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Abstract: About the reason for the presence of plateaux at the Hall resistivity graphic as a
function of the magnetic field in a Hall effect system, and a brief introduction to its fractional
regime.

I. INTRODUCTION [1]

After the hundredth anniversary of Hall’s original
work, it was found that under certain conditions in an
effectively two-dimensional system of electrons subdued
to a strong magnetic field, the Hall conductivity takes
quantised values

σxy =
e2

2π~
ν (1)

where ν was integer valued with extraordinary precision.
The conductivity is inversely proportional to the Hall
resistivity that we will see below.

This quantisation indicated that the door to the quan-
tum regime had been opened and it led to the quantum
Hall effect. The first theorical approximation to under-
stand this effect was based on the model of independent
electrons in the presence of imperfections.

A few years later of this first discovery, it was also
found that in some nearly ideal samples at low tempera-
tures, ν could take very specific fractional values as well.
This led to the fractional quantum Hall effect, where the
Coulomb interacions between electrons, neglected in the
integer quantum Hall effect investigations, take an im-
portant role. An interesing fact is that the charged par-
ticles roaming around these systems carry a fraction of
the charge of the electron, as if the electron has split
himself.

We will introduce some considerations about the Hall
effect system before entering in the quantum regime.

II. FORMATION OF A TWO-DIMENSIONAL
ELECTRON GAS [2]

Let us consider a crystalline material with the free elec-
tron model, which assumes that the electrons are free to
move within the crystal, but they are externally confined
by potential barriers. The behaviour of these electrons
will be the same as in an electron gas with Fermi energy

EF =
~2

2me
(3πρ)2/3 (2)
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Where ρ is the electronic density. Introducing periodic
potentials, it can be seen that the energy levels of the
electrons are grouped in bands, separated by energy band
gaps. The presence of these periodic potentials is justified
by the translational periodicity of the crystal, and the
corresponding eigenstates of the resulting Hamiltonian
are the Bloch functions. An interesting case to see is the
semiconductor, which has multiple partially-filled bands.
However, his behaviour is mainly dominated by the high-
est almost-filled band and the lowest almost-empty band,
which correspond to the valence band and the conductor
band respectively.

We are interested in two-dimensional structures where
the electrons are confined to a thin sheet in the xy-plane
by potential barriers that create a quantum well. This
can be physically implemented by joining two dissimi-
lar semiconductors with different band gaps in a A-B-
A structure, forming a system with two heterojunctions.
The discontinuity in either the valence band and the con-
duction band can be used to form a potential well that
acts like an inversion band.

A. The Effective Mass Approximation [2] and the
g-factor [3]

The electrons at the partially-filled bands are affected
by the presence of the periodic potential. This effect
can be easily included by replacing the value of the free
electron mass, me, with the effective mass, m = m∗me.

Moreover, if we introduce the concept of holes as the
missing electrons of the valence band with the same prop-
erties of the electrons but with positive charge, we can
see that there exist two different effective masses: one for
the electron of the conduction band, m∗e, and one for the
holes of the valence band, m∗h.

On the other hand, the gyromagnetic factor of the elec-
tron, g, presents a dependence on the energy gap of the
semiconductor, Eg. In order to distinguish it from the
g-factor of the free electron, we introduce the effective g-
factor, g∗, which can take different values such as g∗ ≈ 2
for wide-gap semiconductors, or g∗ = −0.44 for GaAs.

It is interesting to see how these effective values affect
to the system. For the last case, GaAs, the dielectric
constant is ε = 12.4 and the effective mass is m∗e = 0.067
Taking effective atomic units ~ = e2/ε = m = 1, the
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length unit and the energy unit are

a∗0 =
ε

m∗
a0 ∼ 9.794 nm (3)

E∗0 =
m∗

ε2
E0 ∼ 11.26 meV (4)

Where a0 is the Bohr radius. The magnetic field when
lB = a0 is 105T , in contrast with the field B∗ = 4.5T
when lB = a∗0. Is for this reason that for such systems,
the magnetic field can not be treated perturbatively.

III. CLASSICAL HALL EFFECT [4]

Consider a system where the electrons are restricted to
move in the xy-plane, with an applied electric field E in

the x-direction. Let us turn on a magnetic field B = Bk̂
in the z-direction. Because of the Lorentz force, the elec-
trons are pushed to one side of the conductor, producing
a difference of potential between the surface boundaries
parallel to the x-axis, usually called Hall Voltage VH .
This phenomenon was discovered by Edwin H. Hall in
1879 and it is known as the Hall effect. It is usually used
to measure unknown magnetic fields with Hall probe de-
vices.

