium condition, which establishes equilib-
rium among weak interaction processes, imposing charge
neutrality and baryon number conservation [1]. A neu-
tron star is mostly composed by neutrons, protons and
electrons. However, due to the large values of the nucleon
chemical potential at the large inner densities, the con-
version of nucleons to hyperons is energetically favorable.
The appearance of hyperonic degrees of freedom relieves
the Fermi pressure exerted by baryons and makes the EoS
softer, which leads to a reduction of the maximum pos-
sible mass of neutron stars below 2M�, in disagreement
with recent observations [6, 7]. However, it is still possi-
ble to tune some parameters, like the couplings between
the meson fields and the baryons, to fulfill the conditions
imposed by recent observations. In the present work,
we use as starting point the EoS of the FSU2H model
[4] which reproduces faithfully the properties of finite
nuclear matter at saturation density, heavy-ion collision
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measured parameters, the symmetry energy Esym and
its derivative (parameter L), and is compatible with the
2M� limit observations.

While many studies have been conducted regarding
the presence of hyperons in the core of neutron stars
[8], little work has been done to study the appearance
of ∆(1232) isobars, probably due to the outcome of [9],
which indicated that these particles would only appear
at much higher densities than the typical one in neutron
star cores.

Nonetheless, recent studies [5] have pointed out that
the density onset for ∆ particles in neutron star matter
would be around (2 − 3)ρ0 (with ρ0 = 0.16 fm−3 the
saturation density), a density which is easily attained
in neutron stars. The aims of the present work are to
analyze the interplay between ∆ particles and hyperons
using the recently fine tuned EoS of Ref. [4] and to study
the effects of such modification in the maximum masses
and radii of neutron stars.

II. EQUATION OF STATE

In this section, we introduce a modified version of the
EoS of the FSU2H model [4], which includes ∆(1232) de-
grees of freedom, to describe the core of neutron stars.
For the inner and outer crust, we employ the EoS pre-
sented in [10].

As in [4], we adopt the scheme of the Relativistic Nu-
clear Mean Field (RMF) theory, which provides a covari-
ant description of the EoS. In RMF theory, the interac-
tion between baryons is mediated by the exchange of a
scalar meson σ, and three vector mesosns, ω, ρ and φ.
The Lagrangian density of the theory can be written as

L =
∑
b

Lb + L∆ + Lm +
∑
l=e,µ

Ll (1)
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with

Lb = Ψ̄b(iγµ∂
µ −mb + gσbσ − gωbγµωµ

− gφbγµφµ − gρbγµ~Ib~ρµ)Ψb

L∆ = Ψ̄∆ν(iγµ∂
µ −m∆ + gσ∆σ − gω∆γµω

µ

− gρ∆γµI3ρµ3 )Ψν
∆
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where Ψb and ψl are the baryon and lepton Dirac fields,
and Ψ∆ is the Rarita-Schwinger spinor for ∆ isobars.
The subscript b runs over the octet of light baryons, the
subscript l takes the values l = e, µ and the subscript
m runs over all the meson fields, i.e., m = σ, ω, ρ and φ.

Ωµν , ~Rµν and Pµν are the mesonic strength tensors of the
ω, ρ and φ fields, respectively. κ, λ and ζ are the coupling
constants of the self-interactions of σ and ω, and Λω is the
coupling constant of the mixed quartic isovector-vector
interaction. Finally, the strong interaction couplings to

a certain baryon are denoted by g and ~Ib denotes the
isospin vector.

From the Lagrangian density in Eq. (1) and working
in the so called Mean Field Approximation, which es-
sentially consists of replacing the meson fields by their
expectation values (σ̄ = 〈σ〉, ρ̄ = 〈ρ0

3〉, ω̄ = 〈ω〉, and
φ̄ = 〈φ0〉), we can derive the energy density of the sys-
tem [4],

ε =
∑
b

εb +
∑
l

εl +
∑
∆

ε∆ +
1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2

+
1

2
m2
ρρ̄

2 +
1

2
m2
φφ̄

2 +
κ

3!
(gσσ̄)3 +

λ

4!
(gσσ̄

4)

+
ζ

8
(gωω̄)4 + 3Λω(gρgωρ̄ω̄)2 (2)

where
∑
b εb,

∑
l εl and

∑
∆ ε∆ are the contributions of

the light baryons of the octet, the leptons and the ∆ iso-
bars, respectively. Mainly, the contribution of the parti-
cles to the energy density depend on their Fermi momen-
tum and effective masses, defined for baryons and ∆’s as
m∗
b = mb − gσbσ̄ and m∗

∆ = m∆ − gσ∆σ̄.

