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We complete the leading-log renormalization group scaling of the nonrelatiR€QCD) Lagrangian at
O(1/m?). The next-to-next-to-leading-log renormalization group scaling of the potential NRQCD Lagrangian
(as far as the singlet is concernéslalso obtained in the situationa > A ocp. As a by-product, we obtain the
heavy quarkonium spectrum with the same accuracy in the situatig= A ocp. WhenA gcp<me?, this is
equivalent to obtain the whole set @‘(mag”“‘)ln“as) terms in the heavy quarkonium spectrum. The impli-
cations of our results in the nonperturbative situatio,~ A ocp are also mentioned.
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[. INTRODUCTION sible to write the potentials as Wilson loops multiplied by the
matching coefficients inherited from NRQCD. The obvious

Heavy quark-antiquark systems near threshold are charaepplication is that the matching coefficients here computed
terized by the small relative velocity of the heavy quarks in are the ones that multiply the Wilson loops in the non-
their center of mass frame. This small parameter produces Rerturbative potentials. This is especially relevant now that
hierarchy of widely separated scales: (hard, mo (soft, ~ the complete expression for the potential @¢1/m?) in
mo? (ultrasofy, . . . . Thefactorization between them is ef- terms of Wilson loops is availablg7,8,6]. In particular, it
ficiently achieved by using effective field theories, where onéVould be welcome to have an updated evaluation of the lat-
can organize the calculation as various perturbative expariic€ @nalysis of the heavy quarkonium spectrum made in Ref.
sions on the ratio of the different scales effectively producin 9] taking into account the comple®(1/m?) potential as
an expansion im. The terms in these series get multiplied by . ell as the_ now known complete set of LL NRQCD maich-

. ) . ing coefficients.

parametrically large logs: lm which can also be understood

as the ratio of the different scales appearing in the physic In the situation whema > A ocp, the matching between
o¢ m . ippearnng | PRSI RQCD and pNRQCD, i.e. the computation of the poten-
system. Again, effective field theories are very efficient in

, 7 tials, can be done perturbatively. In this case ultrasoft gluons
the resummation of these large logs once a renormalizatioq \vell as the quark-antiquark in an octet configuration do
group (RG) analysis of them has been performed. This will oyist ot the matching scale between NRQCD and potential
be the aim of this paper for the cases of nonrelativistic QCDNRQCD producing further divergences. By taking into ac-
(NRQCD) [1] and potential NRQCEpPNRQCD [2,3].* count these divergences as well as the divergences computed
First, we will obtain the RG improved matching coeffi- pefore we have obtained the next-to-next-to-leading-log
cients of the NRQCD Lagrangian at one loop and up to(NNLL) RG improved pNRQCD Lagrangiafas far as the
O(1/m?). Since, by construction, the matching coefficientssinglet is concerned
of heavy quark effective TheorfHQET) are equal to the  |f we are in the situatiom\ 3cp/(mas)><maZ, the lead-
analogous ones of NRQCD, these can already be obtaingfg solution of the spectrum corresponds to a Coulomb-type
from the literaturg4,5]. Therefore, only the four-heavy fer- pound state and the non-perturbative effects are corrections.
mion matching coefficients need to be computed to obtainn this situation, by using the previous result of the NNLL
the complete leading-logLL) RG improvement of the RG improved pNRQCD Lagrangian, we are able to obtain
NRQCD Lagrangian aD(1/m?). We will perform such a the heavy quarkonium spectrum with the same accuracy.
calculation in this paper. For the spin-dependent four-heavy | instead, we are in the situatiolgep<< maﬁ, from our

fermion matching coefficients there already exists a compuprevious result, we are able to obtain the whole set of
tation in Ref.[6]. We differ with their results. Our evaluation O(ma(”“‘)ln“as) terms in the heavy quarkonium spectrum
s :

is relevant in the study of the situationas~Aqcp. Onthe  There aiready exists an evaluatifi0] within the YNRQCD

one hand, they could be used to improve the accuracy qe?amework[ll—la of the RG improved heavy quarkonium

phenomenological studies or lattice simulations of NRQ_CD.maSS whem ocp< maﬁ. We agree for the spin-dependent

fbrms (since we do for the spin-dependent potentials com-

effective field theory framework ifi7] where the matching puted in Ref[12]) but differ for the spin-independent ones.

