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Renormalization group improvement of the nonrelativistic QCD Lagrangian
and heavy quarkonium spectrum
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We complete the leading-log renormalization group scaling of the nonrelativistic~NRQCD! Lagrangian at
O(1/m2). The next-to-next-to-leading-log renormalization group scaling of the potential NRQCD Lagrangian
~as far as the singlet is concerned! is also obtained in the situationmas@LQCD. As a by-product, we obtain the
heavy quarkonium spectrum with the same accuracy in the situationmas

2*LQCD. WhenLQCD!mas
2 , this is

equivalent to obtain the whole set ofO(mas
(n14)lnnas) terms in the heavy quarkonium spectrum. The impli-

cations of our results in the nonperturbative situationmas;LQCD are also mentioned.
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I. INTRODUCTION

Heavy quark-antiquark systems near threshold are cha
terized by the small relative velocityv of the heavy quarks in
their center of mass frame. This small parameter produc
hierarchy of widely separated scales:m ~hard!, mv ~soft!,
mv2 ~ultrasoft!, . . . . Thefactorization between them is e
ficiently achieved by using effective field theories, where o
can organize the calculation as various perturbative exp
sions on the ratio of the different scales effectively produc
an expansion inv. The terms in these series get multiplied
parametrically large logs: lnv, which can also be understoo
as the ratio of the different scales appearing in the phys
system. Again, effective field theories are very efficient
the resummation of these large logs once a renormaliza
group ~RG! analysis of them has been performed. This w
be the aim of this paper for the cases of nonrelativistic Q
~NRQCD! @1# and potential NRQCD~pNRQCD! @2,3#.1

First, we will obtain the RG improved matching coeffi
cients of the NRQCD Lagrangian at one loop and up
O(1/m2). Since, by construction, the matching coefficien
of heavy quark effective Theory~HQET! are equal to the
analogous ones of NRQCD, these can already be obta
from the literature@4,5#. Therefore, only the four-heavy fer
mion matching coefficients need to be computed to ob
the complete leading-log~LL ! RG improvement of the
NRQCD Lagrangian atO(1/m2). We will perform such a
calculation in this paper. For the spin-dependent four-he
fermion matching coefficients there already exists a com
tation in Ref.@6#. We differ with their results. Our evaluatio
is relevant in the study of the situationmas;LQCD. On the
one hand, they could be used to improve the accuracy
phenomenological studies or lattice simulations of NRQC
On the other hand, this situation has been studied within
effective field theory framework in@7# where the matching
between NRQCD and a Schro¨dinger like formulation has
been achieved in a controlled fashion. In particular, it is p

*Email address: pineda@particle.uni-karlsruhe.de
1We will use here the pole mass as the expansion parameter

ing aside in this paper any considerations about renormalons.
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sible to write the potentials as Wilson loops multiplied by t
matching coefficients inherited from NRQCD. The obvio
application is that the matching coefficients here compu
are the ones that multiply the Wilson loops in the no
perturbative potentials. This is especially relevant now t
the complete expression for the potential atO(1/m2) in
terms of Wilson loops is available@7,8,6#. In particular, it
would be welcome to have an updated evaluation of the
tice analysis of the heavy quarkonium spectrum made in R
@9# taking into account the completeO(1/m2) potential as
well as the now known complete set of LL NRQCD matc
ing coefficients.

In the situation whenmas@LQCD, the matching between
NRQCD and pNRQCD, i.e. the computation of the pote
tials, can be done perturbatively. In this case ultrasoft glu
as well as the quark-antiquark in an octet configuration
exist at the matching scale between NRQCD and poten
NRQCD producing further divergences. By taking into a
count these divergences as well as the divergences comp
before we have obtained the next-to-next-to-leading-
~NNLL ! RG improved pNRQCD Lagrangian~as far as the
singlet is concerned!.

If we are in the situationLQCD
3 /(mas)

2!mas
2 , the lead-

ing solution of the spectrum corresponds to a Coulomb-t
bound state and the non-perturbative effects are correcti
In this situation, by using the previous result of the NNL
RG improved pNRQCD Lagrangian, we are able to obt
the heavy quarkonium spectrum with the same accuracy

If, instead, we are in the situationLQCD!mas
2 , from our

previous result, we are able to obtain the whole set
O(mas

(n14)lnnas) terms in the heavy quarkonium spectrum
There already exists an evaluation@10# within the vNRQCD
framework@11–13# of the RG improved heavy quarkonium
mass whenLQCD!mas

2 . We agree for the spin-depende
terms ~since we do for the spin-dependent potentials co
puted in Ref.@12#! but differ for the spin-independent one

II. NRQCD

NRQCD has an ultraviolet~UV! cutoff nNR5$np ,ns% sat-
isfying mv!nNR!m. At this stagenp;ns . np is the UV
cutoff of the relative three-momentum of the heavy qua

av-
©2002 The American Physical Society07-1
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ANTONIO PINEDA PHYSICAL REVIEW D 65 074007
and antiquark.ns is the UV cutoff of the three-momentum o
the gluons and light quarks. This does not seem to give p
lems at the order we are working at but one should be ev
tually careful upon the possible gauge dependence of
splitting.