It is possible to define the Hall transverse resistivity

ρxy =
Ey
jx

=
1

σxy
(5)

This resistivity is proportional to the magnetic field and
inversely proportional to the electron density

ρxy =
Fy
e

1

eρvx
=
B

eρ
(6)

However, this linear dependence on the magnetic field is
only seen for low values of B. At low temperatures, by
increasing the value of B, some plateaux appear in the
graphic of the Hall resistivity dependence on the mag-
netic field. This can be explained considering quantum
effects. But first, let us introduce the Landau levels.

IV. LANDAU LEVELS [4]

If we restrict the electrons to low energies, we can ne-
glect the spin of these. The reason is that we would need
an energy ∆ = 2µBB, with µB the Bohr’s magneton, to
flip the spin, but with the constraints of energy there is
not enough energy to do so. With the electrons restricted
to the xy-plane, we write ~x = (x, y) and the magnetic

field is perpendicular to this plane, with ∇ × ~A = Bk̂.
We will find the spectrum and the eigenfunctions of the
Hamiltonian

H =
1

2m
(~p+ e ~A)2 =

1

2m
~π2 (7)

where ~π = ~p + e ~A = m~̇x is the mechanical momentum
and obeys [πx, πy] = −ie~B. Introducing the raising and
lowering operators:

a =
1√

2e~B
(πx − iπy) (8)

a† =
1√

2e~B
(πx + iπy) (9)

that obey [a, a†] = 1, we now can rewrite the Hamiltonian
as

H = hωB(aa† +
1

2
) (10)

where ωB = eB
m is the cyclotron frequency. Proceding

in the same way as in an harmonic oscillator, we first
introduce a ground state |0〉 obeying a|0〉 = 0 and build
the rest of the states with the operators a and a†:

a†|n〉 =
√
n+ 1|n+ 1〉 (11)

a|n〉 =
√
n|n− 1〉 (12)

The energy of the state |n〉 is

En = ~ωB(n+
1

2
) n ∈ N (13)

The energy levels of an electron become equally spaced,
with a gap between levels of ∆ = ~ωB = e~B

m . In order
to find the corresponding wave fuctions, we introduce the

Landau gauge, ~A = xBĵ, and the Hamiltonian becomes

H =
1

2m

(
p2
x + (py + eBx)2)

)
(14)

Because of the translational invariance in the y direc-
tion, we can use the separation of variables Ψk(x, y) =
eikyfk(x). Replacing it in the corresponding Schrödinger
equation we find the following wave functions, which de-
pend on two quantum numbers, n ∈ N and k ∈ R

Ψn,k(x, y) ∼ eikyHn(x+ kl2B)exp

(
− (x+ kl2B)2

2l2B

)
(15)

where Hn are the Hermite polynomials. These wavefunc-
tions look like strips, extended in the y-axis but expo-
nentially localised around x = −kl2B in the x-axis. The
Landau levels are labelled by n ∈ N and are independent
of the value k.

Note that if we take a rectangle region with lengths Lx
and Ly, the degeneracy of the Landau levels is given by

N =
LxLy
2πl2B

=
LxLyeB

2π~
=
LxLyB

φ0
(16)

where φ = 2π~
e is the quantum of flux. This degeneracy

is very large and it will be responsible for much of the
physics of the fractional quantum Hall effect.
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If we turn on an electric field E, we need to add the
term −eEx to the Hamiltonian, and the energies are now
given by

En,k = ~ωB(n+
1

2
) + eE

(
kl2B −

eE

mω2
B

)
+
m

2

E2

B2
(17)

So the Landau levels have now a linear dependence on
k, and the degeneracy in each level has lifted.

FIG. 1: Landau levels in absence (green) and in presence (red)
of an electric field.