Besides, the pressure of the system can be obtained
from the thermodynamic relation [4],

P =
∑
i

µini − ε (3)

where ni is the density of the different particles and µi

the corresponding chemical potential, defined as

µb = EbF + gωbω̄ + gρbI3bρ̄+ gφbφ̄, (4)

µ∆ = E∆
F + gω∆ω̄ + gρ∆I3∆ρ̄, (5)

µl = ElF (6)

where EbF , E∆
F and ElF denote the Fermi Energies of

baryons, ∆’s and leptons, respectively. Thus, the EoS of
the core of a neutron star strongly depends on its com-
position and on the couplings to the meson fields.

The conditions of charge neutrality and β-equilibrium1

in the matter of the core of neutron stars impose the
following conditions on the chemical potentials µi and
particle densities, ni,

µi = biµn − qiµe, (7)

0 =
∑
cb

qini +
∑
l

qlnl, (8)

n =
∑
b

ni (9)

where bi is the baryon number and qi is the charge of
particle i. For a given baryon density, n, the equations of
motion for the meson fields and the different species have
to be solved self-consistently, subjected to the restrictions
presented in Eqs. (7), (8) and (9), in order to obtain
the chemical potential and the corresponding density of
each of the species, and the relation between the energy
density and pressure (EoS) for that density.

As a final condition, we require the resulting EoS to
be stable (i.e. dP

dε > 0 ∀n) and stiff enough as to ensure
the existence of neutron stars with masses larger than
2M�, in agreement with recent observations. These two
restrictions will be crucial in the discussion that follows.

III. STELLAR STRUCTURE AND TOV
EQUATIONS

In the present work we analyze static, spherically sym-
metric neutron stars described by the EoS presented in
[4] for the core and the EoS of reference [10] for the inner
and outer crust.

Imposing hadrodynamic equilibrium within the the-
ory of General Relativity yields the set of differen-
tial equations known as Tolman-Oppenheimer-Volkoff

1 We say that a neutron star is β-stable if it is stable under β-
decay, i.e., if a dynamical equilibrium exists such that the number
of neutrons which undergo the reaction n −→ p + e− + ν̄e is
compensated with the number of protons and electrons colliding
to generate neutrons, p+ e− −→ n+ νe.
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(TOV) equations,

dP (r)

dr
= −G

r2
[ε(r) + P (r)]×

[
M(r) + 4πr3P (r)

] [
1− 2GM(r)

r

]−1

(10)

dM(r)

dr
= 4πε(r)r2, (11)

where r is the distance to the center of the star. These
two equations can be integrated from the origin with ini-
tial conditions M(0) = 0 and an arbitrary value for the
central energy density ε(0) = εc until the pressure p(r)
becomes zero. The point R where the pressure vanishes
defines both the radius and the total mass, M(R), of the
star.

Pressure plays a fundamental role in the determina-
tion of the stellar structure of relativistic stars, and it is
ultimately responsible of the existence of a limiting mass
in these kind of objects, independently of the considered
EoS [2]. However, the explicit values of the limit mass
and radius of neutron stars are linked to the EoS, a fact
that offers a way to test the validity of the different mod-
els (and to limit the values of the parameters on which the
model depends), just requiring that the resulting neutron
stars have masses that could reach the maximum value
observed of around 2M� and radii smaller than 13 km.
In particular, the maximum mass of a neutron star pre-
dicted by the EoS strongly depends on the stiffness of
the core, which it is also known to become softer with
the appearance of both hyperons [4] and ∆’s [5].

IV. RESULTS AND DISCUSSION

Even though the model presented in Sec. II has been
developed for the four ∆ isobars, in our implementation
only the ∆− and the ∆0 have been explicitly considered.
The reason, as can be inferred from Eq. (7), is that
negatively charged and neutral particles with the same
rest mass are favored to appear at lower densities than
those positively charged.