Indeed, the above cutoffs plus the matter content of
theory given below correspond to our definition of NRQC
Within the threshold expansionframework @14# this corre-
sponds to integrate out thehard modes of QCD in order to
obtain NRQCD. Unfortunately, NRQCD already contai
non-physical degrees of freedom for the phase space re
it is aimed to describe, which implies that the terms in t
Lagrangian do not have a unique size nor, therefore, po
counting~to avoid this problem is one of the motivations f
the construction of pNRQCD, which will be done in the ne
section!. Nevertheless, this poses no problem for t
NRQCD running considered in this section.

The NRQCD Lagrangian including light fermions reads
O(1/m2) ~up to field redefinitions! @1,4,5#

L5Lg1Ll1Lc1Lx1Lcx , ~1!

wherec is the Pauli spinor that annihilates the fermion,x is
the Pauli spinor that creates the anti-fermion,iD 05 i ]0
2gA0 , iD5 i“1gA,

Lg52
1

4
GmnaGmn

a 1c1
g 1

4m2 g fabcGmn
a Gbm

aGcna, ~2!

Ll5(
i

q̄i i D” qi1c1
l l g2

8m2 (
i , j

q̄iT
agmqiq̄jT

agmqj

1c2
l l g2

8m2 (
i , j

q̄iT
agmg5qiq̄jT

agmg5qj

1c3
l l g2

8m2 (
i , j

q̄ig
mqiq̄jgmqj

1c4
l l g2

8m2 (
i , j

q̄ig
mg5qiq̄jgmg5qj , ~3!

Lc5c†H iD 01ck

D2

2m
1c4

D4

8m3
1cFg

s•B

2m

1cDg
~D•E2E•D!

8m2
1 icSg

s•~D3E2E3D!

8m2 J c

1c1
hl g2

8m2 (
i

c†Tacq̄ig0Taqi
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1c2
hl g2

8m2 (
i

c†gmg5Tacq̄igmg5Taqi

1c3
hl g2

8m2 (
i

c†cq̄ig0qi

1c4
hl g2

8m2 (
i

c†gmg5cq̄igmg5qi , ~4!

analogously forLx and

Lcx5
dss

m2
c†cx†x1

dsv

m2
c†scx†sx1

dvs

m2
c†Tacx†Tax

1
dvv

m2
c†Tascx†Tasx. ~5!

We have also included theD4/m3 term above since it will be
necessary in the evaluation of the heavy quarkonium m
once the power counting is established. Moreover, we w
consider that the kinetic term matching coefficients are p
tected by reparametrization invariance (ck5c451) @15#,
however, we will often keep them explicit for tracking pu
poses.

The NRQCD matching coefficients are functions ofnNR
5$np ,ns%. Somewhat by definition, the matching coef
cients of the bilinear in the heavy quark fields and of the p
gluonic terms are just functions ofns , i.e. c5c(ns ,m)
[c(ns). In any case, it will explicitly come out from the
calculation. The complete LL running of these matching c
efficients in the above basis~2!–~4! have been calculated b
Bauer and Manohar@5# in the~background! Feynman gauge2

~some partial previous results already exist in the literat
@4#!. Therefore, in order to complete the RG running of t
NRQCD Lagrangian we only need to compute the fo
heavy-quark operators with LL accuracy. This will be o
aim in the following.

A procedure to get thens dependence of the NRQCD
matching coefficients is by using HQET-like rules
NRQCD ~by this we mean to perform the perturbative e
pansion in 1/m prior to the computation of the Feynma
integrals!. In fact, in our case, at one loop, all the dependen
of the matching coefficients is only due tons since nonp
dependence appears at one-loop, i.e.d(np ,ns ,m)
[d(np ,ns).d(ns). This will be discussed below within
pNRQCD.

Formally, we can write the NRQCD Lagrangian as
expansion in 1/m in the following way:

LNRQCD5 (
n50

`
1

mn ln
BOn

B , ~6!

2We thank C. Bauer for communication on this point.
7-2



to
n

on
o

ng
a-

e
t
m
he

n

or

e

e

tion

lts
e,
nd
be

n
on
t to
go

al
he
cal
sis
nd

re-
the
u-

r-
n

eld
the

e

qua-

RENORMALIZATION GROUP IMPROVEMENT OF THE . . . PHYSICAL REVIEW D 65 074007
where the above fields and parameters should be unders
as bare and the renormalization group equations of the re
malized matching coefficients read

ns

d

dns
l5Bl~l!. ~7!