between NRQCD and a Scluinger like formulation has
been achieved in a controlled fashion. In particular, it is pos-

II. NRQCD

*Email address: pineda@particle.uni-karlsruhe.de NRQCD has an ultraviolgUV) cutoff vyg={v,, v} sat-
We will use here the pole mass as the expansion parameter leaisfying mv <vyg<m. At this stagev,~vs. v, is the UV
ing aside in this paper any considerations about renormalons.  cutoff of the relative three-momentum of the heavy quark
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and antiquarkwg is the UV cutoff of the three-momentum of
the gluons and light quarks. This does not seem to give prob-
lems at the order we are working at but one should be even-
tually careful upon the possible gauge dependence of this
splitting.

Indeed, the above cutoffs plus the matter content of the
theory given below correspond to our definition of NRQCD.
Within the threshold expansioframework[14] this corre-
sponds to integrate out theard modes of QCD in order to
obtain NRQCD. Unfortunately, NRQCD already contains
non-physical degrees of freedom for the phase space region
it is aimed to describe, which implies that the terms in the
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Lagrangian do not have a unique size nor, therefore, powethalogously forZ, and

counting(to avoid this problem is one of the motivations for
the construction of pPNRQCD, which will be done in the next

section. Nevertheless, this poses no problem for the Ly

NRQCD running considered in this section.
The NRQCD Lagrangian including light fermions reads at
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(up to field redefinitions[1,4,5]
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We have also included tH2*/ m? term above since it will be
necessary in the evaluation of the heavy quarkonium mass
once the power counting is established. Moreover, we will
consider that the kinetic term matching coefficients are pro-
tected by reparametrization invariance,£c,=1) [15],
however, we will often keep them explicit for tracking pur-
poses.

The NRQCD matching coefficients are functionsiqfr
={vp,vs}. Somewhat by definition, the matching coeffi-
cients of the bilinear in the heavy quark fields and of the pure
gluonic terms are just functions ofg, i.e. c=c(vg,m)
=c(vg). In any case, it will explicitly come out from the
calculation. The complete LL running of these matching co-
efficients in the above bas{®)—(4) have been calculated by
Bauer and Manohds] in the (backgroundl Feynman gaude
(some partial previous results already exist in the literature
[4]). Therefore, in order to complete the RG running of the
NRQCD Lagrangian we only need to compute the four-
heavy-quark operators with LL accuracy. This will be our
aim in the following.

A procedure to get therg dependence of the NRQCD
matching coefficients is by using HQET-like rules in
NRQCD (by this we mean to perform the perturbative ex-
pansion in Irh prior to the computation of the Feynman
integralg. In fact, in our case, at one loop, all the dependence
of the matching coefficients is only due iQ since nov,
dependence appears at one-loop, i.€(v,,vs,m)
=d(vp,vs)=d(vs). This will be discussed below within
pNRQCD.

Formally, we can write the NRQCD Lagrangian as an
expansion in Ih in the following way:

[’

1
Lnroco™ Eo W)\Eoﬁa (6)

n=

2We thank C. Bauer for communication on this point.
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where the above fields and parameters should be understood The RG equations for thd’s in the Feynman gauge are
as bare and the renormalization group equations of the renonew and reafl
malized matching coefficients read

d d A
N=B,(\). (7) Vsd_ysdss:_ch(cf_T) aﬁcﬁ,

Yo
Sdvg

The RG equations have a triangular structltfee standard

structure one can see, for instance, in HQET RG evaluations, . id -0
i.e. for the Lagrangianl) setting the heavy antiquark field to Sdyg ¥ 7
zero|:
d d 0 3,
Vsd_ys)\OZBo()\o), VSd_VSdUSZA'(Cf_CA)aSCk_‘_ EaSCACD'
d
vs7—N1=Ba(Ng)A g, d Ca
dVS Vsd_VS dUU: - 7Q§C'2: . (11)
d
vsd—)\2= Bo2.1)(No)A2 These equations have been obtained by explicit computation
Vs in the Feynman gauge by Signgt6] within the threshold
+Ba12 Ao\, (8)  formalism[14]. We have obtained them by using the results