The EoS presented in Sec. II depends on the values of
the strong interaction couplings of the different particles
to the meson fields (denoted by g), and on the parameters
responsible of the self-interaction of these fields (κ, λ and
ζ). We employ the values of the FSU2H model [4] for
these parameters, with the proviso that the introduction
of the ∆ degrees of freedom introduces three new free
parameters, i.e., gσ∆, gω∆ and gρ∆. As it is customary,
in the discussion that follows, we will treat the values of
these parameters in terms of the ratios,

xσ∆ =
gσ∆

gσN
xω∆ =

gω∆

gωN
xρ∆ =

gρ∆
gρN

. (12)

Even though the couplings of the ∆ isobars with the me-
son fields at high densities are poorly constrained due

Figure 1: Threshold densities of Λ and ∆− particles as func-
tion of xω∆ for three different values of xσ∆, fixing xρ∆ = 1.

to the lack of experimental observations, some informa-
tion is available to restrict their values. According to
[5], it has been possible to establish that the ∆’s inside
a nucleus feel an attractive potential and, given that the
quark content of these particles is essentially up and down
quarks, we don’t expect these parameters to significantly
differ from those of nucleons. No information is avail-
able for xρ∆, but studies in electromagnetic excitations
of the ∆ baryon within the framework of quantum hadro-
dynamics established the following constraint[11]:

0 . xσ∆ − xω∆ . 0.2 (13)

For these reasons, in the present work we analyze the
effect that the values of these parameters have in the
composition and structure of neutron stars for a relatively
small range of values close to xσ∆ = xω∆ = xρ∆ = 1.
First of all, we notice that, in the present model, the EoS
is fairly independent of the value of xρ∆ for the analyzed
range of values xρ∆ ∈ [0.5, 2.0]. Thus, for the following
discussions we set xρ∆ = 1, though the results we present
hold for any value of xρ∆ within the studied range. The
dependence of the EoS on the values of the ratios xσ∆

and xω∆ is, by far, more interesting.
In Fig. 1, we study the dependence of the onset density,

i.e., the lowest density at which a particle first appears,
of the ∆− (which appears at the lowest density among
the ∆’s, since it can replace a neutron and an electron
at the top of their Fermi seas) and the Λ (which is the
hyperon that first appears, owing to its lowest mass and
to the fact that the Σ− feels a repulsive interaction) as a
function of the value of xω∆, for three different values of
xσ∆ and taking xρ∆ = 1.

For small values of the ratio xω∆, the ∆− appears at
smaller densities than the hyperon Λ, delaying its appear-
ance, in agreement with the outcome of reference [5]. As
the value of xω∆ increases, the onset density of the ∆−

also increases and that of the Λ decreases, leading to the
existence of a value of xσ∆ and xω∆ such that both ∆−
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Figure 2: Mass versus radius profile for hyperonic neutron
stars in the FSU2H model without including ∆’s (solid red
line) and for the modified model (which includes ∆ isobars
degrees of freedom), taking xσ∆ = xω∆ = xρ∆ = 1 (dot-
dashed green line) and xσ∆ = xω∆ = 1.15, xρ∆ = 1 (dotted
blue line). The horizontal shaded regions represent the masses
M = 1.97 ± 0.04M� in the pulsar PSR J1614-2230 (yellow
band) and M = 2.01±0.04M� in the pulsar PSR J0348+0432
(blue band).

and Λ appear at the same density. For larger values of
xω∆, the hyperon Λ appears before the ∆−, at an onset
density of 0.336 fm−3, which is the onset density for this
particle in the FSU2H model without ∆’s [4].

The results of Fig. 1 can be interpreted within the
framework of the Relativistic Nuclear Mean Field The-
ory, since large values of gσ∆ reduce the chemical poten-
tial of the ∆−, thus favoring the appearance of ∆’s at
smaller densities, and large values of gω∆ increase their
energy, contributing to the opposite effect [see Eq. (5)].

We note that the range of possible values for the ratios
xω∆ and xσ∆ are limited by the appearance of instabili-
ties in the EoS, i.e., regions where the dP

dε < 0, and the
experimental constraint of Eq. (13) [11]. In fact, we have
observed that a positive difference close to the value 0.2
in xσ∆ − xω∆ leads to instabilities in the EoS. Demand-
ing stability, we have been able to further constrain the
values of these ratios to fulfill the relation

xω∆ & 1.14xσ∆ − 0.286 (14)

Next, we analyze the effect of including ∆’s on the
structure of neutron stars. In Fig. 2 we display the M-R
relation obtained for the FSU2H model (without inclu-
sion of ∆’s) and for the EoS in which we consider strength
ratios of xσ∆ = xω∆ = 1 (for which the 2M� limit is not
fulfilled) and xσ∆ = xω∆ = 1.15. In accordance with [5],
we notice that the inclusion of ∆ isobars softens the EoS
at high densities, thus dramatically reducing the max-
imum mass until it falls below the observational limit
2M� for xσ∆ ≈ xω∆ ≈ 1. However, we also notice that
the EoS becomes stiffer if we consider a more intense in-
teraction of the ∆’s with the meson fields than that of
the nucleons. Regarding the radii, we observe that, for
values of xσ∆ and xω∆ which fulfill the 2M� condition,
we obtain very compact stars, with radii smaller than 12
km in all the cases. This result falls within the range for
realistic radii of canonical neutron stars mentioned in [4].