The RG equations have a triangular structure@the standard
structure one can see, for instance, in HQET RG evaluati
i.e. for the Lagrangian~1! setting the heavy antiquark field t
zero#:

ns

d

dns
l05B0~l0!,

ns

d

dns
l15B1~l0!l1 ,

ns

d

dns
l25B2(2,1)~l0!l2

1B2(1,2)~l0!l1
2 , ~8!

•••,

where the different B’s can be power-expanded inl0 @l0
corresponds to the marginal operators~renormalizable inter-
actions!#. For NRQCD we havel05as and l15$ck ,cF%,
l25$c1

g ,cD ,cS ,$cll %,$chl%,$d%%.
At this stage, we would like to stress that we are worki

in a non-minimal basis of operators for the NRQCD L
grangian. Consequently, the values of~some of! the matching
coefficients are ambiguous~only some combinations with
physical meaning are unambiguous!. In particular, some of
the matching coefficients could depend upon the gaug
which the calculation has been performed. Therefore, i
important to perform the matching calculation in the sa
gauge~at least for those operators which could suffer t
ambiguity!. We will further discuss this point latter on.

The RG equations for the$c% in the Feynman gauge ca
be read from Bauer and Manohar results@5#. Because of
latter comparison, we only explicitely write the equation f
cD , it reads

ns

d

dns
cD5

as

4p F4CA

3
cD2S 2CA

3
1

32Cf

3 D ck
22

10CA

3
cF

2

1
8TFnf

3
c1

hlG , ~9!

where,TF51/2, Cf5(Nc
221)/(2Nc) andCA5Nc . The ex-

plicit expression for thecD RG equation depends on th
gauge.3

3The renormalization group evolution of the one-heavy quark s
tor has also been done in a minimal basis in Ref.@5# by eliminating
the operator multiplyingc1

hl . In that case the expression ofcD

obtained in Ref.@5# is indeed gauge independent.
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The RG equations for thed8s in the Feynman gauge ar
new and read4

ns

d

dns
dss522Cf S Cf2

CA

2 Das
2ck

2 ,

ns

d

dns
dsv50,

ns

d

dns
dvs54~Cf2CA!as

2ck
21

3

2
as

2CAcD ,

ns

d

dns
dvv52

CA

2
as

2cF
2 . ~11!

These equations have been obtained by explicit computa
in the Feynman gauge by Signer@16# within the threshold
formalism @14#. We have obtained them by using the resu
of Ref. @17#, which were performed in the Feynman gaug
plus doing the explicit calculation of the terms that depe
on cD in NRQCD in the Feynman gauge. This proves to
enough since the dependence onck

2 of Eq. ~11! can be in-
ferred from the results of Ref.@17# once the dependence o
cD is known~since the spin-dependent terms will depend
cF

2). Both calculations agree. Note that it was needed no
havenp dependence at one-loop in order the argument to
through.

As we have mentioned we are not working in a minim
basis. This shows up in the ambiguity of the value of t
matching coefficients of some operators. At the practi
level, this means that they will depend on the specific ba
of operators we have taken for the NRQCD Lagrangian a
on the procedure used~in particular on the gauge!. There-
fore, if working in a non-minimal basis, one should be ca
ful and do the matching using the same gauge for all
operators~or at least for those that are potentially ambig
ous!.

For illustration, let us consider the case without light fe
mions. In this case,cD and dvs are ambiguous but not a
specific combination@see Eq.~34!#. In particular,cD could
be absorbed by other matching coefficients by using a fi
redefinition@5#. We can check these statements by doing
calculation in the Coulomb gauge. In this case we obtain~no

c-

4For the record, we also display the non-equal mass case e
tions with the definitionsd/m2→d/(m1m2). The equations fordss

anddsv remain equal, fordvv one has to changecF
2→cF

(1)cF
(2) and

the equation fordvs reads

ns

d

dns
dvs5S4Cf2

3CA

2 Das
2ck

21
3

4
as

2CASm1

m2
cD

(2)1
m2

m1
cD

(1)D
2

5

4
ck

2as
2CASm1

m2
1

m2

m1
D. ~10!
7-3
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non-trivial change is now required in the non-equal m
case for the RG equations of the four-heavy fermion mat
ing coefficients!

ns

d

dns
cD~Coulomb!5

as

4p F22CA

3
cD2S 32CA

3
1

32Cf

3 D ck
2

2
10CA

3
cF

2 G ,
ns

d

dns
dvs~Coulomb!5S 4Cf2

3CA

2 Das
2ck

2 . ~12!