of Ref.[17], which were performed in the Feynman gauge,
plus doing the explicit calculation of the terms that depend
on cp in NRQCD in the Feynman gauge. This proves to be
where the different B’s can be power-expanded\in[\,  enough since the dependence anof Eq. (11) can be in-
corresponds to the marginal operat@msnormalizable inter- ferred from the results of Ref17] once the dependence on
actiong]. For NRQCD we have\y=ag and A;={c,,Cg}, Cp is known(since the spin-dependent terms will depend on
Ao={c¥,cp,cs,{c" {c"} {d}}. c?). Both calculations agree. Note that it was needed not to
At this stage, we would like to stress that we are workinghaver, dependence at one-loop in order the argument to go
in a non-minimal basis of operators for the NRQCD La-through.
grangian. Consequently, the valuegsdme of the matching As we have mentioned we are not working in a minimal
coefficients are ambiguou®nly some combinations with basis. This shows up in the ambiguity of the value of the
physical meaning are unambiguguin particular, some of matching coefficients of some operators. At the practical
the matching coefficients could depend upon the gauge ifevel, this means that they will depend on the specific basis
which the calculation has been performed. Therefore, it i©f operators we have taken for the NRQCD Lagrangian and
important to perform the matching calculation in the sameon the procedure use@h particular on the gaugeThere-
gauge(at least for those operators which could suffer thefore, if working in a non-minimal basis, one should be care-
ambiguity). We will further discuss this point latter on. ful and do the matching using the same gauge for all the
The RG equations for th&} in the Feynman gauge can operators(or at least for those that are potentially ambigu-
be read from Bauer and Manohar resUlf§. Because of ous.
latter comparison, we only explicitely write the equation for ~ For illustration, let us consider the case without light fer-

Cp, it reads mions. In this case¢cy, andd,s are ambiguous but not an
specific combinatiosee Eq.(34)]. In particular,cp could
d  as[4C, 2Cp  32C¢| , 10C, , be absorbed by other matching coefficients by using a field
Vsd_ySCD_E 3 oo |73 T3 % 3 CF redefinition[5]. We can check these statements by doing the

calculation in the Coulomb gauge. In this case we obfamn

8T|:nf hi

_|_

3 C1l 9
“For the record, we also display the non-equal mass case equa-

where, Te=1/2, C;=(N2—1)/(2N,) andC,=N,. The ex- tions with the definitionsl/m?—d/(m;m,). The equations fod,

plicit expression for thecy RG equation depends on the andds, remain equal, fod,, one has to change?—c{c®) and

gauge’ the equation fod,s reads
d 3Cal b, 3 , (M m,
—d .= . — @y 2 )
3The renormalization group evolution of the one-heavy quark sec- Vsdysd”s (4Cf 2 )aécﬁ 4aSCA rr12CD * mlCD
tor has also been done in a minimal basis in R&fby eliminating
the ppera}tor multiply.ingcgl. In that. case the expression of, —§cﬁa§CA El+"_]2) (10)
obtained in Ref[5] is indeed gauge independent. 4 m, my
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non-trivial change is now required in the non-equal masgc(m)} can be read, for instance, frofs]. The tree-level
case for the RG equations of the four-heavy fermion matchmatching conditions for the four-heavy fermion operators

ing coefficient$ read
22C, 32C, 3y , C
= - 0 A
Vsq, cD(Coqumb W[ 3 Cp ( 3 + 3 )ck dsg(m)=—3Cf(Cf—7)was(m),
10C,
- 3 CF y _ CA
ds, (M) =Cy Ci— % mas(m),
d 3Cal 5,
vs7—d,s(Coulomh=| 4Cs— ——| w<Cy - (12
dvg 2

Ca
dvs<m)=3( Ci- 7) wagy(m),
One can see that, as far as the combination that appears in
Eq. (34) is concerned, the physical result is unchanged.

In the following we _WiII use .th.e Feynman gauge results d,, (m)= (Cf Ca )was(m) 13
for the NRQCD matching coefficients.