A. Introducing the concept of quantum dots [5]

We can think of the quantum dot as a 0-dimensional
structure, created from a quantum well which has been
etched first to leave wires and then etched again to form
boxes. Let us consider the electrons motion restricted to
a two-dimensional quantum dot, instead of the system
defined above.We will neglect the Coulomb interaction
between electrons and take into account the spin. If we
define

Ω2 ≡ ω2
0 +

1

4
ω2
B (18)

that implements the confinement and the cyclotron fre-
quency, we can write the Hamiltonian of the system as

H0 =
∑
i

{
~p2

2m
+

1

2
ωBlz +

1

2
m∗Ω2r2 + g∗µBBσz

}
i

(19)
where m = m∗me and lz = −i~δ/δθ is the angular mo-
mentum relative to the z-axis. In this case, instead of
taking the Landau gauge, we have used the symmetric
gauge

~A = −1

2
~r × ~B = −yB

2
x̂+

xB

2
ŷ (20)

Since [H0, Lz] = [H0, Sz] = 0, we can write the wave
functions as φ(r, σ) = e−ilθu(r)χσ. The solutions to the

corresponding Schödinger equation were determined by
Fock and Darwin. The energy levels are

Enlσ = ~Ω(2n+ |l|+ 1)− 1

2
~ωBl +

1

2
g∗µBBσ (21)

where σ = ±1, n = 0, 1, 2... and l = 0,±1,±2, ...

• The ω0 � ωB limit case: The energy becomes
Enlσ = ~ω0(N + 1) with N ≡ 2n + |l| = 0, 1, 2, ....
For a given N , n can take values from zero to the
integer part of N/2 and |l| can take values up to
N with the same parity of N . These correspond to
the levels of a two-dimensional harmonic oscillator
The single-particle levels are arranged in straight
lines as a function of |l|.

• The ωB � ω0 limit case: The energy becomes
Enlσ = ~ωB(M + 1

2 ) + 1
2g
∗µBBσ with M ≡ n +

1/2+(|l|− l)/2 the labels of the Landau levels. For
each of the two spins, the first Landau level M = 0
corresponds to n = 0 and nonnegative values of l.
For the second level M = 1, we have two options:
n = 1 and nonegative values of l or n = 0 and
l = −1, and so on.

So one can see the evolution of the harmonic oscillator
spectrum for weak magnetic fields towards the Landau
spectrum as we increase B.

V. INTEGER QUANTUM HALL EFFECT [4], [6]

In 1980 Klaus von Klitzing realized the first experiment
exploring the quantum region of the Hall effect, with the
collaboration of Dorda and Pepper. The material used
in this experiment was a SiMOSFET, which consist in
a metal-insulator-semiconductor heterojunction with the
electrons trapped in the inversion band between the insu-
lator and the semiconductor. He won the Nobel prize in
1985 for the discovery of the integer quantum Hall effect.

At low temperatures and values for the magnetic field
above 1T , one can observe that the Hall resistivity ρxy
presents some plateaux for different ranges of magnetic
field, jumping suddenly from one plateau to another. On
each of these plateaux, the Hall resistivity takes the val-
ues

ρxy =
2π~
e2

1

ν
ν ∈ Z (22)

The centre of each plateau occurs when the magnetic field
takes the value

B =
2π~ρ
νe

=
ρ

ν
φ0 (23)

where ρ is the electron density. Note that the integer ν
that labels the plateaux corresponds to the integer n+ 1
that labels the Landau levels.
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FIG. 2: The Integer Quantum Hall Effect. The green curve
corresponds to the Hall resistivity ρxy and the red one to the
longitudinal resistivity ρxx. Source: [6]

On the other hand, the longitudinal resisitivity ρxx is
minimum while the Hall resisitivity sits on a plateau and
it spikes when ρxy jumps.

We can explain the existence of these plateaux con-
sidering the quantum motion of the electrons. When ν
Landau levels are filled, the many-electron wavefunctions
generate very stable states against changes in the mag-
netic field. Then the Hall resistivity remains constant
and gives room to the νth plateau meanwhile the longi-
tudinal resistivity becomes small due to the large energy
gap for exciting the electrons. This gap is caused by the
presence of the closed shells that are formed when the
magnetic field takes the values (23).

A. The Maximum Density Droplet (MDD) state [5]

We assume that the value of B is high enough and
only the first Landau level M = 0 is occupied. Then
n = 1

2 (l − |l|) and (21) becomes

El =
1

2
~ωB + ~

ω2
0

ωB
(l + 1) +

1

2
g∗µBB (24)

The energy eigenstates of (19) are E =
∑occ
l El = C +

~ ω
2
0

ωB
L where L is the eigenvalue with opposite sign of the

total angular momentum operator. The ground state will
be the one with the lowest value of L, L0.