One can see that, as far as the combination that appea
Eq. ~34! is concerned, the physical result is unchanged.

In the following we will use the Feynman gauge resu
for the NRQCD matching coefficients.

With the above results we have completed the RG eq
tions of the NRQCD Lagrangian at one loop atO(1/m2). In
order to solve these equations, we need the~tree-level!
matching conditions of the matching coefficients at so
matching scale. We choose as the matching scalem. The
07400
s
-

in

a-

e

$c(m)% can be read, for instance, from@5#. The tree-level
matching conditions for the four-heavy fermion operato
read

dss~m!523Cf S Cf2
CA

2 Dpas~m!,

dsv~m!5Cf S Cf2
CA

2 Dpas~m!,

dvs~m!53S Cf2
CA

2 Dpas~m!,

dvv~m!52S Cf2
CA

2 Dpas~m!. ~13!

We can then obtain the solution of the RG equations.
only explicitely display those which are new or will be ne
essary later on „we define z5@as(ns)/as(m)#1/b0.1
21/(2p)as(ns)ln(ns/m), b05 11

3 CA2 4
3 TFnf…
cF~ns!5z2CA,

cS~ns!52z2CA21,

cD~ns!5
9CA

9CA18TFnf
H 2

5CA14TFnf

4CA14TFnf
z22CA1

CA116Cf28TFnf

2~CA22TFnf !

1
27CA

2132CACf24CATFnf132CfTFnf

4~CA1TFnf !~2TFnf2CA!
z4TFnf /322CA/31

8TFnf

9CA
Fz22CA1S 20

13
1

32

13

Cf

CA
D @12z213CA/6#G J ,

dss~ns!5dss~m!14Cf S Cf2
CA

2 D p

b0
as~m!@zb021#,

dsv~ns!5dsv~m!,

dvs~ns!5dvs~m!2~Cf2CA!
8p

b0
as~m!@zb021#2

27CA
2

9CA18TFnf

p

b0
as~m!H 2

5CA14TFnf

4CA14TFnf

b0

b022CA
~zb022CA21!

1
CA116Cf28TFnf

2~CA22TFnf !
~zb021!1

27CA
2132CACf24CATFnf132CfTFnf

4~CA1TFnf !~2TFnf2CA!

3
3b0

3b014TFnf22CA
~zb014TFnf /322CA/321!1

8TFnf

9CA
F b0

b022CA
~zb022CA21!1S 20

13
1

32

13

Cf

CA
D

3S @zb021#2
6b0

6b0213CA
@zb0213CA/621# D G J ,

dvv~ns!5dvv~m!1
CA

b022CA
pas~m!$zb022CA21%. ~14!
7-4
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The $c% matching coefficients can be found or deduc
from the results in Ref.@5#. The$d% matching coefficients are
new. For the spin-dependent$d% matching coefficients there
already exists an evaluation@6# but we differ with their re-
sult. This finishes the RG evaluation of the NRQCD L
grangian at one-loop atO(1/m2).

With the above results one can resum the large logs a
ciated to the hard scale by running down the factorizat
scalens up to the next relevant scale.

Finally note that it is very important to know the basis
operators one has been working in NRQCD as well as
which gauge the calculation has been performed. In prac
this means that one should make sure thatcD anddvs have
been computed in the same way in order to obtain the cor
result.

III. pNRQCD

The above results are also a necessary step toward
RG improvement of pNRQCD whenmas@LQCD, which we
consider in the following.

By integrating out some soft degrees in NRQCD one e
up in pNRQCD. This latter theory is defined by the cuto
npNR5$np ,nus%, wherenp is the cutoff of the relative three
momentum of the heavy quarks and is such thatmv!np
!m and nus is the cutoff of the three-momentum of th
gluons and light quarks withmv2!nus!mv. In principle,
we do not rule out the option of correlatingnp with nus in
order to efficiently perform the renormalization group im
provement at higher orders@11#. Nevertheless, at the orde
we are working with, we not need to specify any relati
betweennp andnus since the dependence onnp would be a
subleading effect. Therefore, in this paper, we will treat th
as independent.

The pNRQCD Lagrangian reads as follows:

LpNRQCD5TrH S†S i ]02ck

p2

m
1c4

p4

4m3
2Vs

(0)~r !2
Vs

(1)

m

2
Vs

(2)

m2
1••• D S1O†S iD 02ck

p2

m
2Vo

(0)~r !

1••• DOJ 1gVA~r !Tr$O†r•ES1S†r•EO%

1g
VB~r !