With the above results we have completed the RG equa-
tions of the NRQCD Lagrangian at one loop@{1/m?). In  We can then obtain the solution of the RG equations. We
order to solve these equations, we need (tree-level only explicitely display those which are new or will be nec-
matching conditions of the matching coefficients at someessary later on(we define z=[ay(vs)/ag(m)] Po=1
matching scale. We choose as the matching soal@he  —1/(2m) ag(ve)IN(vs/m), Bo=35Ca— 3TEN)

CF( Vs) = ZiCAv

co(ve) =22 Ca—1,

—2C CA+ 16Cf_8T|:nf
— zZ A
ACA+4Ten; 2(Ca—2TgnNy)

_9c, 5Ca+4Ten,
Co(¥s)= 5, 7 8Ten,
_c2 _
7Ch+32CAC —ACATeN +32C TNy oo o s BTENy
A(Cat Ten)(2Ten—Cp) 9Ch

20 32C
—2cpy (28, 24 =t —13c,e
+(1:?13(:,\)[1 2

|

CA r
ds(vs) =dsg(m) +4Cf(Cf 7)%045(”])[2%_1]:

dSU( vg) = dsu(m),

(zPo~2Ca—1)

87 Ty w 5Ca+4Ten; By
dys(vs) =dys(M) = (Cs—Cp) - - m r A F

Bo—1]— ————— 2 —
B, M2 =11 g gt n, B, ACA+4Ten; Bo—2Ch
Cat16C—8Teny —7C2+32C,Cq— ACATen;+32CTen
Z —
2(Cp—2Tgny) 4(Cp+Teng)(2Teni—Cp)
% 3Bo (ZPo*4TEne/3-2C3_ 1 ¢ 8Teny Bo 0 (zBo~2Ca_1)+ 20+ 32 Cy
3Bo+4Ten—2C, 9C, | Bo—2Ca 137 13C,
6
X | [ZPo—1]— W%[Zﬁo_lelfs_ 1]) H ,
Ca Bo—2C
dvv(Vs):dvv(m)+ mﬂ-as(m){z 0 A— 1} (14)

074007-4



RENORMALIZATION GROUP IMPROVEMENT OF THE . .. PHYSICAL REVIEW D 65 074007

The {c} matching coefficients can be found or deduced A. Potentials

from the results in Ref5]. The{d} matching coefficients are We now display the structure of the matching potentials

new. For the spin-dependefd} matching coefficients there VO VO D) andv®@ which are the relevant ones to our
already exists an evaluatigl] but we differ with their re- s 0TS s’

e . analysis.
sult. This finishes the RG evaluation of the NRQCD La- (:E/) Order 1/mP. From dimensional analysi&/©)(r) can
grangian at one-loop d@(1/m?). ) s

With the above results one can resum the large logs assq! ly have the following structure:

ciated to the hard scale by running down the factorization

scalevg up to the next relevant scale. vO=—c; s (16)
Finally note that it is very important to know the basis of r

operators one has been working in NRQCD as well as in

which gauge the calculation has been performed. In practicnd similarly for the static octet potential:

this means that one should make sure tyiandd,s have

been computed in the same way in order to obtain the correct ©0)_[Ca Vo

result. Vo = 7_Cf re (17)

(2) Order 1/m. From dimensional analysis and time re-
IIl. PNRQCD versal,V{" can only have the following structure:

The above results are also a necessary step towards the i W
RG improvement of pNRQCD whemas> A gcp, Which we Vs’ CiCaDs (18
consider in the following. m 2mr?