The Coulomb interaction would change all the scheme.
If B is high enough to disregard the Coulomb effects with
other Landau levels and we only take into account the
first Landau level, the true ground state is of the form of
the Slater determinant

Ψ0 =
1√
N !

∣∣∣∣∣∣∣
φ0(~r1) . . . φN−1(~r1)

...
...

...
φ0( ~rN ) . . . φN−1( ~rN )

∣∣∣∣∣∣∣ (25)

which is called the maximum density droplet state.
In the limit of infinite N , we can define the filling factor

of Landau levels as

ν = ρ
2π~
eB

= ρ
φ0

B
(26)

Its value is 1 when all the electrons are in the first Lan-
dau level. Decreasing B, the gap between the Landau
levels will decrease as well and then some electrons will
be placed on the second Landau level, giving ν = 2 until
it is completely filled, and so on.

B. The Presence of Disorder [4]

The samples used in the experiments usually contain
impurities that can be modelled by adding some random
potential to the Hamiltonian. The presence of this disor-
der will split the degenerate eigenstates, so it will change
the energy spectrum of the Landau levels. Furthermore,
the disorder turns many of the quantum states from ex-
tended to localised. Only the extended states can trans-
port charge so they will be the only ones who contribute
to the conductivity.

Suppose that all the extended states in a given Lan-
dau level are been filled. If we fix n and decrease B, the
Fermi energy will increase so we will begin to populate
the localised states, which do not contribute to the con-
ductivity. This leads to the kind of plateaux observed,
with constant conductivity -so with constant resistivity-
over a range of B. So the presence of disorder explains
the plateaux.

VI. FRACTIONAL QUANTUM HALL EFFECT
[4], [5]

If the magnetic field is high enough, the filling factor
becomes smaller than 1 and then we enter in the frac-
tional regime, for which the ground state is no longer the
MDD state. In 1982, some plateaux at non-integer filling
factors were seen for the first time. For example, at the
ground state there were plateaux at ν = 1

3 ,
2
3 ,

1
5 ,

2
5 ,

3
7 , ....

In this fractional regime, the interactions between elec-
trons plays an important role.

Using the Slater determinant in the Vandermonde way
as reference, Robert B. Laughlin suggested the following
wave function for the ground state at ν = 1/m

Ψm(z1, ..., zN ) =

N∏
i<j=1

(zi−zj)mexp

(
−

N∑
i=1

|zi|2

4

)
(27)

where zi = xi−iyi
lB

. It can be seen numerically that this

wave function has greater than 99% overlap with the true
ground state, at least for small numbers of particles N .
In these states the energy per electron is lower than in
any other proposed state. Writing |Ψ|2 = e−βΦ with
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β = 1/m playing the role of an auxiliary dimensionless
temperature, we find

Φ(zi) = −2m2
N∑

i<j=1

ln(zi − zj) +
1

2
m

N∑
i=1

|qi|2 (28)

This is the potential energy for a two-dimensional plasma
of charged particles, each one with charge q =

√
2m and

m and odd integer in order to preserve the Fermi statisc-
tics. The density of the state at ν = 1/m is given by

ρ =
1

2πm
(29)

FIG. 3: The Fractional Quantum Hall Effect. Source: [4]

The Laughlin state should be thought of as an enterelly
new phase of matter, but the classical analogy would be
a liquid of states.

There is a competing solid phase in which the elec-
trons form a two-dimensional triangular lattice, known
as Wigner crystal. For low densities of electrons, this
crystal has a lower energy than the Laughlin state.

VII. CONCLUSIONS

• One of the particularities of the integer quantum
Hall effect is that it is best seen in a low purity
material, with a rather high level of disorder and
where very few electronic states extend across the
whole system.

• The studies of the quantum Hall effect reveal
surprising results that are of particular interest to
electrical metrology and condensed matter physics
disciplines [1]. The independence of the plateaux
from the material and from the geometry of the
device makes the quantum Hall effect a perfect
candidate to be used as an absolute resistance
standard that only depends on fundamental
constants.

• Increasing the magnetic field and taking into ac-
count the Coulomb interaction, our integer quan-
tum Hall effect becomes a more complex phe-
nomenon, the fractional quantum Hall effect. This
needs the introduction of some new conceps such as
the quasi-particles and the quasi-holes, which have
a fraction of the electron charge, or such as anyons,
a type of quasi-particle with properties much less
restricted than fermions and bosons. Furthermore,
a thorough study of this effect would require of
some topology, but that goes beyond the aim of
this paper.
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