2
Tr$O†r•EO1O†Or•E%2

1

4
Gmn

a Gmna,

~15!

where we have explicitly written only the terms relevant
the analysis at the NNLL of the singlet sector; S and O
the singlet and octet field respectively. All the gauge fields
Eq. ~15! are functions of the center-of-mass coordinate a
the timet only. For a more extensive discussion we refer
reader to Refs.@3,18#.
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A. Potentials

We now display the structure of the matching potenti
Vs

(0) , Vo
(0) , Vs

(1) andVs
(2) , which are the relevant ones to ou

analysis.
(1) Order 1/m0. From dimensional analysis,Vs

(0)(r ) can
only have the following structure:

Vs
(0)[2Cf

aVs

r
, ~16!

and similarly for the static octet potential:

Vo
(0)[S CA

2
2Cf D aVo

r
. ~17!

(2) Order 1/m. From dimensional analysis and time r
versal,Vs

(1) can only have the following structure:

Vs
(1)

m
[2

CfCADs
(1)

2mr2
. ~18!

(3) Order 1/m2. At the accuracy we aim,Vs
(2) has the

structure

Vs
(2)

m2
52

CfD1,s
(2)

2m2 H 1

r
,p2J 1

CfD2,s
(2)

2m2

1

r 3 L21
pCfDd,s

(2)

m2
d (3)~r !

1
4pCfDS2,s

(2)

3m2
S2d (3)~r !1

3CfDLS,s
(2)

2m2

1

r 3 L•S

1
CfDS12 ,s

(2)

4m2

1

r 3 S12~ r̂ !, ~19!

whereS12( r̂ )[3r̂•s1r̂•s22s1•s2 andS5s1/21s2/2.
The coefficients,aVs

, Ds , . . . contain some lnr depen-
dence once higher order corrections to their leading~non-
vanishing! values are taken into account. In particular, w
will have expressions liked (3)(r )lnnr. This is not a well-
defined distribution and should be understood as the Fou
transform of lnn1/k. Nevertheless, in order to use the sam
notation for all the matching coefficients, and since it will b
sufficient for the purposes of this paper, resum the lead
logs, we will use the expressiond (3)(r )lnnr, although it
should always be understood in the sense given above.

B. RG equations

Formally, we can write the pNRQCD Lagrangian as
expansion in 1/r (51/r ,p) and 1/m in the following way:

LpNRQCD5 (
n521

`

r nṼn
(B)On

(B)1
1

m (
n522

`

r nṼn
(B,1)On

(B,1)

1
1

m2 (
n523

`

r nṼn
(B,2)On

(B,2)1OS 1

m3D , ~20!
7-5
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ANTONIO PINEDA PHYSICAL REVIEW D 65 074007
where the above fields and parameters should be unders
as bare. As for the renormalized quantities, we defineV as
the potentials andṼ as the~almost! dimensionless constant
in it. The latter are in charge of absorbing the divergence
the effective field theory. Therefore, they will depend onnp
and nus . Note that the dependence onns of the NRQCD
matching coefficients has to cancel inṼ since the new effec-
tive theory does not have any ultraviolet cutoff dependent
ns . This discussion completely fixes the procedure to obt
the RG equations of the potentials: by studying the UV
havior of pNRQCD it is possible to obtain the scale dep
dence of the potentials onnp andnus and the independenc
on ns trivially sets thens scale~in-!dependence of the poten
tials. Being more specific, the potentials have the follow
structure:

Ṽ„d~np ,ns ,m!,c~ns ,m!,ns ,nus ,r …

5Ṽ~np ,m,nus ,r !

[Ṽ~np ,nus!.

This produces the following RG equations:

ns

d

dns
Ṽ~d~np ,ns ,m!,c~ns ,m!,ns ,nus ,r !

5Fns

]

]ns
1nsS d

dns
dD ]

]d

1nsS d

dns
cD ]

]cG Ṽ~d,c,ns ,nus ,r !

50, ~21!

np

d

dnp
Ṽ„d~np ,ns ,m!,ns ,nus ,r …

5npS d

dnp
dD ]

]d
Ṽ~d,ns ,nus ,r !. ~22!

The first equation just reflects the independence of the
tential onns . At the practical level, with the accuracy we a
working, it is equivalent to setns51/r up to factors of order
one. The second equation tells us that the dependence onp
is inherited from the~four-heavy fermion! NRQCD matching
coefficients.