By integrating out some soft degrees in NRQCD one ends
up in pNRQCD. This latter theory is defined by the cutoff (3) Order 1/m2. At the accuracy we aimy® has the
VoNR=1Vp, Vusf» Wherev,, is the cutoff of the relative three- g cture s
momentum of the heavy quarks and is such tmat<wv,

<m and v is the cutoff of the three-momentum of the |,(2) (2) D® 2)
gluons and light quarks witimy?< v <muv. In principle, Vs = CfDl'S[E, 2} CiDzs £3|_2+ %5(3)(”
we do not rule out the option of correlating, with v, in m om? [T 2m? T m?
order to efficiently perform the renormalization group im- @) @
provement at higher ordefd1]. Nevertheless, at the order 4mCiDg s 3) 3CiDigs 1
we are working with, we not need to specify any relation 3m? SN+ 2 r_3L
betweenv, and v, since the dependence oy would be a
subleading effect. Therefore, in this paper, we will treat them C Ds s 1
as independent. 12 3812(r) (19
The pNRQCD Lagrangian reads as follows: am?
Whereslz(F) =3r- o'lf- o,— 0 0, aNd S= 0 /2+ o,/2.
2 4 . v The coefficientsp, , Dg, ... contain some Indepen-
Lonroeo=Tr ST| 1dg — Gk Ca —vO(r)— = q hiaher o . . ]
amd m ence once higher order corrections to their leadingn
vanishing values are taken into account. In particular, we
v . P will have expressions likes®)(r)In"r. This is not a well-
i s+0o' 'Do—Ckm—Vé () defined distribution and should be understood as the Fourier
m transform of IM1/k. Nevertheless, in order to use the same
notation for all the matching coefficients, and since it will be
+.-- |0} +gVa(r)TH{O'r-ES+S'r-EO} sufficient for the purposes of this paper, resum the leading
logs, we will use the expressioa®)(r)In"r, although it

should always be understood in the sense given above.

Vg(r 1
+9 Bz( )Tr{oTr-Eo+ o'or-E}- 7 G,6M*,
B. RG equations
(15 Formally, we can write the pNRQCD Lagrangian as an
expansion in ¥/(=1/r,p) and 1m in the following way:

where we have explicitly written only the terms relevant to % 1
the analysis at the NNLL of the singlet sector; S and O are LoNroco= > rVE®Oo®E 4+ — > VDO ED
the singlet and octet field respectively. All the gauge fields in n=-1 Mn==2
Eqg. (15 are functions of the center-of-mass coordinate and 1
the timet only. For a more extensive discussion we refer the + (820821 o ) 20
reader to Refs3,18]. _2 n2—3 no=n ) @0
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where the above fields and parameters should be understoad well as(due to mixing
as bare. As for the renormalized quantities, we definas q q

the potentials and¥ as the(almos} dimensionless constants v—NVO 2 N~ a "
in it. The latter are in charge of absorbing the divergences of dv'o 7St TdpA T

the effective field theory. Therefore, they will depend o ) o

and v,.. Note that the dependence og of the NRQCD  Within an strict expansion i .

matching coefficients has to cancelinsince the new effec- s Iﬂ?;tutshgogjdeir d]lr;;h; daepeensringﬁ??o Er?e (fzozdrfﬁisav
tive theory does not have any ultraviolet cutoff dependent o . PE P app ' y
S . . . fermion matching coefficients. These first appear at
vs. This discussion completely fixes the procedure to Obta"b(l/mz) Therefore. we onlv need to obtain the equation
the RG equations of the potentials: by studying the UV be- ’ o2 2 ' y q ]
havior of pPNRQCD it is possible to obtain the scale depen-p(d/dvp)Vs”~as . In fact, at least at lowest non-vanishing
dence of the potentials on, and v, and the independence Order, only the delta potentials are dependenipn Of this
on v trivially sets thevg scale(in-)dependence of the poten- type is precisely the leading dependencevgrof pNRQCD.

tials. Being more specific, the potentials have the following!t @ppears througlithe iteration of enough singular poten-
structure: tials when performing standard quantum mechanics pertur-

bation theory. Explicit inspection shows that these kind of
\~/(d(vp,vs,m),c(vs,m),vs,vus,r) effects first appear @(ma?) in a perturbative computation
of the masgthis argument is based on the singularity of the
=V( Vp,M, vys,I) (iteration of the potentials plus taking into account their
_ leading non-vanishing power in the; expansiopn There-
V(vp,vys). fore, we obtain