In Figs. 3 and 4 we compare the particle fractions
as function of the baryon density for the FSU2H model

Figure 3: Particle fractions as a function of the baryonic den-
sity (in fm−3) within the FSU2H model including hyperons.

Figure 4: Particle fractions as a function of the baryonic den-
sity (in fm−3) within the FSU2H model including hyperons
and ∆’s for xσ∆ = 1.15 , xω∆ = 1.15 and xρ∆ = 1.

without including ∆ isobar degrees of freedom (Fig. 3)
and for the case xσ∆ = 1.15 , xω∆ = 1.15 and xρ∆ = 1
(Fig. 4) which fulfill the 2M� mass limit, clearly show-
ing the delay in the appearance of the hyperons caused
by the ∆’s. It is also interesting to notice that the ∆−

partially replaces the role of the Σ− and Ξ− in compen-
sating the positive charge of the protons, which leads to a
decrease of the fraction of Σ− and Ξ− in the equilibrium
composition when ∆’s are considered (Fig. 4).

In Fig.5, we summarize the constraints which the
strength ratios xσ∆ and xω∆ must fulfill to ensure the
existence of neutron stars compatible with the analyzed
stability criterion and compatible with the observational
results. Even though there is a range of values for the
parameters xσ∆ and xω∆ in which all the constrains are
satisfied (green region), we notice that it implies the in-
teraction between ∆’s and the meson fields σ and ω must
be 10-20% larger than that of the nucleons.

V. CONCLUSIONS

In this work we analyze the effect of the inclusion of ∆
isobars in the EoS of the core of neutron stars, taking as
a starting point the model FSU2H presented in [4]. We
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Figure 5: Relation between the coupling ratios xω∆ and xσ∆

(xρ∆ = 1) within the FSU2H model which lead to stable EoS
(region above the blue line) and to maximum masses higher
than 2M� with stable EoS (region above the yellow line).
The experimental constraints on the difference between xω∆

and xσ∆ [11] (region in between the solid and dot-dashed red
lines) are also shown. The green shaded area corresponds to
the region where all the constraints are satisfied.

also analyze the interplay between these particles and the
meson fields (parametrized in the values of xσ∆, xω∆ and
xρ∆).

Even though the resulting EoS is fairly independent of
the value of xρ∆, we have found that both the compo-
sition and the structure of neutron stars depend on the
values of xσ∆ and xω∆, allowing us to further constraint
the values of these parameters to ensure the existence of
neutron stars with masses larger than 2M� with a stable
EoS, while fulfilling the experimental relation between
xσ∆ and xω∆ presented in [11].

However, in order to fulfill all the restrictions, we find
that xσ∆ & 1.11 and xω∆ & 1.11, which would indicate

a stronger interaction of the ∆’s with the meson fields
than that of the nucleons. Also, contrary to our initial
guess that the ∆’s essentially behave as the nucleons, we
notice that the values xσ∆ = xω∆ = 1 give rise to a too
soft EoS and, consequently to neutron stars with masses
smaller than 2M�. Thus, it would be interesting to study
if there are alternative mechanisms to further stiffen the
EoS at high densities, which would enlarge towards lower
values of xσ∆ and xω∆ the region where all constraints
are fulfilled.

Finally, we notice that, in agreement with the out-
come of [5], the inclusion of ∆’s with strength ratios in
the range where all the constraints are satisfied, delays
the appearance of hyperons in the core of cold, β-stable
neutron stars. Since the appearance of new particles in
the core of neutron stars is accompanied by a softening
in the EoS and, consequently, by a reduction of the max-
imum mass, the appearance of ∆’s was expected to add
its effect to that of hyperons, further reducing the maxi-
mum mass. However, the fact that the appearance of ∆’s
delays the appearance of hyperons leads to a smoother
softening, allowing for the existence of neutron stars with
masses higher than 2M�.
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