One of our aims will be to obtain the heavy quarkoniu
spectrum with NNLL accuracy whenLQCD

3 /(mas)
2!mas

2 .
In that situation the leading order solution corresponds t
Coulomb-type bound state and, leaving aside n
perturbative corrections, a perturbative expansion is licit
order to achieve this goal we will need the RG improvem
of the pNRQCD Lagrangian for the singlet sector with t
same accuracy. Being more precise, we will need

n
d

dn
Ṽs

(0);as
4 , n

d

dn
Ṽs

(1);as
3 , n

d

dn
Ṽs

(2);as
2 ,

~23!
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t

as well as~due to mixing!

n
d

dn
Ṽo

(0);as
2 , n

d

dn
ṼA;as , n

d

dn
ṼB;as , ~24!

within an strict expansion inas .
Let us consider first the dependence onnp . Eq. ~22! tells

us that the dependence onnp appears due to the four-heav
fermion matching coefficients. These first appear
O(1/m2). Therefore, we only need to obtain the equati
np(d/dnp)Ṽs

(2);as
2 . In fact, at least at lowest non-vanishin

order, only the delta potentials are dependent onnp . Of this
type is precisely the leading dependence onnp of pNRQCD.
It appears through~the iteration of! enough singular poten
tials when performing standard quantum mechanics per
bation theory. Explicit inspection shows that these kind
effects first appear atO(mas

6) in a perturbative computation
of the mass~this argument is based on the singularity of t
~iteration of the! potentials plus taking into account the
leading non-vanishing power in theas expansion!. There-
fore, we obtain

np

d

dnp
Ṽs

(2)501O~as
3!. ~25!

By using Eq. ~22!, this is equivalent tonp(d/dnp)d50
1O(as

3), which was needed previously in NRQCD. In prin
ciple, this result could also be proved by explicit inspecti
on the possible diagrams at the quark-gluon level that co
give divergences proportional tonp . The final conclusion is
that we can neglect any dependence onnp at the order we are
working at in the potentials, i.e.Ṽ(np ,nus).Ṽ(nus). There-
fore, we only have to compute thenus scale dependence.

The nus-scale dependence could be taken from the co
putation in@19,18,20,3# ~see also@21#! by keeping track of
the dependence of the result on the differentṼ. Let us note
that we only need to do a one-loop computation in order
achieve the necessary accuracy~plus the already known two
loop singlet static potential!. This should be compared with
the one-, two- and three-loop calculations that seem to
necessary if the calculation is performed at the quark-glu
level as in Refs.@12,13,10#.

Formally, the renormalization group equations of t
renormalized matching coefficients due to t
nus-dependence read

nus

d

dnus
Ṽ5BṼ~Ṽ!. ~26!

From a practical point of view one can organize the R
equations within an expansion in 1/m.

At O(1/m0), the analysis corresponds to the study of t
static limit of pNRQCD, which has already been carried o
in Ref. @20#. We repeat the basic points here for ease
reference. SinceṼ21Þ0, there are relevant operators~super-
renormalizable terms! in the Lagrangian and the US RG
equations lose the triangular structure that we enjoyed for
RG equations ofns . Still, if Ṽ21!1, a perturbative calcula
7-6
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tion of the renormalization group equations can be achie
as a double expansion inṼ21 and Ṽ0 ~for a similar discus-
sion in the context of scalarlfn-like theories see@22#!,
where the latter corresponds to the marginal operators~renor-
malizable interactions!. At short distances (1/r @LQCD), the
static limit of pNRQCD lives in this situation. Specifically
we haveṼ215$aVs

,aVo
%, that fulfills Ṽ21;as(r )!1; Ṽ0

5as(nus) and Ṽ15$VA ,VB%;1. Therefore, we can calcu
late the anomalous dimensions order by order inas(nus). In
addition, we also have an expansion inṼ21. Moreover, the
specific form of the pNRQCD Lagrangian severely co
strains the RG equations general structure. The result
tained in Ref.@20# reads

nus

d

dnus
aVs

5
2

3

as

p
VA

2 S S CA

2
2Cf DaVo

1CfaVsD 3

,

nus

d

dnus
aVo

5
2

3

as

p
VA

2 S S CA

2
2Cf DaVo

1CfaVsD 3

,

nus

d

dnus
as52b0

as
2

2p
,

nus

d

dnus
VA50,

nus

d

dnus
VB50. ~27!

At higher orders in 1/m, we only need to consider th
singlet potentials. The same considerations than for the s
limit apply here as far as the non-triangularity of the R
equations is concerned. AtO(1/m,1/m2), we have the fol-
lowing matching coefficients:Ṽ22

(1)5$Ds
(1) ,ck% and Ṽ23

(2)

5$D1,s
(2) ,D2,s

(2) ,Dd,s
(2) ,DS2,s

(2) ,DLS,s
(2) ,DS12 ,s

(2) %, and we obtain

nus

d

dnus
CADs

(1)5
16

3

as

p
VA

2ckF S CA

2
2Cf DaVo

1CfaVsG
3F2CfaVs

1S CA

2
2Cf DaVoG ,

nus

d

dnus
Dd,s

(2)5
16

3

as

p
VA

2ck
2S CA

2
2Cf DaVo

,

nus

d

dnus
D1,s

(2)5
8

3

as

p
VA

2ck
2F S CA

2
2Cf DaVo

1CfaVsG ,
~28!

and zero for the other matching coefficients~in particular for
the spin-dependent potentials!.