d.
5V3~ as, (24

This produces the following RG equations: d <(2) 3
Vpgvs =0+O(as). (25)
p

d -
Vs V(d(vp,vs,m),c(vs,M),vs,vys,I)
Vs

By using Eg.(22), this is equivalent tovy(d/dvp)d=0
+0(ad), which was needed previously in NRQCD. In prin-
_ ciple, this result could also be proved by explicit inspection
ad on the possible diagrams at the quark-gluon level that could
d P give divergences proportional tg,. The final conclusion is
—c) —}V(d,c, Ve, Vus,l) that we can neglect any dependencevgrat the order we are
dvs ) dc working at in the potentials, i.&/(v,,v,9 =V(v,s. There-
=0, (21)  fore, we only have to compute thg scale dependence.
The v, s-scale dependence could be taken from the com-
5 putation in[19,18,20,3 (see alsd21]) by keeping track of
Vpﬁv(d(”p7stm)7VSvVuSar) the dependence of the result on the differént_et us note
P that we only need to do a one-loop computation in order to
d d ~ achieve the necessary accurgplus the already known two-
P d_,,pd %V(d”’s"’us'r)- (22) loop singlet static potentipl This should be compared with
the one-, two- and three-loop calculations that seem to be
The first equation just reflects the independence of the polecessary if the calculation is performed at the quark-gluon
tential onv,. At the practical level, with the accuracy we are level as in Refs[12,13,10.
working, it is equivalent to sets=1/r up to factors of order ~ Formally, the renormalization group equations of the
one. The second equation tells us that the dependeneg on renormalized — matching ~ coefficients due to  the
is inherited from théfour-heavy fermionNRQCD matching  Yusdependence read

d
=\vsgT—tv
savs S

v

d)a

+vg

coefficients.
One of our aims will be to obtain the heavy quarkonium d V=B«(V 26
; 3 2 2 Vus w(V). (26)
spectrum with NNLL accuracy whengcp/ (mas)“<meyg . dvys

In that situation the leading order solution corresponds to a ) , ) )
Coulomb-type bound state and, leaving aside non_From.a pragtlgal point of view one can organize the RG
perturbative corrections, a perturbative expansion is licit. [ffquations W(')th'” an expansion inm/

order to achieve this goal we will need the RG improvement At O(1/m’), the analysis corresponds to the study of the
of the pNRQCD Lagrangian for the singlet sector with the Static limit of pPNRQCD, which has already been carried out

same accuracy. Being more precise, we will need in Ref. [20]. WE repeat the basic points here for ease of
reference. Sinc¥ _,# 0, there are relevant operatqssiper-
d~(0) 4 d~(1) 3 d~(2) ) renormalizable termsin the Lagrangian and the US RG
Vavs T, Vavs T, Vavs &, equations lose the triangular structure that we enjoyed for the

(23 RG equations of. Still, if V_;<1, a perturbative calcula-
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tion of the renormalization group equations can be achieved

as a double expansion WM_; andVO (for a similar discus- Vusd
sion in the context of scalak ¢"-like theories sed?22]),

where the latter corresponds to the marginal operdtersor-

malizable interactions At short distances (L& Aqcp), the Vusg
static limit of pPNRQCD lives in this situation. Specifically,

we haveV_;={ay ay}, that fulfills V_;~ay(r)<1; Vo | fact, in general, we have the structulP=V,,)
=ay(v,y and \~/1={VA,VB}~1. Therefore, we can calcu-

)V VU2 2,

d - ~ -
YA VA O LVARY (29)

Vus

late the anomalous dimensions order by ordedifw,s). In d VI 2 V(nl)v(nz) )
", . -~ VUSd m ~ m m. !
addition, we also have an expansionVin;. Moreover, the Vus (namy M M2 i
specific form of the pNRQCD Lagrangian severely con-
strains the RG equations general structure. The result ob- with 2 n=n, 2 m=m, (30

tained in Ref[20] reads

and one has to pick up the leading contributions from all the

d 2 C s .
Vysm— vy = _a_SVIZ_\ <_A_ Cilay +Cfav> , possible terms. _
dvys s 3 2 0 s Equations(21), (25), (27) and (28) provide the complete
set of RG equations at the desired order. By using E2f5.
d 2 s, (CA . i 3 and(25), we obtain
Ve g3 Oy — = — —~ o o y ~ _
Bdrys Yo 3w Al 2 T TVel TV V=N(d(1Ir),c(1r), ve= 1l , v e, r). (31)