In a more formal way, Eq.~28! has the following struc-
ture:
07400
d

-
b-

tic

nus

d

dnus
Ṽ22

(1);Ṽ0Ṽ22
(1)Ṽ21

2 Ṽ1
2 ,

nus

d

dnus
Ṽ23

(2);Ṽ0Ṽ22
(1)2Ṽ21Ṽ1

2 . ~29!

In fact, in general, we have the structure (Ṽm
(0)[Ṽm)

nus

d

dnus
Ṽm

(n); (
$ni %$mi %

Ṽm1

(n1)Ṽm2

(n2)
•••Ṽmj

(nj ) ,

with (
i 51

j

ni5n, (
i 51

j

mi5m, ~30!

and one has to pick up the leading contributions from all
possible terms.

Equations~21!, ~25!, ~27! and ~28! provide the complete
set of RG equations at the desired order. By using Eqs.~21!
and ~25!, we obtain

Ṽ5Ṽ„d~1/r !,c~1/r !,ns51/r ,nus ,r …. ~31!

We now need the initial condition in order to solve the U
RG equations, i.e. the matching conditions. We fix the init
point atnus51/r . In summary, we need to know the singl
static potential withO(as

3) accuracy, the 1/m potential with
O(as

2) accuracy, the 1/m2 potentials and the singlet octe
potential withO(as) accuracy andVA with O(1) accuracy
at nus51/r . They read

aVs
~r 21!5as~r 21!H 11~a112gEb0!

as~r 21!

4p

1FgE~4a1b012b1!1S p2

3
14gE

2 D
3b0

21a2Gas
2~r 21!

16p2 J , ~32!

Ds
(1)~r 21!5as

2~r 21!,

D1,s
(2)~r 21!5as~r 21!,

D2,s
(2)~r 21!5as~r 21!,

Dd,s
(2)~r 21!5as~r 21!„21cD~r 21!22cF

2~r 21!…

1
1

p Fdvs~r 21!13dvv~r 21!

1
1

Cf
„dss~r 21!13dsv~r 21!…G ,

DS2,s
(2)

~r 21!5as~r 21!cF
2~r 21!2

3

2pCf
„dsv~r 21!

1Cfdvv~r 21!…,
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DLS,s
(2) ~r 21!5

as~r 21!

3
„cS~r 21!12cF~r 21!…,

DS12 ,s
(2) ~r 21!5as~r 21!cF

2~r 21!,

aVo
~r 21!5as~r 21!,

VA~r 21!51,

whereb1534/3CA
224CfTFnf220/3CATFnf and the values

of a1 anda2 have been computed in Ref.@23#. We now have
all the necessary ingredients to solve the RG equations.

Equations~27! and ~28! give rise to subleading effect
within strict expansion inas . Therefore, we can approxi
mate them to~if not displayed the RG equation remain
equal!

nus

d

dnus
aVs

5
2

3

as~nus!

p S CA

2 D 3

as
3~r 21!,

nus

d

dnus
aVo

50,

nus

d

dnus
CADs

(1)5
16

3

as~nus!

p

CA

2 S Cf1
CA

2 Das
2~r 21!,

nus

d

dnus
D1,s

(2)5
8

3

as~nus!

p

CA

2
as~r 21!,

nus

d

dnus
Dd,s

(2)5
16

3

as~nus!

p S CA

2
2Cf Das~r 21!.

~33!

We can finally obtain the RG improved potentials for t
singlet:

aVs
~nus!5aVs

~r 21!1
CA

3

6b0
as

3~r 21!

3 logS as~r 21!

as~nus!
D , ~34!
07400
Ds
(1)~nus!5Ds

(1)~r 21!1
16

3b0
S CA

2
1Cf D

3as
2~r 21!logS as~r 21!

as~nus!
D ,

D1,s
(2)~nus!5D1,s

(2)~r 21!1
8CA

3b0
as~r 21!

3 logS as~r 21!

as~nus!
D ,

D2,s
(2)~nus!5D2,s

(2)~r 21!,

Dd,s
(2)~nus!5Dd,s

(2)~r 21!1
32

3b0
S CA

2
2Cf D

3as~r 21!logS as~r 21!

as~nus!
D ,

DS2,s
(2)

~nus!5DS2,s
(2)

~r 21!,

DLS,s
(2) ~nus!5DLS,s

(2) ~r 21!,

DS12 ,s
(2) ~nus!5DS12 ,s

(2) ~r 21!.