We now need the initial condition in order to solve the US
RG equations, i.e. the matching conditions. We fix the initial
point atv,s=1/r. In summary, we need to know the singlet
static potential WitrO(ag) accuracy, the bi potential with
O(ag) accuracy, the A potentials and the singlet octet

2

d ag

Vusg — ds= —Po7
ustus s B027T1

Vys+—Va=0, potential withO(«g) accuracy and/, with O(1) accuracy
dvys at v,=1/r. They read
(r‘l)
vy,s—Vg=0. (27) ay (1 H=agr h 1+(31+27Eﬂo)
dvys
2
At higher orders in Ih, we only need to consider the m 2
singlet potentials. The same considerations than for the static | ve(4a1Bot2B,) + 3 +4yE)
limit apply here as far as the non-triangularity of the RG o
equations is concerned. A(1/m,1/m?), we have the fol- ) ag(r—7)
lowi : - (L) _ (1) S(2) XBotaz|———1- (32
owing matching coefficientsVi74={D¢"’,c} and Vi 1672

-{D@.D (225),DE@,D(szz?S,D(Lzs?,s’D(szl)z,s}’ and we obtain
c DN(r H=al(r™),
_Cf

ay +Cia _ _
Vol IV DEAr H=adr ),

DA(r H=agr b,

DA H=adr H2+cp(r H—2¢3(r 1)

d 16 o CA
s DI Vi F- i,
”S —1d,o(r T +3d,,(r 7Y
d 8 a C
DP=_ —=v3c? (—A Cr|ay +Ciay.|, 1
VUSqus i1s™ 3 A%k | o |y, fay, +—(d34r71)+3d5v(r71)) ,
(28) Cs
and zero for the other matching coefficiefits particular for (2) . o 3 .
the spin-dependent potentials 'Y =agrheE(r e (dSU(f )
In a more formal way, Eq(28) has the following struc-
ture: +Cid,,(r b)),
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o 16
D{E(r 1= ( A eor 1) 20e(r), D1 =D+ 5| S+ Cy
Déﬁ’z,sn‘l):as<r—1>c§(r‘1>, Xag(r_l)log(zsir’jm; |
av, () =ayr™),
-1 (2) —_n(2)y,-1 8Ca 1
Va(r =1, Df(me) =D+ g2 adr ™

where 8, =34/3C5— 4CTgn;— 20/3C,Ten; and the values
of a; anda, have been computed in R¢23]. We now have xlog

ag (I’_l))

all the necessary ingredients to solve the RG equations. (vus)
Equations(27) and (28) give rise to subleading effects

within strict expansion inxg. Therefore, we can approxi- D{A (v, =DA(r ™Y,

mate them to(if not displayed the RG equation remains

equa)

D{A(vu) =DAr 1)+ 3/32(0“—&)

d 2 OIS(Vus)( ) S(r 1)

Vysgs Qy —5=
USdV V 3

us  ° m o (ril)
X ag(r Hlo ( > )
d 0 s Jlog ag(vys
Vusy . @y —U,
d o
’ D@ @ -1
g 16 au(v.) © c (Vi) =Dg((r "),
AV
vysg—CaDM =2 == 22 C+ 2| ad(r 7Y,
dVUS 3 T 2 2 (2) 1
LSs(Vus) Digs(r ),
d 8 ag(v,s) Ca
Vs DR =2 =M A (1L,
usdvus 1s 3 T 2 S( ) Slz s(VUS) D812 s( 1)_
d 16
vustfg:§ (W“S) (T—Cf> ag(r7b). This completes the RG evaluation of the pPNRQCD Lagrang-

(33 ian at NNLL (as far as the singlet is concerned

We can finally obtain the RG improved potentials for the IV. HEAVY QUARKONIUM SPECTRUM

singlet:
3 In the situationA 3./ (mag)?<ma?, the heavy quarko-
-1 -1 nium behaves as a Coulomb-type bound state and the pertur-
ay (v ay (r + — r . . . .
2 us) = Vil ) B S( ) bative corrections can be computed in a systematic way.