This completes the RG evaluation of the pNRQCD Lagran
ian at NNLL ~as far as the singlet is concerned!.

IV. HEAVY QUARKONIUM SPECTRUM

In the situationLQCD
3 /(mas)

2!mas
2 , the heavy quarko-

nium behaves as a Coulomb-type bound state and the pe
bative corrections can be computed in a systematic w
From the potential-like terms, we obtain the following co
rection to the NNLO energy expression~the derivation of
this result would go along similar lines to those in Ref.@18#!:
le
dEn,l , j
pot ~nus!5Enas

2H 2
2CA

3b0
FCA

2

2
14CACf

1

n~2l 11!
12Cf

2S 8

n~2l 11!
2

1

n2D G logS as~nus!

as
D1

Cf
2d l0

3n S 2
16

b0

3FCf2
CA

2 G logS as~nus!

as
D2

3

2
~11cD22cF

2 !2
3

2pas
Fdvs13dvv1

1

Cf
~dss13dsv!G D2

4

3

Cf
2d l0ds1

n

3H z22CA211
3

2

CA

b022CA
@z2b02z22CA#J 2

~12d l0!ds1

l ~2l 11!~ l 11!n
Cj ,l

Cf
2

2 J , ~35!

whereEn52mCf
2as

2/(4n2), the scalens in z and in the NRQCD matching coefficients has been fixed to the soft scans

52an
21 where 2an

215mCfas(2an
21)/n. as is also understood at the soft scalens52an

21 unless the scale is specified, and
7-8
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Cj ,l55
2

~ l 11!

2l 21
$4~2l 21!~z2CA21!1~z22CA21!%, j 5 l 21

24~z2CA21!1~z22CA21!, j 5 l

l

2l 13
$4~2l 13!~z2CA21!2~z22CA21!%, j 5 l 11.

~36!
f

-
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Equation~35! gives all theO„mas
4(asln)n

… terms forn>1 of
the heavy quarkonium mass, where ln stands either
ln(as), arising from the hard scale, or for ln(mas/nus), arising
from the ultrasoft scale. After adding to Eq.~35! the NNLO
@24# result with the normalization point at thesamesoft
scale,ns52an

21 , that we have used here, the complete~per-
turbative! NNLL heavy quarkonium mass is obtained~note
that for the LO result the three-loop runningas has to be
used!.

The nus dependence of Eq.~35! cancels against contribu
tions from US energies. At the next-to-leading order in t
multipole expansion, the contribution from these scales re

dUSEn,l~nus!52 i
g2

3Nc
TFE

0

`

dt^n,l ureit (En2Ho)r un,l &

3^Ea~ t !f~ t,0!ab
adjEb~0!&~nus!, ~37!

whereHo5ck(p
2/m)1Vo

(0) andnus is the UV cutoff of pN-
RQCD. Then, the total correction to the energy reads

dEn,l , j5dpotEn,l , j~nus!1dUSEn,l~nus!. ~38!

Different possibilities appear depending on the relat
size ofLQCD with respect to the US scalemas

2 . If we con-
sider thatLQCD;mas

2 , the gluonic correlator in Eq.~37!
cannot be computed using perturbation theory. Therefore
a model independent approach, one can leave it as a
parameter and fix it with experiment at some scalenus @since
the running of Eq.~37! with nus is known, one can then
obtain its value at another scale#.
s.

D

07400
or

e
ds

e

in
ee

If we consider thatmas
2@LQCD, Eq. ~37! can be com-

puted perturbatively. Sincemas
2 is the next relevant scale

the effective role of Eq.~37! will be to replacenus by mas
2

~up to finite pieces that we are systematically neglecting! in
Eq. ~35!. Then Eq.~38! reduces to Eq.~35! with nus;mas

2 .
In particular, we takenus52En . As expected, Eq.~35! with
nus52En reproduces the already knownO(mas

5ln as) cor-
rection @18# ~see also@25,10#!. Since in this situation one is
assuming thatLQCD/mas

2!1, one can expand on this pa
rameter. Therefore, non-perturbative corrections can be
rametrized by local condensates. The leading and nex
leading non-perturbative corrections have been compute
the literature@26,27#.

There already exists an evaluation@10# within the vN-
RQCD framework @11–13# of the RG improved heavy
quarkonium mass whenLQCD!mas

2 . We agree for the spin-
dependent terms@since we agree with the spin-depende
potentials computed in Ref.@12#; see Eq.~34!# but differ for
the spin-independent ones. We note that the disagreem
still holds if we consider QED with light fermions (Cf
→1,CA→0,TF→1). Agreement is found for QED withou
light fermions (Cf→1,CA→0,nf→0,TF→1).
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