1 From the potential-like terms, we obtain the following cor-
ag(r )) (34) rection to the NNLO energy expressidthe derivation of

Xlo ,
J as(vys) this result would go along similar lines to those in H&8)):

cA 1 as(vyd| C?6o( 16
po n 2 _ S us. _ -
SER(vus) =E “{ 3/3 4CACfn(2|+1)‘Zcf<n(2|+1) nz) ! g( as )+ 3n Bo
Cal, [as(vys)) 3 , 3 1 4 C§8100s
X Cf—7 Iog(—s —E(l'f‘CD—ZCF)—FO[S dvs+3dvv+ C—f(d55+3dSU) —§T
3 Ca (1-810)8g Cf
—-2C _ Bo_ —ZC - >
S E W TN E ]] 2 D+ Hn i 2 [ (35

whereE,,= —mC$a§I(4n2), the scalevg in z and in the NRQCD matching coefficients has been fixed to the soft sgale
=2a, ' where 2, *=mC;aq(2a,')/n. a4 is also understood at the soft scale=2a, ! unless the scale is specified, and
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- (2I|+:1—1) {421-1)(z A=) +(z7?A-1)}, j=I1-1
Cj={ —4z A-1)+(z7*-1), j=I (36)

2||T3{4(2| +3)(z CA—1)—(z7%A-1)}, j=I+1.

Equation(35) gives all theO(ma(a,n)") terms forn=1 of If we consider thamaZ>Aocp, EQ. (37) can be com-
the heavy quarkonium mass, where In stands either foputed perturbatively. Sincea? is the next relevant scale,
In(ay), arising from the hard scale, or for és/v,9, arising  the effective role of Eq(37) will be to replacev,s by ma?
from the ultrasoft scale. After adding to E®5) the NNLO  (up to finite pieces that we are systematically neglegting
[24] result with the normalization point at theame soft Eq. (35). Then Eq.(38) reduces to Eq(35) with VUSNmag-
scale,vs=2a,*, that we have used here, the compl@ter- | particular, we taker .= — E,, . As expected, Eq35) with
turbative NNLL heavy quarkonium mass is obtain@adote vus= — E, reproduces the already knov@(mea2in ag) cor-
that for the LO result the three-loop running, has to be yection[18] (see alsd25,10). Since in this situation one is
used. _ _ assuming that\ gcp/ma2<1, one can expand on this pa-
_ The v, dependence of E435) cancels against contribu- ameter. Therefore, non-perturbative corrections can be pa-
tions from US energies. At the next-to-leading order in the,;metrized by local condensates. The leading and next-to-
multipole expansion, the contribution from these scales rea%ading non-perturbative corrections have been computed in
2 " the literature[26,27].
5USEnI(Vus):_ig_TFf dt(n,I|re''En=Holr|n 1) There already exists an evaluatipbO] within the vN-
' 3N 0 RQCD framework[11-13 of th2e RG improved heavy
a adj=b uarkonium mass whefi gcp<meas . We agree for the spin-
X(EAD S(LOZE0)) (vus), 37) gependent termssince v?/gDagrees with tﬁe spin-depeﬁdent
whereHozck(pZ/m)JrVE)O) and v, is the UV cutoff of pN- potentials computed in Reff12]; see Eq(34)] but differ for

RQCD. Then, the total correction to the energy reads the spin-independent ones. We note that the disagreement
still holds if we consider QED with light fermionsQ

SEn ;= 6™, j(vys) + 8U%En 1(vys). (38) —1,Ca—0,Tg—1). Agreement is found for QED without
light fermions C—1,C,—0,n;—0T—1).

Different possibilities appear depending on the relative
size of Agcp With respect to the US scataa?. If we con-
sider thatA gcp~ ma?, the gluonic correlator in Eq(37)
cannot be computed using perturbation theory. Therefore, in We thank M. Beneke and especially A. Signer for collabo-
a model independent approach, one can leave it as a freation in the early stages of this paper. We thank C. Bauer, A.
parameter and fix it with experiment at some saglg[since  Hoang and specially J. Soto for discussions. We thank the
the running of Eq.(37) with v, is known, one can then IPPP at Durham for hospitality while part of this work was
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